Abstract

In this thesis, we analyze a coupled system of the form

(Ew)'(8) + o1(t, u(t), v(2) = @ (1), (1)
W (t) — An(t) + pa(t ult), v() = au(t). '

It consists of a semilinear abstract differential-algebraic equation {DAE) and a semni-
linear secoend order hyperbolic partial differential equation. Both equations are cou-
pled through the nonlinear coupling functions ¢; and ¢e.

Coupled systems of the form {1.1} can be interpreted as a specific kind of abstract
DAE or as a generalization to partial differential-algebraic equations. They are rele-
vanut for a variety of applications, for instance the modeling of multiphysics systems,
the simulation of ¢ircuits, or the optimal control of gas flow through a pipe network.

In this thesis, we first discuss only the semilinear abstract DAE, and introduce
go-called matrix-induced linear operators. Using these operators, we transfer a de-
coupling strategy developed for DAEs to the infinite-dimensional setting of abstract
DAEs. In combination with a novel index-1 characterization for semilinear ahstract
DAESs, this allows to extract from the abstract DAE the inherent ordinary differen-
tial equation and the complementing algebraic equations. We then prove existence
and uniqueness of solutions.

We combine the developed analytical techniques for semilinear abstract DAEs with
matrix-induced linear operators with analytical tools known from the theory of sec-
ond order hyperbelic equations to provide a framework suitable for the analysis of
system (1.1). By means of a fixed-point approach, we show existence and uniqueness
of local and global solutions.

Finally, we formulate an optimal confrol problem where system (1.1} acts as a side
condition. We show the existence of an optimal control and a global minimizer.
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1 Introduction

Many natural phenomena are modeled by differential equations, whether it is to
describe the interaction between physical particles, or to understand how chemical
substances react and diffuse, whether it is to model the spreading of a new virus, or
to predict the climate change or local weather. The ever-increasing computational
power and the availability of larger and larger sets of data allow to describe all of
these phenomena using better suited and more complex sets of differential equations
in which the describing compaonents of the underlying physical, chemical, or biclogical
system are intimately coupled. Understanding these systems and knowing how to
influence them in a desirable way helps to develop new strategies, e.g. for how to
practice agricudture in a more sustainable and cost efficient way, it helps to predict
consequences of events like earthquakes, hurricanes, and inundation, and it indicates
how to counteract for instance undesirable effects of long-term medication.

With this thesis we try to help towards a better understanding of coupled systems
of different kinds of differential equations. More specifically, we analyze a coupled
system of an abstract differential-algebraic equation {DAE} and a specific second-
order hyperbolic partial differential equation (PDE), the wave equation. It takes the
form

{ (Ew)' (8) + gu (b, ult), v()) = au (1), (1.1a)
v (E) — Av(t) + oo (t, ulE), v(E)) = qa{t). {1.1b}

This coupled system consists of the semilinear abstract DAE (1.1a) and the semilin-
ear wave equation (1.1b). The two solution variables u and v are both functions of
the time ¢ and of spatial variables not explicitly stated here. The linear operator £
of {1.1a) is a so-called matrix-induced linear operator inéroduced in Chapter 2, and
the coupling functions ¢, and ¢y are nonlinear but continuous. The system can be
manipuiated through right-hand side functions ¢; and ¢2. For the analysis in this
thesis, it will be complemented by appropriate initial and boundary conditions.

The main goal of this thesis is the analysis of the system (1.1). In particular, we
want to provide a framework in which existence and uniqueness of local and global
solutions can be ensured. The perhaps most challenging task in this analysis is
to find a common setting in which ali components of the coupled systems can be
discussed satisfactorily. In the course of mathematical research history, the analytical
techniques and tools developed to analyze a specific differential equation became
more and more tailored and bespoke. Our intent is, in a sense, to go a step in the
opposite direction, to see if it is possible to consclidate the different settings for



1 Introduction

abatract DAEs and hyperbolic second order PDEs, and to strive towards a more
unified framework which is equally suited for both. Thus, we are driven not only by
an external but also an inner-mathematical motivation.

Main Contributions

We want to emphasize the main contributions of this thesis. First, we develop the
notion of so-called matrix-induced linear operators. Although these kinds of oper-
ators appear frequently but implicitly in the research literature on abstract DAEs,
e.g. {86, 128], and although they promise to be very useful, particularly for the
analysis of coupled systems, they have not been discussed in the context of abstract
DAEs so far. Using this kind of operators, we are able to translate a decoupling
approach that was developed for DAEs in [64] to the infinite-dimensional framework
of abstract DAEs, In combination with a novel theoretical existence resuit for a cer-
tain type of operator equation, see Theorem 2.20, this decoupling approach allows
to prove existence and unigueness of strong selutions for a semilinear abstract DAE
of the form {1.1a).

Second, we provide a framework for the coupled system (1.1). To this end, we
first discuss a related system where the wave equation (1.1b) is coupled with an
abstract ordinary differential equation (ODE) instead of {1.1a). We prove existence
and uniqueness of focal as well as global solutions to this related coupled system by
means of a fixed-point approach. Afterwards, we use the techniques develaped in
Chapter 2 to transfer the results to system (1.1).

Third, we take a glance at an optimal control problem which is constrained by the
related coupled system of abstract ODE and wave equation. We discuss whether the
framework previously chosen: for the analysis of (1.1} is equally appropriate for the
optimal controi problem, and we show under strong assuwmptions that the optimal
control problem adinits a global minimizer.

Structure and Literature

Observe that each chapter is more or less similarly structured. Due to the inherent
consolidating character of this thesis, each chapter starts with a detailed introduction
into the chapter’s general topic. We then give an overview of the contributions of
the chapter and integrate our results into existing research literature. Therefore, we
will keep this overview short.

Chapter 2 is dedicated to our first main contribution, the analysis of a semilinear
abstract DAE of the form (1.1a). We introduce the concept of matrix-induced linear
operators, define appropriate solution spaces, and prove existence and uniqueness of
a golution. The work of this chapter can be seen as a continuation and an addition



to the research done by Tischendorf {119] and Matthes [86], but is also related to [9,
128).

In Chapter 3, we give an introduction into the topic of second order hyperbolic equa-
tions. We present certain general techniques for the analysis of such equations, we
highlight characteristic features, and we apply these results to the special case of
the prototypical linear wave equation. This serves as a justification to use Equa-
tion {1.1b) as a representative of a larger class of second order hyperbolic PDEs,

Chapter 4 is dedicated to our second main contribution. First, we provide a suitable
frameworls for a related coupled system of abstract ODE and wave equation, and we
provide existence and uniqueness results under specific assumptions on the coupling
functions ¢, and ¢. Afterwards, we transfer the results obtained to coupled systems
of the form (1.1).

Finally, in Chapter 5, we take a first step into an optimal control problem where
the coupled system of abstract ODE and wave equation related to {1.1) serves as a
restriction. We are able to show the existence of an optimal control and a global
minimizer for a specific cost functional. We do not derive first or higher order
conditions.

This thesis is complemented by three appendices. In Appendix A, we recall the intri-
cate relation between certain matrix factorizations, generalized inverses of matrices,
and projections outo and along certain subspaces. In Appendix B, we collect tools
and knowledge from functional analysis, in particular from the theory of Bochner
spaces. In Appendix C, we recall existence results for abstract differential equations
and operator equations.

Citation and Notation

Our aim is to make this thesis as consistent as possible to provide for a pleasant
lecture. This applies to citations as well, which is why most statements we tool
from literature are not cited verbatim. Nevertheless, we always indicate where a
certain statement can be found.

Throughout this thesis, {0, 77 C R always denotes a finite time interval with T > 0.
The dimension of the spatial domain £ ¢ R is consistently denoted with d € N.
The solution variable for ODEs and DAEs is u; the solution variable for PDEs is
usually v. If « is vector-valued, it maps either to R™ or R™. The specific meanings
of the natural munbers n € N and v € N will become clear in Chapter 2.

A general Banach space is denoted by (X, |||l x ). Following [124], we denote the dual
space of X with (X', lix:). We use || exclusively for the Fuclidean norm in the
finite-dimensional vector space R™. In all other cases, also for general Hilbert spaces,
the norm is denoted by [|-. We indicate the speeific norm by a subscript; the only
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exceptions to this rule are matrix norms which have to do without. The franspose
of a matrix A is denoted hy A”.

A general Hilbert space is denoted by (H,{-,-)). We explicitly distinguish between
dual pairings {-, -}y and iuner products (-, }y. If unambiguous, we drop the sub-
script for dual pairings and inner products. This holds true also and in particular
when we use Gelfand triples {X, H, X'), see Definition B.2.

If a Banach space X is embedded in another Banach space ¥, we write X <> Y. In
this thesis, embeddings are always topological embeddings, i. e. they are injective and
continuous. If an embedding is dense or compact, we do not use a specific notation
but rather write it out explicitly.

Given a fanction v: [6, T} — X, we denote with v’ its first derivative with respect
to time. Since we do not identify certain Lebesgue-Bochner spaces with Lebesgune
spaces, for instance, we always write L2(0, T; L2(Q2)) and never L2({0,T) x ), the
notation for the time derivative is unambiguous. Other partial derivatives or normal
derivatives are written out explicitly. In this thesis, in particular when using Sobolev
spaces or Bochner spaces of weakly differentiable abstract functions, we avoid the
use of distributional derivatives. For our purposes, the notion of weak derivatives is
sufficiently general.

Apart from the common abbreviations, we only use two more. In formulas, we write
f.a.a. instead of “for almost all”, and we use a.e. instead of “almost everywhere”.

Finally, we would like to explain one specific notational decision. Throughout this
thesis, we collect necessary assumptions separvately. This permits to simply refer to
these assumptions at the beginning of definitions, theorems, and so on. It also helps
0 keep the assertions concise, and it allows to base one assumption upon another.
Therefore, we decided to number the assumptions consecutively without referring to
the chapter in which the assumption first appeared. Unfortunately, this makes our
assumptions harder to find, which is why we provided a list of assumptions directly
subsequent to the table of contents.

We conclude the introduction by stating the first and most fundamental assumption
which is supposed $o hold throughout the entire thesis.

Assumption 1. Let [0,7] < R be a given fixed time interval with T > 0, and let
2 ¢ R? be an open interval for d = 1, and a Lipschitz domain for d € {2, 3}, see
Definition B.10.



