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Lower dimensional models in elasticity

With the purpose of fixing notation and nomenclature, we begin by quickly
reviewing some fundamental notions in elasticity theory.1.1We then dis-
cuss dimension reduction in this context and its mathematical justification.
We continue with a brief review of the literature where Γ-convergence
is applied for this purpose, to conclude with an outline of the present work
and some acknowledgements. Please refer to Appendix B for the nota-
tion used throughout this work.

1.1 Elasticity, in a rush

The objects of study are a three dimensional body identified with an
open, bounded and Lipschitz set Ω ⊂ ℝ3 and its deformation y: Ω →
ℝ3 under external forces or boundary conditions. When deformations can
be assumed to be very small it is more convenient to use instead dis-
placements w: Ω → ℝ3, defined by y(x) = x + w(x). Throughout we
employ so-called Lagrangian coordinates, i.e. we track the deforma-
tions of material points wrt. the fixed domain Ω.1.2

Subject to external forces or boundary conditions, bodies deform. The
fundamental assumption is that any deformation which is not a rigid body
motion (the composition of a translation and a rotation) stores elastic

1.1. A thorough introduction to elasticity can be found in [Cia88], a gentle one from
the perspective of differential geometry in [Cia05] and a deeper one in [MH94]. For a very
good exposition of continuum mechanics with elasticity as an application see [TM05].

1.2. As opposed to the Eulerian description which instead tracks locations in space.



energy into the body which can be released after the extraneous con-
ditions disappear and this release will bring the body back to its reference
configuration Ω, without inducing any permanent alteration. If this does
not hold, that is, in case the properties of the body are changed after the
forces disappear, one can have viscoelastic or plastic behaviour, but we
will not concern ourselves with these at all. If the reference configura-
tion has zero elastic energy, we speak of a natural state. The elastic
energy can be computed as the integral over Ω of a stored energy den-
sity W , which under mild assumptions turns out to be a function only
of the position x ∈ Ω and the deformation gradient ∇y(x). When this
is the case we speak of a hyperelasticmaterial. The functionW expresses
the relationship between strains (local elongations and compressions in
each direction) and stresses (internal forces induced by the strains). By
our fundamental assumption above, W is non-negative and vanishes for
rigid motions, or W(x,∇y)=0 for all ∇y∈SO(3).
We model the strain by the change in metric induced by the map y

in the body wrt. the flat metric, via the so-called Green - St.Venant's
tensor E(y) = 1

2 (∇
⊤y∇y− I). In terms of displacements w= y− id, this

is E(w) = 1
2 (∇

⊤w + ∇w + ∇⊤w ∇w). Now we can characterise a rigid
motion or rigid body movement as a deformation y such that E(y) = 0,
i.e. ∇⊤y∇y= I, since there is no change in the distance between deformed
points. The set of all rigid motions consists of all maps x ↦ Q x + c
with Q ∈ SO(3), c ∈ ℝ3. Under the assumptions that displacements are
“infinitesimally smaller” than the characteristic dimensions of the body, E
is approximated by the linear strain tensor e(w)≔∇sw=(∇⊤w+∇w)/2
and one speaks of geometrically linear elasticity.
Assuming a smooth energy density and a small displacement gradient

‖∇w‖≪1, one can linearise the energy around the identity:

W(∇y) = W(I)+DW(I)[∇w]+ 1
2 D2W(I)[∇w,∇w]+h.o.t.

≈ 1
2 D2W(I)[∇w,∇w]

=: 1
2 Q3(∇w),

where we used that W vanishes on rigid motions so, in particular W(I)
and DW(I) are zero, and where Q3 is the quadratic form of linear elas-
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ticity. In this setting we speak of linearly elasticmaterials. The form Q3
vanishes exactly over the set of linearised rigid motions1.3

ℛ≔{x↦R x+b:R∈so(3),b∈ℝ3}={x↦ r×x+b: r,b∈ℝ3},

where so(3) is the space of antisymmetric matrices.
In order to define Q3 in terms of the gradients ∇w one needs so-called

constitutive relations between stresses and strains, which may take into
account properties like isotropy (the body exhibits no “preferred direc-
tion” along which responses are different) and homogeneity (the body
has the same behaviour at any material point x ∈ Ω). The symmetries
arising in isotropic, homogeneous materials imply that Q3 has the form

Q3(F)=𝜆 tr2F+2𝜇 |F|2

where F =∇w∈ℝsym3×3 is a strain tensor and 𝜆, 𝜇 are the Lamé constants
of the material.
There are several other couples of physically meaningful magnitudes

related to these two constants, among which we mention Young's mod-
ulus E and Poisson's ratio 𝜈 since we use them in the implementation of
the discretisations. E is a measure of how the body extends or contracts
in response to tensile or compressive stresses. 𝜈 measures the tendency
of materials to compress in directions perpendicular to the direction of
elongation.1.4

1.3. In the setting of very small displacements, one must exclude symmetries (large
displacements) from rigid motions, which means that the rotation matrices Q do not have
the eigenvalue −1 and the maps I + Q are invertible. Then we can define R ≔ (I −
Q) (I + Q)−1 and recover Q with Cayley's transform R ↦ (I − R) (I + R)−1 = Q. This
bijection allows the identification of matricesQ with matrices R, so we can focus on maps
x↦R x + b with R∈ so(3). Additionally, each R is determined by just 3 coefficients, so
there exists a vector r ∈ℝ3 such that R x+b= r × x+b.

1.4. E is defined as the quotients of stresses over strains along each direction, which
reduces to a number for isotropic materials. Since strains are dimensionless, it has units
of pressure N /m2 or Pa, with typical values in the mega- and gigapascal range. 𝜈 is the
quotient of transverse strain to axial strain, with a sign, for each direction. Again, for
isotropic materials this is only a number. Typical values range from 0 for materials with
insignificant transversal expansion when compressed (e.g. cork) to 0.5 for incompressible
ones (e.g. rubber), but materials have been designed beyond this range (auxetic metama-
terials).
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