
Abstract

In this thesis we consider problems from nonlinear acoustics and fluid-
structure interaction in a time-periodic framework.

We begin by studying two models from nonlinear acoustics, namely the
Kuznetsov equation and the Blackstock-Crighton equation. Existence of
time-periodic solutions to these systems are established for time-periodic
data sufficiently restricted in size. We conclude that the dissipative effects
in the Blackstock-Crighton equation and the Kuznetsov equation are suf-
ficient to avoid resonance. The Blackstock-Crighton model is considered
in a bounded domain with both non-homogeneous Dirichlet and Neumann
boundary values, whereas the Kuznetsov equation is further studied in the
whole space and in the half space. Existence of a solution is obtained via
a fixed-point argument based on appropriate a priori estimates for the
linearized equations. In order to deduce the Lq estimates, we decompose
these systems into a stationary problem and a purely oscillatory problem,
and consider the different Fourier modes separately. Via Fourier multi-
plier theory we obtain a strong time-periodic solution in an Lq framework.
The investigation of these systems is carried out in Chapter 3.

In Chapter 4 the interaction of a viscous fluid with an elastic struc-
ture is studied. We consider a periodic cell structure filled with a viscous
fluid, which interacts with the lower deformable boundary of the cell. The
motion of the fluid is governed by the Navier-Stokes equitations and the
deformable lower boundary is governed by the plate equation. Existence
of a time-periodic solution to the linearized coupled system is deduced.
Suitable Lq estimates are established for the linearized problem via Fourier
multiplier theory and a localization argument. Finally existence of a so-
lution to the nonlinear problem follow via a fixed-point argument.
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Zusammenfassung

In dieser Arbeit beschäftigen wir uns mit Problemen aus dem Bereich der
nichtlinearen Akustik sowie Fluid-Struktur-Kopplungs-Problemen.

Aus dem Forschungsgebiet der nichtlinearen Akustik beschäftigen wir
uns mit der Blackstock-Crighton-Gleichung und der Kuznetsov-Gleichung.
Die Existenz einer zeitperiodischen Lösung dieser Modelle unter einfluß
zeitperiodischer äußerer Kräfte wird gezeigt. Die Blackstock-Crighton-
Gleichung wird in einem beschränkten Gebiet untersucht, wohingegen die
Kuznetsov-Gleichung im Ganzraum, im Halbraum, sowie in einem be-
schränkten Gebiet betrachtet wird. Beide Modelle werden sowohl mit in-
homogenen Dirichlet- als auch Neumann-Randbedingungen untersucht.
Existenz von Lösungen für die beiden Systeme wird über ein Fixpunk-
targument hergeleitet. Hierzu benötigen wir Lq-Abschätzungen für die
Lösung des zugehörigen linearen Systems. Die Abschätzungen werden mit
Hilfe von Fourier-Multiplikatoren bewiesen. Die Untersuchung dieser bei-
den Modelle findet in Kapitel 3 statt.

In Kapitel 4 dieser Arbeit untersuchen wir die Interaktion eines viskosen
Fluids mit einer elastischen Struktur. Hierzu nehmen wir an, dass sich die
Flüssigkeit in einer periodischen Zelle befindet, welche einen deformierba-
ren Boden hat. Die Strömung wird durch die Navier-Stokes-Gleichungen
beschrieben, und der deformierbare Boden ist eine dünne elastische Platte.
Es wird gezeigt, dass eine zeitperiodische Lösung existiert, welche die In-
teraktion beschreibt, wobei die elastische Platte durch äußere periodische
Kräfte angeregt wird. Unter Verwendung von Fourier-Multiplikatoren so-
wie einem Lokalisierungsargument erhalten wir Lq-Abschätzungen, welche
wiederum benutzt werden, um ein Fixpunktargument durchzuführen. Mit
Hilfe des Fixpunktarguments zeigen wir, dass eine zeitperiodische Lösung
zum nichtlinearen freien Randwertproblem existiert.
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1 Introduction

Resonance in fluid-structure interaction, as well as in the study of wave
propagation, is a well-known phenomenon occurring in nature. Resonance
can be observed when the frequency of an applied time-periodic force is
in harmonic proportion to a natural frequency. The dynamic parameters
such as displacement, velocity and energy of the system will then oscillate
with increasing amplitude.

Subject of this thesis is to study the occurrence (or rather the absence)
of resonance in different problems from nonlinear acoustics and fluid-
structure interaction. Resonance occurs naturally in undamped hyperbolic
systems, but damping mechanisms can prevent this. In the following, we
study two types of damped system. First, we study the hyperbolic equa-
tions governing the propagation of an acoustic wave in a viscous medium,
which introduces a damping effect. Second, we study a fluid-structure-
interaction problem, where the hyperbolic equation governing the motion
of the structure is damped via the interaction with a viscous fluid. In those
cases, resonance can be avoided if the energy from the external forces ac-
cumulated over a period is dissipated via the damping mechanism. The
existence of a time-periodic solution would be a manifestation hereof.

In nonlinear acoustics, the propagation of sound waves through a viscous
medium is studied. An acoustic wave propagates through a medium as a
local variation of pressure. Nonlinear effects occur when the waves exhibit
high amplitudes. The Blackstock-Crighton equation and the Kuznetsov
equation are typically used to model this type of nonlinear wave propaga-
tion. In [7], Blackstock first introduced the model

(a∆− ∂t)
(
∂2
t u− c2∆u− b∂t∆u

)
− ∂2

t

(
1

c2

B

2A
(∂tu)2 + |∇u|2

)
= f,

(1.0.1)

which later was also derived by Crighton in [18]. This model is used
to describe the motion of a wave when viscous, heat-conducting fluids
are considered. However, if temperature constraints are neglected, the
Blackstock-Crighton equation is reduced to a nonlinear damped wave
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equation
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t u−∆u− b
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ρ0c4
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(∂tu)2 + |∇u|2

)
= f, (1.0.2)

called the Kuznetsov equation. This wave equation was first proposed by
Kuznetsov in [57] and is a widely used model to describe the propaga-
tion of sound in fluids. In both the Blackstock-Crighton and Kuznetsov
equation, the damping term is due to a Kelvin-Voigt damping ∂t∆u, where
u denotes the acoustic potential. The constant a is the heat conductivity
of the fluid, c the speed of sound, and ρ0 the mass density. The diffu-
sivity of sound b is a measure of energy dissipation due to viscosity and
heat conduction in the fluid. Finally, B/A denotes the so-called (acoustic)
parameter of nonlinearity, which is the quotient of the second and first co-
efficient in the Taylor expansion of the pressure-density relationship, see
[6]. Chapter 3 is devoted to the investigation of (1.0.1) and (1.0.2) under
periodic forcing. More specific, given a force that is periodic in time with
period T ,

f : R× Ω→ R, ∀(t, x) ∈ R× Ω : f(t+ T , x) = f(t, x),

existence and Lq estimates of a T -time-periodic solution u are studied. In
case of the Kuznetsov equation, the whole space, half space and bounded
domains are considered, whereas (1.0.1) is studied on a bounded domain.
Inhomogeneous Boundary conditions of Dirichlet and Neumann type are
examined.

The study of the interaction of a deformable structure with a viscous
fluid is fundamental to many applications, for instance in the field of
aeroelasticity, biomechanics or hydroelasticity, see for example [54, 78, 38].
In this thesis we carry out such a study for fluid-structure systems that
are driven by a time-periodic force. Observe that the fluid domain, which
is denoted by Ωη(t) ⊂ R3, changes in time, where η describes the evolution
of the moving domain. The equations governing the motion of the fluid
flow are given by the Navier-Stokes system{

∂tu− µ∆u+ (u · ∇)u+∇p = f,

div u = 0,
(1.0.3)

where u denotes the fluid velocity, p the associated pressure field and µ > 0
a constant. As a model for the deformable structure, we consider a thin
elastic plate, whose motion is governed by the plate equation

∂2
t η + ∆′ 2η − ν∆′∂tη = F − Tη, (1.0.4)
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1.1 A Historical Background of Nonlinear Acoustics

where η is the displacement of the fluid-solid interface in transversal direc-
tion. The term Tη is the normal fluid stress tensor induced by the fluid on
the elastic structure. Here, ν > 0 is a constant. In Chapter 4, existence,
regularity and uniqueness of a solution to (1.0.3)–(1.0.4) are established
for suitable boundary values.

1.1 A Historical Background of Nonlinear
Acoustics

Acoustics is the science of sound and is derived from the Greek word
akouein, to hear. The study of sound goes back to the ancient world. Even
then it was well known that sound propagates as a wave. However, the first
experimental evidence of this phenomenon was in the seventeenth century.
Most of the early acoustical investigations were closely tied to musical
acoustics. It started with studying a vibrating string, over to a vibrating
membrane, to the more complicated case of a vibrating plate. One of the
first (theoretical) results in this field is due to D. Bernoulli, Euler
and d’Alembert in the mid eighteenth century. Bernoulli introduced
a partial differential equation for the vibrating string and gave a solution
thereto which was interpreted by d’Alembert as a wave traveling in
both directions along the string, see for example [68] and the references
[5] and [21]. The one-dimensional model of the wave equation derived by
d’Alembert played a fundamental role in fluid mechanics and elasticity,
see [73, Section 2.1 and Section 2.2] for a more detailed description of
the connection between fluid mechanics and acoustics. After the works
of Bernoulli and d’Alembert, Euler has derived an equation for
nonlinear plane acoustic waves in air, which described the behaviour of gas
at constant temperature, see [29]. However, the correct law of describing
the propagation of plane progressive waves was found hundred years later
by Earnshaw. Mathematically, the works [63] and [74] of Lagrange
and Poisson had an immense influence on solving nonlinear plane wave
equations. Moreover, in the study of shock formation, Stokes already
realized in 1848 that it is crucial to include viscosity in the description
thereof. The main contribution here came from Rankine and Hugoniot,
who first formulated the conservation laws (conservation equations for
mass, momentum and energy) describing the connection of a flow field
behind a shock with the flow field ahead of it. However, the first successful
attempts to formulate a comprehensive model were made by Rayleigh
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and Taylor. All this together with the contributions of Fay (see for
example [32]), and many other scientists in this field, leads to Burgers’
equation (see [12]), which is still a classical model used to describe the
propagation of plane waves. For more details on the historical evolution
of acoustics before the middle of the twentieth century we refer to [68, 80].

After Lighthill published his article [67] in 1956, the interest in the
study of acoustic waves grows. In [67] Lighthill describes propagation
of shock waves, flood waves in rivers and traffic flow on highways, see
[23, Chapter 1]. However, since there are nonlinear acoustical phenom-
ena that can not be described adequately with Burgers’ equation, more
general wave equations are required. In [7] Blackstock introduced a
special model of nonlinear wave equations of higher order, which models
the propagation of sound in thermoviscous fluids. To be more precise,
Blackstock followed the approach of Lighthill, which is based on the
assumption that effects of nonlinearity and dissipation are small. Keeping
linear and quadratic nonlinear terms that do not involve viscosity or heat
conduction terms, Blackstock derived (1.0.1) from the full equations
of motion for a thermoviscous flow, but without the damping term ∂t∆u.
This system further appears in Crighton’s work [18]. If temperature con-
straints are neglected, the model leads to the Kuznetsov equation (1.0.2),
which was first proposed by Kuznetsov in [57]. Moreover, Kuznetsov’s
equation is a generalization of d’Alembert’s wave equation with new terms
due to nonlinearity and dissipation.

The Blackstock-Crighton and Kuznetsov equtions have been subject to
increasing research over the last years, see for example [52, 53, 70] where
just recently well-posedness of the corresponding initial-value problem for
the Kuznetsov equation (1.0.2) was established. Optimal regularity results
for (1.0.1) and (1.0.2) were given in [11]. Moreover, the corresponding
initial-value problem (1.0.1) was subject in [10, 9]. For more details on
the mathematical investigation of the Kuznetsov and Blackstock-Crighton
equation, we refer to [51], where a brief overview is given, and the refer-
ences therein.

1.2 A Historical Background of Fluid-Structure
Interaction

Broadly speaking, fluid-structure interaction denotes the coupling between
the laws that describe the dynamics of a fluid and structural mechanics.
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1.2 A Historical Background of Fluid-Structure Interaction

More specifically, it is the interactions between a deformable structure
and a surrounding or internal fluid flow. At the fluid-structure interface,
stress is exerted on the solid object by the fluid and leads to deformations
hereof. Fluid-structure interaction is a widespread phenomenon in nature,
for example in blood flow in human arteries, see [54, 78].

The modern investigation of fluid dynamics started in the middle nine-
teenth century when Navier first proposed a system of equations describ-
ing the motion of an incompressible viscous Newtonian flow. Independent
of Navier’s work, Stokes published (for the first time in a scientific ar-
ticle) in [85] the same model, which is nowadays still the most widely used
system to model the motion of a liquid. The Navier-Stokes equations are
given by {

∂tu−∆u+ (u · ∇)u+∇p = f in (0, T )× Ω,

div u = 0 in (0, T )× Ω,
(1.2.1)

where the unknown u : (0, T ) × Ω → R3 and p : (0, T ) × Ω → R are the
Eulerian velocity field and the pressure field of the liquid, respectively, and
f : (0, T )×Ω→ R3 the external force. During this studies, Stokes further
observed that the effective mass of a rigid body moving in a fluid increases.
This phenomenon was first observed by Bessel in 1828, when considering
the motion of a pendulum in a fluid, and meant that the surrounding fluid
increased the effective mass of the system. The observation of Stokes and
his scientific contribution are known as the founding of (fluid mechanics
and) fluid-structure interaction.

The first breakthrough in the mathematical analysis of the Navier-
Stokes equations is due to Leray in 1930. He showed existence of a
weak solution to the Navier-Stokes equations, see [65, 66]. Later, Hopf
[49] further developed this concept. In the context of time-periodic forc-
ing, Serrin [82] originally suggested to study time-periodic solutions to
(1.2.1). However, the first complete results on existence of time-periodic
solutions are due to Prodi [75], Yudovich [90] and Prouse [76], who
showed existence of weak time-periodic solutions. Over the past years, an
increasing number of authors have investigated (1.2.1) in a time-periodic
framework, see for example [35, 40, 41, 55, 60, 37, 59, 72]. When the do-
main Ω = Ω(t) which occupies the fluid varies with time t, one of the first
investigations is due to Sather [81] and the work of Fujita and Sauer
[34].

In recent years the number of investigations into fluid-structure interac-
tion have increased, see for example [39, 26, 25, 16, 19]. There are different
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types of fluid-structure-interaction problems. For example, one can con-
sider a deformable body moving in a viscous fluid. These kind of free
boundary problems were studied in [25]. Another case of fluid-structure
interaction is to consider the fluid in a domain where the boundary or one
part of it is an elastic structure like an elastic plate. This was subject to
[16, 19]. In [16] existence of weak solutions to the initial-value problem
corresponding to the coupled system (1.2.1) and

∂2
t η + ∆′ 2η − ν∆′∂tη = f − Tη in (0, T )× Γ, (1.2.2)

in a three-dimensional cavity is obtained. Here, η : (0, T ) × Γ → R is
the transversal displacement of the fluid-solid interface Γ ⊂ ∂Ω, ν > 0
a constant and Tη the normal component of the stress induced by the
fluid on the elastic plate. A solution and some further L2 estimates were
established by presenting a weak formulation to the nonlinear problem and
utilizing Galerkin approximation. da Veiga considered a similar model
of the elastic plate interacting with a viscous fluid and showed existence of
a strong solution in an L2-framework by a fixed-point procedure. Recently,
Denk and Saal [24] studied a similar model in the half space Rn

+ where
the boundary is given by a damped Kirchhoff plate model. The authors
showed existence and uniqueness of a strong solution in an Lq-setting.

1.3 Nonlinear Acoustics with Periodic Forcing

To date, only the initial-value problem of the Blackstock-Crighton equa-
tion and Kuznetsov equation have been studied. In the following we carry
out an investigation of the time-periodic version of these two problems.
We start by considering the whole space case of the linearization of the
Kuznetsov equation (1.0.2) given by

∂2
t u−∆u+ ∂t∆u = f, (1.3.1)

and establish a priori Lq estimates. Instead of relying on a Poincaré map,
we obtain the estimates directly via a representation formula for the solu-
tion. We hereby circumvent completely the theory for the corresponding
initial-value problem, and develop a more direct approach. Moreover, the
representation formula we establish seems interesting in the context of
resonance, since it exposes the way how different modes of the solution
are damped in relation to the modes of the forcing term. To this end,
we replace the time axis with the torus group T = R/T Z and reformu-
late (1.3.1) as a partial differential equation on T. In this setting, it is
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1.3 Nonlinear Acoustics with Periodic Forcing

possible to utilize the Fourier transform FG in a framework of tempered
distributions S ′(G), which yields the representation formula

u = F−1
G

[
1

|ξ|2 − k2 + ik|ξ|2
FG[f ]

]
(1.3.2)

for the solution. Here, G := T × Rn, with n ≥ 2. In order to obtain
the desired Lq estimates, we decompose this formula into an “undamped”
(the steady state part us) and “damped” (the purely oscillatory part utp)
modes, i.e.,

us + utp = F−1
G

[
1

|ξ|2
FG[f ]

]
+ F−1

G

[
(1− δ 2π

T Z(k))

|ξ|2 − k2 + ik|ξ|2
FG[f ]

]
.

Since one mode is damped and the other is not, we cannot expect utp and
us to have the same regularity. Actually, by decomposing the solution into
utp and us, we see that the Fourier multiplier in the representation of utp

leads to better Lq estimates than can be expected for u. Based on the
results deduced for the whole space problem, we investigate (1.3.1) in the
half space and on a bounded domain. In the half space case, the linearized
damped wave equation (1.3.1) is studied by a reflection principle. In the
case of a bounded domain, a localization argument yields the desired Lq

estimates. Finally, existence of a time-periodic solution to the nonlinear
Kuznetsov equation is established by a fixed-point argument.

The linearization of the Blackstock-Crighton equation (1.0.1) is given
by

(a∆− ∂t)
(
∂2
t v − c2∆v − b∂t∆v

)
= f, (1.3.3)

and is considered in a bounded domain with both Dirichlet and Neumann
boundary conditions. As for the Kuznetsov equation, we will decompose
the linearized Blackstock-Crighton equation into a steady-state part and
a purely oscillatory part. Instead of using Fourier multiplier theory to
establish the desired a priori Lq estimates, we decompose (1.3.3) into a
coupled system consisting of two equations of lower order, namely the
time-periodic heat equation and the time-periodic wave equation. Based
on known results for the heat and wave equations, we deduce existence of
time-periodic solutions to (1.3.3). Similarly to the Kuznetsov equation,
we obtain existence of a time-periodic solution to the nonlinear problem
by utilizing a fixed-point argument.
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1.4 Fluid-Structure Interaction with Periodic
Forcing

Chapter 4 is devoted to the investigation of the Navier-Stokes equations
(1.2.1) interacting with a thin elastic plate located at one part of the
boundary, when a time-periodic external forcing is considered. The elas-
tic structure is governed by the plate equation (1.2.2) in T × T2

0. Here,
T denotes the torus given in the previous subsection and T2

0 = (R/LZ)2,
with L > 0. The fluid problem and the solid problem are coupled by
means of dynamic and kinematic interface conditions. For more details
on the coupling we refer to Section 4.2. The coupled system (1.2.1) and
(1.2.2) shall be studied in a layer domain Ωη(t) = T2

0 × (−η, 1), and the
plate is located at the bottom of the domain. In the following we show
existence of a solution to the coupled system. Instead of relying on a weak
formulation of the free boundary problem, which yields solutions in an L2

framework, we are interested in strong time-periodic solutions that obey
an Lq estimate. To this end, we utilize a fixed-point argument, based on
a priori estimates deduced for the corresponding linearized system. How-
ever, since the boundary of the fluid domain depends on the unknown
η, a fixed-point argument cannot be utilized without any further modifi-
cations. For this reason, we first employ a coordinate transformation to
reformulate the coupled system (1.2.1) and (1.2.2) on a reference configu-
ration, where the boundary does not deform anymore. In this setting, we
first consider the linearized system



∂2
t η + ∆′ 2η − ν∆′∂tη = F − e3 · T(u, p)e3|x3=0 in T× T2

0,

∂tu− µ∆u+∇p = f in T× Ω,

div u = g in T× Ω,

u(t, x′, 0) = −∂tη(t, x′)e3 on T× T2
0,

u(t, x′, 1) = 0 on T× T2
0.

(1.4.1)

Existence of a solution to (1.4.1) is established via the concept of weak so-
lutions to the corresponding resolvent problem. The a priori Lq estimates
follow by a Fourier multiplier argument in combination with a localiza-
tion argument similar to the case of nonlinear acoustics. Based on these
results, a solution to the nonlinear problem is obtained via a fixed-point
argument, and due to the transformation φ, a solution to the coupled
system on the time-dependent domain.
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2 Preliminaries

This chapter is dedicated to introduce the basic notation and concepts
we will use during this doctoral thesis. It is convenient to formulate T -
time-periodic problems in a setting of function spaces where the torus
T := R/T Z is used as a time axis. Indeed, via lifting with the quotient
map π : R → T, T -time-periodic functions are canonically identified as
functions defined on T and vice versa. Based on this observation we
formulate the equations occurring in this thesis as systems defined on
the torus T and decompose them into a so-called steady-state and purely
oscillatory problem, which will be investigated separately. The necessity
of this strategy will be obvious when investigating the regularity of a time-
periodic solution. We will observe that the two parts of the solution solve
various problems, and we will see that they do not have the same regularity
properties. This concept of decomposing the time-periodic problems was
first introduced in [58] and later generalized and further developed by
Kyed and some co-authors, see for example [62].

Equipped with the quotient topology, the time-space domain G :=
T × Rn is a locally compact abelian group and therefore has a Fourier
transform FG associated to it, see Subsection 2.3. Moreover, in Subsec-
tion 2.2 we introduce the so-called Schwartz-Bruhat space S (G) and its
dual space S ′(G) of tempered distributions. In this framework we can
formulate the partial differential equations on the group G and employ
the Fourier transform FG, which will be introduced in the second part
of this chapter, to obtain a solution. Moreover, we need two more tools
from harmonic analysis to examine the resulting solution. We need a mul-
tiplier theorem to deduce the desired Lq estimates. But since classical
multiplier theorems are defined in a whole space setting Rn we further
have to introduce the Transference principle. The Transference principle
is a useful tool that allows us to investigate the resulting multipliers in a
whole space setting where we can make use of the known multiplier the-
ory, and conclude the claims in the group setting from this. In 1965, de
Leeuw was the first one introducing this principle (cf. [22]), which later
was generalized by Edwards and Gaudry, see [27].

Furthermore, the function spaces on the torus T are introduced in Sec-
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2 Preliminaries

tion 2.4. Since our approach is based on concept of Fourier multipliers
we will propose all the Sobolev spaces via Bessel potential spaces, and
show that these function spaces coincide with the general Sobolev spaces.
However, the corresponding trace spaces, namely the Sobolev-Slobodeckĭı
spaces, are defined via real interpolation. Furthermore, we introduce the
function spaces of solenoidal functions in Subsection 2.4.3.

In the framework of fluid-structure interaction Fourier multipliers on
a boundary surface occur and we shall estimate the solution with the
boundary data in the corresponding Sobolev-Slobodeckĭı norm. In order
to adapt the multiplier theory to the Sobolev-Slobodeckĭı spaces, inter-
polation theory for function spaces of time-periodic functions has to be
introduced. This will be done in Section 2.5. There, we will extend the
known interpolation results to the concept of time-periodic functions.

In Section 2.6 the embedding and trace properties of time-periodic
Sobolev spaces utilized in this doctoral thesis are introduced. These em-
bedding properties are later employed to deduce the necessary Lq estimates
to carry out a fixed-point argument, when investigating the nonlinear
problems occurring herein.

Finally, in the last section of this chapter we introduce two useful math-
ematical tools from mathematical fluid mechanics. More precise, the
Poincaré inequality on layer-like domains and the Bogovskĭı operator are
proposed. Note, Poincaré’s inequality is not only used in the framework of
fluid mechanics. But first we start by introducing some general notation
utilized in this thesis.

2.1 General Notation

Throughout this thesis Ω ⊂ Rn is always a domain with a sufficiently
smooth boundary or the whole space Rn. As long as not further men-
tioned, the space dimension n ∈ N is always greater than 2, where N :=
{1, 2, . . .} denotes the set of all positive integers. If the set further contains
zero, we write N0 := N∪ {0}. The domain Ω has a boundary of class Ck,1

or a Ck,1-smooth boundary, if ∂Ω can locally be expressed as the graph of
a function ω ∈ Ck in the respective local coordinates, where the k-th order
derivative of ω is Lipschitz continuous. That is, for any x ∈ ∂Ω there is a
neighborhood U ⊂ Rn of x such that ∂Ω∩U ⊂ graph(ω). The outer unit
normal vector on ∂Ω is denoted by ν, as far as not mentioned differently.
Points in T× Ω are generally expressed by (t, x), with t being referred to
as time, and x as the spatial variable. The time period T > 0 remains
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