
Chapter 1

Introduction

1.1 Motivation

Efficient inventory management is a core element of running a successful business

in many industries, but it is a complex and challenging task. Holding inventory

reduces stockout cost, facilitates smooth operations, and improves service levels

and customer experience. However, it ties up capital and goes along with costs

for storage, obsolescence, handling, and other. Looking at the largest economy

in the world, the cost for carrying inventories were $454.6 billion in 2019 and

accounted for 28% of the total US business logistics costs (Zimmermann et al.

2020). For the European market, numbers are even higher in both absolute and

relative terms: in 2018, 47% (converted $624,2 billion) of the total logistics costs

were related to inventory carrying activities (Schwemmer 2019). Until a drop in

2020 related to the COVID19 pandemic, for both Europe and the US, inventories

held by companies have constantly increased (Eurostat 2021, Zimmermann et al.

2020). In that regard, the US total carried inventory has grown by as much as

40% since 2010 and accounts for more than 13% of the US gross domestic product

(Zimmermann et al. 2020).

As inventories grow, so does their improvement potential. For decades, in-

ventory research has developed models with increasing complexity that capture

more details of the real-word situation and find optimal inventory policies for
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challenges companies are facing. The approaches promise improvements such as

lower inventories, reduced cost, or higher service levels.

To achieve these improvements, inventory models build on assumptions. For

example, they typically assume direct implementation of new inventory policies and

inventory systems in steady state, full adherence to the model’s recommendations,

and perfect data. In practice, these assumptions seldomly fully hold. When a

new inventory policy is implemented, it takes time before the new steady state

is reached, decision makers modify and overrule model recommendations, or the

data is inaccurate and does not reflect reality.

As a consequence, the actual performance of the inventory system deviates

from the projected performance and the full potential of the models cannot be

exploited. Despite pure financial implications, this can lead to disappointment

and disbelieve in the inventory models in general and can jeopardize the successful

implementation of state-of-the-art inventory research in practice.

This thesis aims to improve the application of inventory research in practice

with different methods of supply chain analytics. We address three main challenges

that we have encountered in our work with companies: the introduction of new

inventory policies in existing inventory systems, the use of algorithmic advice by

human planners, and the accuracy of master data on which inventory models rely.

1.2 Outline

In the following, we present the structure of this thesis. The research presented in

Chapters 2 to 5 are independent research projects but share the common goal of

improving the application of inventory models in practice. In each chapter, we

address an issue related to inventory management that we observed at real-world

companies.
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Chapter 2 improves the transition of running inventory systems when the

inventory policy changes.1 It was motivated by a company that implemented new

base stock levels for its spare part division. A few months after implementation, the

company observed a substantial increase in inventory cost. We quickly identified

that the reason for the increase was the transient behavior of the system during the

transition to the new target state. To address this issue, we model the inventory

transition as a finite-horizon optimization problem and determine transient base

stock levels for the parts. We solve the problem with a column generation approach

and a heuristic that is based on marginal analysis. Using data of the company

that motivated our research, we illustrate how the transition can be controlled to

quickly improve fill rates without exceeding the initial inventory budget.

Chapter 3 addresses the interaction of human decision makers and algorithmic

decision support.2 Such decision support is omnipresent in many managerial

tasks, such as inventory management, and it can substantially improve decision

quality. However, in practice, the recommendations of algorithms are oftentimes

1This chapter is based on the paper by Haubitz and Thonemann (2021) that was published
in Production and Operations Management. The problem definition, model formalization,
development and implementation of solution approaches, numerical study, and writing of the
paper was done by Christiane Haubitz. Professor Thonemann gave input for the problem
definition, modeling, and solution approaches and proofread the paper. Further, it benefited
from the comments of two anonymous referees and the editors of Production and Operations
Management and from participants’ feedback at the Supply Chain Research Seminar at the
University of Cologne, January 30, 2019, and the ISIR Summer school 2019 at University KU
Leuven, Belgium, August 30, 2019.

2This chapter is based on the paper by Lehmann et al. (2020) that was published in the
conference proceedings of the International Conference on Information Systems (ICIS) 2020
and was presented at ICIS 2020 on December 14, 2020. It benefited from the comments of
three anonymous referees and an associate editor of the conference proceedings. It is joint work
with Cedric Lehmann. We split the work in different tasks: problem identification, pre-study,
literature review, development of hypotheses, experimental design, programming and execution
of the experiment, analysis of the experimental results. To the problem identification, pre-study,
and development of hypotheses both Cedric Lehmann and Christiane Haubitz contributed with
the same share. The literature review and analysis of the experimental results was mainly
done by Cedric Lehmann. The experimental design, and the programming and execution of
the experiment was mainly done by Christiane Haubitz. Overall, the work was divided fairly
between Cedric Lehmann and Christiane Haubitz. Professor Andreas Fügener and Professor
Ulrich Thonemann participated in discussions about the experimental design and gave input for
the modeling approach, the design and analysis of the experiments, and the positioning of the
paper.
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overruled. One reason that is often stated as barrier of successful human-machine

collaboration is the lack of algorithm transparency. In this chapter, we analyze

the effects of algorithm transparency on the perceived value of algorithmic advice

and its resulting utilization for an easy advice-giving algorithm. In a laboratory

experiment, we simulate a task that many inventory planners face in practice,

that is, demand forecasting. We present algorithmic advice to the participants

and only inform the treatment group about the underlying principles of the

simple yet optimal advice-giving algorithm. While the explanation increases the

understanding of the algorithmic procedure, it reduces the perceived value of the

algorithmic advice, its utilization and the participants’ performance.

Chapter 4 builds on the insights of Chapter 3 and adds the dimension of

algorithm complexity.3 In a new experimental study, we consider the moderating

effect of algorithm complexity on the use of algorithmic advice. We provide advice

from algorithms with different degrees of transparency and complexity. Aligned

with our results in Chapter 3, we find that increasing the transparency of a simple

algorithm reduces the use of advice. However, increasing the transparency of a

complex algorithm increases the use of advice.

Chapter 5 addresses the challenge of improving the quality of master data.

We focus on external supplier lead times, a type of master data that is oftentimes

highly inaccurate and that is critical for inventory planning. We suggest a machine-

learning based approach to build a model for lead time prediction. Our approach

3This chapter is joint work with Cedric Lehmann. We split the work in different tasks:
problem identification, literature review, development of hypotheses, experimental design,
programming and execution of the experiment, analysis of the experimental results. To the
problem identification and development of hypotheses both Cedric Lehmann and Christiane
Haubitz contributed with the same share. The literature review and analysis of the experimental
results was mainly done by Christiane Haubitz. The experimental design, and the programming
and execution of the experiment was mainly done by Cedric Lehmann. Overall, the work was
divided fairly between Cedric Lehmann and Christiane Haubitz. Professor Andreas Fügener
and Professor Ulrich Thonemann participated in discussions about the experimental design
and gave input for the modeling approach, the design and analysis of the experiments, and the
positioning of the paper.

4



Chapter 1. Introduction

allows to predict both individual order lead times and general planned lead times

that can be used, for example, in inventory planning. We test our approach on

historical purchase orders of a large German provider of healthcare equipment. Our

approach outperforms the currently used planned lead times from the company’s

enterprise resource planning (ERP) system and other statistically derived values.

We demonstrate the practical relevance and monetary impact on an inventory

system with a periodic-review base stock policy.

Chapter 6 concludes this thesis. We summarize and critically review our key

insights and outline promising directions for future research.

1.3 Contribution

This thesis contributes to the research on inventory control with supply chain

analytics and the successful application of inventory research in practice. We apply

three different methodologies to address three challenges that we have experienced

at companies we have been working with. The impact of all our approaches is

validated with real-world data.

In Chapter 2, we contribute to the literature of inventory control by consid-

ering the transition of a multi-item inventory system from a current state to an

optimized state. We formally introduce the problem as a multi-period optimization

problem and develop two solution approaches that rely on column generation and

on marginal analysis. Compared to upper bounds on the objective function value,

both approaches generate solutions that are close to optimal. We demonstrate

the value of controlling the inventory transition in an extended case study that

is based on data from a global equipment manufacturer. We also analyze under

which circumstances controlling the transition is particularly valuable and discuss

managerial implications.
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In Chapters 3 and 4, we contribute to better understanding the interaction

of human planners and planning algorithms. More generally, we contribute

to the research streams of human-machine interaction and advice taking. We

analyze the effects of algorithm transparency on the use of algorithmic advice

and contribute to a better understanding of when algorithmic principles should

be made transparent and when not. Chapter 3 is the initial study and focuses

on simple, easy-to-understand algorithms for which an easy explanation can be

provided. In laboratory experiments, we find that the explanation of the algorithm

increases understanding of the algorithmic principles, but the higher understanding

does not translate to a higher use of advice. In Chapter 4, we add the dimension

of algorithm complexity to our analyses. In a new laboratory experiment, we find

that the negative effects of algorithm transparency on use of advice diminishes

when the algorithm complexity increases. We provide important insights and

managerial implications in the area of human-machine collaboration. We show

that making advice-giving algorithms transparent is not always beneficial as it

bears the risk of disappointing people’s expectations, which can backfire and

eventually reduce the use of advice.

In Chapter 5, we contribute to supporting the process of improving the

quality of master data using machine learning algorithms. We focus on external

supplier lead times. Our machine-learning based approach allows to predict both

individual order lead times and general planned lead times that can be used, for

example, in inventory planning. It is particularly valuable for a setting with a

large variety of products and suppliers but only few purchase orders per product

and supplier. It enables a prediction of external supplier lead times solely based

on available past purchase order data without the need for external supplier

information. Moreover, we provide a way to predict planned lead times of new

products, which is not possible with other statistical methods.
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How to change a running system –

Controlling the transition to optimized

spare parts inventory policies

Inventory optimization approaches typically optimize steady-state performance,

but do not consider the transition of an initial state to the optimized state. In

this study, we address this transition. Our research is motivated by a company

that implemented an improved inventory policy for its spare parts division. The

improved policy suggested new base stock levels for the majority of the parts.

For parts with increased base stock levels, inventory increases were realized after

the part lead times, but for low-demand parts with decreased base stock levels,

inventory reductions were slow. As a result, inventory cost increased over the

first months after the new inventory policy had been introduced and exceeded the

inventory budget substantially. To avoid such undesirable effects, base stock level

changes must be phased in. We consider a multi-item spare parts inventory system,

initially operating under an item approach policy that achieves identical fill rates

for all parts. Our approach addresses the transition to a superior system approach

policy that maximizes the system fill rate. We model the inventory transition as a

finite-horizon optimization problem and apply column generation and a marginal

analysis heuristic to determine transient base stock levels for all parts. Using data

from the company that motivated our research, we illustrate how the transition can

be controlled to quickly improve fill rates without exceeding the inventory budget.
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2.1 Introduction

The trigger of inventory optimization projects is often a sub-optimal performance of

the current inventory system. In spare parts management, for instance, companies

can set base stock levels such that a certain fill rate is achieved by every individual

part. This approach is referred to as item approach. Instead of optimizing each

part individually, companies can reduce inventory or increase the system fill rate by

considering all parts in the inventory system jointly when making decisions about

base stock levels. This approach is referred to as system approach (Sherbrooke

2004). For a spare parts inventory system for high-end computer servers, for

example, Thonemann et al. (2002) show improvements in inventory investment of

up to 25% when applying a system approach instead of an item approach. For a

spare parts inventory system at the Royal Netherlands Navy, Rustenburg et al.

(2003) demonstrate an increase in spare parts availability by 34 percentage points,

while simultaneously reducing the inventory investment by about 10%.

Implementing a system approach requires the adjustment of inventory control

policy parameters. For example, base stock levels of inexpensive fast movers are

increased and base stock levels of expensive slow movers are reduced. Overall

inventory performance is improved once the inventory system has reached its new

steady state. However, during the transition to the new steady state, system fill

rate or system inventory holding cost can deteriorate temporarily, particularly if

lead times are long or demand rates are low.

We experienced this in an inventory optimization project with the service

division of a global B2B (business-to-business) equipment manufacturer. The

company generates annual multi-billion euros turnover and operates in more than

50 countries. Its service division offers repair and maintenance services for the

specialized and expensive equipment. The division wanted to improve its inventory
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