
## Stefan Gössner

## **MECHANISMENTECHNIK**

Vektorielle Analyse ebener Mechanismen



Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Stark erweiterte Auflage des Buchs Getriebelehre. Vektorielle Analyse ebener Mechanismen (ISBN: 978-3-8325-3082-2)

©Copyright Logos Verlag Berlin GmbH 2016 3., korrigierte Auflage, 2017 Alle Rechte vorbehalten.

ISBN 978-3-8325-4362-4

Logos Verlag Berlin GmbH Comeniushof, Gubener Str. 47, 10243 Berlin

Tel.: +49 (0)30 42 85 10 90 Fax: +49 (0)30 42 85 10 92

INTERNET: http://www.logos-verlag.de

## Vorwort

Ein wesentliches Unterscheidungsmerkmal zwischen den Gewerken von Maschinenbauern und Bauingenieuren ist, dass Erstere sich tunlichst bewegen mögen. Die Gewährleistung einer gewünschten Bewegung ist zweifellos Hauptanliegen der *Mechanismentechnik*. Und damit sei auch schon hinreichend auf die Bedeutung dieses Lehrgebiets für den Maschinenbau und verwandte Fachrichtungen hingewiesen.

Mit Getriebe werden häufig primär Rädergetriebe assoziiert. Diese in der Praxis zweifellos bedeutsame Getriebeform ist aus Sicht der Bewegungsanalyse allerdings weniger interessant; besteht die Bewegung doch aus einer einfachen Drehbewegung um eine meist raumfeste Achse. Die grundlegenden Prinzipien dieser gleichförmig übersetzenden Getriebe werden üblicherweise im Themenbereich der Maschinenelemente behandelt und hier somit ausgeklammert.

Der Schwerpunkt des Lehrbuchs liegt auf der Betrachtung ebener, ungleichmäßig übersetzender Mechanismen. Seine Themenbereiche behandeln die wichtigen Grundlagen gestrafft und hoffentlich dennoch in hinreichendem Umfang. Bei deren Zusammenstellung wurde besonderes Augenmerk gelegt auf eine Anknüpfung an die *Kinematik* und *Kinetik*, wie sie in der technischen Mechanik üblicherweise an Hochschulen gelehrt wird.

Gegenüber der ersten Auflage wurde der Titel von Getriebelehre in Mechanismentechnik gewandelt, um mit dieser moderneren Begriff der Lehrveranstaltungsbezeichnung des Verfassers zu entsprechen. Es bleibt nach wie vor Hauptanliegen des Lehrbuchs, die ebene Vektorrechnung konsequent zur Problemlösung getriebetechnischer Aufgabenstellungen einzusetzen. Diese Vorgehensweise wird dem intensiven Umgang von Studierenden und Ingenieuren in der Praxis mit aktuellen geometrieverarbeitenden Systemen und der dadurch gegebenen vertrauten Nähe zu Koordinaten und Vektoren gerecht. Allerdings werden weiterhin grafischen Verfahren auch dort verwendet, wo sie besonders anschaulich sind und übersichtlich zum Ziel führen.

Es wurden einige notwendige Anpassungen an allgemein übliche Formelzeichen vorgenommen. Neu hinzugekommen sind die beiden Kapitel *Geometrische Kinematik* und *Seilmechanismen*. Besonders Letzteren hat sich der Verfasser über einen längeren Zeitraum im Rahmen angewandter Forschungstätigkeit gewidmet.

Die Übungsbeispiele wurden zahlenmäßig erhöht und ihren jeweiligen Hauptkapiteln zugeordnet. Im letzten Abschnitt sind nun Ergebnisse oder vollständige Lösungswege aller Übungsaufgaben zu finden.

Dank gebührt Mitarbeitern und Kollegen auch an anderen Hochschulen für wertvolle Hinweise und Diskussionen sowie meinen Studierenden für hilfreiche Rückmeldungen hinsichtlich Stoffauswahl und -darstellung.

## Inhalt

| Vorwort                                      | 3  |
|----------------------------------------------|----|
| 1 Einleitung                                 | 7  |
| 2 Kinematische Kette                         | 11 |
| 2.1 Glieder                                  | 11 |
| 2.2 Gelenke.                                 | 11 |
| 2.3 Kinematische Ketten                      | 13 |
| 2.4 Freiheitsgrad                            |    |
| 2.7 Bilden beliebiger kinematischer Ketten   |    |
| 2.8 Gelenkwechsel                            |    |
| 2.9 Vom Mechanismus zur kinematischen Kette. |    |
| 2.10 Besonderheiten in Mechanismen.          |    |
| 2.11 Zusammenfassung                         |    |
| 2.12 Aufgaben                                |    |
| 3 Viergelenkkette                            |    |
| 3.1 Viergelenkgetriebe.                      |    |
| 3.2 Umkehrlagen der Kurbelschwinge           |    |
| 3.3 Die zentrische Kurbelschwinge            |    |
| 3.4 Steglagen der Kurbelschwinge             |    |
| 3.5 Die Doppelschwinge                       |    |
| 3.6 Mechanismen der Schubkurbelkette         |    |
|                                              |    |
| 3.7 Mechanismen der Kreuzschleifenkette      |    |
| 3.8 Mechanismen der Schubschleifenkette      |    |
| 3.9 Zusammenfassung                          |    |
| 3.10 Aufgaben                                |    |
| 4 Vektoren                                   |    |
| 4.1 Kartesische und polare Vektoren          |    |
| 4.2 2x2 Matrizen                             |    |
| 4.3 Orthogonaloperator und Vektorprodukt     |    |
| 4.4 Vektorgleichungen                        |    |
| 4.5 Geometrie und Kinematik                  | 64 |
| 4.6 Rechenregeln mit dem Drehoperator        | 66 |
| 4.7 Zusammenfassung                          | 66 |
| 4.8 Aufgaben                                 | 67 |
| 5 Ebene Starrkörperkinematik                 | 69 |
| 5.1 Position                                 | 69 |
| 5.2 Drehpol                                  | 71 |
| 5.3 Geschwindigkeit                          | 72 |
| 5.4 Beschleunigung                           |    |
| 5.5 Ruck                                     |    |
| 5.6 Graphische Geschwindigkeitsermittlung    |    |
| 5.7 Graphische Beschleunigungsermittlung     |    |
| 5.8 Relative Bewegung dreier Ebenen.         |    |
| 5.9 Relative Bewegung eines Gliedpunkts      |    |
| 5.10 Zusammenfassung                         |    |
| 5.11 Aufgaben.                               |    |
| 6 Getriebekinematik.                         |    |
| 6.1 Schleifengleichung.                      |    |
| 6.2 Lagenanalyse                             |    |
| 0.2 Dagonanaryse                             |    |

| 6.3 Mechanismen mit mehreren Schleifen.                |     |
|--------------------------------------------------------|-----|
| 6.4 Übertragungsgleichung und Übertragungsfunktion     |     |
| 6.5 Koppelkurven.                                      | 105 |
| 6.9 Relativbewegung.                                   | 107 |
| 6.10 Zusammenfassung                                   | 111 |
| 6.11 Aufgaben                                          | 111 |
| 7 Pole der ebenen Bewegung                             | 115 |
| 7.1 Der Geschwindigkeitspol                            |     |
| 7.2 Die Polbeschleunigung                              | 120 |
| 7.3 Die Polwechselgeschwindigkeit                      | 120 |
| 7.4 Beschleunigungspol                                 | 122 |
| 7.5 Ruckpol                                            |     |
| 7.6 Relativpole                                        | 127 |
| 7.7 Übersetzung                                        |     |
| 7.8 Polbahnen                                          | 133 |
| 7.9 Zusammenfassung                                    | 136 |
| 7.10 Aufgaben                                          | 136 |
| 8 Krümmungsverhältnisse                                |     |
| 8.1 Krümmungsmittelpunkt                               |     |
| 8.2 Wendepunkte und Wendepol                           |     |
| 8.3 Bressesche Kreise                                  |     |
| 8.4 Die Bresseschen Kreise 2. Ordnung                  |     |
| 8.5 Kreispunktkurve                                    |     |
| 8.6 Zusammenfassung                                    |     |
| 8.7 Aufgaben                                           |     |
| 9 Geometrische Kinematik                               |     |
| 9.1 Voraussetzungen                                    | 159 |
| 9.2 Momentanpol                                        |     |
| 9.3 Die Gleichung von Euler-Savary.                    |     |
| 9.4 Wendepol                                           |     |
| 9.5 Ermittlung des Krümmungsmittelpunkts               |     |
| 9.6 Tangentialpol.                                     |     |
|                                                        | 167 |
| 9.8 Polruck                                            | 168 |
| 9.9 Wendepol 2. Ordnung                                |     |
| 9.10 Tangentialpol 2. Ordnung                          |     |
| 9.11 Ruckpol                                           |     |
| 9.12 Ball'scher Punkt                                  | 171 |
| 9.13 Punkte gleicher Bahnkrümmung                      |     |
| 9.14 Kreispunktkurve                                   |     |
| 9.15 Ball'scher Punkt und Kreispunktkurve              |     |
| 9.16 Zusammenfassung                                   |     |
| 9.17 Aufgaben                                          |     |
| 10 Kraftanalyse                                        |     |
| 10.1 Schnittprinzip                                    |     |
| 10.2 Leistungsprinzip                                  |     |
| 10.3 Ausgleich statischer Antriebskräfte oder -momente |     |
| 10.4 Stabilität von Gleichgewichtslagen                |     |
| 10.5 Trägheitskräfte.                                  |     |
| 10.6 Zusammenfassung.                                  |     |
| 6                                                      |     |

| 10.7 Aufgaben                                      | 193 |
|----------------------------------------------------|-----|
| 11 Maßsynthese                                     | 199 |
| 11.1 Zweilagensynthese                             | 200 |
| 11.2 Dreilagensynthese                             | 204 |
| 11.3 Zweiwinkelzuordnung des Viergelenks           | 206 |
| 11.4 Dreiwinkelzuordnung – Freudenstein Gleichung  |     |
| 11.5 Vorgabe einer Umkehrlage der Kurbelschwinge   | 209 |
| 11.6 Vorgabe beider Umkehrlagen der Kurbelschwinge | 209 |
| 11.7 Satz von Roberts                              | 215 |
| 11.8 Anwendungen des Satzes von Roberts            | 219 |
| 11.9 Exakte Geradführungen                         | 220 |
| 11.10 Angenäherte Geradführungen                   | 221 |
| 11.11 Koppelrastgetriebe                           | 226 |
| 11.12 Zusammenfassung                              | 228 |
| 11.13 Aufgaben                                     | 229 |
| 12 Seilmechanismen                                 | 233 |
| 12.1 Freiheitsgrade                                | 233 |
| 12.2 Erhaltung der Seillänge                       | 235 |
| 12.3 Übersetzung                                   |     |
| 12.4 Abwicklung vom stationären Kreis              |     |
| 12.5 Seilbindung Rolle / Punkt                     | 244 |
| 12.6 Seilbindung Rolle / Rolle                     | 249 |
| 12.7 Zusammenfassung                               | 253 |
| 12.8 Aufgaben                                      | 254 |
| 13 Numerische Mechanismenanalyse                   | 257 |
| 13.1 Generalisierte Koordinaten                    | 257 |
| 13.2 Bindungsgleichung                             | 258 |
| 13.3 Dynamik ebener starrer Körper                 | 262 |
| 13.4 Impulsbasierter Lösungsansatz                 | 265 |
| 13.5 Zusammenfassung                               |     |
| 14 Ergebnisse und Lösungen zu den Aufgaben         | 267 |
| Anhang                                             |     |
| Literatur                                          | 298 |
| Index                                              | 302 |