
Abstract

Currently, software applications operate using highly sensitive data that only a limited num-

ber of people can access. In some cases, human lives might depend on the continuous and

correct deployment of these applications. Due to the rise of cybercrime and reported vul-

nerabilities, organizations now consider security a top concern. Therefore, it is problematic

that software developers generally have no security experience, which could be a reason for

occurring vulnerabilities. A further problem that underlines the criticality of missing know-

how is that the presence of a security expert within projects is not always guaranteed. A

frequent practice to address knowledge gaps is to ask the developer community for help in

solving concrete implementation concerns.

In addition to websites of the Stack Exchange network, such as Stack Overflow, de-

velopers can use the National Vulnerability Database (NVD) to discover vulnerabilities in

concrete software artifacts or products. Using vulnerability databases to find security flaws

within written source code is complex. Much information has to be considered, which can

overwhelm developers. Moreover, the NVD does not directly provide code fragments show-

ing the expression of vulnerabilities in source code. Sometimes NVD provides links to other

websites containing proofs of concept or a security-patch code.

The goal of this dissertation is to support developers in applying security checks using

community knowledge. Artificial intelligence approaches combined with natural language

processing techniques are employed to identify security-related information from community

websites such as Stack Overflow or GitHub. All security-related information is stored in a

security knowledge base. This knowledge base provides code fragments that represent the

community’s knowledge about vulnerabilities, security-patches, and exploits. Furthermore,

meta information regarding vulnerability types and identifiers of concrete security flaws are

provided. Comprehensive knowledge is required to carry out security checks on software

artifacts, such as data covering known vulnerabilities and their manifestation in the source

i



code as well as possible attack strategies. Approaches that check software libraries and

source code fragments are provided for the automated use of the data.

Insecure software libraries can be detected using the NVD combined with metadata and

library file hash approaches introduced in this dissertation. Vulnerable source code fragments

can be identified using community knowledge represented by code fragments extracted from

the largest coding community websites: Stack Overflow and GitHub. A state-of-the-art clone

detection approach is modified and enriched by several heuristics to enable vulnerability

detection and leverage community knowledge while maintaining good performance. Using

various case studies, the approaches implemented in Eclipse plugins and a JIRA plugin are

adapted to the users’ needs and evaluated.

Keywords: Community knowledge, Security, Vulnerability detection, Machine learning,

Natural language processing, Artificial intelligence, Code clone detection, Software libraries,

Source code

ii



Zusammenfassung

Derzeit arbeiten Softwareanwendungen mit hochsensiblen Daten, auf die nur eine begrenzte

Anzahl von Personen zugreifen können. In einigen Fällen können von der kontinuierlichen

und korrekten Bereitstellung dieser Anwendungen Menschenleben abhängen. Aufgrund des

Anstiegs der Cyberkriminalität und der in diesem Zusammenhang gemeldeten Schwach-

stellen ist Sicherheit für Unternehmen mittlerweile ein wichtiges Thema. Vor diesem Hin-

tergrund ist es als problematisch zu bewerten, dass Softwareentwickler in der Regel keine

Sicherheitserfahrung haben (was seinerseits ein Grund für die oben genannten auftretenden

Schwachstellen sein könnte). Da in vielen Projekten nicht immer die Anwesenheit eines

Sicherheitsexperten gewährleistet ist, wird damit die Kritikalität des fehlenden Know-hows

unterstrichen. Stattdessen besteht die Praxis, um Wissenslücken zu schließen, häufig darin,

die Entwicklergemeinde punktuell um Hilfe bei der Lösung konkreter Implementierungsprob-

leme zu bitten.

Um Schwachstellen in konkreten Software-Artefakten oder Produkten zu entdecken, kön-

nen Entwickler neben Webseiten des Stack-Exchange-Netzwerks, wie z. B. Stack Overflow

auch die National Vulnerability Database (NVD) nutzen. Die Verwendung solcher Schwach-

stellendatenbanken zum Auffinden von Sicherheitslücken in geschriebenem Quellcode ist

jedoch komplex. Denn es müssen viele Informationen berücksichtigt werden, was Entwickler

überfordern kann. Außerdem stellt die NVD nicht direkt Codefragmente zur Verfügung,

die die Ausprägung von Schwachstellen im Quellcode zeigen. Manchmal stellt die NVD

nur Links zu anderen Websites bereit, die Proofs of Concept oder Sicherheits-Patch-Codes

enthalten.

Das Ziel dieser Dissertation ist es, Entwickler bei der Anwendung von Sicherheitsprü-

fungen mit Hilfe von Community-Wissen zu unterstützen. Dabei werden Ansätze der kün-

stlichen Intelligenz mit Techniken der natürlichen Sprachverarbeitung kombiniert und dazu

eingesetzt, um sicherheitsrelevante Informationen von Community-Websites wie Stack Over-

iii



flow oder GitHub zu identifizieren. Die so gesammelten sicherheitsrelevanten Informationen

werden in einer Sicherheits-Wissensbasis gespeichert. Diese Wissensbasis enthält Code-

fragmente, die das Wissen der Community über Schwachstellen, Sicherheits-Patches und

Exploits repräsentieren. Darüber hinaus werden in der Wissensbasis Metainformationen zu

Schwachstellentypen und Bezeichnern konkreter Sicherheitslücken bereitgestellt. Um Sicher-

heitsüberprüfungen von Software-Artefakten durchführen zu können, ist umfangreiches Wis-

sen erforderlich, wie z. B. Wissen über Daten zu bekannten Schwachstellen und deren

Manifestation im Quellcode sowie über mögliche Angriffsstrategien. Für die automatisierte

Nutzung der Daten werden Ansätze bereitgestellt, anhand derer Softwarebibliotheken und

Quellcodefragmente überprüft werden können.

Unsichere Softwarebibliotheken können mit Hilfe der NVD in Kombination mit den in

dieser Dissertation vorgestellten Ansätzen für Metadaten und Bibliotheksdateihashs erkannt

werden. Anfällige Quellcodefragmente können mit Hilfe von Community-Wissen identifiziert

werden, das durch Codefragmente repräsentiert wird, die von den größten Websites der

Coding-Community extrahiert wurden: Stack Overflow und GitHub. Ein hochmoderner

Ansatz zur Erkennung von Klonen wird modifiziert und mit mehreren Heuristiken angere-

ichert, um die Erkennung von Schwachstellen zu ermöglichen und das Wissen der Com-

munity zu nutzen, während gleichzeitig eine gute Performance beibehalten wird. Anhand

verschiedener Fallstudien werden die in Eclipse-Plugins und einem JIRA-Plugin implemen-

tierten Ansätze an die Bedürfnisse der Anwender angepasst und evaluiert.

iv



Chapter 1

Introduction

Headlines frequently report security incidents. Due to the rise of cybercrime and incidents

of reported vulnerabilities [124], security is a top concern for organizations organizations

[45, 153, 20]. Security is also an essential quality aspect in recent software projects. In

the past, there were several examples of insecure software that lead to leaks of sensitive

data. The consequences of security breaches for software companies can be severe due to

reputational damage to corporate identity and fines [82, 159]. Furthermore, the impacts

of security incidents could harm private users and enterprises. Undetected vulnerabilities

during implementation can lead to increasing maintenance costs and financial penalties that

can exceed the development budget [38]. Moreover, human lives can depend on software

that ensures the continuous and faultless provision of service, for example, the software that

manages the cooling of radioactive centrifuges within a nuclear reactor [36].

Software project security relies on the expertise of project members. One reason for

security issues could be the absence of security expertise in developers [60]. For instance, a

study by Acar et al. [2] reviewing 307 professionals and students revealed that developers

usually have no security expertise. They discovered that there is no difference between stu-

dents and professionals considering their security know-how. Furthermore, the availability

of security experts within a project is not always guaranteed. Moreover, if an expert is

available, it is usually not for the entire development phase.

Ideally, security experts should review the complete source code of a project for vul-

nerabilities. Considerable knowledge is required to search for vulnerabilities in self-written

source code [73]. This knowledge includes information about attack strategies and patterns

of previously occurred vulnerabilities. Additionally, knowledge of the top libraries and in-

secure hash algorithms used to exploit vulnerabilities can help prevent their usage, which

1



leads to a more secure source code. Furthermore, guidelines or examples of code for the

secure implementation of concrete concerns could help as well.

This dissertation investigates how developers can be supported within the knowledge-

based task of security checks on source code artifacts. For this purpose, freely accessible

historical community knowledge of vulnerabilities should be used. Section 1.1 describes com-

munity knowledge and potential knowledge sources. The problems and concrete challenges

(Ch’s) considered in this thesis are summarized in Section 1.2. The underlying research

methods and questions are presented in Sec. 1.3, and the contributions of this dissertation

is placed in Section 1.4. Section 1.5 shows the structure of this thesis.

1.1 Security Community Knowledge

Developers can research security flaws within publicly available vulnerability databases such

as the National Vulnerability Database (NVD) [129] to obtain information about almost all

already identified vulnerabilities. In practice, additional effort is required to ascertain that

the necessary information is non-trivial. Unfortunately, the associated manual process to

find vulnerabilities in projects is time-consuming and error-prone: Developers need to use

a search engine to find relevant entries based on the names of the libraries used. Then,

developers must manually scan the source code to uncover problematic uses of the affected

libraries. Even worse, the support with available examples of vulnerabilities, patches, and

exploit codes in the databases is scarce. Vulnerability entries sometimes just contain a link

to a report or to a repository that provides additional information on proofs of concept,

patches, and exploits.

Furthermore, security knowledge is also included in user contributions to coding com-

munity websites such as Stack Exchange [69] and GitHub [112]. Part of the Stack Exchange

network is the well-known website Stack Overflow [9], which developers use to find imple-

mentations that solve specific problems. Stack Overflow contrasts with NVD, which is a

similar workflow for coding communities to find security flaws in source code. NVD makes

a distinction regarding the availability of source code contributed within user posts. The

NVD partially provides links to other websites that provide source code related to listed

vulnerabilities. On Stack Overflow, predefined areas can be used to post source code frag-

ments.

2



Within a search, developers can be overwhelmed by the vast number of results on these

websites. The resulting information can be both natural language texts and code fragments,

and the information contained in posts is not restricted to security issues. If security-related

content is found, it exhibits granularity, which makes it challenging to obtain the necessary

security information for developers without security experience. For example, content could

be about a concrete software library, a native Java method, or a program that has security

issues. Furthermore, if security-related content is found, it is not easy to distinguish whether

the information is about code that is securely patched, vulnerable, or describes the exploit

[169]. Without any security knowledge, developers can only trust into contributions of the

community. If developers are looking for security information about a concrete concern,

they have to interpret the statements of numerous posts.

Developers can use several sources of security community knowledge that affect the im-

plementation of secure software. Figure 1-1 shows some of these knowledge sources with

various information affecting selected software development phases. The center of the visu-

alization contains the specific kind of information that influences the software development

phases. All knowledge sources are visualized in a surrounding cloud containing examples

of concrete sources providing this specific information. Thereby, security patterns and bug

reports are expressed by security experts’ user contributions or experienced developers using

the remaining knowledge sources.

Figure 1-1: Effects of Security Knowledge on Software Implementation.

These knowledge sources partially contain natural language texts and code fragments

3



consisting of security-relevant data. In a way, the users’ contributions to community websites

reflect their security knowledge. Some of the posted code fragments will be identified as

vulnerable or secure by the community. The decisions about the security relevance of code

express the state of security know-how. In summary, this dissertation considers the following

aspects:

1) Extraction of Security knowledge from various sources for identifying vulnerabilities

in source code artifacts.

2) Automation of security checks during software development.

1.2 Challenges

In practice, security knowledge is insufficiently integrated into the software development

process [76, 84], which leads to vulnerabilities in software projects. Preventing vulnerabilities

during implementation is cheaper than removing them during later maintenance phases

[97]. US-Cert has announced that a system is only as secure as its weakest component,

which implies that a single weakness within a written code fragment or a used library can

make a whole system insecure [164, 73]. Also, the Open Web Application Security Project

(OWASP) [32], identified the use of third-party software libraries with known vulnerabilities

as one of the ten most significant risks for web projects [133]. This means that if a developer

implements a code fragment with a vulnerable method in it or uses an insecure third-

party software library, the entire project becomes susceptible to hackers. A single line of

source code can invoke a vulnerability. Therefore, the apparent granularity for detecting

vulnerabilities is on the file-level while considering the containing source code. Knowledge

of security-related topics on the web pages of the coding community is expressed in two

types of information: source code and natural language texts.

For interleaving security knowledge expressed by distinct types of information, it is nec-

essary to store data in a reusable manner. Information provided by different knowledge

sources makes it essential to structure it within a unique scheme. This security knowledge

can be used to identify vulnerabilities during the implementation of software. As Figure

1-1 shows, the security community knowledge from various sources should be used to make

developers aware of potential security risks in source code artifacts. Thus, this dissertation

4



aims to develop an approach for extracting community knowledge to store provided data in

a unique structure and enrich it with further information. Furthermore, a semi-automated

procedure is offered to systematically support security checks within the software implemen-

tation phase.

For the identification of vulnerabilities, the knowledge of already-occurred security flaws

can be beneficial. With this knowledge, it is possible to avoid making the same mistakes

so that known vulnerabilities will be mitigated. The effort to obtain, enrich, and apply

this security knowledge has to be minimized so that the time consumption is not excessive.

Simply providing community security knowledge to developers will result in them being over-

whelmed by the vast amount of information. Therefore, support for using this information

during software development is required.

Existing challenges are listed and divided into the two previously named aspects:

Using Security Knowledge

• Challenge 1.1 - Identify sources of reusable security knowledge: There exist

distinct sources to obtain security knowledge. In this thesis they will be sighted and

evaluated for their suitability to deliver reusable security knowledge.

• Challenge 1.2 - Identify security knowledge: Not all of the coding community

websites like the NVD contain only security-related content. Usually, they contain

information about coding from which only a small portion considers security. This

makes the identification of security-related content in the context of this dissertation

necessary because the plan is to use security community knowledge to identify vulner-

abilities.

• Challenge 1.3 - Distinguish security information into three classes - vul-

nerabilities, patches, or exploits: For security experts, it is probably easier to

determine whether security-related content belongs to any of these classes. Develop-

ers with no security experience more tend to confuse the classes. They get overwhelmed

by multiple statements referred to source code fragments, which makes it difficult to

interpret whether code contributes to a vulnerability, patch or exploit.

• Challenge 1.4 - Store security knowledge in a reusable manner: Security

community knowledge is distributed over multiple websites and accessible in different

5



formats. Some data representing security knowledge are natural language texts and

some are source code fragments. These data are yet not stored in a consistent and

reusable way; thus it is difficult to leverage it for semi-automated security checks.

Therefore, the data preparation and transformation in a uniquely shared scheme is a

part of that challenge.

Automatization of security checks

• Challenge 2.1 - Reuse security knowledge on reported vulnerabilities: Based

on the available security information, developers should be supported during the im-

plementation of source code with security checks. Software developers should not be

prevented from carrying out their work. Thus, a goal is to provide security checks with

less user interaction as possible. Suitable procedures have to be found for integrating

them into the software development process.

• Challenge 2.2 - Security checks for different source code artifacts : Source

code could be placed within raw source files and also be part of software components

like libraries. Not for all programming languages, libraries and source files can be

treated equally. There are languages which not always obtain raw source code of

libraries. Therefore, security checks for software libraries and source files have to be

processed differently.

To support developers in solving these challenges, approaches have been developed to

fulfill the two derived tasks: extraction and the use of security knowledge. These approaches

have been implemented in tools for enabling their use.

1.3 Research Questions and Methodology

Exploratory research is a well-known research design [88, 31]. The center is the construction

of an artifact, such as a product or system. Typically, this artifact is a prototype to solve a

domain-specific problem, such as the tools created for this dissertation. The approaches, or

formed tools, are evaluated with suitable metrics to measure their performance.

To emphasize the research perspective of this thesis, the identification and use of com-

munity knowledge in different forms is focused upon to support security checks on source

code artifacts. At first, related work was considered to identify a domain-specific problem,

6



which is reflected in the challenges. Concerning the challenges of this thesis, the following

research questions (RQ’s) arise:

• Research Question 1: Can security knowledge be semi-automatically ex-

tracted from coding communities?

• Research Question 1.1: Can security information be semi-automatically

differentiated into vulnerabilities, patches, and exploits?

• Research Question 2: How can the extracted community knowledge be

used for heuristic security checks on source code artifacts to identify vul-

nerabilities?

• Research Question 2.1: How valuable is the use of community knowledge

about security in detecting vulnerabilities?

• Research Question 2.2: How useful are the developed approaches for de-

tecting vulnerabilities?

The origin of each research question resulted from one to multiple challenges. Table 1.1

shows the constraints of the research questions to the challenges.

Table 1.1: Research Questions and Challenges Relationship.
XXXXXXXXXXXRQs

Challenges C1.1 C1.2 C1.3 C1.4 C2.1 C2.2

RQ1 4 4 4

RQ1.1 4

RQ2 4 4 4

RQ2.1 4 4 4

RQ2.2 4 4 4

The validity of the community knowledge of IT-security was determined via a sample

of Stack Overflow contributions. For identifying the performance of developed approaches,

different case studies used common metrics for the information retrieval. To measure the

success of developed tools for real software projects, a qualitative analysis was applied within

case studies during the development of two software projects in a cooperating software house.

To obtain insights across the use of created tools, an experiment was applied in which the

manual task of detecting vulnerabilities through the use of the NVD and handed source code

7



verification is compared to the software. Furthermore, the resulting security knowledge base

containing security-related code fragments is validated within a further case study. Figure

1-2 visualizes the described constructive research process.

Figure 1-2: Constructive Research Process.

1.4 Contributions

To address mentioned challenges and solve the research questions identified to be relevant

for this dissertation, the following contributions resulted from this.

• An automated approach is employed to detect vulnerabilities within source code arti-

facts based on community knowledge about security. Therefore, eclipse plugins and a

JIRA plugin were created.

• A tool-based approach to obtain, enrich, and maintain security information and knowl-

edge from coding communities such as Stack Overflow and GitHub. The results are

stored in a repository containing security-related code examples for previously reported

vulnerabilities, security-patches, and their exploits.

1.5 Structure

The dissertation is organized into three parts: the introduction, main part, and the evalu-

ation. The introduction contains the research motivation and describes some background

information to understand the thesis.

The main part contains its own related work section for each chapter in addition to

the prototypical implementation. This is due to the broad scope of approaches. The main

section describes the concepts of every sub-step necessary to realize security checks using

community knowledge. The solutions of RQ1 and RQ1.1 are shown within the concepts

described in Chapter 4.2. Chapter 5 and 6 show the solution for RQ2. The technical

8



validation (Ch. 8 shows the performance of approaches using community knowledge and

responds thereby to RQ2.1.

The thesis is finalized with the evaluation, technical validation, case studies, and con-

clusions that address the research questions and fine-grained contributions to challenges.

RQ2.1 and RQ2.2 are thereby answered during the case studies. Figure 1-3 provides an

overview of the complete thesis.

Figure 1-3: Thesis Structure.

9



Chapter 2

Background

The background of the topic is sketched in this chapter to inform the thesis. In particular,

vulnerabilities, patches, and exploits are described based on the vulnerability lifecycle. The

terms “data,” “information,” and “knowledge” are defined, as there has been disagreement

about their meaning. Furthermore, knowledge sources containing security-related data are

introduced. General techniques to access or identify this knowledge, such as artificial intel-

ligence, natural language processing, and code clone detection, are outlined. Furthermore,

metrics from the information retrieval to measure the performance of the classification tech-

niques are introduced. The final section shows types of threats to validity from the software

engineering research.

2.1 Vulnerabilities, Patches, and Exploits

Software products will likely encounter security issues during their life span. A general

software security life cycle (SSLC) can be described as follows [74]: A new attack strategy

is developed, or a previously unknown vulnerability is discovered. An attacker maliciously

exploits the functionality of a software system using the new information and techniques.

The security incident is detected and it probably punishes in some manner the customers

using the attacked software product. Vendors of the developed software publish security

patches to close these vulnerabilities. The SSLC is visualized in Fig. 2-1.

Within the vulnerability lifecycle mentioned above, there are three types of source code

that are generated. These types are vulnerabilities, patches, and exploits, defined as follows.

• Vulnerability. Within the common vulnerabilities and exposures (CVE) database, a

“vulnerability” is defined as a “weakness in the computational logic (e.g., code) found in

11



Security Experts & Developers

Attacker

Software 
Product

VulnerabilityPatch

Exploit

Closed by

Maliciously useDisable

Customers

Figure 2-1: Generalized Software Security Life Cycle.

software and some hardware components (e.g., firmware) that, when exploited, results

in a negative impact to confidentiality, integrity, OR availability...” [125].

• Patch. Removes a potential vulnerability so that it no longer can be exploited.

• Exploit. Maliciously uses a vulnerability to invoke a negative impact on the confi-

dentiality, integrity, or availability of a software system.

2.2 Data, Information, and Knowledge

In the literature, there are multiple definitions of the terms “data,” “information,” “knowl-

edge,” and “relationships” [154]. Therefore, there is disagreement in understanding the

terms. Some authors, such as Nonaka and Takeuchi, only distinguish between information

and knowledge [121]. They do not define data as a separate term.

These inconsistencies underscore the importance of defining the terms. In the context

of this dissertation, the author agrees with the definitions of Spek and Spijkervet [165]:

• Data. Not yet interpreted symbols.

• Information. Data assigned with a meaning.

• Knowledge. The ability to assign meaning.

12


