
Abstract
In this thesis, we consider the analysis and design of first-order optimization algorithms
employing systems and control theory. We recast algorithm design problems as controller
synthesis problems; techniques from control theory then enable us to systematically con-
struct tailored optimization algorithms adapted to various situations. In particular, we
consider two specific classes of optimization algorithms: (i) continuous-time distributed
optimization algorithms for constrained convex optimization, and (ii) robust discrete-time
optimization algorithms for unconstrained convex optimization.

Concerning (i), we consider a group of agents sharing information over a communica-
tion network described by a directed time-invariant graph aiming to cooperatively solve a
convex optimization problem with shared equality and inequality constraints. Utilizing geo-
metric control theory in a novel and innovative fashion, in particular Lie bracket averaging
techniques, we directly address the core challenge of distributed problems, namely limited
local information. Employing saddle-point dynamics, we derive a novel methodology that
enables the design of distributed continuous-time optimization algorithms solving a class
of optimization problems under minimal assumptions on the graph topology as well as on
the structure of the optimization problem. Generalizing this approach, we further establish
a systematic way of deriving continuous-time distributed algorithms from non-distributed
ones.

Concerning (ii), we consider the problem of analyzing and designing gradient-based
discrete-time optimization algorithms for a class of unconstrained optimization problems
having strongly convex objective function with Lipschitz continuous gradient. By formulat-
ing the problem as a robustness analysis problem and employing a suitable adaptation of
the theory of integral quadratic constraints (IQCs), we establish a framework that allows
analyzing convergence rates and robustness properties of existing algorithms and enables
the design of novel robust optimization algorithms with specified guarantees. Taking ad-
vantage of the embedding into integral quadratic constraint theory, we further extend the
framework to design algorithms that are capable of exploiting additional structure in the
objective function.
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Deutsche Kurzfassung

In der vorliegenden Arbeit werden Analyse- und Entwurfsmethoden für gradientenbasierte
Optimierungsalgorithmen entwickelt, indem mit Hilfe von systemtheoretischen Ansätzen
das Entwurfsproblem in geeigneter Weise als ein Reglerentwurfsproblem umformuliert
wird. Dieser Ansatz ermöglicht es, auf systematische Art und Weise maßgeschneiderte
Optimierungsalgorithmen zu entwerfen. Dabei werden in dieser Arbeit insbesondere zwei
spezielle Klassen von Optimierungsalgorithmen betrachtet: (i) zeitkontinuierliche verteilte
Optimierungsalgorithmen zur Lösung konvexer Optimierungsprobleme mit Nebenbe-
dingungen und (ii) robuste zeitdiskrete Optimierungsalgorithmen zur Lösung konvexer
Optimierungsprobleme ohne Nebenbedingungen.

In Fall (i) verfolgt eine Gruppe von Recheneinheiten, auch Agenten genannt, das Ziel,
kooperativ ein Optimierungsproblem mit gemeinsamen Gleichungs- und Ungleichungs-
nebenbedingungen zu lösen, wobei jeder Agent nur Zugriff auf eine begrenzte Menge
lokal verfügbarer Information hat. Dazu tauschen die Agenten untereinander diese lokalen
Informationen über ein Kommunikationsnetz aus, das abstrakt durch einen gerichteten,
zeitinvarianten Graph repräsentiert werden kann. Der vorgestellte Ansatz basiert auf einer
neuartigen und innovativen Verwendung von Methoden aus der geometrischen Regelung,
im Speziellen Lie Klammer Approximationen. Dieser Ansatz erlaubt es, die Hauptschwie-
rigkeit verteilter Probleme, nämlich die nur lokal verfügbare Information, direkt und syste-
matisch anzugehen. Eine Kombination der Methodik mit Sattelpunktdynamiken ermöglicht
es dann, verteilte zeitkontinuierliche Optimierungsalgorithmen unter geringen Vorausset-
zungen an die Struktur des Graphen und des Optimierungsproblems zu entwerfen. Durch
weitere Verallgemeinerung dieser Methodik wird zudem ein systematischer Ansatz zum
Entwurf verteilter aus nicht verteilten Algorithmen vorgestellt.

In (ii) wird die Analyse und der Entwurf gradientenbasierter zeitdiskreter Optimierungs-
algorithmen für eine Klasse von unbeschränkten Optimierungsproblemen betrachtet, deren
Kostenfunktion stark konvex ist und einen Lipschitz-stetigen Gradienten besitzt. Durch
Umformulierung des Entwurfproblems als ein Problem der robusten Regelung und eine
geeignete Modifikation der sogenannten IQC-Theorie (integral quadratic constraints) wird
eine Methodik hergeleitet, die es erlaubt, sowohl die Konvergenzraten und Robustheits-
eigenschaften von bekannten Algorithmen zu analysieren als auch neue Optimierungsal-
gorithmen zu entwerfen, die vorgegebene Konvergenzraten- und Robustheitsgarantien
erfüllen. Die Einbettung in die IQC-Theorie ermöglicht es dabei auch, Algorithmen zu
entwerfen, die mögliche strukturelle Eigenschaften der Kostenfunktion explizit ausnutzen
können.
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1
Introduction

1.1 Motivation and Background

Optimization plays an important role in many fields of applications and is the backbone
of a multitude of modern technologies such as real-time control, machine learning or data
analytics. Having reliable, fast and flexible optimization algorithms available hence is of
key importance. Over the last decades, a variety of optimization algorithms applicable in
different situations have been developed and proven themselves in real-world applications.
However, the technological progress often requires the adaptation to novel challenges that
existing algorithms cannot handle appropriately, hence necessitating the development of
tailored algorithms. Though, it is fair to say that the design of new algorithms, but also their
analysis, still is more art than science based on experience, expert knowledge and good
ideas. A systematic framework to analyze and modify existing or design novel algorithms
adapted to different situations is not available yet. On the other hand, many optimization
algorithms are, in essence, dynamical systems having an equilibrium characterized by the
solutions of a class of optimization problems. Systems and control theory provides a quite
mature set of tools for analyzing the convergence and stability properties of equilibria as
well as for designing controllers that stabilize a given equilibrium. While the apparent
relation between these two areas of research is not a new discovery, its full potential has not
been exploited yet.

In the present thesis, we aim to contribute to linking the areas of optimization and
systems and control theory and show that the latter provides novel ways to analyze and
design optimization algorithms adapted to various problem setups. The main theme is to
recast optimization algorithm design problems as particular controller synthesis problems
and utilize methods from systems and control theory to enable a systematic design of
optimization algorithms, see also Figure 1.1. In this thesis, we consider two particular classes
of algorithm design problems, namely distributed optimization and robust optimization in
the presence of noise; we are convinced that systems and control theory has the potential to
provide a powerful approach to optimization algorithm design in general.

This view is supported by a growing amount of publications and applications following
this systems theoretic approach to optimization. Recent advances in machine learning,
data science or real-time decision-making as well as optimization-based control techniques
such as model predictive control rely to a large extent on efficient optimization algorithms.
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Figure 1.1. An illustration of the premise of the present thesis: We recast optimization algorithm
design problems as controller synthesis problems and utilize and extend methods from systems and
control theory, in particular geometric control and robust control, to facilitate a systematic design of
tailored optimization algorithms.

This development has pushed the need for optimization algorithm design tools, which in
turn motivated researchers to more thoroughly investigate and exploit the link between
optimization algorithms and systems theory in the last years. Historically, this link can be
traced back to the early days of Extremum Seeking Control (Draper & Li, 1951; Leblanc,
1922). While several other results from the last century also can be said to follow similar
system theoretic ideas for optimization algorithm design, it was in Brockett (1988, 1991)
where the author explicitly utilized geometric control theory to design dynamical systems
that are able to solve tasks such as sorting lists or solving linear programs, providing an
alternative to classical algorithms for such type of problems. This approach was further
pursued by a group of researchers and other tasks, e.g., singular value decomposition,
were addressed from a systems theoretic perspective as well (Helmke & Moore, 1994). Still,
even more than ten years later, it is stated in Bhaya and Kaszkurewicz (2006) that although
“some simple ideas from control theory can be used to systematize a class of approaches to
algorithm analysis and design [...] control and system theory ideas have been underexploited
in this context”. In the last decade, several authors picked up on that (Dürr & Ebenbauer,
2012; Hauswirth, Bolognani, Hug, & Dörfler, 2019; Michalowsky & Ebenbauer, 2014; Wang
& Elia, 2010, 2011, just to name a few), mainly from a continuous-time perspective that
is probably more common in control theory, which also lead to a regained interest in
continuous-time optimization algorithms (Gharesifard & Cortés, 2014; Niederländer &
Cortés, 2015; Su, Boyd, & Candes, 2014). Recent advances (Wibisono, Wilson, & Jordan,
2016) further promote this continuous-time perspective enabling a deeper understanding
also of discrete-time algorithms. Another approach that turned out to be a very fruitful
example for utilizing control theoretic methods in optimization is the interpretation of
gradient-based optimization algorithms in a robust control setting: with optimization
algorithms typically having to be applicable to a class of objective functions, the idea of
interpreting the gradient of the objective function as an uncertainty seems natural. This
idea was first followed in Michalowsky and Ebenbauer (2014) in a continuous-time setting
and in Lessard, Recht, and Packard (2016) for discrete-time optimization. In the latter work,
the authors utilize integral quadratic constraint theory, which is well-established in robust
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control, to analyze a class of optimization algorithms, thereby unifying the analysis of
several popular gradient-based algorithms. In the last two years, this approach has been
followed in a number of publications (e.g., Aybat, Fallah, Gürbüzbalaban, and Ozdaglar
(2019); Cyrus, Hu, Van Scoy, and Lessard (2018); Fazlyab, Ribeiro, Morari, and Preciado
(2018); Michalowsky, Scherer, and Ebenbauer (2020); Safavi, Joshi, França, and Bento (2018);
Van Scoy, Freeman, and Lynch (2018)).

1.2 Problem Formulation

In this thesis, we aim to provide a systems theoretic approach to two particular aspects
of optimization: (i) distributed optimization over directed graphs and (ii) fast and robust
optimization in the presence of noise. Following the premise illustrated in Figure 1.1, we
address these two aspects by a proper reformulation of the algorithm design problem as
a controller synthesis problem. We formalize the specific problems in the remainder and
briefly sketch how we approach them.

Throughout the thesis, we consider (constrained) convex optimization problems

minimize
z∈Rp

H(z)

s.t. a(z) = 0
c(z) ≤ 0,

(1.1)

where H : Rp → R, a : Rp → Rneq , c : Rp → Rnineq , neq, nineq ∈ N>0, H, a, c ∈ C2. Our goal
is then to design optimization algorithms, i.e., dynamic systems, both in continuous- and
discrete-time, that converge to a minimizer of (1.1), assuming that such a minimizer exists.
More precisely, we consider deterministic optimization algorithms described by continuous-
or discrete-time dynamic systems

x+(t) = f
(
t, x(t)

)
(1.2a)

z(t) = h
(
x(t)

)
, (1.2b)

where x(t) ∈ RN for some N ≥ p, z(t) ∈ Rp, and f , h are functions to be designed.
In a continuous-time setting, t is a non-negative real number representing the time and
x+(t) = ẋ(t) = dx

dt (t) is the usual time derivative; in a discrete-time setting, t takes integer
values representing time steps and x+(t) = x(t + 1). We concentrate on first-order opti-
mization algorithms, i.e., f may only depend on H, a, c,∇H,∇a,∇c but no higher-order
derivatives. In simple words, our overall goal is then formulated as follows:

General Optimization Algorithm Design Problem. "Given a class of optimization
problems of the form (1.1) and some design specifications, design optimization
algorithms (1.2) such that, as t tends to infinity, z(t) converges to a minimizer of (1.1)
for any instance of (1.1) and the specifications are met."
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Figure 1.2. Two exemplary problems of type (i) and (ii). Left (i): A communication network of n = 5
agents with agent states xi, i = 1, . . . , 5. The arrows indicate the directions of information access;
for example, in addition to its own state, agent 2 has access to the states x3, x5 of agent 3 and 5
but not to the states of the other agents in the network. This is reflected in the agent dynamics
depicted next to the agents and illustrates the main challenge in designing distributed algorithms,
namely limited locally available information. Right (ii): A block diagram representation of the class
of algorithms (1.5) we consider in (ii). We reformulate the algorithm design problem as a robust
controller synthesis problem interpreting the gradient of the objective function∇H as an uncertainty.
The challenge is then to design matrices A, B, C, D such that, as t tends to infinity, z(t) converges to a
minimizer of the optimization problem (1.1) for all H in some class.

We address the latter problem by designing the functions f , h in such a way that (1.2)
has a (globally) asymptotically stable equilibrium at a point x? that has the property that
h(x?) = z?, where z? is a minimizer of (1.1). In this manner, in its core the problem boils
down to a stabilization problem with the important distinction that the point to be stabilized
is not known a-priori but determined by (1.1). As to the additional design specifications,
we are particularly interested in addressing two specific aspects of this general problem:
(i) distributed optimization over directed graphs and (ii) fast and robust optimization in
the presence of noise. Those two aspects are highly relevant in modern applications; we
make this more precise in the following and specify the general problem formulation for (i)
and (ii).

(i) Distributed Optimization Algorithms. In distributed optimization, a group of com-
putation units, often called agents, cooperatively tries to solve an optimization problem.
The idea of distributed algorithms is to have each agent solve a smaller subproblem using a
limited amount of local information only and, by sharing information amongst the agents
over a communication network, ensure that the original problem is solved. Distributed
algorithms have the advantage that they are usually less error-prone, might require less
communication and can respect possible privacy issues.

In this part, we are aiming for designing distributed continuous-time optimization al-
gorithms (1.2). More precisely, we consider a group of n agents where each agent’s state
evolves according to its individual agent dynamics described by a differential equation and
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the complete distributed algorithm (1.2) is given by the collection of all agent dynamics.
There is no common understanding of a distributed algorithm; in this thesis, simply put,
we call an algorithm distributed if each agent only uses its own state as well as the states of
the agents it has access to, where information access is encoded by a graph representation
of the communication network. An exemplary illustration of the situation is depicted in Fig-
ure 1.2, (i). As visible from this example, in essence, this understanding of a distributed
algorithm then amounts to design f in (1.2) in such a way that it respects certain information
constraints induced by the communication network. More precisely, we consider a subclass
of the general continuous-time algorithm dynamics (1.2) given by

ẋ1(t)
ẋ2(t)

...
ẋn(t)

 =


f1
(
t, [xk(t)]k∈NG (1)

)
f2
(
t, [xk(t)]k∈NG (2)

)
...

fn(t, [xk(t)]k∈NG (n)
)
 (1.3a)

z(t) = h
(
x(t)

)
, (1.3b)

where xi(t) ∈ RNi is the state of the ith agent and [xk]k∈NG (i) is the collection of states of
agents the ith agent has access to via the communication network, i.e., in a graph theoretic
language, the out-neighboring states of agent i as well as its own state. Our goal is then to
design the functions fi in (1.3) such that z(t) converges to a minimizer of (1.1). The main
challenge in designing distributed algorithms (1.3) compared to general algorithms (1.2)
is the limited information available to each agent rendering the stabilization problem a
sparse stabilization problem. In other words, from a controller design perspective, there is
a limited set of admissible control directions determined by the communication network.
Such situations have been investigated a lot in nonlinear control theory, in particular in
geometric control, e.g., in controllability analysis or the control of nonholonomic mechanical
systems. Our approach relies on employing these ideas in a novel way to design distributed
optimization algorithms.

(ii) Robust Optimization Algorithms. In many applications it is of key importance to
have optimization algorithms that provide an accurate solution in guaranteed time. How-
ever, the convergence time of optimization algorithms is often hard to analyze and further,
existing algorithms may not fulfill the imposed convergence rate requirements. Besides,
while many algorithms perform well in an idealized setting, they are sensitive towards
various disturbances, resulting in slow convergence. Such kind of disturbances arise, for
example, in a data-based setting where the optimization problem specifiers H, a, c are
generated from data.

In the second problem investigated in this thesis we are concerned with the design of
discrete-time optimization algorithms applicable to a class of unconstrained optimization
problems that (a) provide specified convergence rate guarantees, (b) are insensible towards
noise in the optimization problem data (i.e., H in (1.1)) and (c) are capable of exploiting
additional structural properties of the objective function. The class of algorithms we propose
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in this thesis is motivated by a generalization of existing algorithms. We explain the idea by
means of the Heavy Ball Method (Polyak, 1987) that, for scalar optimization (p = 1), can be
represented in the form (1.2) as[

x1(t + 1)
x2(t + 1)

]
=

[
1 + ν2 −ν2

0 1

] [
x1(t)
x2(t)

]
−
[

ν1
0

]
∇H

(
x1(t)

)
(1.4a)

z(t) = x1(t), (1.4b)

where ν1, ν2 are real parameters. A suitable choice of parameters for a class of objective func-
tions H has been derived in (Polyak, 1987) where also the convergence of the algorithm (1.4)
towards a minimizer z? of H has been analyzed. The following question arises: How do
these parameters need to be adapted – and how does this affect the convergence rate – if the
class of objective functions changes or is refined or if the gradient of the objective function
is affected by noise? Going further, how do we need to change (1.4) structurally in order
to adapt to such novel situations? In this part of the thesis, we provide answers to such
questions by generalizing (1.4) to a particular subclass of optimization algorithms (1.2) of
the form

x(t + 1) = Ax(t) + B∇H
(
Cx(t)

)
(1.5a)

z(t) = Dx(t), (1.5b)

where x(t) =
[
x1(t)> . . . xn(t)>

]> ∈ Rnp, xi(t) ∈ Rp, i ∈ {1, . . . , n}, z(t) ∈ Rp. The
design goal then amounts to determine matrices A ∈ Rnp×np, B ∈ Rnp×p, C ∈ Rp×np,
D ∈ Rp×np, independent of H, such that, for any H in a given class, the dynamics (1.5a)
have an asymptotically stable equilibrium at x? with the property that Dx? = z?, where
z? is the minimizer of H. The core idea is to interpret the unknown objective function – or
more precisely its gradient – as an uncertainty (see Figure 1.2, (ii)); we then need to render
x? asymptotically stable for (1.5) for any realization of the uncertainty. In other words, the
problem is recast as a robust controller synthesis problem.

1.3 Contributions and Outline

In this thesis, we provide systematic procedures to analyze and design two classes of opti-
mization algorithms. In particular, following the premise of a systems theoretic approach,
we embed both problems (i) and (ii) described in Section 1.2 in a systems and control
theoretic setup. For each problem (i), (ii), we then provide a framework that applies to a
large class of optimization problems, can be extended systematically and allows for an
automation of the algorithm design process. The two problems also build the two main
chapters of this thesis that we outline in the following.

• In Chapter 2, we address problem (i) and provide a systematic framework to derive
continuous-time distributed optimization algorithms from non-distributed ones. The
approach is based on Lie bracket averaging techniques. We propose a two-step procedure
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where the first step consists of finding certain Lie bracket representations of parts of
the algorithm that cannot be implemented in a distributed fashion (we call them non-
admissible vector fields) and the second step is to determine distributed approximations
thereof. We discuss the procedure by means of saddle-point dynamics and show how it
can be applied to other non-distributed optimization algorithms.
More specifically, concerning the first step, we provide Lie bracket representations of
a large class of non-admissible vector fields (Proposition 1, Lemma 3). Applying the
results to saddle-point dynamics, we show that such Lie bracket representations can be
obtained under mild assumptions on the optimization problem (Lemma 4). Concerning
the second step of determining distributed approximations, we modify the construction
procedure from Liu (1997a) and derive a simplified version thereof allowing an explicit
representation of the distributed approximation in certain cases (Proposition 2). We finally
combine both steps and thereby provide a methodology to derive distributed optimization
algorithms from non-distributed ones (Theorem 2). The results of this chapter are based
on the papers Michalowsky, Gharesifard, and Ebenbauer (2017a, 2018, 2020) and some
parts of the text, in particular in Section 2.4, are identical.

• In Chapter 3, we address problem (ii). By formulating the problem as a robustness analy-
sis problem and making use of a suitable adaptation of the theory of integral quadratic
constraints, we establish a framework that allows to analyze convergence rates and ro-
bustness properties of existing algorithms and design novel optimization algorithms
that are robust towards noise, fulfill specified guarantees and are capable of exploiting
additional structure in the objective function.
Specifically, our main contributions are as follows: We propose a class of gradient-based
algorithms that generalizes existing algorithms and derive necessary and sufficient condi-
tions for these algorithms to be capable of solving a class of optimization problems (The-
orem 3). Embedding the problem in the framework of robust control, we then derive
convex analysis tools by means of linear matrix inequalities (LMIs), both in regard to
convergence rates (Theorem 7) and robustness (Theorem 8). To this end, we provide a gen-
eral procedure to obtain multipliers for exponential stability results from standard ones
(Lemma 7) and utilize this to derive a class of multipliers generalizing those proposed
in Boczar, Lessard, and Recht (2015); Freeman (2018); Lessard et al. (2016) (Theorem 6).
We further provide convex synthesis conditions allowing the design of novel algorithms
with specified robustness properties (Theorem 9) and show how to additionally exploit
structural characteristics of the objective function (Lemma 10). The results presented in
this chapter have been submitted to a large extent (Michalowsky, Scherer, & Ebenbauer,
2020) and are partly based on Michalowsky and Ebenbauer (2014, 2016).

• In Chapter 4, we give a summary of our results and discuss future research directions.

To streamline the presentation, we introduce the notation as well as the required technical
background in a summarized form in Appendix A; an overview of the notation is also
provided on page 147. All technical proofs of the mathematical statements are collected
in Appendix B; Appendix C contains some additional material.



2
Design of Distributed Optimization

Algorithms

Nowadays, nearly all devices we use in our daily life are equipped with microprocessors and
connected to a network, be it cars, smartphones or fridges. This ubiquity of computational
power and the growing interconnectedness opens up new possibilities but also novel
challenges have to be faced. In particular, limitations in communication and questions of
privacy lead to limited locally available information. This lack of information is a major
difficulty to be addressed and distributed algorithms are designed as a remedy to such
problems. With optimization being one of the key enablers of modern technology, the idea of
solving optimization problems in a distributed fashion also got in the focus of interest in the
last decades. Therein, a group of computation units (often also called agents) cooperatively
tries to solve the problem. The idea of many distributed optimization algorithms is to have
each agent solve a smaller subproblem and, by sharing information over a communication
network, ensure that the original problem is solved.

Many of the existing approaches to distributed optimization problems heavily rely on the
assumption that the underlying communication network is of undirected nature, meaning
that when one agent shares information with a second agent, the second agent will share
his information as well. However, many practical problems do not have this property, e.g.,
due to the directed nature of sensors in networks of physical agents or due to privacy
reasons. Further, the available distributed algorithms typically require strong assumptions
on the structure of the optimization problem, e.g., that the objective function is a sum of
individual objective functions of each agent only or that the constraints are only imposed
between agents that also share information with each other. This heavily limits the class of
optimization problems these algorithms are able to solve or necessitates modifications of
the existing communication network. Existing approaches trying to address and relax these
limitations typically utilize specifically tailored modifications of a distributed algorithm,
but no general approach is known in literature.

In this thesis, we aim to take a different approach and establish a framework that al-
lows to systematically design continuous-time distributed optimization algorithms. From
a more general perspective, this thesis also provides a systematic procedure for deriving
distributed algorithms from non-distributed ones. Our methodology is applicable to a quite
general class of convex optimization problems under rather mild assumptions on the com-
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Figure 2.1. An illustration of our approach. We use Lie bracket approximations to systematically
derive distributed algorithms from non-distributed ones. We employ Lie bracket approximation
techniques which have proven useful to reveal and utilize hidden control directions (dashed) of
nonlinear systems. Our approach further advances into that direction, where the hidden control
direction is identified with a non-existing communication link (dashed).

munication structure. Following the main premise of this thesis, our approach builds upon
well-established tools from systems and control theory. In particular, we use Lie bracket
approximation techniques in a novel and innovative fashion. Lie bracket approximations
have been extensively used in nonlinear control theory, e.g., in motion planning problems
for nonholonomic mechanical systems (Z. Li & Canny, 2012, and references therein), where
they enable steering a system into directions not directly accessible. We utilize Lie bracket
approximations in a similar way in the sense that they enable an agent to use information
somewhere available in the network but not directly accessible via a communication link
(see Figure 2.1 for an illustration).

Background and Related Work. Over the last decades, distributed optimization and the
closely related field of distributed control has been a very active area of research with high
practical relevance, see, e.g., Boyd, Parikh, Chu, Peleato, and Eckstein (2011); Bullo, Cortés,
and Martínez (2009); Zhao and Dörfler (2015) for applications. In the following, we give a
brief overview of research in distributed optimization; due to the sheer amount of literature
available in this area, we do not aim for a complete overview but refer the reader to the
recent survey paper Nedić and Liu (2018). In distributed optimization, usually optimization
problems (1.1) are considered, where, additionally, the objective function H is assumed to
be a sum of individual objective functions associated to each of the n agents. More precisely,
it is assumed that

H(z) =
n

∑
i=1

Hi(z), (2.1)

where Hi : Rp → R is the individual objective function associated to agent i. The goal is to
solve the problem by dividing it into n smaller subproblems; each agent then solves a part
of the original problem (1.1) and communicates its solution over a given communication
network. Existing algorithms following such an approach can mainly be distinguished by


