Inhaltsverzeichnis

V	omen	klatur	und Verzeichnisse	xiii			
	Abkürzungen						
	Formelzeichen						
	India	zes		xvi			
٩Ł	ostrac	ct / Kı	urzfassung	xvii			
1.	Einle	eitung		1			
2.	Star	nd der	Technik solarthermischer Kraftwerke	7			
	2.1.	Techn	ologien zur Stromerzeugung mit CSP	7			
		2.1.1.	Linienfokussierende Systeme	7			
		2.1.2.	Punktfokussierende Systeme	9			
	2.2.	Komp	onenten eines Solarturmkraftwerkes	10			
		2.2.1.	Heliostatenfeld	10			
		2.2.2.	Turm	11			
		2.2.3.	Receiver	11			
		2.2.4.	Energiespeicher	14			
		2.2.5.	Kraftwerksblock	14			
	2.3.	Meiler	nsteine der Salzturmtechnologie	15			
		2.3.1.	Gemasolar (2011)	15			
		2.3.2.	Crescent Dunes	16			
3.	Eige	enschaf	ten und Anwendungen von Flüssigmetallen	19			
	3.1.	Bisher	rige Anwendungen von Flüssigmetallen	20			
		3.1.1.	Kernreaktortechnik	20			
		3.1.2.	Auslassventile in Verbrennungsmotoren	21			
		3.1.3.	CPU-Kühler für PCs	21			

Inhaltsverzeichnis

		3.1.4.	Flüssigmetallbatterien	21				
	3.2.	Flüssigmetalle in Solarkraftwerken						
		3.2.1.	Sandia CRTF (Central Receiver Test Facility)[24]	22				
		3.2.2.	CRS-Natriumreceiver auf der PSA	23				
		3.2.3.	Jemalong Solar Thermal Station	27				
	3.3.	Potenz	zielle Flüssigmetalle in Solarkraftwerken	29				
	3.4.	. Eigenschaften der Flüssigmetalle als WTM						
		3.4.1.	Thermohydraulische Eigenschaften	32				
		3.4.2.	Wärmestromdichtelimit	33				
		3.4.3.	Receivergeometrie, Druckverlust und Wärmeübergang	39				
		3.4.4.	Begleitheizung, Korrosion und Lebensdauer	48				
		3.4.5.	Einfrier- und Auftauvorgänge im Receiver	51				
		3.4.6.	Förderung und Messtechnik	54				
		3.4.7.	Reaktivität und Toxizität	55				
		3.4.8.	Erfahrung und Sicherheit	56				
		3.4.9.	Verfügbarkeit und Kosten	57				
4.	Kraf	Kraftwerkskonzepte und -komponenten für Flüssigmetallreceiver 59						
	4.1.	4.1. Einteilung der Kraftwerkskonzepte für Flüssigmetallreceiv						
		4.1.1.	Anbindung an eine Dampfturbine	59				
		4.1.2.	Anbindung an eine Gasturbine	61				
		4.1.3.	AMTEC - Alkali Metal Thermal to Electric Converter .	62				
		4.1.4.	LM MHD Generator - Liquid Metal Magnetohydrodyna-					
			mic Generator	63				
		4.1.5.	Flüssigmetalldampfturbine	64				
	4.2.	Therm	nische Energiespeicher für Flüssigmetallsysteme					
		4.2.1.	Modellierung der thermischen Speicherkonzepte	65				
		4.2.2.	Ergebnisse und Vergleich mit Literaturdaten	66				
	4.3.	Elektr	omagnetische Pumpen (EMP) und Wärmeübertrager	69				
		4.3.1.	Konduktionspumpe	69				
		4.3.2.	Induktionspumpe	70				
		4.3.3.	Wärmeübertrager mit Flüssigmetallen	70				

5 .	Rec	eiverm	odellierung ASTRID [©]	73				
	5.1.	Analytische Vorauslegung von Rohrreceivern						
		5.1.1.	Funktionsumfang und Programmstruktur	74				
		5.1.2.	Berechnung der Receivergeometrie	82				
		5.1.3.	Thermohydraulische Berechnung	85				
		5.1.4.	Berechnung der Receiverkosten	89				
	5.2.	Thern	nische Receivermodellierung mit FEM	92				
		5.2.1.	Geometrieerstellung und Netzgenerierung	93				
		5.2.2.	Randbedingungen	95				
		5.2.3.	Temperaturregelung und Teillastverhalten	98				
		5.2.4.	Netzstudie	100				
	5.3.	Validi	erung des ASTRID-Receivermodells	102				
		5.3.1.	Validierung mit CFD-Modell	102				
		5.3.2.	SOLUGAS-Projekt	105				
		5.3.3.	SolarTwo-Projekt	109				
6.	Konzeptauswahl, Bewertungsmethodik und Spezifikation							
	6.1.	Überg	eordnete Annahmen	117				
		6.1.1.	Basiskonzept und Leistungsklasse	118				
		6.1.2.	Kraftwerksblock	122				
		6.1.3.	Standort und Auslegungszeitpunkt	124				
		6.1.4.	Heliostatenfeldauslegung	124				
		6.1.5.	Receivermodellierung und Wärmeträgermedium $\ .\ .\ .$.	126				
		6.1.6.	Leitungssystem und thermischer Energiespeicher	127				
	6.2.	Bewer	tungsmethodik und LCOE-Berechnung	130				
		6.2.1.	Systemmodellierung und Jahresertragsberechnung	133				
		6.2.2.	Kostenmodelle	133				
7.	Verg	gleichs	studie Mehrturmsystem (5x140 MW)	141				
	7.1.	Ergeb	nisse der Komponentenauslegung	141				
		7.1.1.	Heliostatenfeldauslegung	141				
		7.1.2.	Receivermodellierung	146				
	7.2.	Ergeb	nisse der LCOE-Berechnung	149				
		7.2.1.	Solar Salt im Vergleich zu Natrium	149				
		7.2.2.	Sensitivitätsanalyse des Feldwirkungsgrades	152				

Inhaltsverzeichnis

		7.2.3.	Solar Salt im Vergleich zu Blei-Bismut	154			
		7.2.4.	Kostenanalyse der Wärmeträgermedien	155			
8.	Vergleichsstudie Einturmsystem (700 MW-Receiver)						
	8.1.	Ergeb	nisse der Komponentenauslegung	159			
		8.1.1.	Heliostatenfeldauslegung	159			
		8.1.2.	Receivermodellierung	162			
	8.2.	Ergeb	nisse der LCOE-Berechnung	168			
	8.3.	Vergle	eich von Einturm- u. Mehrturmsystemen	172			
Zu	samr	nenfas	sung und Ausblick	173			
Α.	Stof	fwerte		177			
В.	Spannungsuntersuchung des Auftauvorgangs eines mit Natrium						
	befü	llten R	tohres	181			
C.	C. Berechnung der Rohrwandstärken						
D.	Dru	ckverlu	stberechnung im Receiver	185			
Ε.	Verv	vendet	e Nusselt-Korrelationen	187			
F.	Rece	eiverme	odell 502 in HFLCAL	189			
G.	Spe	zifikatio	onstabellen der Mehrturmsysteme	191			
	G.1.	Übersi	icht der Konfigurationen	191			
	G.2.	Konze	ptskizzen	192			
	G.3.	Stando	ort und Auslegungspunkt	198			
	G.4.	Spezifi	ikation Referenzsystem Solar Salt und Rec-only mit Natriun	n 199			
	G.5.	Spezif	ikation Refernezsystem Solar Salt und Receiver-only mit				
		LBE		210			
	G.6.	_	ikation Referenzsystem Solar Salt und Tower-loop mit Na-				
		trium		213			
Н.	-		onstabellen der Einturmsysteme	215			
	H.1.	Übersi	icht der Konfigurationen	215			
	H.2.	Stando	ort und Design Point	216			

H.3.	Spezifikation	${\bf Referenz system}$	Solar	Salt	und	Rec-only m	it Natrium2	217
H.4.	Spezifikation	Referenzsystem	Solar	Salt	und	Tower-loop	mit Na-	
	trium						2	229