Table of Content

1	Int	Introduction		
	1.1	Sco	ope of the Dissertation	7
	1.2 St		ucture of the work	7
	1.3	Re	ferences	8
2	Pro	oduc	tion Process of Carbon Fiber	10
	2.1	Pre	ecursor Production	12
	2.1	.1	Wet Spinning	12
	2.1	.2	Melt Spinning	13
	2.1	.3	Chemical Structure of a PAN Fiber	15
	2.2	Pre	ecursor Stabilization	16
	2.3 Ca		rbonization Process	21
	2.4	Gra	aphitization Process	22
	2.5	Su	face treatment and Sizing	23
	2.6	Re	ferences	24
3	Pre	ecur	sor for Carbon Fiber	27
	3.1	Co	mmercial available Carbon Fiber Precursors	27
	3.1	1.1	Polyacrylonitrile	27
	3.1	.2	Pitch	28
	3.2	Alte	ernative Precursors	30
	3.2	2.1	Polyethylene	30
	3.2	2.2	Cellulose	31
	3.2	2.3	Lignin	35
	3.3	Lig	nin as a Precursor for Carbon Fiber	36

	3.4	4	Che	emical Anatomy of Wood and Lignin	38
	3.	5	Iso	lation of Lignin from Wood	41
		3.5	.1	The Kraft Process	42
		3.5	.2	The Sulfite Process	43
		3.5	.3	The Organocell Process	44
		3.5	.4	The Alcell Process	45
		3.5	.5	Biorefinery	45
		3.5	.6	Influence of the pulping process on chemical structure	46
	3.0	6	Ref	ferences	48
4		Pro	per	ties and Chemical Characterization	52
	4.	1	Det	tection of the Properties of Lignin	52
		4.1	.1	Thermo Gravimetric Analysis	53
		4.1	.2	Differential Scanning Calorimeter	56
	4.2	2	Che	emical Characterization of Lignin	59
		4.2	.1	Elementary Analysis	59
		4.2	.2	Mass Spectroscopy	61
		4.2	.3	Nuclear Magnetic Resonance Spectroscopy	71
		4.2	.4	Fourier Transform Infrared Spectroscopy	81
	4.:	3	Che	emical Structure of Hardwood Lignin for carbon fiber production	85
	4.4	4	Ref	ferences	88
5		Dev	velo	pment of a Lignin Based Carbon Fiber	90
	5.	1	Lig	nin Powder	91
	5.2	2	Co	mpounding and Pelletizing	91
	5.3	3	Pre	cursor Fiber Production	93
	5.4	4	Fib	er Stabilization	95
	5.	5	Fib	er Carbonization	97

	5.6	F	References	98
6	Ν	/lajc	or reactions during conversion of lignin	99
	6.1	S	Sample Characterization	99
	6.2	F	Results	100
	6	5.2.1	1 Nuclear Magnetic Resonance Spectroscopy	100
	6	5.2.2	2 Fourier Transform Infrared Spectroscopy	110
	6	5.2.3	3 Elementary Analysis	112
	6.3	Ν	Major Reaction of Lignin during Conversion Process	113
	6	5.3.1	1 Pelletizing of Lignin	113
	6	5.3.2	2 Spinning of the Lignin Fiber	114
	6	5.3.3	3 Stabilization of the Lignin Fiber	114
	6	5.3.4	4 Carbonization of the Lignin Fiber	116
	6.4	(Conclusion	116
	6.5	F	References	117
7	Ρ	Prop	perties and Chemical Structure	119
	7.1	F	Properties of Lignin Based Carbon Fiber	119
	7	.1 .1	1 Single Fiber Tensile Test	119
	7.1.2		2 Density of Lignin Based Carbon Fiber	124
	7.1.3		3 Scanning Electron Microscopy	126
	7.2	(Chemical Structure of Lignin Based Carbon Fiber	132
	7	.2 .1	1 Raman Spectroscopy	132
	7.2.2		2 X-ray Photoelectron Spectroscopy	138
	7.3		Correlations between Properties and Chemical Structure of Lign	
			n Fiber	144
	7.4		References	146
8	L	ign	in and Conventional Carbon Fiber	148

	8.1	Raman Spectroscopy	148
	8.2	XPS Studies	150
	8.3	Scanning Electron Microscopy	153
9	Po	tential of Lignin-Based Carbon Fiber	156
	9.1	Economic and Ecological Potential of Lignin-Based Carbon Fiber	156
	9.2	Possible products made from Lignin based Carbon Fiber in the 158	near future
	9.3	References	160
1() G	General Conclusions	161
	10.1	Development of lignin based carbon fiber	161
	10.2	Proof of industrial production size	162
	10.3	Properties and chemical characterization	163
	10.4	Economic and ecological potential of lignin based carbon fiber	164
	10.5	Recommendations for future work	164
11	l Lis	t of Publication	165
12	2 L	ist of Abbreviations and Symbols	169
13	3 A	ppendix	174
	13.1	Results of the Density Measurements	174