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Abstract

Regardless of the field, measurements are essential for validating theories and

making well-founded decisions. A criterion for the validity and comparability of

measured values is their uncertainty. The ”Guide to the Expression of Uncertainty

in Measurement” (GUM) provides a standardized framework for determining and

interpreting measurement uncertainty. Still, in room acoustical measurements,

the application of these rules is not yet widespread. Firstly, this is due to the

fact that well established 2-CH-FFT correlation techniques rely on a complex

principle, which is not covered by the classical guide. In addition, the effect

of input variables on an individual measurement can only be determined after

considerable effort. An example are fluctuations of room acoustical quantities over

small distances between measurement locations in concert halls. This variation of

the sound field by position is sometimes considerable and can only be predicted

in relatively simple boundary value problems. This raises the question of the

validity and interpretability of room acoustical measurements.

The goal of this thesis is to provide a GUM-compliant discussion of uncertain-

ties in measuring room acoustical single-number quantities. This starts with a

structured search of variables that potentially influence the measurement of room

impulse responses. In a second step, this uncertainty is propagated through the

algorithm that determines room acoustical single-number quantities.

Further emphasis is placed on the investigation of spatial fluctuations of the

sound field in auditoria. The influence of an uncertain measurement position on

the overall measurement uncertainty is discussed. To reach general conclusions,

the relation between changes in the measurement location and the corresponding

changes in measured room acoustical quantities is investigated empirically in

extensive measurement series. To this end, a measurement apparatus was designed

that allows automatic, high-resolution sampling of sound fields over large areas.

The collected data creates the foundation to apply the principle of uncertainty

propagation using a Monte Carlo method.
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This study shows how precisely a measurement position must be defined to

ensure a given uncertainty of room acoustical single-number quantities. The

presented methods form a foundation that can be flexibly extended in future

investigations to include additional influences on the measurement uncertainty.



Kurzfassung

Unabhängig vom Fachgebiet sind Messungen essentiell für die Validierung von

Theorien und für das Treffen fundierter Entscheidungen. Merkmal für die Aussage-

kraft und Vergleichbarkeit von Messwerten ist unter Anderem deren Unsicherheit.

Für die Bestimmung und die Interpretation der Messunsicherheit stellt der Guide

to the Expression of Uncertainty in Measurement (GUM) einen standardisierten

Rahmen bereit. Bei raumakustischen Messungen ist die Anwendung dieses Regel-

werks bisher noch nicht grundsätzlich verbreitet. Das liegt einerseits daran, dass

mit der weit verbreiteten Korrelationsmesstechnik ein komplexes Messprinzip

verwendet wird, das im klassischen Leitfaden nicht behandelt wird. Außerdem

ist die Wirkung von Eingangsgrößen, die eine Messung beeinflussen können, nur

mit größtem Aufwand im Einzelfall bestimmbar. Beispiel dafür sind Fluktuatio-

nen raumakustischer Kenngrößen über kleinste Abstände zwischen Messorten in

Konzertsälen. Diese zum Teil beachtliche Änderung des Schallfeldes über den Ort

wirft die Frage nach der Aussagekraft und Interpretierbarkeit raumakustischer

Messungen auf.

Ziel dieser Arbeit ist eine GUM konforme Diskussion der Unsicherheit beim

Messen raumakustischer Einzahlkennwerte. Begonnen wird dabei mit einer struk-

turierten Suche der Größen, die die Messung von Raumimpulsantworten beein-

flussen könnten. In einem zweiten Schritt wird diese Unsicherheit durch den

Algorithmus zur Bestimmung raumakustischer Einzahlkennwerte propagiert.

Ein weiterer Schwerpunkt wird auf die Untersuchung von räumlichen Änder-

ungen des Schallfeldes in Auditorien gelegt. Es wird der Einfluss eines unsicher

bestimmten Messorts auf die Messunsicherheit diskutiert. Um möglichst allge-

meingültige Aussagen treffen zu können wird der Zusammenhang zwischen einer

Änderung des Messortes und der korrespondierenden Änderung raumakustischer

Kenngrößen in umfangreichen Messreihen empirisch untersucht. Dazu wurde ein

Messapparat gebaut mit dem Schallfelder hochauflösend und vollautomatisch

über große Flächen abgetastet werden können. Die so gesammelten Daten bilden

die Grundlage für die Berechnung der Unsicherheitsfortpflanzung mit einer Monte

Carlo Methode.
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Die Ergebnisse dieser Untersuchung zeigen, wie genau ein Messort bei raumaku-

stischen Messungen definiert werden muss, um eine zuvor festgelegte Unsicherheit

raumakustischer Einzahlkennwerte zu gewährleisten. Die vorgestellten Methoden

bilden eine Grundlage, die flexibel erweitert werden kann, um weitere Einflüsse

auf die Messunsicherheit in zukünftigen Untersuchungen zu berücksichtigen.
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1
Introduction

In architecture, concert halls, lecture rooms or open plan offices are designed for

different types of communication depending on their specific intended uses. In

rooms for speech, it is important that the speaker’s loudness is sufficient, but also

that individual syllables are clearly intelligible. For music, there are additional

aspects such as spatial sound or spectral balance that need to be considered. In

some environment, such as offices, distracting communication is unwanted and

should be minimized. The acoustician supports the architect in the design to

make sure critical limits for good communication are safely met and the room is

acoustically suitable for its purpose.

Acoustics is an interdisciplinary field and employs tools and methods from

a wide range of other specialized areas. In architectural acoustics, the impulse

response has proven to be a very useful concept from system theory. The impulse

response, which describes the transmission of information from a source to a

receiver also holds in auditorium acoustics since the room in which the sound

source and the listener are located can be understood as a transmission channel.

The room’s response to an impulse is the direct sound that travels from the

source to the listener, the sound reflections from the surfaces and the lingering

reverberation. Since there is a physical relation between the room’s geometry

and the sound transmission, it is intuitively evident why the impulse response

is so useful for the acoustic design of auditoria. Experts can interpret impulse

responses and easily recognize how syllables of a speaker are supported by early

reflections or see how a long reverberation blurs successive syllables in time and

thus impairs communication.

Room impulse responses can be measured with special equipment and con-

tribute to the acoustic planning process by providing the data to place future

design decisions on solid ground and quantify the effectiveness of previous design

decisions. In general, measurements are of core importance in science and prac-

tice when it comes to proving theories or making well-founded decisions. The

suitability of measurements as the basis for a valid argument depends a lot on

the data’s associated uncertainties. Modern measurement methods (ISO 18233,



2 CHAPTER 1. Introduction

2006) to measure transfer functions and their associated impulse responses (IR)

using maximum length sequences or swept sine signals are common tools in all

areas of acoustics (Müller & Massarani, 2001). In architectural acoustics, room

impulse responses are regularly analyzed to determine single-number quantities

that serve as predictors for sound perception (see Section 2.1.2). Clarity C80, for

example, scales the perceived distinctness of a sound in time from highly detailed

(≈ 7 dB) to blurred (≈ −5 dB). Provided that the measured environment fea-

tures the properties of linear time invariant (LTI) systems and that a sufficient

signal-to-noise ratio is achieved, acoustical measurements of impulse responses

and room acoustic quantities are usually considered to be rather accurate.

This perspective was briefly challenged in a reflex reaction to findings of de

Vries, Hulsebos, and Baan (2001). Under quasi-repeatability conditions at Con-

certgebouw Amsterdam, RIRs were measured every 5 cm along a line following

a row of seating. The data de Vries and his team collected shows how room

acoustic single number quantities fluctuate over the surveyed distance; Figure 1.1

illustrates this for C80 (ISO 3382-1, 2009). In facetious discussions, auditoria

were compared with random number generators and the question of explanatory

power in room acoustics measurements was raised.

Figure 1.1: Spatial distribution of clarity C80 at the 1 kHz octave band along a

line measured at a concert hall.

Of course, this fabricated perspective does not appreciate the deterministic

character of sound propagation adequately, but the reference to a reproduction

problem in measurements is well-founded: If room acoustic quantities change

over such small distances, how can measurements be reproduced at another time?

How can the acoustic effectiveness of a modification to a building be verified

when the expected acoustic change is obscured by strong fluctuations?

At first glance it may seem that de Vries et al. (2001) merely confirm findings
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from earlier investigations that were conducted in the advent of the ISO 3382

(1975) revision (e.g., J. S. Bradley and Halliwell (1988); Hidaka, Beranek, and

Okano (1995); Pelorson, Vian, and Polack (1992)). After all, these studies also

discuss strong variations in room acoustic parameters with relatively small spatial

displacements of sources or receivers. The key difference is in the way the collected

data was analyzed and interpreted. Prior to de Vries, the determined spread in

room acoustic parameters was discussed statistically, such that an adequately

large sample size would be sufficient to correctly determine the variance in a

statistical population. Consequently, these findings lead to the requirement to

measure at numerous positions distributed throughout the auditorium and, hence,

provide a sufficiently large sample size to calculate average values (ISO 3382,

1997).

But with growing experience in using the revised standard it soon became

more and more evident that the underlying cause-and-effect chain was not fully

factored in: J. S. Bradley (1994) demonstrated that calculating hall-spanning

parameter averages comes with the potential to flatten out characteristic pat-

terns. This may lead to a point where auditoria, fundamentally different in shape,

are no longer distinguishable in their summary statistics. Today, there is a com-

mon understanding that averaging over all measurement positions to gain a hall

mean value seems (except for the reverberation time) generally unhelpful (Barron,

2005; J. S. Bradley, 2005). This interpretation is justified within the large-scale

dimensions of an auditorium, but it does not recognize the parameter variations

encountered within smaller distances. Follow-up investigations by Nielsen, Hal-

stead, and Marshall (1998), Sekiguchi and Hanyu (1998) and Okano, Beranek,

and Hidaka (1998) indicate that the phenomenon continued to be a target of

interest.

In this course of development the initially quoted study by de Vries et al. (2001)

marks an important milestone as it provides high-resolution data that shows

how the acoustic quantities fluctuate over a wide range of distances, starting

from a few cm to the dimensions of a concert hall. This can be interpreted

as metrological evidence towards an influence factor of measurement position

that seemed ”downgraded” by averaging over a number of locations. Taking the

sampling position as a relevant input quantity it becomes possible to refine the

statistical discussion and investigate how this contribution influences the result of

acoustical measurements. This approach can create a context for how uncertain

room acoustics measurements are and identify the subtleties worth interpreting.

The standardized tools for this discussion are provided by the ”Guide to the

expression of uncertainty in measurement” (GUM, ISO Guide 98-3 (2008)) that

places the original principles of Gaussian error propagation on a wider foundation.

In the first step a relationship needs to be established that quantifies how a
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change in measurement position yields a change in the measured result. This

marks an advance to the previous statistical discussion as the sampling position

is recognized as an influence quantity. It also moves the discussion away from

insulated individual cases to a general discussion of a broad spectrum of sound

fields and thus helps to assess how significant the ”validity” problem generally is.

In light of the raised question of reproducibility in room acoustic measurements,

the measurement function marks the foundation to investigate a derived question

of practical relevance: How precisely need measurement positions (source and

receiver) be defined?

1.1 Defining the scope of this work

Against this background, it is important to discuss the uncertainty of room

acoustic measurements. In preparation to determine the measurement model

(ISO Guide 98-3, 2008, 4.1.1) empirically, the following questions must be dis-

cussed.

� What is the uncertainty of room acoustic impulse response measurements?

� What is the uncertainty of room acoustic ISO 3382-1 (2009) quantities?

In preparing the measurement model this question needs to be answered:

� How do room acoustic quantities change when the measurement position

is changed by a given distance?

Based on the answer to the previous question, this problem of practical relevance

should be addressed:

� How accurately need measurement positions be defined?



2
Fundamentals and previous work

Discussing these research questions requires a set of tools that will be briefly

outlined in this chapter. An initial focus is placed on the theoretical groundwork,

as these basics identify the driving forces and the relevant variables; in the

next step the measurement uncertainty will be of interest. In this regard it is

reasonable to first examine the status quo in room acoustical measurements and

then gradually traverse to the framework that permits a uniform discussion of

uncertainties in measurements.

2.1 Theoretical principles behind spatial fluctuations

2.1.1 Amplitude distribution due to changes in position

Initial work on spatial fluctuations of the sound field in rooms can be traced

back to Kuttruff and Thiele (1954) and Kuttruff (1954). While this work was

originally focused on the frequency dependency of the sound pressure in rooms,

as part of the investigations that led to what is now known as the ”Schroeder

Frequency” (Schröder, 1954), the initial empirical study by Kuttruff and Thiele

(1954) also discussed the the sound pressure’s spatial dependency.

The starting point is the sound field in a rectangular room with the dimensions

Lx, Ly, Lz and rigid surfaces. At characteristic eigenfrequencies ωi for ∀n ∈ N0

(here Equation 2.1.1, from Kuttruff (2000), Eq. 3.15) the cartesian components of

the respective wave vector ki meet the scenario’s boundary conditions (particle

velocity vi = 0 at the room’s surfaces) so that the system can oscillate.

ωi = cπ

√(
nx,i
Lx

)2

+

(
ny,i
Ly

)2

+

(
nz,i
Lz

)2

= cknxnynz (2.1.1)

At each of the system’s ωi’s, standing waves develop. For a single mode the

sound pressure at a position rr = (xr, yr, zr)
T can be determined through Equa-

tion 2.1.2 (Kuttruff, 2000, Eq. 3.16).
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pi(r) = cos

(
nx,iπxr

Lx

)
cos

(
ny,iπyr

Ly

)
cos

(
nz,iπzr

Lz

)
(2.1.2)

Based on the principle of reciprocity (Morse & Ingard, 1968, p.134) it can be

understood that this relation is valid for the source and the receiver alike. The

spatial cosine relationship includes the characteristic nodal points for a standing

wave at a given frequency when the cosine’s argument is (2n+ 1)π/2. At these

nodes the sound pressure is naturally zero. Reciprocally, at the same positions

the sound field cannot be excited at that frequency. The full relationship is shown

in Equation 2.1.3 (Kuttruff, 2000, Eq. 3.10) with the numerator featuring the

mathematical representation of the standing wave excited and sampled at the

positions rs and rr. This term, thus, shows a dependency on the location and is

hence responsible for the spatial fluctuation of the sound field.

p(ω, rr) = jQc2ωρ0

∑
i

pi(rs)pi(rr)

(ω2 − ω2
i − 2jδiωi − δ2

i )Ki
(2.1.3)

Obviously, a realistic system requires some damping to balance the source’s

energy influx and so become stable. This is recognized in the denominator where

the ideal dirac-delta-like eigenfrequencies are expanded through the damping

constant δi to Cauchy-Lorentz functions with characteristic quality factors.

The factors in front of the sum in Equation 2.1.3 recognize the physical proper-

ties of the point source. The volume velocity Q includes the harmonic oscillation

ejωt. Ki is a normalization constant for the standing waves (Kuttruff, 2000, Eq.

3.3),

Ki =

∫∫∫
V

p2
i (r)dV . (2.1.4)

The sigma sign in Equation 2.1.3 indicates that at a given position rs and rr
more than one mode is excited and so the emerging sound pressure level is a result

of a sum over i eigenfrequencies. Schröder (1954) argues that when the number

of eigenmodes is sufficiently large the Lindeberg-Lévy central limit theorem will

take effect and the summary distribution of the real and imaginary parts of the

sound pressure will become normally distributed. From there it is only the small

step of taking the absolute value of the complex sound pressure to arrive at

the Rayleigh distributed (linear) sound pressure amplitude p with a probability

density function fp given in Equation 2.1.5 (Johnson, Kotz, & Balakrishnan,

1994; Rayleigh, 1880). σ2
p refers to the variance of the sound pressure’s real or

imaginary parts Re(p), Im(p).
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fp(p) =
p

σ2
p
e
− p2

2σ2p (2.1.5)

The probability density function of the sound pressure level Lp can be deter-

mined to be

fLp =
ln(10)

2

p2
010Lp/10

σ2
p

e
− p

2
010

Lp/10

2σ2p (2.1.6)

by using the transformation theorem for probability densities (Johnson et al.,

1994, pp. 14-15, Eq. 12.32).

Having considered the central limit theorem and also looking at Equation 2.1.6

can suggest that the resulting SPL is due to a random process over frequency.

This perception, however, misses to appreciate Kuttruff’s (2000) explanations

that recognize the sound field in a room is the result of a deterministic process. As

such, once the energy equilibrium is reached, the sound pressure level is stationary

and could be determined analytically if all the boundary conditions were known

with the required accuracy.

These properties of the sound field can be shown in measurements as in Fig-

ure 2.1. At low frequencies, below the ”Schroeder Frequency”, the sound pressure

at a given position is defined by few, individual, sparsely overlapping modes (see

Figure 2.1e). At much higher frequencies Figure 2.1a shows how the modes over-

lap and the characteristic Cauchy-Lorentz functions cannot be identified anymore.

The corresponding histogram in Figure 2.1b is a graphical representation of the

logarithmic Rayleigh distribution in Equation 2.1.6.

A change in location leads to a change in the contributing resonances according

to the cosine terms in the numerator of Equation 2.1.3. For the central limit

theorem to take effect, independent samples of contributing modes at the different

positions are required. This condition is met as trigonometric functions, oscillating

with different integer multiples of a fundamental periodicity, are orthogonal to

each other (Bronstein, Semendyayev, Musiol, & Mühlig, 2015, 5.3.6.5-2). This

holds for arbitrary geometries since the solutions to Dirichlet and Neumann

boundary value problems are always orthogonal (Bronstein et al., 2015, 9.1.3.2-

4). As a result, it follows that the resonances/standing waves contributing to

the sound pressure at two distant positions are uncorrelated to each other and,

hence, are independent samples from the same Rayleigh distribution.

Of course, neighboring positions - ∆r apart - are correlated to each other, due

to continuously defined standing waves pi(r). A small change in position will

not necessarily lead to a sufficient exchange of the contributing resonances and

hence the sound pressure will not immediately show the postulated Rayleigh
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(a) Change in sound pressure level over
frequency (frequency curve)

(b) Histogram of the amplitude distribu-
tion over frequency based on data
shown in Figure 2.1a

(c) Change in sound pressure level over
position at 875 Hz (space curve)

(d) Histogram of the amplitude distribu-
tion over space based on data shown
in Figure 2.1c

(e) Overlapping modes at low frequen-
cies in a reverberation room.

(f) Cumulative density function of the
distributions shown in Figure 2.1b
(blue) and Figure 2.1d (red).

Figure 2.1: Measured transfer function in a concert hall shown over frequency

and space.
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distribution. Here, it makes sense to express the ”dissimilarity” of the sound

pressure along a line (in the diffuse sound field at a single frequency) by the

spatial autocorrelation function after Cook, Waterhouse, Berendt, Edelman, and

Thompson Jr. (1955) or Bodlund (1977) as

ϕpp(∆r) =
sin(k∆r)

k∆r
. (2.1.7)

From Equation 2.1.7 it can be seen that the correlation between contributing

modes decreases quickly (∝ (k∆r)−1) with increasing distance between two sam-

pling positions. A distance between two observation points of a few wavelengths

may be sufficient to discuss the sound pressure as completely independent sam-

ples from a Rayleigh distribution. Using the data collected by de Vries et al.

(2001), Figure 2.1c shows how the sound pressure changes along the surveyed

line. The histogram in Figure 2.1d illustrates the underlying distribution. The

similarity of the two distributions becomes evident in their cumulative density

functions, shown in Figure 2.1f. This is thus an intuitive example that both are

samples from the same logarithmic Rayleigh distribution.

Additionally, on closer examination of the discussion by Cook et al. (1955) it

can be seen that deriving the spatial autocorrelation function only requires that

the discussed spatial sampling points being exposed to the same diffuse sound

field. Provided this condition can be met, this is an additional and independent

argument that the room’s detailed geometry has no influence on the spatial

samples of the sound field and its statistic independence.

Based on this understanding, Davy, Dunn, and Dubout (1979), Davy (1980)

and Davy (1981) studied the sampling variance of sound field quantities (e.g.,

SPL) and the variance of derived quantities such as the reverberation time. The

Fourier transform of the room’s transfer function from Equation 2.1.3 yields the

room impulse response in Equation 2.1.8. Even though the explicit evaluation can

be quite complicated (Kuttruff, 2000), at high frequencies (Davy et al., 1979), it

can be said from acoustical wave theory (Morse & Ingard, 1968) that the solution

should be of the general form given in Equation 2.1.9.

h(t) =

+∞∫
−∞

p(ω, rr, rs)e
jωtdω (2.1.8)

=


0 : t < 0
+∞∫
−∞

c(ω)e (−δ+jω)tdω : t ≥ 0
(2.1.9)

In this notation, the impulse response is understood as the infinitesimal sum of

responses of individual oscillators, all of which react to the stimulating impulse
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with an exponentially decaying sinusoidal oscillation. Since the phase of the

oscillators can be considered a random variable the complex and real part of c(ω)

becomes normally distributed.

In numerous applications h(t) is discussed separately in individual frequency

bands. The band filtered impulse response g(t) can be expressed through multi-

plication of the filter’s transfer function Hf (ω) in frequency domain. When the

filter’s decay is much shorter than the reverberation of the measured room g(t)

can be written as in Equation 2.1.10.

g(t) '
+∞∫
−∞

Hf (ω)c(ω)e−δte jωtdω (2.1.10)

' e−δtv(t) (2.1.11)

with v(t) =

+∞∫
−∞

Hf (ω)c(ω)e jωtdω. (2.1.12)

This representation shows the impulse response of a room as an exponential

decay with a function v(t) imposed upon it. The function v(t) features the inverse

Fourier transform of the filter’s transfer function and the modal amplitude density

c(ω).

2.1.2 The impulse response and other room acoustical quantities

The impulse response of a room plays a central role in auditorium acoustics

as it contains all information about the acoustics of a room between a specific

source and a specific receiver position (Gade, 2007, Ch. 9.2.1). The significance

of the impulse response is also due to its roots in signal and system theory. This

background makes a toolkit of helpful methods available.

The different acoustic excitations of a room (e.g., speech or music) are under-

stood as signals and can be represented as a sequence of impulses of different

amplitudes. The room impulse response (RIR) describes, in the literal meaning of

the word, how an individual impulse is transmitted through the room and arrives

at a receiver as the direct sound, early reflections from the walls and as lingering

reverberation (see Figure 2.2a). The speech or music heard at the receiver position

is thus a sequence of (overlapping) impulse responses. Practical implementations

of acoustic impulses are gunshots, or the sound of hands clapping once.

The perspective that Equation 2.1.11 provides on impulse responses is impor-

tant for the further discussion of spatial fluctuations, but its simple exponential

decay term means a pronounced reduction of realistic complexities that may
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(a) RIR in linear scale and its early part. (b) EDC with linear regression.

Figure 2.2: Room impulse response and energy decay curve.

seem detached from what is of practical interest. Referring to Sabine’s (1922)

initial research, Kuttruff (2000) notes that in room acoustics it is unusual to

characterize the decay of the sound field through the damping constant δ rather

than the reverberation time Txx.

In his experiment in the Fogg Art Museum, Sabine excited the room with a

sound source until a steady state was reached and studied the time T needed for

the level to decay by 60 dB after the sound source was switched off. This original

definition of the reverberation time remains unchanged (ISO 3382-1, 2009) even

with the availability of more sophisticated methods for measuring room impulse

responses.

Schroeder (1965) has proven that a backwards integration over the squared

impulse response (Equation 2.1.13) leads to the energy decay curve x(t) that

is equivalent to the decay Sabine studied in his experiments. This method is

a significant advance in reliability and effectiveness as it is based on the room

impulse response measured with a deterministic excitation signal. In logarith-

mic scale, the energy decay curve (EDC) under diffuse field conditions can be

parameterized through linear regression. The reverberation time is the time that

is covered by the regression’s slope over a dynamic range of 60 dB.

x(t) =

+∞∫
t

[h(τ)]2dτ =

+∞∫
0

[h(τ)]2dτ −
t∫

0

[h(τ)]2dτ (2.1.13)

In practice this evaluation can be limited to smaller dynamic ranges (see

Figure 2.2b). If, for example, a decay of 20 dB is evaluated, it is usually indicated

by the index of the reverberation time T20. Even though this example’s regression
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curve is established from the EDC between −5 dB and −25 dB, it is still related

to a decay of 60 dB to ensure comparability between different reverberation time

calculations.

Table 2.1: Overview of studies establishing room acoustical quantities.

Consensus vocabulary Quantity Study

Strength G Lehmann (1976)

Reverberance EDT Jordan (1970)

Definition D50 Meyer and Thiele (1956)

Clarity C80 Reichardt, Abdel Alim,

and Schmidt (1974)
tcenter Kürer (1969)

Source width LF Barron and Marshall (1981)

Envelopment LG J. S. Bradley and Soulodre (1995b)

The early part of the impulse response is particularly important for sound

perception in rooms. With the direct sound and the early reflections, all being

a function of level, direction, frequency and (in the case of reflections also of)

time, there is a wealth of information that needs abstraction to provide a view

on core concepts that are valid to most people’s listening experience. Based on

the studies listed in Table 2.1, a consensus vocabulary has been established that

leads to room acoustical quantities that can be calculated from impulse responses

to predict sound perception. Clarity C80 is the logarithmic ratio of the energy

in the IR’s early and late part. It characterizes how a sequence of music in time

is blurred together by reverberant sound components. Definition D50 follows a

similar concept but targets syllables of running speech. The balance between

early and late sound energy can be given with center time tc as the center of

gravity of the IR’s energy. The contribution of the room to loudness can be

quantified with the strength quantity G; its normalization to the source’s free

field SPL in 10 m distance ensures that G is a characteristic of the room rather

than the source. Aspects of spatial hearing (i.e., lateral fraction, lateral strength)

are not relevant in this study.

C80 = 10 log10

80 ms∫
0

[h(t)]2dt

+∞∫
80 ms

[h(t)]2dt

(2.1.14) D50 =

50 ms∫
0

[h(t)]2dt

+∞∫
0

[h(t)]2dt

(2.1.15)
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G = 10 log10

+∞∫
0

[h(t)]2dt

+∞∫
0

[h10 m(t)]2dt

(2.1.16)

tc =

+∞∫
0

[h(t)]2tdt

+∞∫
0

[h(t)]2dt

(2.1.17)

2.1.3 Variance of the reverberation time over space

Algebraic transformations of Equation 2.1.11 allow establishing a term for the

energy decay curve x(t). A minor revision of Davy’s original formula to recognize

the declining need for averaging devices results in

x(t) = −2δt+ ln[v2(t)]. (2.1.18)

This expression is pivotal in the line of argument as it shows (based on Equa-

tions 2.1.3 and 2.1.8) that v(t) (due to c(ω)) implicitly contains the locations of

both the source and the receiver. As a result, the variance of the sound pressure

over space can be transformed into a variance of the decay process over space.

Regardless of c(ω)’s distribution, its composition of eigenfunctions or how it

is shaped by the filter Hf (ω), the integration ensures that the Lindeberg-Lévy

central limit theorem applies. As a result, v(t) has a mean of zero and is normally

distributed (Davy, 1981).

The decay constant m of the reverberation is determined through the least

square linear regression of x(t). Hence, the spatial variance of the decay constant,

vars{m}, can be related to the spatial covariance of the energy decay curve at

different time instances covs{v2(t1), v2(t2)} (Davy et al., 1979). Due to the nor-

mality of v(t), covs{v2(t1), v2(t2)} = 2Es{v(t1)v(t2)}2. Through Equation 2.1.12,

the latter term can be transformed to Es{c(ω1)c(ω2)}. Since solutions to Dirichlet

or Neumann boundary value problems are orthogonal, the product of c(ω1)c(ω2)

disappears for ω1 6= ω2 and yields the Dirac delta function δ(ω) for all other

cases when Es is properly normalized1.

This leads Davy to a rather bulky but closed form expression for the variance

of m:

1 Following Bodlund (1977), Es{c(ω1)c(ω2)} = δ(ω1 + ω2) is only valid when the spatial

autocorrelation function ϕpp(∆r) has dropped to values close to zero. This requires the

observation points contributing to the spatial expected value Es to be sufficiently far apart

from each other. From a practical point of view (Davy et al., 1979), this implies distances

greater than λ/2 between observations points. Secondly, it is important that the sound field

is not dominated by the direct sound from the source. Therefore, observation points need

to be farther than the critical distance from the sound source, i.e., where the reverberant

field has more energy then the direct sound.
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vars(m) =

(
10

ln(10)

)2
12

B1

(
m

D

)3

F

(
ln(10)

10
D

)
(2.1.19)

with

F (x) = 1− 3

x
(1 + e−x)− 12

x2
e−x +

12

x3
(1− e−x).

(2.1.20)

In this equation D denotes the change of level of the decaying sound that is

analyzed and B1 refers to the statistical bandwidth of the band-pass filter in Hz

with:

B1 =

{
+∞∫
0

|H(f)|2df

}2

+∞∫
0

|H(f)|4df

. (2.1.21)

In order to gain an overview of the relationship shown in Equation 2.1.20, D

is assumed to be set to a fixed value (e.g., 30 dB for T30). With all constants

omitted, Equation 2.1.20 becomes:

vars(m) ∝ m3

B1
. (2.1.22)

This expression makes it clear that the variance of the decay rate m increases

with longer reverberations by the third power and decreases for larger filter

bandwidths. The statistical bandwidth changes by a factor of 0.5 with each

doubling of the center frequency. The statistical bandwidth of octaves is thrice

that of corresponding third octave filters. This means that the spatial variance

is cut half from one octave band to the next higher and is three times as high

when the third octave spatial variance is compared to full octave fluctuations.

2.1.4 Reference to the research question

These theoretical principles are directly related to this study’s goal, as they

indicate important influence quantities of spatial fluctuations of the sound field.

Their relation to reverberation times and how their variance depends on the

absolute value, the filter center frequency and the filter bandwidth is shown quite

clearly by Davy (1980). Apart from a different reference pressure, the sound

strength G in concert halls and the steady state sound pressure level are identical.

Thus, it is expected that both fluctuate comparably.
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These findings, however, cannot be generalized to clearly predict the spatial

fluctuations of quantities that target the temporal energy ratios in room impulse

responses (i.e., C80 or D50). Undoubtedly, global effects may be carried over that

motivate a rough expectation, but an exact prediction is not obvious from this

theory. Also, the investigation by Gade and Rindel (1985) in 21 Danish concert

halls suggests that the basic requirement of the diffuse sound field is not met in

many auditoria. All of this motivates empirical studies to investigate how room

acoustical quantities (including reverberation times) vary from one measurement

position to the next.

2.2 Acoustical measurements in auditoria

2.2.1 Principles and established practice

Measuring acoustical transfer functions or their corresponding impulse responses

is part of the standard repertoire in research and practical applications. Müller

and Massarani (2001) give a detailed general introduction into today’s methods

to measure transfer functions using electroacoustic systems. The applicability of

these techniques in architectural acoustics is described in ISO 18233 (2006). The

systematic structure of a typical measurement chain by today’s standard is shown

in Figure 2.3: a digital computer with its software marks the starting point. In the

most crude of strategies the software serves as a mere signal generator to produce

an excitation signal. The signals are converted into the analog domain and

amplified to excite the device under test (DUT) with an appropriate transducer.

In architectural acoustics the device under test is typically a room that is excited

by a dynamic loudspeaker. In order to ensure a uniform sound radiation chassis of

regular polyhedron shape (e.g., dodecahedron or icosaedron) are preferred. At the

receiving side the sound field is usually measured with a condenser microphone.

Through cascaded amplifiers (the first one considered part of the microphone)

an analog voltage signal is presented to the analog-digital converter. The loop is

closed when the quantized and sampled signal is fed to the software for processing

and analysis.

Modern measurement methods recognize the measurement chain and all its

parts as a linear time invariant (LTI) transmission system where, according

to system theory, all measurement chain properties are included in its impulse

response (IR). Under this paradigm an input is linked to the output through

convolution with the system’s IR. The flow of information in modern measurement

methods is shown in Figure 2.4. A deterministic excitation signal s(t) is fed

into the acoustic transmission channel and the system’s impulse response is

determined through deconvolution (two channel FFT method). Output quantities
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Figure 2.3: Systematic drawing of the acoustical measurement chain.

such as the SPL or other parameters are calculated from the IR using standardized

algorithms.

Figure 2.4: Systematic drawing of the measured LTI-System.

The standardization of measurement procedures plays an important role for

two reasons. First, international standards represent the consensus on the current

state of knowledge, as they are the result of a vote by a committee of leading

international experts in the field. Second, such a framework is crucial in regard to

uncertainties in measurement as it provides a uniform foundation for better com-

parability and reproducibility of measured results. In room acoustics ISO 3382-1

(2009) and ISO 18233 (2006) serve as the cornerstones of that foundation.

ISO 18233 (2006) takes a special role in acoustical measurement standards.

Unlike other documents which define a measurement procedure to provide a

frame for collecting suitable measurement data for a given task, ISO 18233 (2006)

provides general information on relatively new correlation measurement methods

that can be used in ISO 140, ISO 354 (2003), ISO 3382-1 (2009) and ISO 17497-1

(2004). This is why the provided information provided in ISO 18233 (2006) must
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be taken with a grain of salt when determining the uncertainty of a specific mea-

surement procedure that is formally defined elsewhere. Even though ISO 18233

(2006) is an excellent resource to determine where the drafting expert group iden-

tified potential sources of problems, the standard avoids clear statements that

quantify the point at which deviations are no longer acceptable. Reasons for that

are manifold: First, tolerances and uncertainties depend a lot on the context of

the measurement procedure. Uncertainties that may be tolerable (insignificant)

for one measurement problem may be rated unacceptable for other problems.

Second, despite theoretical understanding of the cause and effects uncertainty

propagation is widely ramified making it difficult to establish simple guiding

rules. Finally, there is evidence that the complexity of system theory exceeds the

capabilities of the basic GUM framework (Eichstädt, 2015).

ISO 3382-1 (2009) defines the measurement procedure in performance spaces

to determine the reverberation time and other room acoustical quantities. It

specifies the required properties of the measurement equipment and procedural

aspects directly related to the research question like microphone or measurement

positions. Minimum distances need to be maintained to the auditorium’s surfaces,

the sound source and to nearby measurement positions while ensuring a sufficient

sampling relative to the auditorium’s size. These requirements are clearly related

to the theoretical considerations in Section 2.1 and yet ISO 3382-1 (2009) provides

no advice on how accurately measurement positions need to be defined. This

open problem is addressed by the research question posed in the introduction.

Compared to other standards in acoustics, ISO 3382-1 (2009)’s discussion

of uncertainties appears rather brief. In reference to the work of Davy et al.

(1979) and Davy (1980), it notes the variance of measured reverberation times as

dependent on on the dynamic range and the bandwidth. Otherwise, the strategy

to perform accurate measurements seems to be approached from the standpoint

of reproducibility: the standard requires documenting the conditions prevailing

during the measurement. The list of information a measurement report should

provide includes the state of occupancy, the condition of variable equipment,

safety curtains or stage furniture and metrological conditions. With modern

auditoria being used for a variety of different performance types and events there

can be a staggering amount of detail that needs to documented. This protocol

can range from the position of motorized stage elevators to variable absorbing

elements, lighting flaps or even stage furniture. The standard leaves unclear what

level of detail is necessary to ensure simultaneous reproducibility and practical

usefulness, and thus it is difficult to judge whether these specifications are too

lenient or overly demanding. The needed minutiae of documentation should be

discussed in regard to uncertainties of measurements.

By standardizing the procedure for acoustical measurements in auditoria (i.e.,
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ISO 3382-1 (2009)) an internationally accepted method was successfully defined.

The standard finds relatively wide use in scientific and applied acoustical measure-

ments and is perceived as both important and helpful to characterize the acoustic

conditions in auditoria (Barron, 2005; J. S. Bradley, 2005). Defining a measure-

ment procedure through standardization establishes a necessary prerequisite to

make a thorough (GUM-conforming) discussion of measurement uncertainties

possible.

2.2.2 Measurement uncertainty in architectural acoustics

The value of standardization as a basis for the uncertainty discussion was de-

scribed early on. Standards usually represent the state of knowledge from previous

studies. These studies thus represent a valuable resource that may provide data

to quantify the investigated influences’ uncertainty contributions. In this section,

a selection of studies are examined to discuss how their findings can shaped and

still contribute to the investigation of uncertainties.

The increasing availability of digital measurement technology and the desire to

modernize the established measurement standards (ISO 3382, 1975) to recognize

these developments have triggered numerous key investigations in the 1990s. At

the same time, adding new concepts required some groundwork to confirm the

new contents’ significance and explanatory power (e.g., J. S. Bradley (1996);

Lundeby, Vigran, Bietz, and Vorländer (1995); Pelorson et al. (1992)).

Against this background, the study by Pelorson et al. (1992), with its survey

of 14 concert halls, is pioneering as they investigated the general conditions that

would need to be met to collect valid data. The authors discuss the general repro-

ducibility of measurements, the type of loudspeaker housing, the microphone and

the number of measurement positions that are appropriate for meaningful acous-

tical measurements. In a second step, the algorithm to calculate room acoustical

parameters from the collected data is being investigated. The authors also study

the question whether the acoustic conditions in differently shaped auditoria can

be distinguished based on the calculated room acoustical parameters. From a

present perspective it is evident that many of their findings led to what is now

accepted knowledge. Targeting a similar research objective, their investigation

of spatial fluctuations is of special relevance. Evidently, investigating the spatial

variance of room acoustical quantities is not a newly emerging topic, but a field

of research that already received attention in the early 1990s. Today’s empiric

studies can add to the existing body of knowledge in at least two ways. First,

measurement series to investigate influence quantities can be implemented keep-

ing the provisions of the GUM in mind. Making sure the collected data satisfies

the principles needed for a standardized uncertainty discussion makes the contri-
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bution of different influences comparable. Second, adding further weight to the

driving forces identified from theory (Davy, 1980) and recognizing their detailed

interplay will permit a more detailed understanding how frequency, bandwidth

and changes in the early part of the impulse response contribute to the com-

bined uncertainty of room acoustical quantities. Probably due to limited journal

space and due to Pelorson et al. addressing an overwhelmingly large number

of influences it is difficult to follow every detail of their conclusions. Thus, the

findings are partially supported by the justified confidence in the Pelorson et

al.’s experience and reputation. This comes with the drawback that the context

of their findings is partially obscured making it difficult to use the data from

1992 to discuss uncertainty of acoustical measurements according to the GUM

standard.

J. S. Bradley (1996) conducted a round robin that investigated uncertain-

ties due to different measurement techniques and individual data analysis. It

was investigated how a digital reverberator with three preset impulse responses

was measured and analyzed by 15 institutions operating a total of 23 different

measurement systems. In parallel, J. S. Bradley (1996) conducted repeatability

measurements to investigate the variance of measured room acoustical quanti-

ties determined by the same observer using the same equipment. His summary

findings are shown in Table 2.2

Table 2.2: Standard uncertainty to determine room acoustical parameters under

reproducibility conditions for (I) the same measurement system and

analysis algorithm and (II) for different measurement systems and

analysis algorithms (J. S. Bradley, 1996)

.

Reproducibility condition

Parameter I II

RT [s] 4 ×10−3 1.0×10−1

EDT [s] 1.3×10−2 0.2

C80 [dB] 8.7×10−2 0.5

C50 [dB] 1.2×10−1 1.2

tc [s] 7.0×10−4 6.2×10−3

When discussing the results, J. S. Bradley (1996) identifies two crucial aspects

that have a strong influence on the different systems’ performance. First, the

definition of a RIRs time code (i.e., t = 0) is important. Second, at the time

the study was conducted the approaches to calculate EDT left room for inter-
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pretation. In relation to this study, these findings highlight the importance of

reproducibility studies at different scales and the value of clear measurement

specifications. Generally, each revision of a measurement standard, e.g., the tran-

sition from ISO 3382 (1975) to ISO 3382 (1997), results in a discontinuity, which

limits the long-term comparability of results. Thus, it is unclear whether the

quantitative findings are still valid today as definitions have since been clarified.

The value of comparative measurements is also highlighted by Lundeby et al.’s

(1995) research. They report on a sequence of measurements in which a number

of different institutions surveyed acoustical measurement chains that successively

grew in complexity. They found that, despite minor caveats, differences in results

between highly experienced observers that conducted acoustical measurements

under very precisely defined laboratory conditions are in the order range of

1 dB / 10 % or less (depending on the quantity). In a way, Lundeby et al.’s

investigation emphasizes and validates the research question posed here, since it

is still unclear how the precision in defining the measurement conditions translates

to the respective uncertainty.

In a next step, the investigation of Lundeby et al. (1995) picks up a discussion

voiced earlier by Barron (1984) and studies how reverberation times can be calcu-

lated while ensuring the background noise does not disturb the analysis. Lundeby

et al.’s algorithm has attracted some recent attention (Guski & Vorländer, 2015;

Jankovic, Ciric, & Pantic, 2016) where it is discussed that different strategies suf-

fice with ISO 3382-1 (2009) but inhere different potential of error and uncertainty.

Through this discussion, it becomes clear how a loose definition of the measure-

ment and analysis specification can contribute to measurement uncertainty. For

the present study this is taken as an argument to commit to the Lundeby et al.

algorithm to determine the clarity index in the presence of background noise.

With the revision of ISO 3382 (1997) almost 25 years ago and the transfor-

mation to ISO 3382-1 (2009) introducing only relatively small additions to the

measurement procedure. To this present day, many users developed a rich expe-

rience using this standard. In this light, Barron (2005) or J. S. Bradley (2005)

discuss the context in which measurement results have to be interpreted. The

perspective on uncertainties in room acoustical measurements has shifted in the

years since the revision of ISO 3382 (1997). Today the measurement procedure

can be considered generally accepted and research discusses different influences

and their effect on the uncertainty. Among other influences investigations target

the directivity of sound sources (Knüttel, Witew, & Vorländer, 2013; Leishman,

Rollins, & Smith, 2006; San Martin, Witew, Arana, & Vorländer, 2007; Vorländer

& Witew, 2004; Witew, Knuettel, & Vorländer, 2012; Witew, Müller-Giebeler,

& Vorländer, 2014), the directivity of receivers (Witew & Behler, 2003; Witew,

Lindau, et al., 2013), the position of the receiver (de Vries et al., 2001; Witew,
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Behler, & Vorländer, 2004; Witew & Vorländer, 2011) but also the algorithm

to analyze impulse responses (Guski & Vorländer, 2015; Katz, 2004; Witew &

Behler, 2005).

The study by Witew et al. (2012) on the influence of the source’s directivity

on measurement uncertainty is addressed separately as it empirically investigates

primary and secondary influence quantities. In laboratory conditions a large

number of impulse responses were collected in model scale while independently

varying the volume of the test room as well as the sound absorbing and scattering

properties of the bounding surfaces. Through an ANOVA it was shown that the

directivity of a sound source differently influences measured impulse responses (as

a function of their running time) when different volumes, absorption, scattering

and distances between source and receiver are considered. In addition interaction

effects between influence quantities are evident. This approach represents, in

regard to the present study, a target to be aimed at. Ideally the combined uncer-

tainty due to potentially interacting influence quantities is investigated where the

influences are varied in dedicated experiments. It is uncertain, however, whether

this strategy can actually be implemented in auditorium acoustics under real life

conditions, given the large number of potential influence factors.

2.2.3 Observations in other fields of acoustics

The discussion of uncertainties in acoustical measurement is a topic that is attract-

ing increasing interest. In particular, measurements that require a sustainability

that holds up to judicial dispute uncertainties are of vital interest as they mark

the thin border between meeting and violating legal provisions. DIN SPEC 45660-

1 (2014) is a technical report that provides a helpful overview of the uncertainty

of eight measurement tasks. These measurement problems include uncertainty

calculations for (a) one third octave band sound pressure level measurements in

anechoic environments, (b) background noise corrections, (c) noise measurements,

(d) building acoustical measurements and to (e) sound emission measurements.

A detailed discussion of the presented measurement tasks, however, reveals that

the stated uncertainties rely on specific assumptions that may be characteristic

to the individual measurement conditions. As a result not all of the findings

DIN SPEC 45660-1 (2014) reports on can be transferred straightforwardly to

this investigation.

Wittstock (2007, 2015) investigates the measurement uncertainty to deter-

mine the airborne sound insulation of different types of walls, comparing the

uncertainty in theoretical approaches to physical measurements. In theoretical

approaches, Wittstock sees the advantage of a clear relationship between input

and output quantities. In measurements, however, situations exist where the in-
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put quantity cannot be measured directly (e.g., incident sound power). Instead

auxiliary quantities are taken (e.g., SPL) that may be inadequate. In Wittstock’s

(2015) case this defect is traced back to imperfect technical realizations in the

supposedly diffuse sound field. Interlaboratory tests are a valid method to quan-

tify this uncertainty contribution. Such a strategy is one way to conform with

the ISO Guide 98-3 (2008) framework. The uncertainty determined through

such interlaboratory tests is then assigned to all future measurements that are

conducted following the same measurement procedure.

This strategy could also be applicable in this study. The assumed diffuse

sound field in theory is oftentimes not sufficiently evident in concert halls (Gade

& Rindel, 1985). Also, contributing factors such as early reflections that may

contribute to spatial fluctuations may not be modeled in simple approaches.

Wittstock’s analysis raises the important question of correlation between results

determined at different frequencies bands. Evidently in the measured sound

reduction index Ri the correlation index spans the full range from uncorrelated

to full positive correlation. The uncertainty due to (a partial) correlation between

frequency bands is significant. In personal communication he notes that this is

a factor he encountered in other measurement tasks as well, for instance in

acceptance inspections for anechoic rooms. This factor must therefore also be

taken into account in this investigation.

Finally, Eichstädt, Link, Harris, and Elster (2012), Eichstädt (2012) and Eichstädt

(2015) bring an additional topic to the table by targeting the uncertainty of

so-called dynamic measurements (e.g., 2CH-FFT techniques). He interprets the

measurement of dynamic systems as an optimization problem in which the output

impulse response of the system is determined to best fit the systems’ input and

output signals. Due to the involved optimization this approach requires carrying

out Bayesian inference. This deviation from the classical Gaussian perspectives

brings the GUM-compliant uncertainty discussion to its limits (see Section 2.3.2)

and so Eichstädt argues that a detailed discussion of all influence quantities and

their correlations may simply be impossible using classical Gaussian perspec-

tives. With regard to this study, this means that the unique features of dynamic

measurement systems and their uncertainty discussion are deferred to dedicated

future studies.
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2.3 Uncertainties in measurements

2.3.1 General metrological terms

The discussion of the previous section shows that incorporating individual results

into the big picture requires a framework in which to discuss uncertainties. This

begins with the definition of a common terminology. A good point from which

to approach metrological concepts are the definitions in JCGM 200 (2012). The

”crystallization nucleus”, around which other terms will be arranged, is the phe-

nomenon, the body, or the substance of interest, that naturally has properties

that are to be measured. A property has a magnitude that can be expressed as a

value and a reference. Common references are measurement units that are derived

from (or actually are) base units, that in turn are all defined through physical

constants (JCGM 200 (2012), 1.1). Properties are referred to as quantities in a

metrological sense.

This implies that a measurement is the process of experimentally obtaining one

or more values that can reasonably be attributed to a quantity (JCGM 200 (2012),

2.1). The term ”reasonably” accounts for the fact that sometimes properties are

not determined directly. Oftentimes it is easier to measure other quantities that

are related to the quantity of interest, but other times it is the relation of quan-

tities to each other that permits observing quantities of interest. An example for

the first case are microphones where the sound pressure is measured through the

capacity of a condenser. Here, a measurement principle is introduced to describe

a phenomenon serving as a basis of a measurement (JCGM 200 (2012),2.4). The

second case can be illustrated considering absorption measurement in reverber-

ation rooms. Here, the sound field’s decay constant in a set of measurements

under changed conditions yields the absorption coefficient. In contrast to the first

case a measurement method, as a generic description of a logical organization of

operations, is used in a measurement (JCGM 200 (2012),2.5).

Such indirect strategies usually require a conversion between quantities that

are known to be involved, presented mathematically through a measurement

model (JCGM 200 (2012),2.48). The practical implementation of this conversion,

be it algebraic or through simulations is referred to as the measurement function

(JCGM 200 (2012),2.49). The strategy to determine quantities indirectly through

the observation of other quantities makes it reasonable to distinguish between

input and output quantities. Input quantities are understood as quantities that

must be obtained or measured in order to calculate the measurand (i.e., the

output quantity intended to be measured)(JCGM 200 (2012), 2.3, 2.50). The

result of a measurement is summarized as a set of quantity values being attributed

to a measurand together with any other available relevant information, such as
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their associated uncertainties (JCGM 200 (2012),2.9).

To conclude this section the connective concept of a measurement procedure,

the detailed description of the steps that are necessary to follow for the practical

realization of measurements, is introduced. This sequence of instructions is for-

mulated either according to measurement principles or to a given measurement

method, based on a measurement model. This procedure includes all calculations

to obtain the measurement result (JCGM 200 (2012),2.6).

2.3.2 The guide to the expression of uncertainty

in measurement

Basic concepts

Due to physical laws, the environmental conditions that prevail during a measure-

ment influence the result. While JCGM 200 (2012) distinguishes between input

quantities (affecting the quantities actually measured) and influence quantities

(affecting the measuring system), ISO Guide 98-3 (2008) merges both concepts

into influence quantities. Ideally all conditions and quantities are recorded to the

last detail as part of the measurement procedure so that results are accurate and

precise. For obvious reasons, most notably practicability, this notion of perfection

is unrealistic and unreasonable in a measurement procedure. Consequently the

result of a measurement needs to be recognized as an estimate that co-occurs

with its uncertainty (ISO Guide 98-3 (2008), 3.1.2).

Using the terminology outlined in Section 2.3.1 as a foundation, the GUM

defines the objective of a measurement as determining the value of a measurand

that is specified through an appropriate measurement procedure (ISO Guide 98-3

(2008), 3.1.1). This indicates that an uncertainty investigation does not only focus

on a measurement process, but also includes how the process is integrated into a

measurement procedure. This is because an incomplete definition of a measurand

may contribute to the uncertainty as well. The liberties that a measurement

procedure leaves determine both the practical usefulness and the uncertainty of

the measurement result. A high number of constraints will ensure very precise

and accurate measurements but will decrease practicality due to a lack of freedom

necessary to serve a variety of conceivable measurement scenarios.

Evaluating the uncertainty of a measurement is generally divided into two main

stages, formulation and calculation. In the first stage the information about a

measurement is brought together to identify the measurement problem and collect

what is known about the measurement principle, method and procedure. This

information is compiled to a measurement model which marks the foundation

for the following calculation phase. The goal of the calculations is to establish
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an expectation of the measurand and its associated uncertainty.

Formulation stage

Defining the measurement problem At first glance the formalism to

gather available information on a measurement problem may seem cumbersome

and a task of commanded diligence that requires little intellectual work. It may

help, however, to understand this review as groundwork for the following mod-

eling phase. There seems to be a good agreement among experts that, for some

measurement tasks, establishing a measurement model may turn out to be a

challanging endeavor (e.g., JCGM 104 (2008)). Establishing clear borders within

which the measurement is discussed is not mandatory from a logical point of view,

but should be seen as a provision that helps to confine the model’s complexity

to a range that can be handled.

Defining the measurement problem is often considered to at least comprise the

following information (e.g., PTB: Sommer and Siebert (2004)):

a) Definition of the measurement problem and a clear identification of the

measurand.

b) Identification of the measurement principle, i.e., the scientific phenomenon

used for the measurement.

c) Formulation of the measurement method, i.e., the logic of how the collected

data is used to determine the measurand,

d) Specification of the measurement procedure, i.e., the organizational se-

quence of steps used to determine the measurand.

In regard to the GUM framework defining the measurand as the model output

quantity Y , is the first important contribution to the uncertainty discussion. As

an additional qualitative result, the available knowledge and understanding of

the measurement is presented.

Identifying influence quantities The available knowledge about the mea-

surement has to be gradually brought into a form so that a GUM-conforming

model can be derived. The aspect of interest in this second step is the search

for the factors that potentially have an influence on the measurement. Once

substantiated, these influence quantities Xi will serve as inputs to the model

yielding the output Y .

The Ishikawa-diagram shown in Figure 2.5 is a qualitative way to structure and

evaluate these influences. In its generic form it shows the abstract measurand Y on
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Figure 2.5: Cause-and-Effect diagram of a generic measurement process.

the left and its estimate y as a result of a measurement. The branches pointing to

the principle axis are abstract factors that can be found as clusters of influences in

many measurement problems. Although the different fields of science span a large

spectrum of measurement problems, some five factors can be regularly identified.

These are derived from the ”5M”-framework of manufacturing quality control

Ishikawa (1996). More detailed aspects are assigned to the superior factors. Ideally,

influence quantities that need to be considered in the measurement model can be

found in the lowest hierarchical level of the cluster. By grouping and arranging

the different influence quantities on the cause-and-effect diagram an assessment

takes place which allows a targeted discussion of the important uncertainty

contributions. Due to its qualitative nature an Ishikawa diagram may also be

understood as merely a starting point of a discussion. In many cases the different

entries or branches reflect relationships that are thought to exist but cannot be

quantified for reasons of complexity or incomplete knowledge at this early stage

of the evaluation.

Establishing the measurement model The previous discussion already

implies a general measurement model, where a number of influence quantities Xi
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serve as inputs, yielding the measurement result Y as the output. In favorable

conditions this model can be formed as a mathematical expression which is

symbolized by the functional relationship f :

Y = f(X1, X2, ..., XN ) (2.3.1)

In more intricate scenarios, dividing the measurement problem into smaller

subsets can help reduce the complexities: different inputs Xi can be interpreted

as measurands themselves that may likewise depend on previous subsets. Subdi-

viding the measurement problem is a double-edged sword. On one hand, it allows

breaking down a complex measurement problem into smaller chunks that may be

easier to handle. On the other hand, this branching out of subordinate measuring

processes may lead to an increase in complexity of the higher-ranking process,

and thereby develop situations where a closed-form equation for f cannot be

found at all (ISO Guide 98-3 (2008), 4.1.2).

In this light the function f needs to be seen as a symbol for the generic relation

between the quantities Xi and Y . f may be determined experimentally or through

other means, e.g., simulations. In this approach the model function f is sampled

through repeated measurements or simulations where a change in Y is related to

a controlled change in a particular Xi while the other input quantities are held

constant (ISO Guide 98-3 (2008), 5.1.4).

In practice, keeping both known and unknown input quantities constant during

the empirical determination of the model function f may not be possible. In this

scenario the intrinsic measurement uncertainty of this series of measurements

needs to be discussed.

Assigning probability distributions The next step calls the attention

to the input quantities again. The goal of this phase is to determine the best

estimate xi of the input quantities Xi and the estimates’ respective standard

deviation u(xi). Following the GUM terminology u(xi) is called the standard

uncertainty. In line with established statistical notations the variance associated

with the influence quantity’s estimate is denoted by u2(xi) (ISO Guide 98-3

(2008), 3.3.5).

Generally the standard uncertainty and the estimate of the input quantities can

be determined empirically (Type A) or from expert knowledge and professional

assessments (Type B). Type A uncertainties are determined through repeated

measurements under constant measurement conditions whereas type B uncertain-

ties can be determined based on calibration documents, technical specifications,

literature, etc.. A second aspect of the uncertainties that needs consideration is

the distribution over which the input quantities observations vary. The GUM
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provides fixed rules to determine the standard uncertainty based on the input

quantity’s probability density function (PDF) and its characteristic parameters.

The way this information is processed in the calculation stage depends a lot

on the detailed properties and the capabilities of the model. In the most simple

scenario the model function f is perfectly linear and is available in closed mathe-

matical form so only very few characteristics of the input quantities’ distributions

are relevant. Complex models may require detailed properties of the PDFs in

order to calculate the output quantity’s measurement uncertainty.

Calculation stage In this stage of the GUM framework, the propagation of the

previously determined probability distributions through the measurement model

is calculated following fixed rules. In its general idea this method is based on the

concept of Gaussian Error Propagation (Bronstein et al. (2015), 16.4.2.1.2). On

the foundation of the underlying model, the GUM offers a significant extension

to the classical, Gaussian perspective by including systematic errors or biases,

correlated input quantities and (moderately) nonlinear models.

The estimate y of the measurand Y is obtained straightforwardly by inserting

the input estimates x1, x2, ..., xN into Equation 2.3.1 (ISO Guide 98-3 (2008),

4.1.4). The notation for the measurement result’s standard uncertainty is quite

similar to the input quantities’ standard uncertainties. When the measurand’s

uncertainty is determined on the grounds of influence quantities it is termed

combined standard uncertainty uc(y) as indicated with the index c.

The combined standard uncertainty uc(y) can be calculated from the measure-

ment function f and the uncertainties u(xi) based on a first-order Taylor series

approximation of Equation 2.3.1:

u2
c(y) =

N∑
i=1

(
∂f

∂xi

)2

u2(xi) (2.3.2)

Due to a change in paradigm regarding the interpretation of errors in the GUM

compared to classical error propagation perspectives, Equation 2.3.2 is often

referred to as the Law of Propagation of Uncertainty (ISO Guide 98-3 (2008),

5.1.2). Figure 2.6 gives a graphical representation of Equation 2.3.2. The output’s

standard uncertainty u(y) is calculated from the input quantity estimate’s stan-

dard uncertainty u(x) by multiplication with the sensitivity coefficient c. The

sensitivity coefficient is the partial derivative of the model function f .

An addition to Equation 2.3.2 recognizes a combined variance of the influence

quantities when they are correlated (ISO Guide 98-3 (2008), 5.2.2):
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Figure 2.6: The measurement function f and its linearization c. The distribution

of the input quantity’s estimate x is propagated through the model

yielding an estimate of the measurand y and its standard uncertainty

u(y); after Sommer et al. (2005).

u2
c(y) =

N∑
i=1

N∑
j=1

∂f

∂xi

∂f

∂xj
u(xi, xj) (2.3.3)

=

N∑
i=1

(
∂f

∂xi

)2

u2(xi)︸ ︷︷ ︸
uncorrelated term

+ 2

N−1∑
i=1

N∑
j=i+1

∂f

∂xi

∂f

∂xj
u(xi, xj)︸ ︷︷ ︸

mixed terms of covariances

This notation represents the covariance associated with xi and xj as u(xi, xj). It

is worth noting that the correlation of input quantities in Equation 2.3.3 refers to

the correlation of the xi’s probability distribution and not to a correlation of the

physical quantities that might be given by linking different quantities through

the model function (Mieke, 2014). The random variables of input quantities that

are potentially correlated to each other are those that were measured with the

same equipment, were calibrated with the same normal or depend on the same

reference value. Of course, this list should not be considered as complete as many

other sources for correlating quantities are conceivable.

Figure 2.6 also shows how the linearization of the model function may lead

to errors when the difference between the nonlinear model function f(x) and

its 1st-order Taylor approximation cx becomes significant. In such situations

higher-order terms of the Taylor series expansions are added to Equation 2.3.2:
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N∑
i=1

N∑
j=1

[
1

2

(
∂2f

∂xi∂xj

)2

+
∂f

∂xi

∂3f

∂xi∂x
2
j

]
u2(xi)u

2(xj) (2.3.4)

Comparison of Equation 2.3.4 to multivariate Taylor series expansions in mathe-

matical literature (e.g., Bronstein et al. (2015), 7.3.3.3.4) shows that only ”leading”

terms are considered in the GUM. This creates a situation where dealing with

nonlinear measurement functions requires some dexterity that deserves a brief

discussion in the last two parts of this section.

Expanded measurement uncertainty Depending on the field of applica-

tion the level of confidence associated with the combined standard uncertainty

uc(y), namely p ≈ 68%, may not be sufficient. Coverage probabilities that differ

from the standard deviation can be expressed through the expanded uncertainty

U by multiplying uc(y) with an appropriate coverage factor k (ISO Guide 98-3

(2008), 3.3.6, 3.3.7, G.1.3). When the distribution of Y is (approximately) nor-

mal choosing k ≈ 1.960 will lead to a confidence interval of 95 % and choosing

k ≈ 2.576 will lead to an interval of 99 % (ISO Guide 98-3 (2008), 6.2.1, 6.3.3). In

this regard the concept of approximate normality is supported by the Lindeberg-

Lévy Central Limit Theorem (Bronstein et al. (2015), 16.2.5.2) as already a

relatively small sum of independent identically distributed (iid) random variables

yields an approximately normal distribution.

Choosing the appropriate value for k, however, requires detailed knowledge of

the probability distribution over which Y varies.

Statement of results The uncertainty discussion concludes with reporting

the uncertainty. Although not explicitly required stating the uncertainty budget

in tabular form is fairly common. A benefit of preparing an uncertainty budget

is the identification of uncertainty contributions that dominate the combined

uncertainty. Empirically determined uncertainties (type A) play a special role in

the evaluation of individual uncertainty contributions as the standard deviation of

the experimental standard deviation of the mean σ[s(q)] may be significant even

with a relatively large number of observations. Stating the degrees of freedom

helps to rate the accuracy of the uncertainty contribution (ISO Guide 98-3 (2008),

G.4).

Limitations of the GUM

A lot of work from the highest-ranking national metrological institutions went into

preparing the Guide to the Expression of Uncertainty in Measurement, leading

to its widespread acceptance and use as a de facto standard. The challenges
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in applying the GUM arise from the rather abstract phrasing of the framework

that ensures validity for a wide range of topics. As a result some experience is

necessary to handle the details of complex real-world problems. Acquiring this

expertise often requires individual interpretations of the Guide that lead to a

variety of perspectives that are sometimes difficult to reconcile.

One of the GUM’s core assumptions is that the measurement method can be

represented through a linear model (JCGM 101, 2008, 5.11.5). Under this premise,

the measurement function can be expressed by its first-order Taylor series and the

output uncertainty can be determined following the rules of Gaussian uncertainty

propagation using Equation 2.3.2. This strategy becomes subject to criticism

when the measurement function is nonlinear or possibly even piecewise monotonic.

In statistics this is a fairly well-known problem handled using the transformation

theorem for probability densities (Johnson et al. (1994), pp. 14-15, Eq. (12.32)).

This calls into question whether the basic version of the GUM provides the

set of tools necessary to handle complex measurement problems. A processing of

influence quantities that goes beyond multiplication with a constant and summing

is already outside of the GUM’s scope. On the other hand, it must be pointed

out that the Transformation Theorem is not capable of covering correlated input

distributions where the Law of Uncertainty Propagation includes the correlation

of input quantities.

Mieke (2014) points out that ”moderately” nonlinear models can be discussed

when significant ”leading” 2nd-order Taylor series terms (see Equation 2.3.4) are

included in Equation 2.3.3. Upon close inspection of Equation 2.3.2 it is evident

that following the GUM framework, variances or coverage intervals instead of full

PDFs are propagated. Obviously this reduces the mathematical complexity con-

siderably; however, it highlights two problems: First, an individual interpretation

of the term ”moderate” is required to assess whether the measurement function

nonlinearity is significant. Second, detailed distributions are not considered which

may be a significant simplification when numerous individual (potentially elabo-

rate) input distributions act on a model and potentially large coverage factors k

need to be determined.

To avoid these limitations, this study resorts to Monte Carlo methods that are

added to the GUM framwork through a supplement (JCGM 101, 2008). This

method is discussed in the following subsection. For reasons of completeness it is

noted that the critical discussion also sometimes includes the missing concept of

the true value or an inability to include Bayesian concepts (e.g., Grabe (2010);

Schmidt (2003)). However, as these concepts do not play a role in this study the

reader is referred to the respective references for an in-depth discussion.
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Monte Carlo simulations as part of the GUM framework

In order to address two of the core limitations that were discussed in the previous

section, JCGM 101 (2008) describes a Monte Carlo method as a practical alterna-

tive to the ISO Guide 98-3 (2008) uncertainty framework when the measurement

model is significantly nonlinear and the probability distributions of the output

(and input) depart appreciably from Gaussian or Student’s t-distributions.

Using the Monte Carlo method, a numerical representation of the measurand’s

probability distribution Y is approximated through repeated sampling from the

input quantities’ PDF Xi and evaluating the model function for each of these sam-

ples. The targeted generation of arbitrary probability distributions that represent

Xi can be achieved using the transformation theorem of probability distributions

in Equation 2.3.5 or JCGM 101 (2008), C.2. A rectangular distribution R(0, 1)

is taken as input variable ΨXn and the probability density function that is to

be generated is f(x). Its inverse function f−1
k can be determined analytically or

numerically for each of its k piecewise monotonic sets.

ΦYn(y1, ..., yn) =

k∑
i=1

ΨXn
(
f−1
k (y1, ..., yn)

) ∣∣∣∣∣∂f−1
k (y1, ..., yn)

∂(y1, ..., yn)

∣∣∣∣∣ (2.3.5)

Termination condition for the simulations Based on Y ’s distribution a

multitude of statistics can be calculated for the measurand (JCGM 101 (2008),

5.9). Examples of such statistics are the best estimate, the variance, quantiles

and coverage intervals. As these statistics are calculated from a distribution that

is sampled from a generally larger population it is clear that the accuracy of the

statistics depends a lot on the size of the sampled distribution, i.e., the number

of Monte Carlo trials. In order to ensure a sufficiently large number of Monte

Carlo trials have been drawn, adaptive procedures generate new sample until a

previously set numerical tolerance bound is achieved (JCGM 101 (2008), 7.9).

This ensures sufficiently accurate results at the lowest possible cost.

The GUM Supplement 1 (JCGM 101, 2008) provides such an adaptive proce-

dure where Monte Carlo simulations are repeatedly carried out in sets of ≈ 10 000

simulations. For each of these sets statistics such as mean, standard deviation

and/or quantiles are calculated. Sets of simulations are added to this database

until the variance of the calculated statistics falls below the previously defined

numeric tolerance.

Properties of Monte Carlo simulations Even though Monte Carlo Methods

are a valuable tool to circumvent some of the ”basic GUM” limitations there

are properties of Monte Carlo simulations that deserve critical discussion as well.
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The general suitability and the practical advantage of this class of computational

algorithms is a result of its almost certain convergence due to the strong law of

large numbers and the central limit theorem (Bronstein et al. (2015), 16.2.5.1+2).

On the other side, however, it is sometimes noted that Monte Carlo methods

converge rather slowly with a convergence rate of merely O( 1√
n

) for sample size

n (Ballio & Guadagnini, 2004; Mood, Graybill, & Boes, 1974; Müller-Gronbach,

Ritter, & E., 2012). Obviously, this aspect needs to be discussed together with

the results’ accuracy.

Keeping in mind that the basic GUM framework was extended by the Monte

Carlo method in order to cope with expanded uncertainties of distributions that

deviate from Gaussian-shaped distributions, let’s consider sample quantiles and

their standard uncertainty (or standard error in statistics literature) to discuss the

convergence properties of Monte Carlo simulations. Following the explanations

of Wilcox (2005) the variance of the qth-Quantile x̂q is

s2(x̂q) =
q(1− q)
n(Φ(xq))2

(2.3.6)

based on n samples of a population with the distribution Φ(x). Equation 2.3.6

shows that s2(x̂q) increases with q approaching the boundaries of its domain [0, 1].

In addition to the intuitively expected dependence on n, s2(x̂q) also becomes

larger for lower values of the probability density function Φ(X) evaluated at xq.

As a result Monte Carlo methods take especially long to converge in cases they

are intended to be used for.

Maritz and Jarrett (1978) suggest a method that estimates the distribution of

the quantile x̂q with a beta distribution

s2(x̂q) =
xα−1(1− x)β−1

B(α, β)
with B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
(2.3.7)

This offers a viable path to determine the convergence/accuracy of the Monte

Carlo simulations on the grounds of a second method that differs from the original

strategy used to generate the data. With Wilcox (2005) stating that all indications

are that the Maritz-Jarrett estimator is more accurate than the method based

on Equation 2.3.6 there are good reasons to adapt the supplemented GUM

framework to a modified termination condition when the sheer amount of data

requires efficient calculations.

2.4 The perception of sound in auditoria

In the discussion so far, only physical and theoretical aspects of sound fields and

room acoustical single-number quantities have been considered. Of course, this
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view is limited as the interpretation of the parameters also has to be seen in light

of perception and other influences (Gade, 1982). The literature review of Table 2.1

substantiates that room acoustical quantities are linked to psychoacoustics.

The relevance of the measured spatial variance of room acoustical quantities

has to be discussed in relation to the average listener’s sensitivity to subtle

changes in the sound field and derived parameters. A prominent list of these

just-noticeable differences (JND) as a direct quote of data collected earlier by

Vorländer (1995) and slightly modified by Bork (2000) (see Table 2.3) can be

found in the informative Appendix A of ISO 3382-1 (2009).

Table 2.3: List of just-noticeable differences for terms of the consensus vocabulary.

Consensus Quantity JND Study

vocabulary

Strength G 1 dB Reichardt and Schmidt (1967)

Reverberance EDT rel. 5 % Seraphim (1958)

Definition D50 rel. 5 % J. S. Bradley, Reich,

and Norcross (1999)
Clarity C80 1 dB Cox, Davies, and Lam (1993)

tc 10 ms Cox et al. (1993)

Source width LF rel. 5 % Cox et al. (1993)

IACC 0.08 Cox et al. (1993)

Envelopment LG ≈ 5 dB J. S. Bradley and Soulodre (1995a)

Because the JNDs are noted in ISO 3382-1 (2009), they may seem to carry an

authoritative weight. This sometimes obscures that the cited JNDs depend on

the experimental methods used in the respective studies (Vigeant et al., 2015). In

some cases the perceptual thresholds determined under laboratory conditions are

significantly lower than what can be established under more realistic conditions,

i.e., in sound fields of real concert halls (Ahearn, Schaeffler, Celmer, & Vigeant,

2009; Höhne & Schroth, 1995; Witew, 2006).

Because perception is the ultimate benchmark for technical findings in audi-

torium acoustics, it is always important to ensure that the psychological testing

conditions are realistic. Thus, in the case of obvious inconsistencies between find-

ings under laboratory conditions and what is experienced in actual concert halls,

it may be appropriate to validate suspiciously low JNDs under conditions that

match reality.

Additionally there is a fundamental discussion regarding ISO 3382-1 (2009)’s

perspective: It is argued that the defined parameters may not entirely reflect
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the perception of sound in rooms. As a result, a number of studies are currently

being conducted (Lokki, 2013; Neal & Vigeant, 2017; Weinzierl, 2017) to revisit

the vector space that perception spans and determine additional features that

may be perceived. These studies deviate significantly from the standardized

measurements by introducing distributed sound sources to model orchestras that

feature clear source directivities. This can be seen as as an invitation to discuss

whether ISO 3382-1 (2009) covers the realities of acoustic performance spaces.

Unfortunately, however, this trend adds additional, unstandardized complexity to

the measurement chain, making it difficult to assess the accuracy and uncertainty

of these measurements. Eventually, any newly identified perceptual aspects will

be linked to physical properties of sound fields. At this point the question of

measurement uncertainty will have to receive closer attention.





3
General Methodology

One of the central research objectives, to determine the measurement uncertainty

due to spatial fluctuations of the sound field, was identified in Chapter 1. This

section provides the roadmap for the reasoning to answer this question. In the

first step, to lay the groundwork, the uncertainty of measured room impulse

responses needs to be established, which is closely related to the uncertainty of

standardized room acoustical quantities. Based on these findings the target is

shifted towards the question of how an uncertain measurement position translates

to uncertainty in room acoustical measurements in auditoria.

The tools for this discussion are provided by the GUM framework with the

measurement function Y = f(X) as its centerpiece. This function relates input

and output quantities to each other (see Figure 2.6), and so sets the foundation

for the propagation of uncertainties. The measurement position will serve as

the input quantity, while the room impulse response or derived quantities such

as clarity can be understood as the output quantities. The limitations of the

basic GUM approach and the complexity of sound propagation in rooms (see

Section 2.1) suggest an empirical strategy to establish the measurement function.

To keep the complexity of the research question at a manageable level, it makes

sense to divide the overall strategy into five subordinate work packages that can

be addressed separately.

Determining the uncertainty of acoustical measurements All measure-

ments are subject to uncertain results, and so are measurement series that aim at

establishing the measurement function for a specific influence factor. Correctly

analyzing the influence of a given uncertainty contribution hence requires know-

ing the measurement’s intrinsic uncertainty. In this first step of the investigation

the ”baseline” uncertainty of room acoustical impulse response measurements

is evaluated. There are numerous studies that have discussed a wide range of

possible influence factors, so generic influences can be investigated through a

literature review. Factors that are genuine to the used measurement equipment

and the pursued strategy require their own, dedicated experiments.
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Designing a measurement array The second work package deals with the

question of how to collect suitable data to empirically establish the measurement

function. To ensure general validity it becomes necessary to sample the sound field

in auditoria over sufficiently large areas. Section 5 discusses the requirements and

compares different sampling strategies. With the commitment to an automated

sampling process, the design of a measurement apparatus is discussed. In the

conclusion of this section the properties of the used measurement device are pre-

sented and discussed. This includes the influence of the measurement apparatus

on the sound field and thus the uncertainty it introduces to the measurement.

Tracking the microphone positions Despite automation, the microphone

is placed at its designated position with a finite precision. This, too, is a natural

property of any measurement method. As the measurement position plays a

rather crucial role in this study’s prime research objective, it is appropriate to

investigate this aspect in depth. The designated sensor positions are validated

by tracking strategies. Based on the time it takes for sound waves to travel

from six stationary loudspeakers to the microphones, the actual measurement

position and its uncertainty can be determined using multilateration strategies.

In Section 6.3 the properties of the used multilateration method are discussed

and the uncertainty of the determined measurement position is evaluated.

Establishing the measurement function After these preceding steps the

foundation is set to discusses the central aspect of the research question. The

measured impulse responses and the available position information are combined

to derive the measurement function f . The analysis is based on the comparison

of a large number of microphone pairs, and investigates how the sound field

changes as a function of distance between compared sensor positions. In line with

the GUM framework, the distance between any of the two microphones will be

recognized as the primary influence quantity. The output quantity will be the

average change in room acoustical single number quantities.

How accurately must a measurement position be defined? With the

measurement function established in the previous step it is possible to investigate

practical uncertainty aspects. The starting point is the general fact that an

established measurement position always features an uncertainty. This leads

either to a mismatch between the intended and the actual position in a single

measurement or a difference in positions in reproduced measurements. Since this

discrepancy implies a range of possible deviations, the resulting uncertainty in

acoustical measurements cannot be read directly from the measurement function.

Instead, the principle of uncertainty propagation needs to be complied with so
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that and the uncertainty in room acoustical measurements can be established

based on the measurement position’s uncertainty. To address this question, proven

strategies such as Monte Carlo methods will be used.





4
Uncertainty of room impulse response

measurements

4.1 Introduction

This entire study relies on auditorium impulse response measurements that are

analyzed to investigate spatial fluctuations of the sound field. This leads directly

to the question of uncertainty in these measurements due to the acoustical

measurement chain used and due to other influences on the acoustic conditions

that have an effect on the uncertainty.

The discussion in Sections 2.2.2 and 2.2.3 supports the idea that to this day

measurement uncertainty in architectural acoustics is addressed mainly from a

pragmatic point of view. In room acoustics, the question of validity was the

focus of interest when new measurement methods became available. In building

acoustics, factors of legal robustness play a role in measurements for quality

management and accreditation, which are ultimately met by achieving accepted

limits of uncertainty. The underlying studies must be placed in the context of the

state of the art (available at the time) and the investigated measurement task.

Not all results can be adopted to other measurement methods without targeted

customization.

In this chapter, the uncertainty budget of room acoustical impulse response

measurements is presented based on a detailed evaluation outlined in the ”Guide

to the expression of uncertainty in measurement” (GUM) ISO Guide 98-3 (2008)

and its introductory document JCGM 104 (2008). Even though a clear focus is

placed on the equipment used in this study, the presented method may serve as a

blueprint for other studies to evaluate the capabilities of their own measurement

chains.

For reasons of brevity, the reader is referred to Appendix A for an organized

search for potential uncertainty contributions and for the detailed discussion

leading to the combined uncertainty in room acoustical measurements. Although

this uncertainty discussion may well contribute to scientific innovation in archi-
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tectural acoustics the final result is most important because it provides the basis

for the next chapters’ line of argument on spatial fluctuations of sound fields.

4.2 Uncertainty budget for

room impulse response measurements

The combined uncertainty is determined according to ISO Guide 98-3 (2008),

using Equation 2.3.2. Based on the discussion in Appendix A, the influences

given in Table 4.1 are considered. The uncertainty inventory is sorted, starting

with the largest uncertainty contribution.

Table 4.1: Measurement uncertainty budget for room acoustical impulse response

measurements.

Symbol Uncertainty Knowledge base Uncertainty

source contribution

bi u(bi)

[dB]

bLS-dir Directivity Behler and Vorländer (2018) 0.38

bLS-level Calibration Wittstock and Bethke (2005) 0.26

measurement with revised contributions

bMic-cal Pistonphon Wittstock and Bethke (2005) 0.21

calibration

bLTI Long term Measurements 0.2

repeatability in two auditoria

bLS-spec Equalization Revised contributions based on 0.16

measurement Wittstock and Bethke (2005)

bMic-spec Flatness of 32 measurements (LAS) 0.15

microphone

freq. response

bFilter Octave-band Wittstock and Bethke (2005) 0.12

filtering with revised contributions

bMeteo-ϑ Change in Payne (2004) 0.12

temperature
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Table 4.1: (continued)

Symbol Uncertainty Knowledge base Uncertainty

source contribution

bi u(bi)

[dB]

bMeteo-p Change in Payne (2004) 0.07

athm. pressure

bMic-dir Directivity measurements in 0.07

3° resolution (MMT)

bMic-field Sound field Payne (2004) 0.011

distortion

bMeteo-rh Change in Payne (2004) 7.5×10−3

rel. humidity

bLS-THD Loudspeaker Behler and Vorländer (2018) ≈ 1×10−3

nonlinearities

bAmp-THD Power Manufacturer’s ≈ 1×10−4

amplification specifications

bMic-amp Amplification Payne (2004) with revised ≈ 1×10−4

linearity contributions, own experience

bAmp-SNR Amplification Technical documentation ≈ 1×10−6

noise

bMic-SNR Microphone Technical documentation ≈ 1×10−6

noise

bD/A-SNR D/A Technical documentation ≈ 1×10−8

noise

bD/A-THD Digital-Analog Manufacturer’s ≈ 1×10−8

distortion specifications

bclock jitter clock Neu (2010) ≈ 1×10−8

jitter

bMic-THD Microphone Manufacturer’s ≈ 1×10−9

nonlinearities specifications
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Table 4.1: (continued)

Symbol Uncertainty Knowledge base Uncertainty

source contribution

bi u(bi)

[dB]

bA/D-THD Analog-digital Manufacturer’s ≈ 1×10−9

conversion specifications

bquant-SNR Quantization

noise

Havelock, Kuwano, and

Vorländer (2008),

≈ 1×10−12

specifications

uc(bEquip) Combined uncertainty 0.62

U(bEquip) Expanded uncertainty k=2 1.24

The combined uncertainty given in the last row of Table 4.1 can be calculated

according to Equation 4.2.1 with all significant (larger than 1×10−2 dB) contribu-

tions included. Influences that introduce a background noise to the measurement

are not recognized.

uc(bEquip) = [u2(bLS-dir) + u2(bLS-level) + u2(bLTI)+

+ u2(bLS-spec) + u2(bMic-spec)+

+ u2(bMic-cal) + u2(bFilter)+

+ u2(bMeteo-ϑ) + u2(bMeteo-p)+

+ u2(bMic-dir) + u2(bMic-field)]
1
2 (4.2.1)

This leads to a combined standard uncertainty of

uc(bEquip) = 0.62 dB, (4.2.2)

which reduces to

uc(bEquip) = 0.56 dB (4.2.3)

when not considering the sound power calibration, and to

uc(bEquip) = 0.52 dB (4.2.4)
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when neither the sound power nor the pistonphon calibration are taken into

account.

4.3 Discussion

The direct comparison of the different influences contributing to the measurement

uncertainty is quite helpful, since it permits distinguishing between significant

and less relevant factors. The hierarchy of significance can be read from Table 4.1.

Since the combined uncertainty is strongly determined by the largest individual

contributions, it makes sense to focus uncertainty reduction discussions on the

top entries such as the loudspeaker.

At the same time, the view can be inverted to address the following argument:

Lower ranking elements of the measurement chain in Table 4.1 like amplifiers

or AD/DA converters have hardly any significant influence on the combined

uncertainty, so their requirements can be reduced without significant effects on

the overall uncertainty.

Which influences are to be considered, i.e., which of the combined uncertainty

in Equations 4.2.2 to 4.2.4 is relevant, is context-dependent and varies with the

discussed research question or how the results are used.

For a detailed discussion regarding individual influences or the strategy pursued

the reader is referred to Appendix A.

4.4 Conclusions

This chapter presents the intrinsic uncertainty of room acoustical measurements.

To follow an organized approach, quality management principles using a cause-

and-effect perspective were used in Appendix A to identify and group different

uncertainty contributions. Based on the GUM framework, some 20 influence fac-

tors were discussed quantitatively and reasonable uncertainties were determined

that characterize the properties of the measurement environment.

As a result, the expected uncertainty of individual time samples in measured

room impulse responses due to the used equipment is

uc(bEquip) = 0.52 dB. (4.4.1)

This uncertainty will be used in this study’s main line of argument to determine

the uncertainty of room acoustical single number quantities (see Section 6.2).





5
Design of a measurement array

5.1 Introduction

The theoretical discussions led by Kuttruff and Thiele (1954); Schroeder (1962)

and Davy (1981) (see Section 2.1) indicated how the sound field in rooms changes

from one position to the next. These discussions exposed the profound reasons

for the spatial variance of decay rates. So far, these theoretical findings are not

put into practice in auditorium acoustics on a regular basis. This is probably

due to two main reasons: First, the findings from theory generally address the

quasi-stationary sound field or the reverberant decay and rely on a number of

assumptions (i.e., the diffuse sound field) that are not always met in practical

situations (Gade & Rindel, 1985). Second, in architectural acoustics the early

part of the sound field carries information that is significant for sound perception.

This early part of the impulse response depends on the detailed geometry of the

auditorium and is hence difficult to predict with general theory.

This is why an empirical investigation is needed to collect a suitable sample with

the capacity of showing how all room acoustical quantities vary over space. Such

a study must meet specifications from two sides: On the one hand, experiences

from previous studies about surveying the acoustic conditions in auditoria should

be recognized. On the other hand, it is necessary to collect data that allows a

standardized discussion in line with the GUM framework.

In this section, a measurement device is presented that is capable of automati-

cally sampling the sound fields in auditoria. Its design is discussed in three steps:

first, establishing the requirements that a measurement device needs to meet

in order to collect data that is suitable to target the central research objective;

second, presenting the rationale of the design and the apparatus’ practical use

and, finally, discussing the nature of the collected data.

Parts of this chapter have been published before. As a result, the line of

argument shown here features some overlap with previous publications, namely

Witew, Vorländer, and Xiang (2017) and Witew and Vorländer (2018). Some of

the following ideas are paraphrased from these publications.
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5.2 Methodology

5.2.1 Requirements for the measurement setup

Conclusions drawn from previous investigations

The study of de Vries et al. (2001) is this study’s starting point, as it was

the first to vividly show the spatial fluctuation of room acoustical metrics in a

concert hall. Their measurement apparatus, shown in Figure 5.1, consisted of a

roughly 3 m-long rail along which a single microphone was moved automatically

by pulley. This setup allowed a precise positioning of the microphone. In repeated

measurements, the entire structure was moved along a row so that the measured

segments of approximately 3 m length could be joined to form a total covered

distance of more than 26 m.

Figure 5.1: Measurement setup used by de Vries et al. (2001) in Concertgebouw

Amsterdam. Image courtesy of Diemer de Vries and TU Delft.

This measurement strategy skillfully combines two aspects: The relatively small

setup achieves precise and automated microphone positioning through motoriza-

tion, while moving the entire structure allows measurements to be conducted over

a wide range. The spatial fluctuations shown in Figure 1.1 highlight the need for

a spatial sampling in resolution of about one measurement position every 5 cm.

This matches the spatial Nyquist-Shannon sampling theorem as well.

Engaging in a critical discussion sets the stage to develop possible improvements

to de Vries et al.’s groundbreaking measurement strategy. Findings by Vorländer

and Kuttruff (1985), shown schematically in Figure 5.2, raise a point in illustrating

that the room acoustical quantities vary along all spatial dimensions in different

room shapes. As a result, sampling along a single straight line may not show the

full variation of changes encountered over entire listening areas.

Akama, Suzuki, and Omoto (2010) shows that the process of acoustical mea-

surements in auditoria can be streamlined to a point where it becomes feasible
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Figure 5.2: Lateral fraction in rooms with different shapes (the sound source is

represented by the white circle; dark areas indicate a high lateral

fraction)(after Vorländer and Kuttruff (1985), from Vorländer and

Witew (2020)[p.523], Copyright: Verlag Wilhelm Ernst & Sohn GmbH

& Co. KG. Reproduced with permission).

to measure the impulse response at every seat. These findings are impressive, as

they show that it is not necessary to rely on simulation results when discussing

the acoustic conditions in an entire auditorium; it is possible to measure this

data. To position the microphone, Akama et al. (2010) used a clamping fixture

that was attached to the backrest of a seat, and moved manually in repeated

measurements from one position to the next.

Using a similar sampling strategy (Witew et al., 2004), some pittfalls can

be pointed out that have to be recognized. When conducting measurements at

individual seats, there is always the question of positioning accuracy: Placing a

microphone relative to a reference object, such as a seat, that is approximately

50 cm wide will permit a limited accuracy of perhaps 5 cm - especially when

the measurement procedure is streamlined in order to measure a comprehensive

set of positions within a limited time. Furthermore, in complex geometries (e.g.,

the auditorium floor rising according to constantly changing slopes), it is rather

difficult to determine the absolute position of the reference object when relevant

data (i.e., from cross sections) is unavailable. Also, in view of the findings by de

Vries et al. (2001) in Figure 1.1, it can be argued that this strategy will not feature

the resolution necessary to survey spatial fluctuations in sufficient detail. For all

these reasons, impulse responses collected at individual seats are not suitable to

discuss the uncertainty in measurements due to spatial fluctuations.

The challenges arising from having to cover large dimensions while maintain-

ing a high resolution can be met with measurements in model scale, as Xiang,

Escolano, Navarro, and Jing (2013) have shown. In their study on the acoustic
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coupling of two-room volumes, they investigated the sound field using a 1:8 scale

model. A motorized microphone was moved automatically in two dimensions

with high accuracy. Using this setup, Xiang, Alamuru, Witew, and Vorländer

(2018) were able to show the sound propagation in coupled volumes in great

detail. Here, too, perspectives arise from the author’s own experience (Witew et

al., 2012) that should be taken into account. Measurements in model scale often

require some form of abstraction as the transition from the natural scale to the

reduced model requires a simplification - this can concern the absorption proper-

ties of the walls, but also the room geometry. Even though the math to transform

measured impulse responses in model scale to natural scale is understood rather

well, this conversion between different scales will introduce additional influence

factors to the uncertainty budget of Section 4. The benefit of further inflating

the uncertainty budget seems unnecessary when measurements in existing rooms

are also feasible.

In a pilot study, Witew and Vorländer (2011) investigated how the sound field

in a room could be sampled using a measurement array with 24 microphones.

Figure 5.3 shows the setup: The heart of the system is an xy-table, which allows a

mounted central support and two extension arms to move freely in two dimensions.

The 24 microphones are attached to the horizontal arms at regular distances.

Tracing an S-shaped pattern with the xy-table resulted in the coverage of a 2.1 m

x 2.4 m area with a 5 cm sampling resolution. Obviously, this raises the question

of whether this small sampling area can be representative for entire concert halls

that may easily have hundreds of square meters of audience area. The collected

acoustical data also show that the proximity of the supporting structure to the

microphones can lead to disturbed sampling of the sound field.

Figure 5.3: Robot to sample the sound field over an area of 2.1 m x 2.4 m.
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While Chapter 7 discusses the measurement function more completely, some

aspects about the sampling distribution should be considered here. When in-

troducing the central research question in Chapter 1, the distance between two

measurement positions was identified as the input quantity to be examined. This

relation can easily be determined from a pairwise comparison of any two sensor

positions and their coordinates. To ensure that this comparison is balanced across

all two-sensor combinations, the sampling grid needs to have a spatially constant

sampling density and be isotropic in the comparison of different measurement

positions.

The first requirement suggests a homogeneous and regular sampling grid. The

second requirement, however, cannot be achieved with finite and discrete sampling.

In a two-dimensional regular Cartesian grid, adjacent sampling points that are

closest to each other have one of just four directional relations (i.e., ±x,±y)

to each other. With larger distances the directional resolution becomes finer.

Despite these limitations, a regular, rectangular sampling grid may still be the

best choice from a practical perspective. Cartesian sampling can be implemented

with relative ease. From theory there is no indication that spatial fluctuations

could be anisotropic when the room’s geometry features similar dimensions along

orthogonal coordinate axes and the discussed frequency is above the Schroeder

frequency.

Rectangular sampling could in future studies permit a sound field synthesis

to derive a low-pass filtered, continuous representation of the sound field. This

sampling strategy, combined with the appropriate analysis, could provide the

foundation to discuss the change of the sound field without salient sampling

directions (as they exist in the discrete case).

From these experiences the following specifications for the measurement setup

emerge:

� Measurements should cover a sufficiently large surface area.

� Large fixtures of the measurement device should to be far away from the

microphones. Suspension of the microphones should present a small distur-

bance to the sound field.

� Microphones must be positioned accurately at known coordinates.

� Measurements should be in a regular but arbitrary high-resolution sampling

grid.
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(a) Overview of the apparatus. (b) Carbon truss.

(c) Rolling carriage with
actuators.

(d) Actuator along the hall’s
front-rear dimension.

(e) Actuator along the hall’s
left-right dimension.

Figure 5.4: Measurement device to sample the sound field in auditoria.

5.2.2 Design of a measurement device

Based on these specifications, the device, shown in Figure 5.4, has been designed.

It is capable of automatically sampling the sound field in rooms over a surface of

5.30 m× 8.00 m. Its main body consists of standardized aluminum trusses that

are commonly used in stage equipment to support lights. The trusses’ profile

has a triangular cross section of 220 mm width and 195 mm height. The three

load-carrying tubes along the length of each truss have a diameter of 35 mm.

These trusses form a load-carrying frame structure that is elevated at a 2 m

height and supported by a pedestal in each of the four corners. Figure 5.4a shows

an overview of the entire device. To enable easy movement on flat surfaces, small

rollers are mounted under the structure’s supports.

The central truss, running along the hall’s front-rear dimension, supports a

black double-T beam that is mounted underneath. A rolling carriage is attached

that can travel along the rail’s full length of 5.30 m (see Figures 5.4c). The carriage

is driven through a motorized pinion that acts on a fixed rack mounted parallel

to the track of the guide rail and the central cross beam (see Figure 5.4d).
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The carriage in turn holds an 8 m carbon truss, running along the hall’s left-

right dimension. At its ends, the carbon truss is supported by the aluminum frame

through a roller bearing and a slide bearing (see Figure 5.4b). This mounting

allows the carbon truss and the trolley to move together along the front-rear axis.

At the same time, a second stepping motor drives a spindle with a shaft joint

which permits moving the carbon truss from left to right over a distance just

short of 30 cm (see Figure 5.4e).

The carbon truss carries 32 KE-4-type electret microphones that are held

in place through fixtures every 0.25 m. These fixtures consist of thin, 1 m-long

carbon tubes with adjustable collars so that the microphones can be lowered to

the sampling area about 1.2 m above the floor.

In this setup, the microphones are aligned linearly in fixed steps of 0.25 m and

can be moved freely over a surface of 0.25 m× 5.30 m; this composes a coherent

sampling area of 8.00 m× 5.30 m in any desired resolution.

5.2.3 Acoustical measurements

Due to the size of the entire apparatus, it takes a trained team of at least four

people about 2 h to assemble and 2 h to disassemble the device. In 530 individual

measurement runs using 32 microphone channels, the sound field is sampled

over a surface of 8.00 m × 5.30 m in a rectangular 5 cm-grid. In between each

measurement run, the robot travels from one position to the next. Conducting a

measurement series that covers the entire surface at this resolution yields 16 960

impulse responses of the FFT-degree 17. Such a session takes a grand total

of about 8 h to complete, including 4 h measurement time and provisions for

mounting and demounting.

After setting up the system’s hardware and before starting the acoustical mea-

surement series, the proper functioning of the measurement chain is ensured

through calibration measurements. Electrical components are equalized through

short circuit measurements and calibrated to a voltage reference. The micro-

phones are calibrated through pistonphone measurements, repeated three times

to ensure the calibration yielded consistent sensitivity coefficients. The exci-

tation’s stop margin and the amplification of the microphone are adjusted to

meet the acoustic conditions of the reverberation length and background noise

encountered during the measurements.

Measurements in different auditoria

The discussion of analytical approaches in Section 2.1 (i.e., Davy et al. (1979);

Kuttruff and Thiele (1954); Schröder (1954)) identifies the superposition of in-

dividual modes as the central contributing factor to spatial fluctuations. This
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provides important references as to which factors have to be recognized in the

measurement series. Importantly, it would have to be ensured that the diffuse

sound field dominates the measured sample. In theory this could be achieved by

limiting the distance between the microphones and the sound source to ranges

larger than the critical distance, i.e., making sure that the direct sound’s energy

is less than the energy in the diffuse sound field.

When broadening the perspective to include quantities beyond reverberation

time and discuss early reflections, the situation becomes a bit more complex.

On the one hand, it can be argued that the spatially changing composition of

early reflections contributes to a natural large-scale spatial change in the acoustic

conditions that has little to do with the phenomenon of fluctuations. On the

other hand, however, due to room acoustical quantities that rely on rectangular

time windows, it is plausible that isolated, bandpass filtered reflections fluctuate

spatially due to the decaying oscillation of the filter. This effect may contribute to

spatial fluctuations and, thus, the auditorium’s geometry may have an influence.

Generally speaking, it seems reasonable to investigate sound fields with different

compositions of early reflections.

Over the course of the entire study, numerous measurements were conducted in

different auditoria. Although all of this collected data ultimately serves the goal

of answering the central research questions, subordinate questions were examined

based on the data from individual measurement sessions.

The first measurements were carried out in RWTH Aachen University’s Aula 2

general assembly (see Figure 5.5b) hall as part of Thevissen’s (2015) master

thesis to prove the concept of such array measurements. Based on an existing

mechanical design, a software infrastructure for the control of the stepper motors

and the acoustical measurement procedure was developed (Thevissen, 2015).

In a following series of measurements in collaboration with J. Hartl, many

conditions were tested. First, measurements were carried out in Aula 2 under

similar conditions (compared to Thevissen (2015)) to investigate the reproducibil-

ity of the measured data (see Figure 5.4b). In a separate setup in the large hall

of Eurogress Aachen (see Figure 5.5c), the repeatability of measurements was

investigated through two measurement sets conducted in immediate succession

(see Figure 5.4a). In a third set of measurements in Eurogress, chairs were re-

moved from underneath the array to investigate how significantly those changes

affected the surveyed sound field. In the final measurement session, measure-

ments were conducted in the large hall of the historic town hall of Wuppertal

(see Figure 5.5d) to investigate whether the entire processes had matured enough

to allow measurements at distant auditoria under strict time constraints.
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(a) Aula 1. (b) Aula 2 (see also Figure 5.4b).

(c) Eurogress Aachen (see also Fig. 5.4a). (d) Historische Stadthalle Wuppertal.

(e) Rehearsal room of Aachen Symphony Orchestra.

(f) Concertgebouw Amsterdam.

Figure 5.5: The auditoria surveyed in this study.
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In a following episode, measurement series were conducted in both general

assembly halls of RWTH Aachen University, i.e., Aula 1 (see Figure 5.5a) and

Aula 2, as documented by Reich (2018). In both halls, four measurement sets

were collected, each with the array covering a different section of the room, so

that the entire audience area was surveyed. In between these sets the entire array

was moved to cover the entire audience area. This series of measurements was

designed to investigate whether spatial fluctuations change throughout the room.

The last series of measurements was done in collaboration with H. Hasti, and

added measurements of two new rooms to the database. First, Aachen Symphony

Orchestra’s rehearsal room (see Figure 5.5e) was studied. To accommodate or-

chestras of different sizes and music for different styles, this auditorium features

adjustable acoustic panels that were varied between measurements to change the

reflection pattern and the room’s absorption. These variations set the foundation

to investigate congruence with theory (see Section 2.1), i.e., how a change in

reverberance and reflection pattern influences spacial fluctuations. Second, Con-

certgebouw Amsterdam’s large hall (see Figure 5.5f) is a renowned landmark in

architectural acoustics, and studying its acoustic conditions added to the practi-

cal relevance of this study. These measurements also offer a reminiscence to the

work of de Vries et al. (2001) and permit comparison between the two different

sampling approaches.

5.2.4 Data analysis

From the measured raw impulse responses, some elementary processing is neces-

sary to recognize the sampling strategy and to ease the visual display. At this

point, the analysis it not yet targeted at generating the data that will eventually

be subject to a discussion of measurement uncertainties; instead, the objective

of the analysis is to foster a tangible understanding of the data’s properties and

evaluate the device’s merits.

In a few rare cases, equipment issues occurred during the measurements. Due

to frequent movement of the measurement setup, fatigue phenomena became

obvious for individual microphone cables. Due to repeated bending of the cables

in the flexible duct, cable breaks sometimes occurred, which led to individual

microphone dropouts. Such defects occurred in roughly a dozen of the collected

impulse responses and only became apparent in the post-measurement analysis

through algorithmic and visual inspection. This is regrettable, but in relation to

the almost 17 000 flawlessly collected RIRs in each measurement series, it is of

little concern.

Even though impulse responses were measured over a frequency range including

the octave bands from 125 Hz to 8 kHz, a sampling grid of 5 cm introduces an
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upper frequency limit of 3400 Hz while observing the spatial sampling theorem.

This yields a reasonable frequency range including the octave bands from 125 Hz

to 2 kHz without being subject to spatial aliasing.

5.3 Results

The core goal of the measurements with the array is still, of course, to collect

data for the uncertainty discussion. At the same time, this new measurement

tool requires experience, which can emerge when new measurement results can

be related to the existing body of knowledge. Visualizing measured sound fields

can do just that when the collected data is related to the informed expectation

of sound propagation phenomena.

5.3.1 Visualization of sound fields

The additional benefit of measurement data collected with microphone arrays

is due not only to the larger amount of available data to analyze, but also to

the geometric relations the measurement positions have to each other. The RIRs

collected with the device described here mark no exception in this regard. The

graphical presentation of four-dimensional data (two spatial dimensions and the

amplitude of the impulse response over the running time), however, poses known

challenges with presentation modalities resulting in only three dimensions for

simultaneous display. The microphone data (i.e., RIR at a given time) over

the spatial dimensions of the measurement array’s sampling area can be shown

effectively so that each presented pixel refers to a corresponding sampling position.

The energy of the impulse response can be coded in color for a given time, leading

to graphical representations such as the ones shown in Figures 5.6 and 5.7. Here,

blue colors are used to show low amplitudes and yellow colors high amplitudes,

all in logarithmic scale.

In Figure 5.6, the propagation of the first wavefront through a completely empty

auditorium (Figure 5.6a) and the same auditorium with chairs (Figure 5.6b) is

illustrated. The differences in both measurement scenarios are particularly evident

immediately after the direct sound. Amplitudes, spatially behind the direct sound

are relatively low in the empty hall. In contrast, the right image (with chairs)

shows how the chairs influence sound propagation. The major difference compared

to the empty hall is the additional wave pattern that can be seen in the upper

part of the right image. From the shape of this pattern (also in time), it is evident

that this is the sound that is scattered back from the chairs. The color coding

indicates that the scattered sound is of relatively low amplitude.
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(a) Without chairs. (b) With chairs.

Figure 5.6: Direct sound in Eurogress Aachen.

(a) Direct sound. (b) Early reflections.

Figure 5.7: Sound propagation in Aula 2.

Figure 5.7 shows how four individual sets of measurements at different positions

in a hall can be merged to form a larger and coherent sampling area. These

images are intended to provide an intuitive and graphic understanding of the

measurements’ stability. Although the individual measurement sets are separated

by four to 12 hours, they can be combined rather well to form a broader account

of the sound field in the room. A detailed discussion of the sound propagation is

referred to Witew and Vorländer (2018); Witew et al. (2017).

The next paragraphs discuss specific results relevant to the adequacy of the

measurement setup. Obviously, the suitability of the device is determined through

its ability to collect data to answer the central research questions.



5.3. Results 59

Influence of the device’s structure

Just as microphone properties were discussed as part of the ”intrinsic measure-

ment uncertainty” in Chapter 4, the structure’s influence on the measurand needs

to be evaluated. Looking at Figure 5.6a can provide an idea of how this factor

contributes to the measurements. This illustration shows how the direct sound

propagates through the measurement device in the otherwise empty auditorium.

Apart from the ground reflection immediately following the direct sound, the

large blue areas indicate that the room does not feature surfaces that reflect or

scatter sound (with short delays) into the sampling area.

This makes this scenario ideal for investigating scattering from the array’s

structure. Considering Figure 5.4a, the two circular wave fronts concentric to

the upper left and right corners of the sampling area can be traced back to

scattering from the supporting pillars at the front. A detailed investigation, based

on analyrical and empirical considerations, of how the measurement apparatus

contributes to the combined uncertainty of the measurements can be found in

Appendix B. This discussion concludes with the assessment that the influence of

the measurement setup on the measurand can be determined to be

u(bSetup) = 0.35 dB. (5.3.1)

The uncertainty contribution of the measurement setup’s disturbance of the

sound field increases the combined uncertainty from 0.62 dB (Equation 4.2.2) to

uc(bEquip) = 0.71 dB. (5.3.2)

Precision of the sampling position

One of the preceding paragraphs described how the apparatus positioned the

microphones along a rail system. Figure 5.8a shows a detailed perspective of how

the carbon truss is held in place along a rail using a roller bearing. To facilitate

flexible use in different measurement locations the device needs to be portable and

designed to allow easy setup and takedown. By dividing large parts into smaller

modules, this requirement is achieved at the price that small discontinuities may

form at the connecting joints (see Figure 5.8b). This would not be noteworthy if

manufacturing tolerances did not complicate the bearings’ ease of movement ever

so slightly. When the roller bearing passes the discontinuity in the rail, a sightly

greater force is required to move the wheels over the obstacle. At the point when

this resistance is not in perfect symmetry at both outer rails, the carbon truss

will twist until all forces are equal or the pulleys can pass the obstacle.



60 CHAPTER 5. Design of a measurement array

(a) The carbon truss is held in place by a roller bearing
that can traverse along a rail.

(b) Connecting joints of the
rail.

Figure 5.8: Detailed views of the measurement system.

Thus, at these joints there there is a chance of small discrepancies, say 3-

4 cm, between the intended and the actual sampling positions. Observing this

”jitter” in sampling positions requires a very close examination of the color maps.

The jitter appears in Figure 5.6 as a discontinuity along the x-axis, e.g., at the

y-intersections of approximately 2.5 m.

5.3.2 Data for the uncertainty discussions

Deriving the measurement function f is of central importance for the discussion

of measurement uncertainties. That’s why it is important that the collected

data be suitable for this analysis. Previously, pilot studies (Witew, Dietrich, de

Vries, & Vorländer, 2010; Witew, Dietrich, Pelzer, & Vorländer, 2013) showed

how the collected data from regularly sampled sound fields could be processed

to determine the model function f . The rationale to establish f is discussed in

detail in Section 7.

5.4 Discussion

In general, the presented device is capable of sampling the sound field in rooms

over relatively large areas and in relatively high resolutions. The shown images

(Figures 5.6 and 5.7) and the calculated animations (Witew & Vorländer, 2018;

Witew et al., 2017) allow an intuitive illustration of sound propagation in rooms

and present a new perspective on wave field phenomena such as sound scattering
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and reflections. In particular, the sampling of merged areas that jointly cover

surfaces on the order of 15 m x 10 m with more than 60 000 measured impulse

responses (see Figure 5.7) seems to be beyond the scope of previous publications.

The spatial relation between the microphones allows identifying subtle features

of measured impulse responses that can be associated to structures in the room

in a way that has not been possible before. This is particularly evident when

comparing the propagation of the direct sound in Eurogress Aachen with and

without chairs (Figure 5.6), or the detailed analysis of the sound field in Aula 2

or Concertgebouw Amsterdam in Figure 5.7 or in Witew and Vorländer (2018).

Problem awareness

Due to the design of the measurement apparatus, only auditoria with flat, planar

audience areas have been surveyed. From a statistical point of view, this limits

the diversity of the collected sample and, hence, should be recognized. From the

discussed fundamentals (see Section 2.1 and Davy (1981); Kuttruff (2000)), it

can be seen that the modal density is the main factor influencing the spatial

fluctuations. For its part, the modal density is independent of the detailed room

geometry as long as the auditorium’s general size and the surfaces’ absorption

properties remain unchanged. Furthermore, special cases that feature focal points

or room dimensions with integer multiples of each other have to be excluded. On

these grounds, it is unlikely that this limitation in sampling has any appreciable

impact on the collected data.

Figure 5.6a shows that the measurement device affects the measurand via

back-scattering of sound from the array’s supporting structure. The detailed

discussion of this disturbance is deferred to Section B, where the back-scattering

is treated as a regular uncertainty contribution and its magnitude is investigated

using Kirchhoff’s diffraction formula and empiric approaches. This leads to a

result that quantifies the uncertainty due to the measurement device’s influence

on the sound field.

The restricted capability to move and position microphones, due to design-

related manufacturing tolerances, raises the question of whether the validity of

the collected data is diminished. To place this discussion on a solid foundation,

steps were taken to determine the actual microphone positions using a multilat-

eration strategy. Details of this concept are discussed in Section 6.3. Knowing

a microphone’s actual position provides the means to faithfully assess the sig-

nificance potential problem. On the one hand, this limitation in the position

accuracy can be interpreted as imperfections of the sampling grid that intro-

duce a positional jitter to the measurement. This uncertainty can be assessed

according to the known rules (see Section 4) that have already worked rather
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well for clock jitter. On the other hand, the actual knowledge of the measurement

position may well enhance and increase the accuracy of the analysis compared

to the alternative assumption that a planned sampling location was probably

attained.

Figure 5.7 shows the merged sampling areas of Aula 2. Discontinuities seem

subtle; however, they can be identified when specifically sought after. It is clear

that this is due to the relatively long duration of some 4 h it takes to complete a

single set of measurements. This perspective may be seen as an additional take

on LTI uncertainty as a contributor to the intrinsic uncertainty of Chapter 4:

The fact that neighboring sampling fields align quite closely is an argument that

time invariances may not be severe problems after all. Whether this attitude can

persist when discussing the measurement function will be examined in Chapter 8,

based on reproducibility and repeatability measurements.

Finally, the technical failure of microphones during the sets of measurements

should be addressed. These ”dropouts” introduce gaps into the sampling area

that are detrimental to the graphical representation. In regard to the uncertainty

discussion, however, such voids in the data space seem tolerable although re-

grettable. This assessment is based on the observation that isolated and sparse

microphone dropouts mean that individual pairs of compared sensors can no

longer be evaluated. With n = 16960 microphones, each microphone can be com-

pared to n− 1 microphones, leading to a total number of n(n+ 1)/2 comparisons

(Bronstein et al., 2015, 1.2.4). In this order of magnitude the change in sample size

due to ”losing” a few microphones is not critical as the distribution of distances

between microphones remains generally unchanged.

5.5 Conclusions

� The previously described measurement system provides a method capable of

sampling the sound field in auditoria covering large areas in high resolution.

This section discusses the general properties of the collected data.

� Through the graphical representation of this data, the sound propagation

in rooms was impressively visualized. Covering individual and combined

sampling areas that span entire auditoria is unprecedented.

� Despite minor flaws, the collected data is relevant and suitable to investigate

spatial fluctuations of sound fields in rooms.

� Based on the detailed investigation of a measurement series, the influence

of the measurement setup on the measurand was determined to be

u(bSetup) = 0.35 dB. (5.5.1)
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� The uncertainty contribution of the measurement setup’s disturbance of the

sound field increases the combined uncertainty of individual time samples

in measured room impulse responses from 0.62 dB (Equation 4.2.2) to

uc(bEquip) = 0.71 dB. (5.5.2)

The revised combined uncertainty in Equation 5.5.2 serves as the input quantity

for the uncertainty discussion of room acoustical quantities (Chapter 6). The

acoustical data collected with the array forms the foundation to establish the

measurement function (Chapter 7).





6
Uncertain input quantities of the measurement

function

6.1 Introduction

The most important prerequisite for a GUM conforming uncertainty discussion is

the measurement function (or model function) that maps the input quantities of

a measurement to the final result. If this transfer function cannot be determined

analytically, empirical methods are also valid.

Because a potentially large number of individual measurements are taken to

sample the model function, the ability to reduce the data is importantant, so per-

mitting a clear view on the essentials. In the statistical analysis of measured data,

it is a common practice to fit and summarize the results, i.e., through (nonpara-

metric) regression. It is well known that the absence of error-in-variables models

can lead to incorrect estimates of the consolidated curves (Carroll, Ruppert, Ste-

fanski, & Crainiceanu, 2006, Ch.1). In the simplest case of linear regression, the

slope of the regression line is systematically underestimated by the so-called

regression dilution (Carroll et al., 2006, Ch.3). In nonlinear regressions, Griliches

and Ringstad (1970) expect even greater errors.

Determining the measurement function is essentially a nonparametric regres-

sion (see Section 7), making it important to know the uncertainty of the input

data, when aiming to obtain an unbiased model function. In this study, the

measurement function maps the distance between two measurement locations

to a change in room acoustical quantities. As a result, both the measurement

positions and the room acoustical parameters are candidates of uncertain input

variables that will be discussed in this chapter.

Section 6.2 investigates the uncertainty of room acoustical parameters is in-

vestigated by propagating intrinsic measurement uncertainty determined in Sec-

tions 4 and B through the functional definition of the room acoustical parameters.

This yields their output uncertainties according to the rules of the GUM.

Section 6.3 addresses a method to determine the microphones’ position dur-
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ing the measurement and its positional uncertainty based on a multilateration

paradigm.

6.2 Uncertainty of room acoustical quantities

The uncertainty of room acoustical quantities, i.e., strength and clarity, has al-

ready been discussed by Vorländer (2013) in regard to room acoustical simulations.

Although the presented method is also valid for acoustical measurements, there

are some particular differences that warrant an independent discussion: In simu-

lations, uncertainties are due to the implemented physical (sound propagation)

model and the input data of the calculated scenario, whereas in measurements

inadequacies of the measuring equipment play a prominent role. Additionally, for

measurements, the uncertainties of the input quantities are available in logarith-

mic scale. Also, the findings of Vorländer’s (2013) fundamental investigation are

extended by the uncertainties of other room acoustical quantities that have not

been discussed before.

6.2.1 Methodology

To discuss the uncertainty of room acoustical quantities, the standardized GUM

framework, whose core concept is given in Equations 2.3.2 and 2.3.3 and requires

the partial derivatives of the measurement function in respect to all uncertain

input variables, can be used. Since this chapter addresses the uncertainty of

the input variables, the concept of the measurement function here refers to

the propagation of the RIR’s uncertainty to room acoustical quantities. The

measurement function is, hence, the calculation formula to determine metrics

such as reverberation time, clarity and the like.

The starting points of this study are the influence quantities determined as

part of the intrinsic measurement uncertainty (Section 4) and the measurement

setup (Appendix B). The intrinsic measurement uncertainty budget leads to a

combined standard uncertainty of 0.71 dB.

Handling random and systematic uncertainty contributions.

A closer look at the uncertainty contributions in Table 4.1 makes it clear that the

individual factors do not contribute in the same way to the uncertainty of the

individual samples of an impulse response. While the pistonphone calibration of

the microphone has a systematic effect on all samples due to the same correction

term, the uncertainty contribution of the loudspeaker’s directivity is random

from sample to sample.
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In ISO Guide 98-3 (2008)[E.3], the introduction of (uncertain) correction fac-

tors βr and βs permits recognizing random and systematic effects as shown in

Equation 6.2.1. In this view, px(sj) represents the impulse response’s raw (un-

corrected) sound pressure at the sampling time sj . Both βs are linked to the

correction term b through Equation 6.2.2. βr has an expected value of one, while

bs may be nonzero based on a calibration measurement. py(sj) is the corrected

sound pressure at the sampling time sj .

py(sj) = px(sj)βsβr (6.2.1)

with

β = 100.1b (6.2.2)

The intrinsic uncertainties of Table 4.1 can be sorted into Tables 6.1a to indicate

systematical and random effects. The combined uncertainties given at the bottom

of their respective tables reflect the statistic properties of both effects and thus

βs’ variance. Influence factors that are not recognized in Table 6.1a lead to an

uncertainty u(px). As these contributions are individually less than 0.01 dB, it

is reasonable to assume that they are insignificant (ISO Guide 98-3, 2008, 3.4.4).

The variance of βr has to be considered for each sample sj individually, whereas

the variance of βs is global.

Discussing room acoustic quantities

Energy decay curve The basis for determining the reverberation time is

the backward integrated impulse response (Schroeder, 1965), which leads to the

energy decay curve E(t).

E(t) =

∞∫
t

p2(τ)dτ =

∞∫
0

p2(τ)dτ −
t∫

0

p2(τ)dτ (6.2.3)

Because the running variable of the energy decay curve (EDC) is the integration

limit, it can be supposed that the uncertainty u (E(t)) is not the same for all

t, but increases with longer integration intervals. The definition of the energy

decay curve as a single integral suggests a maximum uncertainty at t = 0. This

would be detrimental, since the earliest part of the EDC is evaluated to determine

the early decay time (EDT ), and it would be beneficial if this segment could be

determined as accurately as possible. In a slightly mitigated form, this argument

holds for the technical reverberation times as well.
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Table 6.1: Uncertainty contributions to impulse response measurements.

Symbol Uncertainty

contribution

bi u(bi)

[dB]

bLS-level 0.26

bMic-cal 0.21

bLS-spec 0.16

bMic-spec 0.15

bFilter 0.12

bMeteo-ϑ 0.12

bMeteo-p 0.07

Combined 0.44

uncertainty

uc(bs)

(a) Systematic effects.

Symbol Uncertainty

contribution

bi u(bi)

[dB]

bLS-dir 0.38

bSetup 0.35

bLTI 0.2

bMic-dir 0.07

bMic-field 0.011

– –

– –

Combined 0.56

uncertainty

uc(br)

(b) Random effects.

Expressing the decay process as the difference of two integrals, in which the

first part serves as a normalization, may indicate a solution. By normalizing the

EDC to 0 dB at t = 0, the first integral and thus the associated uncertainty is

dropped. The uncertainty of E(t) now rises steadily as t increases. Equation 6.2.3

can be expressed as a sum of discrete samples, yielding

E(sj) = 10 log10

1−

j∑
k=1

p2(sk)

∞∑
k=1

p2(sk)

 . (6.2.4)

The sound pressures p in Equation 6.2.4 contain the correction factors β for

random and systematic effects. βs can be separated from both sums and thus

canceled from the fraction entirely. As a result, only random effects are relevant

for the uncertainty of the energy decay curve. The energy of the sound pressure

in Equation 6.2.4 therefore depends on the correction term br as follows:

p2(sj) = p2
x(sj)100.2br . (6.2.5)

Based on the step-by-step procedure in Appendix C, the uncertainty of the

energy decay curve is given through:
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u2 (E(sj)
)

= 4

 1
∞∑

k=j+1
p2(sk)×

∞∑
k=1

p2(sk)


2

×

×


 ∞∑
k=j+1

p2(sk)

2
j∑

k=1

p4
x(sk) +

 j∑
k=1

p2(sk)

2 ∞∑
k=j+1

p4
x(sk)

×
× u2 (br) . (6.2.6)

The first factor’s denominator decreases as k increases which makes the overall

result of Equation 6.2.6 larger, thus confirming the introductory hypothesis. On

closer inspection, however, it becomes clear that this is not due to the notation

of the integral in Equation 6.2.3, but to the fact that the logarithm has a very

large slope for very small values. Uncertainties of small sound pressures are thus

greatly amplified.

Reverberation Times The energy decay curve is approximated by a linear re-

gression (Bronstein et al., 2015, 16.3.4.2), and the reverberation time is reciprocal

to the regression’s slope m:

TRT =
60

m
. (6.2.7)

Linear regression is a common analysis tool in research and technology. The

uncertainty discussion of both regression parameters is sometimes considered

an introductory problem in metrology (Wiese and Wöger (1999)[Ch. 5], Squires

(2001)[App. C]). Therefore, the reader is referred to Appendix C, in which the

uncertainty of reverberation times is discussed with respect to acoustical partic-

ulars. This leads to the following expression, in which l refers to half the number

of samples that fit into the reverberation time’s evaluation period and the EDC’s

evaluated dynamic range ∆L.

u2(TRT) =

(
2l − 1

2l

360

∆L(l + 1)(2l + 1)

)2 2l∑
j=1

(j − l)2 u2 (E(sj)
)

(6.2.8)

Equation C.2.9 identifies some of the factors that influence the reverberation

times’ uncertainty. The sum contains the weighted uncertainty of the EDC curve,

which becomes more and more uncertain as the running time of the decay progress
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increases. The squared weighting causes the early and the late decay to have

a stronger effect on the reverberation times’ uncertainty. The squared fraction

can be interpreted as a sensitivity coefficient that amplifies the result of the

sum. The variables in the fraction’s denominator are inversely proportional to

the reverberation times’ uncertainty, i.e., larger dynamic ranges ∆L and longer

reverberation times (=̂ larger l) reduce the uncertainty.

Clarity The starting point for the uncertainty discussion of the clarity metric

is its definition based on the works of Reichardt et al. (1974), its standardization

in ISO 3382-1 (2009) and its equivalent for discretely sampled impulse responses

p(si) as shown in Equation 6.2.9.

Cte = 10 log10

te∫
0

p2(t)dt

∞∫
te

p2(t)dt

=̂10 log10

ne∑
j=1

p2(sj)

∞∑
j=ne

p2(sj)

= 10 log10

ne∑
j=1

p2(sj)

ncp∑
j=ne

p2(sj) + Ecomp

(6.2.9)

= 10 log10

Eearly

Elate + Ecomp

Lundeby et al. (1995) add a compensation term to recognize the influence of

background noise. Comparable approaches to tackle the noise problem may exist,

but this reference is intended to point to a specific definition of an algorithm to

avoid making the uncertainty discussion ambiguous.

For the calculations that lead to the uncertainty, the reader is again referred

to Appendix C. Due to the way the input quantities are related to each other in

Equation 6.2.9 and due to the relatively complex algorithm to determine Lun-

deby et al.’s compensation energy Ecomp, the mathematical expressions become

convoluted quickly. Presenting a closed-form expression for the uncertainty of the

clarity metric hinders the flow of the arguments and does not aid understanding.

For the sake of brevity the solution is given in the Appendix C.

Definition - Deutlichkeit The definition metric as developed by Meyer and

Thiele (1956) is closely related to the clarity parameter through Equation 6.2.10.

Dte =
1

1 + 10−0.1Cte
(6.2.10)

Using Equation 2.3.2, this yields the uncertainty for the definition metric:
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u2 (Dte) =

(
∂Dte
∂Cte

)2

u2 (Cte)

=

 loge (10)

10

10−0.1Cte(
1 + 10−0.1Cte

)2


2

u2 (Cte) (6.2.11)

Strength To determine the uncertainty of the strength parameter as introduced

by Wilkens (1977), the required tools are already available. The starting point is

the standardized formula from ISO 3382-1 (2009) that is re-written to recognize

the discretely sampled impulse response. Identical to the strategy pursued in

the clarity metric’s uncertainty discussion (see Appendix C), the numerator in

Equation 6.2.12 can be understood as a sum of the energy components.

G = 10 log10

∞∫
0

p2(t)dt

∞∫
0

p2
10(t)dt

= 10 log10

∞∑
i=1

p2(si)

E10m
= 10 log10

Eearly + Elate + Ccomp

E10m

(6.2.12)

The denominator features the source’s free field energy at a 10 m distance. The de-

nominator’s uncertainty is, hence, identical to the uncertainty of the loudspeaker

level u(bLS-level) discussed in Section 4. Using Equation 2.3.2, the derivative of

Equation 6.2.12 with respect to each of the four variables leads to the following

uncertainty for the strength parameter

u2 (G) =

(
10

loge (10)

)2
(
u2 (Eearly

)
+ u2 (Elate) + u2 (Ccomp)(

Eearly + Elate + Ccomp
)2 +

u2 (E10m)

E2
10m

)
.

(6.2.13)

This notation suggests that the uncertainty of the early, late and compensated

energies, that were a result of the clarity discussion, can be readily applied here,

too. While mathematically correct, it needs to be recognized that unlike in the

clarity discussion, the correction term for systematic effects βs cannot be factored

and removed from Equation 6.2.12. Consequently, systematic effects have to be

recognized in Equation 6.2.13.

In this study, however, systematic effects still do not have to be recognized,

as differences in room acoustical quantities are evaluated to determine the pri-

mary measurement function. Based on elementary properties of the logarithm



72 CHAPTER 6. Uncertain input quantities of the measurement function

(Bronstein et al., 2015, 1.1.4.3), the difference in strength ∆G can be represented

as a simple fraction. In this notation, the free field normalization E10m and the

correction for systematic effects βs can be factored and canceled. This simplifies

Equation 6.2.13 to the point where the uncertainty of the free field reference can

be omitted and the uncertainty of the energies can be calculated according to

Equations C.3.3, C.3.4 and C.3.13.

Center time The uncertainty discussion of the center time metric follows the

sucessfully adopted path of the previous uncertainty discussion. First, Kürer’s

(1969) originally time-continuous definition is transformed into its time-discrete

equivalent. Next, to simplify the handling of the GUM’s Equation 2.3.2, the

arbitrarily chosen sample sk is isolated from the tc definition.

tc =

∞∫
0

tp2(t)dt

∞∫
0

p2(t)dt

=

∞∑
j=1

sjp
2(sj)

∞∑
j=1

p2(sj)

=

skp
2(sk) +

∑
j 6=k

sjp
2(sj)

p2(sk) +
∑
j 6=k

p2(sj)
=
skp

2(sk) + γk
p2(sk) + δk

(6.2.14)

This leads to the following expression for the uncertainty of the center time:

u2(tc) =
∑
∀k

(
∂tc

∂p2(sk)

)2

u2(p2
k) (6.2.15)

with

∂tc
∂p2(sk)

=
skδk − γk

(p2(sk) + δk)
2

=

∞∑
j=1

(sk − sj)p2(sj)(
∞∑
j=1

p2(sj)

)2
. (6.2.16)

For a complete uncertainty discussion, the partial derivatives of Equation 6.2.15

must be determined with respect to all uncertain variables. As this should gen-

erally include the sampling times sk, Equation 6.2.15 should also feature a sum

of the partial derivatives with respect to all sk. Since the uncertainty associated

with the sampling times u(si) is regularly regarded as insignificantly small, this

step can be waived.

As a first side note, the partial derivatives of the center time in Equation 6.2.16

differ significantly from the derivatives of the other quantities, as the coefficients

of the numerator’s sum are different for each k. Although these coefficients (as
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a function of k) differ from each other only by a simple shift operation, this

variation increases the memory requirement/computing time to determine u2(tc)

immensely. In light of the large number of collected impulse responses, this

analysis requires high performance computing.

As a second side note, the compensation energy was not considered when calcu-

lating the center time. This is due to the scaling by sj of the impulse response’s

individual samples p2(sj). Since the compensation energy only contributes mini-

mally to the uncertainty, more comprehensive calculations have been avoided for

the sake of simplicity.

Validating through redundancy

In view of the seemingly complex formulas for the single-number quantities and

their uncertainties, there is a need for thorough quality control: this validation

has been carried out in two stages. First, all equations have been independently

developed by two researchers, namely David Kliesch (as part of his supervised

master thesis) and Ingo Witew. Second, the analytic findings were compared to

Monte Carlo simulations.

This second validation stage is motivated by concerns that the relatively simple

standard GUM strategy (first-order Taylor approximation) may not be sufficient

to propagate the uncertainties correctly. After all, the extensions to the GUM

JCGM 101 (2008) provide alternatives for calculating error propagation with

Monte Carlo methods. These alternatives are significantly more costly to calcu-

late, but they should be preferred if the standard GUM method yields significant

errors.

From the large number of impulse responses in a given measurement series

(i.e., 16 960 RIRs), a smaller sample of almost 1 %, chosen to uniformly cover the

entire survey area, was taken. The uncertainty of the various room acoustical

parameters is available using the standard GUM method based on the previously

derived formulas. Additionally, the uncertainties for the validation subgroup

were determined using a Monte Carlo Method (JCGM 101, 2008). The validation

procedure used, however, was simplified to the point that a fixed number of 2000

Monte Carlo trials were carried out, in contrast to stopping after reaching a

dynamic termination criterion. Ideally, both strategies lead to the same results.

Thus, if the uncertainties determined with the standard GUM method are plotted

against the Monte Carlo uncertainties, the sample under investigation would have

to be located along the bisecting line between the coordinate axes.

Due to the random nature of the Monte Carlo method and the fixed trial size,

a residual dispersion of results is to be expected. However, when the results of

both calculation methods are sufficiently similar, this can be considered proof
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that the standard GUM method is sufficiently accurate. Such a result would also

suggest that the algorithms to calculate the GUM uncertainty were implemented

correctly and that they provides valid results. Conversely, however, it is not

conclusive to suspect an implementation error when both results differ greatly.

Instead, it must then be discussed whether the first-order Taylor approximation

is sufficiently accurate for the uncertainty discussion pursued here.

The calculation of the room acoustical quantities was also verified with two

independently implemented routines (i.e., the author’s own implementation and

the ITA-Toolbox for Matlab). Results of this comparison do no need a further

discussion, as both algorithms lead to identical results.

6.2.2 Results

Energy decay curve

The starting point for calculating the reverberation times is the energy decay

curve according to Formula 6.2.4. Figure 6.1 shows the EDC for an arbitrarily

chosen impulse response in blue. The uncertainty of the decay curve can be

determined from Equation 6.2.6, and is shown as the interval between the red

and the blue curves. Based on the assumed sample uncertainty of the input

impulse response of u(br) = 0.56 dB, the EDC is subject to an uncertainty of

about 0.03 dB. Since the relatively large dynamic range of the decay curve cannot

be reasonably displayed along with the relatively small uncertainty, the standard

uncertainty is amplified by a factor of 100 in the figure.

The dashed yellow line indicates the standard uncertainty determined using

Monte Carlo simulations with 2000 trials. Both calculations are based on the

same assumptions regarding the uncertainty of the individual samples of the

impulse response. The red and the yellow uncertainty curves are in very good

agreement.

On closer inspection, there is evidence that the standard uncertainty of the

EDC is not constant with 0.03 dB, but instead increases moderately with the

running time of the impulse response. This confirms the algebraic findings, but

the effect is very small and only becomes significant at very small amplitudes

when uncertainty rises above all limits. This can be seen in Figure 6.1 at around

3 s. Apart from such singularities, it seems to be helpful to have a single value at

hand to indicate the uncertainty of the EDC with about 0.03 dB.
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Figure 6.1: Measured energy decay curve (blue) and its 100-fold-amplified uncer-

tainty (dashed orange and yellow).

Reverberation time

The different reverberation times EDT , T10, T20 and T30 are determined from

the energy decay curve. While the drop in level between 0 dB and −10 dB is

evaluated to determine EDT , the level drop starting at −5 dB is analyzed for

the technical reverberation times Txx (ISO 3382-1, 2009).

Figure 6.2 shows the distribution of the measured early decay times and their

associated standard uncertainties for all of the surveyed auditoria. In general,

the early decay times fully cover a range from just above 0.5 s to just short of

3 s. This value range emphasizes the validity of the collected data set. Section 2.1

shows the significance of the modal quality factor on the variance of the sound

field over space and time. By covering a full range of reverberation times that can

be encountered in auditoria, the collected data set, hence, covers modal quality

factors over the full range as the driving force of spatial fluctuations.

With a standard uncertainty determined to be less than 1 ms, the EDT can

be calculated with sufficient accuracy for the vast majority of applications. In

a direct comparison of the EDT s’ uncertainty in Concertgebouw (orange) and

HSH Wuppertal (black), it can be seen that the uncertainty differs significantly

in both rooms. It is also noticeable that the uncertainties of the determined

reverberation times are not the same across locations in an auditorium: In both

Aula 1 (red) and Concertgebouw (orange), the uncertainty at the different sam-

pling fields differs. In order to identify the cause of these differences, a more

detailed investigation beyond the scope of the present study would be required.

An ad hoc investigation leads to the hypothesis that impulse responses with

high signal amplitudes (direct sound and isolated reflections) tend to yield larger

uncertainties in the reverberation time.
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Figure 6.2: Broadband early decay times and the associated standard uncertainty

in different auditoria.

Figure 6.3: Comparison of uncertainties for EDT determined with different meth-

ods. The red line marks the identity between both methods.

The validity of the uncertainty calculation can be discussed for EDT by con-

sidering Figure 6.3. In this figure, the uncertainties calculated using both valid

GUM methods are plotted against each other. Apart from the stochastic noise

of the Monte Carlo method, the results are identical, since they are clustered

around the red line that denotes the identity of both strategies.

For additional perspective, Figure 6.4 shows the range of T30 as measured in

the different auditoria. In principle, the data shows a similar pattern to Figure 6.2

for the EDT . Nevertheless, differences are evident, too: the uncertainty for T30 is

much smaller than that of the EDT , and the range of T30s measured in individual

auditoria is smaller. This makes the gaps in the covered range of values across

all auditoria slightly larger, but the basic argument regarding the suitability of
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the measurement results remains valid.

Figure 6.4: Broadband reverberation times T30 and the associated standard un-

certainty in different auditoria. The color palettes are the same as in

Figure 6.2.

Clarity

The range of values spanned by the measurements and their associated uncertainty

can also be reported for the clarity parameter. Figure 6.5 illustrates that the

auditoria for orchestral music (Concertgebouw Amsterdam, Historische Stadthalle

Wuppertal and Eurogress Aachen) show the lowest clarity values, whereas lecture

rooms and the rehearsal room feature successively higher values. Here, too, it can

be seen that the full spectrum of the reasonable clarity range is covered without

gaps. As before, these results underline the suitability of the data set.

To check the validity of the standard GUM method for the uncertainty discus-

sion of the clarity quantity, the results of the independent uncertainty calculations

are plotted against each other in Figure 6.6. The solid red line marks the identity

of both methods. Apart from the stochastic noise, a clear agreement of the results

is evident. This observation can be expressed more precisely through the broken

line that denotes to the linear regression. The similar slope of both lines indi-

cates that both methods lead to similar results. A small offset of 0.0008 dB [unit

u(C80)] between the two curves indicates that Monte Carlo simulations tend to

lead to higher uncertainties. A close examination of the uncertainty propagation

reveals that this difference is due to the approximation of the logarithm by a

first-order Taylor series. In light of the significantly higher computational costs

of the Monte Carlo method, this discrepancy of 0.0008 dB appears to be small

enough to be tolerated.
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Figure 6.5: Broadband clarity index C80 and the associated standard uncertainty

in different auditoria. The color palettes are the same as in Figure 6.2.

Figure 6.6: Comparison of uncertainties for C80 determined with different meth-

ods. The solid red line marks the identity between both methods.

The dashed line marks the linear regression of the data points.
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Definition

The results for the clarity parameter are by nature similar to the results of

the clarity quantity. For this reason, it is not particularly surprising that the

distribution of D50 shown in Figure 6.7 is similar to the distribution shown in

Figure 6.5. Since clarity can only assume values between 0 % and 100 %, Figure 6.7

shows very clearly that the collected measurement data cover the possible value

range quite well. The collected measurement data are thus suitable for answering

the research question.

Figure 6.7: Broadband definition index D50 and the associated standard uncer-

tainty in different auditoria. The color palettes are the same as in

Figure 6.2.

Figure 6.8: Comparison of uncertainties for D50 determined with different meth-

ods. The red line marks the identity between both methods. The

dashed line marks the linear regression of the data points.
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At this point it should be noted that, for algorithmic reasons, definition was

calculated directly from the impulse response, whereas its uncertainty was deter-

mined based on Equation 6.2.11 using clarity’s uncertainty as the input quantity.

Although this reduces the computational effort, it has the side effect that the

determined uncertainty is slightly larger. As with the clarity measure, Figure 6.8

shows that the Monte Carlo simulations lead to an uncertainty for the definition

quantity that is slightly higher compared to the uncertainty from the standard

GUM method. Just as before, the origin is found in the back-and-forth trans-

formations into and out of the logarithmic level domain, which is represented

inaccurately by the partial Taylor series. With a difference of just 0.0052 % [unit

u(D50)], however, the advantage of the significantly lower computational cost

makes it worthwhile to use the standard GUM method.

Strength

In general, the strategy pursued for the previously discussed room acoustical

quantities can be applied to the strength parameter, G, as well. Getting the

amplitude of G right, however, requires measurements with a calibrated sound

source. This additional effort was deliberately omitted because it was already

clear at the time of the measurements that this normalization factor would be

eliminated in the intended analysis. After all, in a pair comparison of strength

values at different measurement locations, the calculation rules for the logarithm

allow omitting common terms.

Figure 6.9: Range of the broadband strength index G and the associated stan-

dard uncertainty in different auditoria. Strength is normalized to the

respective mean value of the measured sampling area denoted by the

different colors. The color palettes are the same as in Figure 6.2.
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For the sake of completeness and continuity, Figure 6.9 shows the distribution

of strength relative to the sampling area’s mean. A little more relevant are

the results presented in Figure 6.10, since the comparison of the independent

uncertainty calculations is compared. On the grounds of the regression analysis,

a difference of 0.0004 dB [unit u(G)] is detectable in the uncertainty calculation.

This difference appears to be tolerable without limiting the validity.

Figure 6.10: Comparison of uncertainties for G determined with different methods.

The red line marks the identity between both methods. The dashed

line marks the linear regression of the data points.

Center time

Figure 6.12 shows the range of values and the associated standard uncertainty

of the center time. Here, too, it can be seen that with the measurements in the

various auditoria, it was possible to cover a very large range of values that can all

be expected in practice. Figure 6.11 shows that Monte Carlo simulations yield

an uncertainty for center time that is 0.0002 ms [unit u(tc)] higher than to the

standard GUM uncertainty. This discrepancy appears tolerable for the present

investigation.
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Figure 6.11: Compared uncertainties of tc for different methods.

Figure 6.12: Range and standard uncertainty of broadband tc in different audi-

toria.

6.3 Uncertainty of the sampling location

6.3.1 Introduction

For mechanical reasons of manufacturing tolerances, for economic reasons of

trying to limit the number of drives and for technical reasons of not being able to

control two actuators in Matlab at the same time, it is not possible to position

the microphones to within millimeter accuracy. This translates to uncertainties

regarding the measurement locations at which the room impulse responses were

recorded. This problem became apparent early in the design of the array. As

it was not possible to precisely control the microphones in the first place, steps

were taken to determine the measuring position as accurately as possible.
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Out of an affinity to acoustical solutions, and since electromagnetic tracking

methods for all 32 microphones did not represent an economically viable strat-

egy, the acoustical multilateration method was chosen to determine the actual

microphone position during the room acoustical measurement. As seen in Fig-

ure 6.13, a total of six small loudspeakers were mounted in the aluminum frame

of the measurement array. In addition to the primary room impulse responses to

determine room acoustical quantities at the 16 960 sampling locations, 6× 16 960

secondary impulse responses were collected to determine the direct sound’s ”time

of flight” between the small loudspeakers and the microphones.

Figure 6.13: Detailed view of small loudspeakers mounted in the measurement

setup’s frame structure.

Background - Multilateration

The first application of multilateration (in combination with triangulation) can

be traced back to the 1910s. Reportedly this technology was developed indepen-

dently by the Russians, Germans, French, Americans and very successfully by the

British to detect hostile artillery during World War I. From the time delay of the

firing boom between two microphones, the bearing to firing sites was determined.

The most common present day applications of multilateration are the NAVSTAR

or the Galileo global positioning systems. The topic is widely investigated with

a large number of different approaches and dialects. As an example, three inves-

tigations from the same year can be cited: Schau and Robinson (1987) describe

a procedure based on intersecting hyperboloids, Carter (1987) publishes about

the application of the PHAT algorithm and Smith and Abel (1987) report on a

closed-form least-squares solution. Acoustical applications cover a wide range as
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well, including the detection of aircraft and submerged vehicles (Torrieri, 1984),

video camera steering (Huang, Benesty, & Elko, 2000) or animal bioacoustics

(Militello & Buenafuente, 2007).

Against the background of the numerous research activities and the technical

maturity of the applications, it is not obvious whether and how an innovation

could be developed without long experience in this particular field of research.

At the time of implementation, however, literature review gave no indication

that such strategies had previously been implemented as (quasi) blind methods

(i.e., without exact knowledge of the sensor positions) or in room acoustical

applications.

6.3.2 Initial methodology

The principle of multilateration is based on the measurement of a wave’s arrival

times at a number of sensors under the assumption that the wave’s propagation

speed is constant and that the clocks at the receivers are synchronized. In the case

discussed here, the measured data can be interpreted after the deconvolution as if

the small distributed loudspeakers had emitted an impulse in their own respective

measurements. Due to the (constant) latency of the measurement system, this

impulse is delayed by tlatency before it propagates in a spherical wave through

the medium and eventually passes the microphones at the time tem. This relation

is expressed in Equation 6.3.1 and is visualized in Figure 6.14 through the red

circles.

tem =
Rem

c
+ tlatency (6.3.1)

with

Rem = |~xm − ~xe|2
c = 331.3 + 0.606ϑ

Rem denotes the distance between the emitter at ~xe and the microphone at ~xm.

c is the speed of sound as a function of temperature ϑ.

Equation 6.3.1 can be set up for each combination of the six ”position loud-

speakers” and the 16 960 microphones. This system features 101 760 equations

with 50 900 unknown variables, i.e., three position coordinates for each of the mi-

crophones and the loudspeakers and the temperature and latency. The unknowns

can be determined (see Equation 6.3.2) by a Levenberg-Marquardt nonlinear

least-squares optimization approach (Marquardt, 1963).
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Figure 6.14: Comparison of time-of-arrival (red) and time-difference-of-arrival

(blue) approaches to detect a source’s position. The emitter positions

are marked by blue X (after Kaune (2012)).

min
~xm∈R3\~0
~xe∈R3\~0

tlatency∈R+

ϑ∈R\∞

|~tem,measured − ~tem| (6.3.2)

This formulation raises the problem that for ~xm, ~xe = ~0 and ϑ→∞, there is a

singular solution that is not particularly reasonable, and that the solution space

is indifferent to rotations and scaling. These challenges can, however, be avoided

by choosing an iterative method through which the speaker and the microphone

positions cannot be optimized at the same time. In addition, the solution space is

subject to a rotation normalization by minimizing the variance of the microphone

positions along the z-axis.

For a good optimization of the problem it is important to have an accurate

measurement of the arrival times of the direct sound. Here, the time of arrival

of the direct sound is defined as the time sample of the highest amplitude’s

absolute value. Alternative definitions that rely on the first rising of the signal

amplitude above a pre-defined level (e.g., ISO 3382-1 (2009)) were not proven to

be very effective, as the coincidental detection of local extrema would introduce

a significant variation in the detected time-of-arrivals. Establishing the absolute

maximum leads to much more accurate results, but the measured times are still

uncertain by ±0.012 ms because of the sampling rate of 44.1 kHz. What may

not appear at first glance to be problematic corresponds to an uncertainty of

the distance measurement of some 7 to 8 mm depending on the prevailing speed

of sound. However, since the band-limited signal can be perfectly reconstructed
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(a) With outliers. (b) Corrected.

Figure 6.15: Detected arrival of the direct sound.

below Nyquist and Shannon’s cutoff frequency, there is no good reason to reduce

the accuracy of the optimization due to uncertain input data.

Through trial and error, it was determined that by applying up to a 100-

fold upsampling to determine the time-of-arrival, the accuracy of the optimiza-

tion could be improved. The upsampling results in a theoretical accuracy of

±0.11 µs≈̂ ± 39 µm for the arrival time measurement. This may be a limitation

due to the clock jitter, which the manufacturer of the hardware quantifies as

”less than 5 ns”. In contrast to the discussion before, however, the uncertainty in

the time-of-arrival measurement is very small compared to the time it takes for

the sound wave to travel through the entire array. This difference in orders of

magnitude constrains the uncertainty of the output to very small and potentially

negligible values (Carroll et al., 2006, Ch. 2).

Another aspect that is detrimental to the accurate determination of the arrival

time is the false detection of reflections. Due to the high directivity of the small

loudspeaker diaphragms and due to nearby surfaces, there is the occasional prob-

lem that a later reflection features a higher amplitude than the (off-axis) direct

sound. In such situations, the measured arrival times are far too late. This large

time difference between adjacent measurement locations and the knowledge that

the earlier arrival time is the ”better” time makes it relatively easy to adjust the

search interval for the direct sound maximum. Figure 6.15 shows a particularly

error-prone example in which the initial falsely detected times-of-arrival, on the

left, have been identified and corrected, yielding the distribution shown in the

right.
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(a) Overview with loudspeakers (red). (b) Detailed view with expanded z-axis.

Figure 6.16: Multilateration results: Microphone and loudspeaker positions.

6.3.3 Results

The results of the multilateration can be seen exemplarily in Figure 6.16. The

left picture shows how this approach can be used to determine generally plausible

microphone positions: the red dots mark the detected positions of the loudspeak-

ers. On closer examination of the identical results shown in the right-hand image,

it becomes clear that the z-dimension follows a position-dependent systematic

trend. Even when this wave pattern does not appear to be particularly large

relative to the dimensions of the sampling area, these results fall short of the

author’s initial expectations.

Accuracy of the estimation

Considering the working principle of the measurement robot, the wide range in

z-coordinates shown in Figure 6.16 feeds the suspicion that not all positions were

estimated with the same accuracy. On the assumption that the normality of the

involved uncertainty distributions can be maintained, Donaldson and Schnabel

(1987) present a strategy that permits quantifying the confidence region of a

nonlinear optimization’s result (i.e., the determined microphone positions) based

on the equation system’s Jacobian matrix. Considering that the Jacobian is the

first-order partial derivative of a vector-valued function (Bronstein et al., 2015,

12.8.2), the analogies to the multi-dimensional standard GUM method become

obvious. Consequently, the normality prerequisite of the Donaldson and Schnabel

(1987) method coincides with the fundamental assumption of this investigation,

and can be justified for the same reasons.

The uncertainties of the determined microphone positions (as the `2-norm) are

shown in Figure 6.17 through the color of the position markers. In addition, the
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(a) Spatial distribution. (b) Uncertainty histogram.

Figure 6.17: Uncertainty of the detected microphone positions.

uncertainty histogram plotted in the right image permits a second perspective.

These images show two aspects: First, the initial suspicion that the wave pattern

in Figure 6.16 is a (general) indication of estimation’s uncertainty is confirmed

by Figure 6.17. Second, it can be seen that standard uncertainties of up to 40 cm

can hardly be interpreted as sufficient for the intended purpose.

6.3.4 Revised methodology

These results support the wish to modify the optimization strategy to increase

accuracy. The observation of the measurement process (see Section 5) provides

a useful starting point: The design of the measurement setup features a carbon

truss from which the 32 microphones are lowered on rigid carbon tubes. This im-

plies that each of the microphones may have individual elevations (z-coordinates):

however, along the path each microphone travels, all of the respective 530 mea-

surement positions must have the same z-coordinate. This reduces the degrees

of freedom from 50 900 to only 33 972. By exploiting this additional boundary

condition, the underlying system of equations is significantly better conditioned,

and thus yields much smaller uncertainties.

6.3.5 Results

For the same data discussed in Figure 6.16, the uncertainty of the microphone

positions based on the revised conditions are shown in Figure 6.18. The confi-

dence intervals are now more evenly distributed over the sampling areas that

the different physical microphones cover. Additionally, the color coding and the

histogram data give evidence that the standard uncertainty has been significantly

reduced to less than 1 cm. Changes of several orders of magnitude are no longer
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(a) Spatial distribution. (b) Uncertainty histogram.

Figure 6.18: Uncertainty of the detected microphone positions for the revised

optimization approach. Compared to Figure 6.17, the color coded

display range has been reduced by a factor of 100.

very easy to display graphically on a linear scale; therefore, the color scaling has

been changed by a factor of 50 when comparing Figures 6.17 and 6.18.

Validation

Since it is not automatically guaranteed that over-determined optimization prob-

lems converge towards the absolute minimum when they are solved, an indepen-

dent validation is appropriate. The data collected in some auditoria, through

repeated measurements with relative loudspeaker and microphone positions es-

sentially unchanged, offer the opportunity to determine whether the independent

multilateration yields comparable results. For the sake of brevity, a representative

and average case is discussed here.

In the rehearsal room seven measurement series were run in which neither

the loudspeaker positions nor the z-coordinates of the 32 microphones were

changed. For each of the series, the microphone and loudspeaker positions were

determined based on independent measurement data and respective optimizations.

Figure 6.19 shows in blue the standard deviation of the seven determined z-

coordinates for each of the microphones. As a comparison, the average over seven

68 % confidence intervals based on Donaldson and Schnabel (1987) is displayed in

red. The z-coordinates from the 7 multilaterations exhibit a standard uncertainty

of about 0.51 mm, whereas Donaldson and Schnabel’s algorithm predicts an

average standard uncertainty of 0.37 mm.
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Figure 6.19: Comparison of different methods to determine the uncertainty of

the multilateration.

6.4 Discussion

The discussion of the results presented here is divided into the uncertainty of

room acoustical quantities and the uncertainty of determining the microphone

positions.

As far as the uncertainty of room acoustical metrics is concerned, the methodol-

ogy of the standard GUM procedure appears appropriate compared to the Monte

Carlo procedure. Although there are differences in both methods, especially for

logarithmic quantities, the differences are so small that the higher costs associated

with stochastic simulations are disproportionate.

The uncertainty of measured room acoustical quantities (Section 6.2) is rela-

tively low compared to the quantities’ absolute values, the variations within a

room and the variations between different rooms. The presented results depend

on the properties of the measurement chain discussed in Chapter 4. When using

a measurement chain with other elements, the elements’ respective uncertainties

must be taken into account.

Considering the wide range of contexts in which measurements are taken, in

some conditions greater uncertainties in determining room acoustical quantities

could be tolerated. Based on the considerations presented here, these reduced

uncertainty requirements could be translated into less rigorous demands on the

measurement equipment. In such scenarios, room acoustical metrics could be

determined with rather simple measurement equipment.

Since the uncertainty of the room acoustical parameters has not yet been

investigated with the methodology discussed here, there is, unfortunately, a lack

of references against which to compare these results. Clearly, the uncertainties

associated with measuring room acoustical quantities seem low enough for the
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intended discussion of the central research question.

The second part of this discussion focuses on the multilateration’s uncertainty.

The determined microphone positions show that the sampling is not perfectly

regular over the covered area. Since the knowledge of the sampling locations is

of central importance to determining the measurement function, it is reasonable

to go through the efforts described here to determine the measurement locations

as precisely as possible.

With the approach described here, the relative measurement position can be

determined to a few millimeters. In acoustics, this uncertainty seems almost

unheard of and absurd, since it is already on the order of magnitude of the

microphone’s capsule and membrane, and even the acoustic wavelength. The

latter aspect in particular should encourage caution in considering such (low)

uncertainties. It is probably due to the three-fold overdetermination of the system

of equations, and the associated averaging effects, that the measurement locations

can be determined so precisely when wave effects would not initially support this.

Because the influence of the measurement position on room acoustical mea-

surements is precisely the target of the investigation pursued here, it is promising

that the sampling locations can be determined with an accuracy that is signif-

icantly higher than that of the sampling grid, and also more accurately than

the underlying driving forces, i.e., decorrelation of the sound field over space

(Bodlund, 1977). Compared to other investigations (Akama et al., 2010; Barron,

1984; J. S. Bradley, 1996; Lokki, 2013, and others), where measurement posi-

tions are given relative to reference objects such as numbered seats, the accuracy

determined here appears absolutely adequate.

It can be summarized that the methods described here allow determining the

expected value, and the associated standard uncertainty, of both room acoustical

quantities and measurement positions with a precision that allows setting up the

measurement function in the following section.

6.5 Conclusions

� The uncertainty of room acoustical quantities due to uncertainties of the

acoustical measurement equipment was determined.

� The relative uncertainty of room acoustical quantities is low enough for

most applications.

� Measurement positions can be determined with an uncertainty of a few

millimeters using an acoustical multilateration approach.
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� This position uncertainty is sufficient for the general purpose of this inves-

tigation.

With these findings, the uncertainties of the sampled sound field data are fully

known, and can be processed in the next chapter to establish the measurement

function.



7
Measurement function

7.1 Introduction

This chapter discusses the measurement function and how it is established. In

regard to the central research question, this function shows how the sound field

changes based on a given distance between two sampling positions. This pro-

vides the essential relationship required for an ISO Guide 98-3 (2008) compliant

discussion of uncertainties in room acoustical measurements. In this framework,

the distance between the measurement positions is understood as the input vari-

able and the average change of room acoustical quantities (over this distance)

as the output variable. For a summary of the rationale behind the uncertainty

discussion, the reader is referred to Chapter 2.3.2.

On a smaller scale, a discussion on the uncertainty of room acoustical param-

eters was performed in Chapter 6. With the various room acoustical quantities

defined in ISO 3382-1 (2009), the measurement function was available there as an

analytical expression. Here, in contrast, due to the numerous boundary conditions

that define the sound field in rooms and the boundaries’ complex relationships,

an analytical expression for the measurement function is not to be expected. In

accordance with the GUM procedure, however, it is also a valid alternative to

determine the measurement function empirically (ISO Guide 98-3, 2008, 5.1.4).

In the analytical case, measurement uncertainties can act on the uncertainty

propagation only if input variables of GUM type B are considered. In the empirical

case, however, the input and the output to the system are both surveyed in

(uncertain) measurements. Since the measurement function depends entirely on

uncertain data, it is uncertain, too. In order to avoid a bias (Carroll et al.,

2006, Ch.3) when assuming model variables have been measured exactly, subtle

adjustments to the reasoning behind measurement functions are required. This

section is, thus, to discuss the processing that transforms the measured raw data

into a suitable measurement function.
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Available raw data from measurement series

The foundation for the experimental approach is the data collected through 26

series of measurements in 6 different auditoria (see Section 5). Figure 7.1 provides

an example and shows the broadband distribution of room acoustical quantities

measured across the sampling area in Eurogress Aachen. This particular scenario

shows that the measured quantities vary over a range indicated by the color bar

in the respective images. Depending on the room acoustical quantity, fluctuations

are evident both on a local scale of a few decimeters and on a larger scale (of a few

meters) through gradients from front to back or left to right. In ideal cases, each set

of these measurements consists of 16 960 RIRs that were uniformly measured over

a sampling area of 5.3 m × 8.0 m in a rectangular 5 cm resolution grid. Deviations

from this ideal case exist as a result of the inevitable impediments in practical

measurements of this complexity. These shortcomings manifest in a few invalid

impulse responses and in the uncertainties of both the determined measurement

locations and the calculated room acoustical quantities (see Section 6).

7.2 Establishing the measurement function

7.2.1 Methodology

Identifying influence quantities and output measurand

The central research question of this entire study is to investigate how the sound

field changes from one position to another. To make this target both measur-

able and quantifiable, suitable variables need to be identified that can serve as

ISO Guide 98-3 (2008) conforming input and output quantities (see Figure 2.6 in

Section 2.3.2). Quantifying the ”sound field” based on room acoustical quantities

Q (ISO 3382-1, 2009) is straightforward and relatively easy. The ”change from

one position to the next”, however, refers to an aspect that cannot be obtained

from the collected measurement data directly. As a solution, a difference in posi-

tion between two locations A and B can be expressed reasonably well through

the distance d = |~d| = |~rA − ~rB |. This distance can be recognized as the input

quantity (that would be displayed along the x-axis in Figure 2.6). The associated

change in room acoustical quantities ∆Q is then the output quantity (shown

along the y-axis in Figure 2.6).

It may seem that this interpretation exceeds the capabilities of the standard

GUM framework: Although the sound field property Q can only take a single

value at each position, a given distance between two sampling points is not

unique. As a result the sound field can change over a given distance in different

ways. Statistically, this range of possibilities can be represented by a probabil-
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ity distribution. The model function f then no longer represents a real-valued

transform, but rather a continuous probability density function f∆Q(d), in which

the probability of a change in the sound field ∆Q is given as a function of the

distance d.

(a) Early decay time EDT . (b) Reverberation time T20.

(c) Clarity C80. (d) Strength G.

Figure 7.1: Broadband distribution of room acoustical quantities at Eurogress

Aachen.

This abstraction comes at the price of a sound field’s global (or larger scale)

properties being represented with a loss of information. Taking the example of

Figure 7.1a, it is evident that EDT systematically exhibits higher values in the

left part of the sampling area than in regions in the center or in the right. Such

patterns appear in f∆Q(d) as wide distributions and indicate that, at a given

distance, there is a relatively high probability for large ∆Q and small ∆Q at

the same time. This means f∆Q(d) preserves the information that characteristic

spatial trends occur in the sampled sound field even though the details of the exact

location are discarded. To permit the most general possible discussion as possible

and to cover the widest possible range of applied scenarios, this abstractions
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seems justifiable.

Introducing a PDF to characterize a measurement process presents a view that

needs to be reconciled with the GUM framework’s basic take on measurement

functions and the propagation of uncertainties. Although not stated specifically

in the GUM, the principle of uncertainty propagation implies a function that

maps the input to a unique output. Such a requirement would seem to contradict

f being a probability density function that maps a singular input value to a

(probable) range of output values. The discussion by Kacker, Sommer, and Kessel

(2007), however, relates Bayesian statistics to JCGM 101 (2008)2 and thus to

ISO Guide 98-3 (2008). Today, Monte Carlo methods are an accepted (GUM

conforming) tool to propagate uncertainty distributions through measurement

functions. In order to avoid probabilistic measurement functions, f∆Q(d) can be

seen as a likelihood function L(d|∆Q) that represents the probability of a change

in room acoustical quantity ∆Q based on the parameter (,true or given value)

d. Kacker et al. argue that a likelihood function can be interpreted as the input

variables’ PDFs sampled through the Monte Carlo method (JCGM 101, 2008),

and is thus in line with ISO Guide 98-3 (2008). This perspective recognizes the

Monte Carlo method as a statistical (Type A) evaluation of data to arrive at

an estimate xi of the input quantity Xi. In this discussion, the measurement

function is a straight line with slope c = 1 that maps ∆Q to ∆Q.

Degrading the measurement function to a neutral element may seem like a

harsh cut on interpretative leeway and not very descriptive from a room acoustics

standpoint. For this reason, the original interpretation of a probabilistic measure-

ment function is preferred. The considerations by Kacker et al. (2007) serve as

evidence that GUM conformity is provided.

The introduction to this chapter highlighted the need to recognize the inherent

uncertainties of observed input and output variables when the measurement

function is to be determined empirically. The uncertainties of the room acoustical

quantities and the measurement positions were determined in Chapter 6.

Comparing two individual measurement positions

To start, two arbitrary microphone positions A and B in the sampled sound field

are considered. Both measurement locations are characterized by their Cartesian

coordinates r1, r2 and r3 and their respective uncertainties u(r1), u(r2) and

u(r3). In the acoustical domain, both positions are defined through their impulse

responses, the derived room acoustical quantities and the associated uncertainties.

2 At the time of publication, Kacker et al. (2007) were refering to the final draft version of

JCGM 101 (2008).
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The input quantity of the measurement function is the distance between the

two microphones given through the `2-norm

d =

√√√√ 3∑
k=1

(rk,A − rk,B)2 (7.2.1)

and the associated variance

u2(d) =

3∑
k=1

((
∂d

∂rk,A

)2

u2(rk,A) +

(
∂d

∂rk,B

)2

u2(rk,B)

)

=

3∑
k=1

(
rk,A − rk,B

d

)2 (
u2(rk,A) + u2(rk,B)

)
(7.2.2)

The measurement function’s output quantity is the difference of the room

acoustical quantities ∆Q determined at the positions A and B. Based on Equa-

tion 2.3.2, ∆Q’s variance is the sum of the individual parameters’ variances at

the respective measurement positions:

u2 (∆Q) = u2 (QA) + u2 (QB) . (7.2.3)

Following the considerations in Section 6 and the standard GUM method

(ISO Guide 98-3, 2008, 4.3.4), both u(d) and u(∆Q) are assumed to be normally

distributed. In this initial step, for a single pair of microphones, the parameter-

distance relation that forms the measurement function can be set up as a two

dimensional Gaussian distribution:

p (~x; ~µ,Σ) =
1

2π
√
|Σ|

exp

(
−1

2
(~x− ~µ)TΣ−1(~x− ~µ)

)
(7.2.4)

with

~x =

(
|d|
|∆Q|

)

~µ =

(
|d|
|∆Q|

)

Σ =

(
u2(d) 0

0 u2 (∆Q)

)
.

Equation 7.2.4 takes the distance d and the change in the sound field ∆Q in

absolute value. Fundamentally, omitting the algebraic sign is due to the original
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sample’s finite statistical degree of freedom. Considering a given microphone pair

more than once, perhaps by discussing the change of the sound field from position

A to B and vice versa, cannot add new information and would only result in

p (~x; ~µ,Σ) being reflected on the coordinate axes. Recognizing the magnitude

alone suppresses this redundant part of the probability density function without

affecting its shape.

Generalizing to compare numerous measurement positions

Discussing a single pair of microphones only serves as the initial step to demon-

strate an elementary relation. It is obvious that the additional microphone pairs

have to be evaluated in order to establish a more generally valid relationship.

This can be achieved using the m = 16 960 sampled microphone positions in each

data set and the resulting

m−1∑
k=1

k =
m(m− 1)

2
= 143 812 320 (7.2.5)

possible pair comparisons (Bronstein et al., 2015, 1.2.4). To the extent that these

individual draws contribute equally to the total population, the total probability

density function results from the sum of the individual probability densities and

a normalization according to Equation 7.2.6.

pc (~x) =

∑
∀d\0

p (~x; ~µd,Σd)∥∥∥pc∥∥∥ (7.2.6)

Numerical handling of the probability density functions

With the high number of possible pair comparisons, it quickly becomes clear

that an analytical expression to describe the combined distribution (i.e., Equa-

tion 7.2.6) is not very practical, as it is costly to evaluate at a large number of

observation points. Both the computational cost and the complexity can be re-

duced by spatially sampling the contributing two-dimensional Gaussian probabil-

ity distributions. This approach replaces computational complexity with memory

requirements, but also introduces sampling and truncation errors. The conditions

under which these defects can still be tolerated need to be investigated.

The investigations by Genz (1992) and Genz and Kass (1997) raise doubts

that the numerical integration over infinitely extended functions with dominant

peaks (e.g., normal distributions) is not a trivial problem that readily converges.

To address this sampling and truncation question, this study uses Genz’s notion
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that the numerical integration over a sampled normal distribution is a Riemann

sum. In simulation series, which are not reported further here, it was observed

that the error falls below 2×10−15 when the standard normal distribution was

sampled at a resolution of at least 2 samples per standard deviation and to a

width of at least 8 standard deviations (see also Bronstein et al. (2015),8.2.5-5).

Errors due to deviations from classical Riemann sums through nonsymmetrical

sampling of the Gaussian distribution are taken into account, and the presented

remaining error is considered negligible in the context of this study.

Normalizing probability densities

In the context discussed here, the measurement function is a probability density

function. As such, its full integral must equal 1, as shown in Equation 7.2.7.

+∞∫
0

+∞∫
0

f(d,∆TEDT) dd d∆TEDT
!
= 1 (7.2.7)

7.2.2 Results and discussion

Due to the methodology of the previous section, the measurement function is

the two-dimensional probability density function (PDF) showing the probability

of a given change in room acoustical quantity at a given distance between sam-

pling points. Figure 7.2a is as an example of the PDF for the early decay time

as measured in Eurogress Aachen (set 6). The figure illustrates the statistical

properties of the analyzed data through color coding, marking likely changes in

the sound field in yellow and rare combinations of d and ∆EDT in blue.

These data’s suitability for more global conclusions depends on them not being

statistically distorted by the sampling. Potential distortions can be studied by

looking at Figure 7.2b, which shows the distance distribution between sampling

points as they occur in the surveyed 5.3 m × 8.0 m area. Thus, the distance

distribution is a sum of many single-variate Gaussian distributions. The shown

”probability of occurrence” along the y-axis is qualitative as it depends on the

number of samples that contribute to the distribution. The vertical broken lines

in Figure 7.2b mark the dimensions (and the halves) of the sampling area. It can

be seen that the shape of the distance distribution changes at these distances.

Influence of the finite sampling area

The shape of the curve shown in Figure 7.2b and the significance of the charac-

teristic distances can be understood by realizing that the number of contributing
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(a) Likelihood of a change in EDT at a
given distance between microphones.

(b) Distance distribution between sam-
pling points.

Figure 7.2: Raw data of the pair comparison in EDT at Eurogress Aachen.

data points is based on a simple complete pairwise comparison of all microphones.

Figure 7.3 illustrates important relations between microphone pairs under the

paradigm that the comparison pattern is run sequentially from top to bottom

and from left to right: For a fixed distance d, when comparing microphone A with

B, B can only be located on the semicircle around A. As a result, the number of

microphones B at a distance d from A increases linearly with the circumference

of the drawn semi-circle. Figure 7.2b shows this very clearly for pairs of micro-

phones at very short distances. Due to the spatial quantization, the directional

distribution of the distance vector ~d is discrete, but uniformly distributed over

the angle around A.

Figure 7.3: Pairwise comparison of the microphones in the sampling field.

For microphone positions A close to the sampling area’s upper or lower bound-

ary, the red semicircle in Figure 7.3 can be truncated. When A is closer than
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d to the upper boundary, the directional distribution of ~d features a truncated

number of ”back-front” pair comparisons and is thus imbalanced. The same hap-

pens inversely to horizontally symmetric microphone positions A′ close to the

lower boundary. In sum, both truncations compensate each other, leading to an

overall uniform directional distribution of ~d.

For microphones A that are close to the right boundary there is no comple-

ment to the truncated distribution, as the pair comparison is simple (, illustrated

through the right semicircle in Figure 7.3). At very small distances d, the im-

balance due to ”missing” complements is negligible. With increasingly longer

distances, the skewedness becomes more and more significant and can be seen

in the gradual flattening of the distance distribution in Figure 7.2b as the curve

approaches the red vertical line from the left.

As d exceeds 2.65 m, the blue semicircle in Figure 7.3 is simultaneously trun-

cated at the top and the bottom. This reduces the number of possible pair com-

parisons and skews the directional distribution of ~d. As d approaches the violet

line at 5.3 m in Figure 7.2b, there are increasingly more ”left-right” comparisons

relative to ”front-back” or ”back-front” pairs.

At even larger distances, the directional distribution of ~d becomes more and

more restricted. All these observation also hold for the probability density func-

tion in Figure 7.2a, as the PDF shows higher probabilities at distances between

pairs of microphones that are particularly likely in the sample. The finite size of

the sampling area thus comes with negative side effects that need to be compen-

sated.

Sampling-induced cluster points

Both in the distance distribution and the PDF in Figure 7.2, structures at regular

intervals of about 5 cm are visible along the x-axis. An extensive root cause

investigation identified two contributing factors.

First, the design and operation of the measuring system (see Chapter 5) permits

placing the microphones at positions of different accuracies along individual

coordinate axes. As the 32 microphones are rigidly linked together, relative

measurement positions along the carbon truss can be controlled very accurately.

In the perpendicular direction, the truss’ position is only partially controlled by

the roller bearing.

In the grid of microphone positions, distances along the carbon truss occur very

regularly and accurately, which leads to local maxima in the PDF at multiples of

the sampling resolution. Along the perpendicular dimension, the sampling posi-

tions are arranged on average just as densely; however, the distances between any

two samples are distributed much more widely. This phenomenon is particularly
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evident in the distance distribution in the 7-8 m range. The distances plotted

here are mainly composed of components along the carbon truss. Due to their

relatively high precision, these distances cluster in particular regions. At smaller

distances in the interesting range, below 5.3 m, the effect is still recognizable

but far less pronounced. This phenomenon can be recognized in the probability

density distribution because the sound field changes differently along the two

sampling dimensions. This shortcoming cannot be corrected. Its significance is

discussed in Chapter 8, along with the general properties of the measurement

function.

(a) Likelihood of a change in EDT at a
given distance between microphones.

(b) Distance distribution between sam-
pling points.

Figure 7.4: Close-up of the raw data of the pair comparison for EDT at Eurogress

Aachen.

The second factor becomes evident at very small distances, near the origin,

as shown in the close-ups in Figure 7.4. Both tiles show potential voids in the

distribution density. These gaps in the curve occur at distances that are covered

by particularly few pairs of microphones. Distances between microphones other

than 5 cm,
√

2 · 5 cm, 2 · 5 cm, . . . , cannot theoretically be achieved in a perfectly

equidistant sampling grid. Deviations from the ideal positions evidently occurred

for the reasons just discussed; however, they apparently occurred at a much

lower frequency than anticipated. This leads to a low number of data points at

small distances that fall between the perfect sampling grid. This phenomenon is

almost identical to the modal density of sound fields in rooms at low frequencies

(Schröder, 1954). The consequences are discussed at the end of Section 7.3.2.
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7.3 Compensating the effect of a finite sampling area

7.3.1 Methodology

The previous section discussed how the finite sampling area leads to a nonuniform

distribution of distances d between microphone pairs and a skewed directional

distribution ~d. To illustrate the compensation strategy, it is helpful to consider

Figure 7.5. In this diagram, two equidistant pairs of microphones are marked

by the red and blue vector arrows. The overall sampling area is shown by the

graph’s boundary.

Figure 7.5: Systematic drawing of the sampling area to illustrate the distribution

of distances between compared microphones.

Based on an ideal rectangular sampling pattern, there are many pairs of mi-

crophones that have the same spatial relation ~d to each other. For the indicated

red and blue arrows respectively, the number of such ”identical pairs” is pro-

portional to the hatched areas. A comparison of the blue and red areas suggest

that there are more ”red” than ”blue” microphone pairs leading to a bias to-

wards left-right comparisons rather than front-back relationships. This bias can

be compensated by introducing to the elementary Gaussian distribution in Equa-

tion 7.2.4 a weighting factor wdir, that is reciprocal to the number of pairs with

the same relative spatial relationship n~d.

This line of argument holds for distances between microphones of up to 5.3 m.

Beyond this point, the shorter edge of the sampling area is smaller than the

observed distance between microphones which leads to preferential directions of ~d.

This distortion of the directional distribution cannot be corrected. Consequently,

distances greater than 5.3 m must be excluded from the discussion.

The remaining ”nonuniformity” of the distance distribution in Figure 7.2b, due

to the linearly rising number of pairs with a given distance to each other, can
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be compensated using Bayes’ Theorem (Bronstein et al., 2015, 16.2.1.3). The

probability density of the change in a room acoustical quantity, based on the prior

condition that two sampling points have a given distance between each other,

can be calculated by normalizing the probability density function according to

Equation 7.3.1.

+∞∫
0

f(d,∆TEDT) d∆TEDT
!
= 1 (7.3.1)

The resulting probability density function serves as the measurement function

in line with the GUM framework.

7.3.2 Results and discussion

Figure 7.6 shows the probability density of a change in EDT when the effects

of the finite sampling area are compensated. Compared to the original PDF

in Figure 7.2, the revised distribution no longer shows the skew towards larger

distances.

Figure 7.6a is a visual display of the likelihood function for the distance param-

eter d < 5.3 m plotted along the x-axis. The y-axis shows the change in EDT

that can occur in the sampling field. The color coding indicates whether a change

in EDT at a given distance between microphones is relatively likely (yellow) or

improbable (blue). For the presented range of distances, the yellow color tones

indicate that it is most likely that the sound field between two sampling points

does not change, and that both points exhibit the same decay time. Changes in

EDT between sampling points are evident, but they occur less frequently as |∆s|
increases. For the chosen parameter of d = 1 m and d = 5 m, the vertical ”slices”

through the likelihood function in Figure 7.6a are shown as separate curves in

Figure 7.6b. It can be seen that the distribution for the short distance (blue) is

narrower than the distribution for d = 5 m (red). This means that large changes

in EDT are less likely at shorter distances than they are at longer distances.

Both curves in Figure 7.6b are very similar and show a great visual resem-

blance to a half-normal distribution. With this similarity it is clear that wider

distributions have a lower maximum at ∆EDT = 0. The same trend is visible

in Figure 7.6a, where the color tone for the maximum probability of occurrence

changes from yellow to orange as the distance increases. At the same time, it

is evident that the color gradients are distributed over a wider ∆s range as d

increases.

This trend is indicated a bit more clearly by the red line in Figure 7.6a. Building

on the similarity to the half-normal distribution, the red curve shows the 68.3 %
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(a) For distance parameter: 0 < d < 5.3 m. (b) For distance parameter: d = 1 m, 5 m.

Figure 7.6: Likelihood L(d|∆EDT ) of a change in EDT at Eurogress Aachen.

quantile for each of the sliced distributions as a function of distance d. Starting

from the origin, the quantile function (red) makes it evident that the distribution

widens rapidly even for very small distances. After this initial rise, the curve

flattens for larger distances and shows only a very moderate increase in its

extended trend.

Other room acoustical quantities show a very similar trend when plotted like

in Figure 7.6. The main target in this chapter, however, is to discuss the proce-

dure that leads to the measurement function. For the connection between room

acoustical quantities and the validity of the measurement function, the reader is

referred to Chapter 8. There, Figures 8.2 to 8.9 show the 68.3 % quantile function

for different room acoustical parameters in different auditoria.

When looking at smaller distances (of less than 5 cm), it becomes noticeable

that individual and isolated areas exhibit very high probabilities of occurrence

(single yellow pixels). In contrast, the distribution at larger distances extends

continuously over a whole range of room acoustical quantities. This is clearly

related to the previous observation (Figure 7.4) that at some distances there

are relatively few pairs of compared sampling positions that contribute to the

PDF. This sparse sampling of the sound field may lead to implausible predictions

about how the acoustics change at the shortest distances (d . 5 cm) between

two measuring points. At larger distances (d > 5 cm), the continuous trend of

the 68.3 % quantile function suggests that the distributions of distances overlap

to an extent that the impairment is no longer significant.
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7.4 Reducing the complexity

7.4.1 Methodology

Transition to the quantile function

Although the color gradient in Figure 7.6 completely represents the available

information of the given example, this visualization has disadvantages in a quan-

titative discussion because the colors can only be compared inaccurately. In

statistics, it is a common strategy to parametrize probability densities and thus

compare characteristic quantities. Specifically, when normality can be assumed

in all likelihood, attention can be shifted from the PDF’s characteristic shape to

the respective change in variance σ2.

This line of argument is pursued for the present data set, too. For each of the

data sets and each of the distances, it was investigated whether the average change

in room acoustical quantities follows a half-normal distribution (i.e.,
∣∣∣N (0, σ2)

∣∣∣).
Based on a Kolmogorov-Smirnov-test (Massey, 1951) using a 5 % significance

level, it was found that, in most of the tests, the hypothesis of normality could

not be rejected. For EDT , T20, G and C80, the percentages of distances where

it is reasonable to assume half-normality are shown in Table 7.1.

Table 7.1: Most of the probability densities describing the expected changes in

room acoustical parameters are normally distributed. Based on the

examination of 1061 examined distance intervals.

Parameter Percentage of normally

distributed distances

EDT 92 %

T20 93 %

G 71 %

C80 75 %

These statistics suggest that, for the vast majority of distances between sam-

pling points, it is sufficient to describe the distribution through the standard

deviation σ. Since this point of view cannot be maintained for the few remaining

cases while preserving mathematical rigor, calculating the 68.3 % quantile is a

valid alternative, because quantiles in general can be calculated for arbitrary

distributions. Furthermore, the 68.3 % quantile of the half-normal distribution

corresponds to the standard deviation of the (full) Gaussian distribution and

thus indicates the root mean square of changes in room acoustical quantities.

The 68.3 % quantile is shown as the red curve in Figure 7.6a.
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Behavior of the quantile function at the origin

In Figure 7.6a, it can be observed on close inspection that near the origin the

color-coded probability density function shows a grain at individual distances,

and that the quantile function exhibits discontinuities. At distances shorter than

5 cm the blue color suggests generally low probabilities of occurrence, while the

quantile function shows a singularity.

In order to put these observations in perspective, it is first worthwhile to note

that there is no reason to assume that the statistical properties change abruptly

between adjacent distance intervals. Discontinuities in the quantiles as a function

of distance should thus be interpreted less as an abruptly changing sound field

property but rather as an indication that the global probability density function

might have been sparsely sampled at the discontinuities. This interpretation is

also consistent with the observation that the color coded probability density is

displayed granularly at these distances.

This provides evidence that at distances below the spatial sampling rate of

5 cm there are indeed too few valid sample pairs, and thus neither the PDF nor

the quantile function is meaningful. At distances beyond the spatial sampling

rate sparse sampling does not appear to be a significant problem, which makes

the quantile function a valid summary metric of the global probability density

function.

With this in mind and recognizing the need for a fully defined measurement

function (in Chapter 9), a decision must now be made about how to deal with the

missing information between 0 cm < d < 5 cm. It is intuitively clear that at the

origin, at d = 0 between two sampling points, no change in the room acoustical

quantities is to be expected. As a result the following must hold:

P (∆TEDT|d = 0) = δ(0). (7.4.1)

Since theory provides no obvious answer about expected changes for distances

between 0 and 5 cm, a pragmatic solution seems appropriate. For lack of better

knowledge, a simple linear interpolation of the quantile function between the

interval boundaries is applied. Since the 68.3 % quantile is the suitable defining

parameter of the semi-normal distribution in the vast majority of distances, this

approach is used to determine the probability density function for distances

smaller than 5 cm.

7.4.2 Results

The just discussed methodology yield measurement functions as shown in Fig-

ure 7.6. Even a superficial comparison with the model functions shown in the next
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section (i.e., Figures 8.2 to 8.9) indicates that the quantile function discussed

here is representative for the functions discussed later. Thus, the example in

Figure 7.6a can be used to point out some key features of the quantile function

that will be crucial for further discussion.

Starting at small distances between microphones, Figure 7.6a shows that the

average change in room acoustical quantities is very small. The root mean square

(rms) change in EDT increases rapidly with moderately increasing distance.

This pattern will be referred to as the initial rise of the quantile function in the

following discussion of the results. Above a clearly identifiable distance between

the sensors, however, the curve flattens as the rate of the rms change in room

acoustical quantities over distance decreases. This part of the quantile function

will be referred to as the extended trend.

The careful observer notices that the quantile functions are affected by some

sort of noise, which causes the curves to fluctuate around their general profile in a

repetitive pattern with a period of about 5 cm. Since this coincides with sampling-

induced cluster points, these fluctuations provide evidence of the perseverance

of this measurement artifact.

7.5 Discussion

In this chapter, the data analysis is presented that leads to the measurement

function that is needed for the uncertainty discussion in Chapter 9. The way the

sound field changes from one position to the next does not provide for a unique,

real-valued measurement function but suggests a probabilistic interpretation

instead. Although, strictly speaking, this view is incompatible with the GUM

framework, this form of the measurement function was preferred to facilitate an

intuitive acoustical viewpoint. This perspective does not limit the uncertainty

discussion, as the measurement function can be interpreted in a GUM-compliant

manner based on Bayes’ Theorem when Monte Carlo methods (JCGM 101, 2008)

are applied.

The general shape of the quantile curves discussed here appears plausible in

light of the findings of de Vries et al. (2001) and Vorländer and Kuttruff (1985).

The initial rise refers to fluctuations of room acoustical quantities over relatively

short distances, and the extended trend maps global trends of room acoustic

properties as they occur over larger distances or in comparison of different room

shapes. So far, the curves’ division into these two parts is based only on the

curves’ visual appearance, and is not yet backed up by theory.

Discussing small changes in sound fields of one tenth of a dB usually is not

very meaningful in acoustics for reasons of measurement uncertainty that were

discussed in Chapter 4. The analysis described in this chapter, however, is based
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on about 17 000 impulse responses. Their even larger number of pair compar-

isons reduces the uncertainty significantly and theoretically make it possible to

discuss nuances that would not make sense otherwise. The small superimposed

ripple on the quantile function that was related to anisotropic sampling of sound

field changes is an example of very small effects that become apparent with the

availability of a large sample size. This property of the data implies a reduced

explanatory power when discussing isolated and singular distances between mi-

crophones. Similarly, very small changes in room acoustical quantities along the

y-axis should not be interpreted. In the presence of this measurement artifact,

discussing differences in the quantile functions of < 0.001 s for EDT/T30 or

< 0.01 dB for G/C80 is not justified. In a broader context, however, discussing

such nuances can be waived since they are relatively small compared to the larger

trends of the initial rise or the extended trend. Should the results of this investi-

gation later be used to discuss the uncertainty of singular or few measurements,

other much larger uncertainties will dominate the uncertainty budget. The au-

thor is thus inclined to note that there is no significant limitation on the data’s

informative value.

Discussing the influences of the finite and discretely sampled sound field is

multifaceted, and it is difficult to weigh the various arguments against each

other. When making pairwise comparisons of different sampling locations, it is

clear that the equidistant sampling of a finite region results in both preferred

directions, and distances clustered at multiples of the spatial sampling rate. The

main effects such as the nonuniform distance distribution can be compensated by

appropriate weighting of the samples and truncation of distances beyond 5.3 m.

For the smallest distances, however, the sparseness of the data leading to the

quantile function is due to discrete sampling positions that cannot be overcome.

Even if there is no proof in the literal sense, this is a phenomenon that occurs in

a comparable form with any type of discrete sampling.

The decision to fill the gap between the origin and the smallest sample in

the measurement function is necessary to allow the Monte Carlo sampling at

distances below 5 cm that occurs in Chapter 9. Nonetheless, the approach to

linearly interpolate the gap may seem crude. From the theoretical considerations,

however, there is no argument that promotes a different functional expression. In

the absence of a substantive justification, all that remains is the visual inspection

of the graphs to bridge the first 5 cm gap of the measurement function. As new

evidence becomes available, this decision should be readily reviewed.
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7.6 Conclusions

� The presented analysis shows spatial fluctuations as a function of distance

between observation points. This perspective is novel in the existing body

of knowledge.

� A GUM-compliant measurement function was established that allows draw-

ing a picture of spatial fluctuations that is more differentiated than is

possible with global summary statistics that were used in initial studies

(de Vries et al., 2001; Pelorson et al., 1992). The probabilistic approach

looks beyond the pure existence of large spatial fluctuations in the sound

field and also introduces the likelihood at which they occur. In this con-

text, it becomes possible to focus on dominant phenomena and discourages

distraction by rare and particular cases.

� The probabilistic measurement function can be well parameterized by a

quantile function, which enables good comparability.

� Characteristic features such as the initial rise or the extended trend can be

clearly identified in the discussed case and for other quantities and scenarios

(see Chapter 8). For reasons of plausibility, the initial rise can be related

to spatial fluctuations over shorter distances and the extended trend to

broader patterns that extend across entire auditoria.

The measurement function presented here marks an important base result of

this study. Since this analysis reveals a hitherto uncommon perspective on spatial

fluctuations, the validity of the measurement function is examined in the following

chapter. In Chapter 9, the measurement function established here becomes the

core for the GUM-compliant discussion of the research question.
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Validity of the measurement function

8.1 Introduction

The previous chapter (Chapter 7) described the analysis procedure that trans-

formed the collected array data into the measurement function (ISO Guide 98-3,

2008, 4.1) that is necessary for the uncertainty discussion. Formally, the mea-

surement function has the properties of a likelihood function that shows the

distribution of differences in the sound field between two sampling positions at

a given distance d apart from each other. To ease the display and facilitate com-

parability, the details were tapered down to the (68 %) quantile function. Given

the justified normality assumption, this function represents the root mean square

difference of room acoustical quantities as a function of the distance d.

In room acoustics, a solid understanding in array measurements can be built

upon (Berzborn & Vorländer, 2019; de Vries et al., 2001; Klein, 2020; Lokki,

2013; Neal & Vigeant, 2017; Witew et al., 2017). However, for the here presented

method of analysis (Chapter 7) and its application in measurement uncertainty,

examples of similar approaches are sparse. The absence of appropriate sources

suggests a lack of experience in the field of architectural acoustics that would

otherwise permit assessing the validity and significance of the method. Against

this backdrop, it is not sufficient to simply establish the quantile function, but it

is also necessary to investigate how susceptible it is to changes in the measure-

ment conditions. This chapter targets the validity of the established measurement

function under repeatability conditions and under a variety of practical repro-

ducibility conditions. The investigation pursued in this chapter is intended to

create the foundation for identifying significant and marginal differences when

comparing the novel measurement functions to each other.

8.2 Methodology

To investigate the spatial change of the sound field in different environments,

measurements were performed in different auditoria and collected in Table 8.1
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were collected. Some of these measurement series have special commonalities,

which enables comparisons to address validity aspects. Formally, this discussion

is closely related to the question of repeatability and reproducibility as outlined

in the GUM framework (ISO Guide 98-3, 2008, B.2.15 and B.2.16). It is to

be investigated whether establishing the measurement function is in general

repeatable, and under which conditions its determination is reproducible.

The reproducibility conditions may comprise aspects of ”principle of measure-

ment”, ”method of measurement”, ”observer”, ”measuring instrument”, ”refer-

ence standard”, ”location”, ”condition” and ”time” (ISO Guide 98-3, 2008). Due

to the fact that this study uses a highly specialized measurement system for

which no practicable alternatives exist, the influence of changes in the principle

or the method of measurement were not investigated. Furthermore, factors such

as the ”measurement instrument” or the ”reference standard” have already been

discussed in the context of intrinsic measurement uncertainty in Chapter 4. No

new findings are expected in this regard.

8.2.1 Repeatability

The measuring system has already been described in detail in Chapter 5. To

recap, it takes about 4.5 h for the robot to survey the sampling area. Even though

the long-term stability of measurements was already touched on in Chapter 4,

it is not self-evident that acoustic conditions remain sufficiently constant over

relatively long time periods so that results are repeatable. Due to its automation,

the measurement sets 4 and 5 of Hartl and sets 7 and 8 of Reich (see Table 8.1)

were carried out in immediate succession under the GUM repeatability conditions

(ISO Guide 98-3, 2008, B.2.15). The similarity of these results permits discussing

the degree of repeatibility of measurements in a large lecture room and in a large

multi-purpose auditorium.

8.2.2 Reproducibility

Ideally, the uncertainty is investigated in measurement series in which deliberate

changes in conditions are compared to the resulting change at the system’s

output. However, when all possible combinations of input variables are considered,

investigating complex measurement tasks can quickly become so extensive that

generally available resources may not suffice. In reproducibility measurements,

influences are grouped logically and left uncontrolled under realistic conditions

to investigate the variance of the results. In another perspective, the aim is to

solidify experience with this relatively new type of measurement function.
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Table 8.1: List of measurements conducted in different auditoria.

Set Auditorium Description

ID (Operator)

1 Aula 2 (Thevissen) Rows of loose chairs underneath array

Position in room: center

2 Aula 2 (Hartl) Similar to set 1, new setup at different day

3 Hist. Stadthalle Reduced sampling area due to time constraints

Wuppertal (Hartl)

4 Eurogress (Hartl) Empty room with loose chairs underneath array

5 Immediate automated repeat of set 4

6 Immediate repeat of set 5 without chairs

7 Aula 2 (Reich) Classroom-style seating with chairs and tables

Position in room: rear, left (facing stage)

8 Immediate automated repeat of set 7

9 Position in room: rear, right (facing stage)

10 Position in room: front, right (facing stage)

11 Position in room: front, left (facing stage)

12 Aula 1 (Reich) Loose chairs underneath

Position in room: front, left (facing stage)

13 Position in room: rear, left (facing stage)

14 Position in room: rear, right (facing stage)

15 Position in room: front, right (facing stage)

16 Rehearsal room Source: back right, doors closed (reverberant)

17 (Hasti) As set 16, doors 45° open

18 As set 16, doors 90° open

19 As set 16, doors 135° open

20 As set 16, doors fully open (absorptive)

21 Source: back left,

doors alternating open and closed

22 As set 21, doors 45° open

23 Concertgebouw Position in room: 2nd quarter from front

Amsterdam left center audience area (facing stage)

24 (Hasti) Position in room: 3rd quarter from front

25 Position in room: 4th quarter from front (rear)

26 Position in room: 1st quarter from front (front)

Reduced sampling area due to time constraints



114 CHAPTER 8. Validity of the measurement function

Changed condition: Time and observer

The first question that needs to be approached is whether results can be repro-

duced independently at a different time or by a different observer. In formal

GUM terms, this refers to reproducibility measurements (ISO Guide 98-3, 2008,

B.2.16) with the changed conditions ”time” and ”observer”.

This can be investigated when comparing the measurements in the large lecture

room Aula 2 that were carried out at two independent occasions by Thevissen

and Hartl (sets 1 and 2 in Table 8.1). Both series required a complete setup

and dismantling of the measurement apparatus. The aspects of ”location” and

”condition of use” were loosely held constant: in both measurements, the mi-

crophone array was placed in the center of the room with rows of loose chairs

underneath it. These two measurement sets mirror the situation in which two

measurement teams wish to independently survey the acoustic conditions in a

given auditorium. In consequence, no special effort was made to reproduce the

measurement location (source and receiver) with the utmost precision (≈ ±1 m),

nor to place the chairs in identical positions (≈ ±0.5 m).

The detailed planning and implementation of the two measurement sets was

carried out relatively independently by the two operators, although prepara-

tions were always done under the advice and supervision of the author of this

study. This can be interpreted as a limitation to the ideal uncontrolledness of

reproducibility measurements under the condition ”observer”. In a more benign

mindset, however, this supervision could also be viewed as ”professional develop-

ment” to qualify personnel to operate the measurement robot. The influence of

the conditions ”time” and ”observer” were investigated simultaneously based on

the available two data sets and, thus, it may not be possible to strictly separate

the two factors.

Changed condition: Location

The next step of reproducibility studies targets the question of how the mea-

surement location affects the measurement function. The relevance of this re-

producibility condition becomes clear when considering two aspects: On the one

hand, based on the theoretical principles and the properties of the ideal diffuse

sound field, there is an expectation that spatial fluctuations should be more or

less the same across an auditorium. On the other hand, however, it is evident

that ideal diffuseness cannot be achieved in reality - especially in acoustic en-

vironments where early reflections are crucial to a room’s proper functioning.

This dichotomy raises the question of which parts of the determined measure-

ment functions are characteristic for the auditorium as a whole and which parts

depend on the detailed measurement location.
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Here, the measurement series of Reich and Hasti (sets 8-11, 12-15 and 23-

25 in Table 8.1) are suitable to study the changed reproducibility condition of

”location”. In these series, the measurement apparatus was placed on wheels and

quickly moved between measurements from one location to the next in the same

room. Measurements at different locations were conducted in almost immediate

succession, with some 5-10 minutes between the end of the previous run and

the start of the subsequent run. As a result, the condition of ”time” is closely

in line with the repeatability conditions and may hence be seen as constant

under reproducibility conditions. In the measurements in Aula 1 and Aula 2, the

sound field was documented in four quadrants over the entire audience area. In

Concertgebouw Amsterdam, the sound field at the middle-left audience area was

surveyed. The apparatus was subsequently moved in four steps from the front

to the very back of the hall, making it possible to investigate how the acoustic

conditions change with increasing distance to the sound source.

Changed condition: Conditions of use

In ISO Guide 98-3 (2008) the ”condition of use” is listed as a reproducibility

condition to be changed. The generality of this term allows a versatile projection

to many measurement applications, but makes it difficult to identify the exact

aspect meant in a specific measurement task. In regard to the ISO 3382-1 (2009)

measurement standard, this aspect can be interpreted as the setup of the test

object (i.e., the room). This aspect is very relevant for two practical considerations:

On the one hand, the acoustic conditions in multipurpose rooms are regularly

modified in a targeted manner to accommodate the widest possible range of

event types. These changes are usually perceivable and must therefore also be

distinguishable in suitable measurements. On the other hand, it is often a question

of what level of detail must be documented in measurements. Marginal changes to

the room should not alter measured data to a point where a new situation arises.

Exploring this boundary is also an objective of investigating this reproducibility

condition.

The measurement series by Hartl (sets 5-6), Hasti (sets 16-22) and to some

extent the comparison between measurements by Hartl and Reich (sets 2, 7-11)

may provide some insights in this regard. Hartl conducted repeated measurements

in Eurogress Aachen, first with chairs placed underneath the sampling area in the

initial set 5, and later without in set 6. Hasti’s measurements in the rehearsal room

of the Aachen Symphony Orchestra were performed with ever so slight changes

in the variable acoustic panels of the space so that the acoustic condition of the

room changed in between measurements. In particular, in set 16 the reflective

side of the wall panels was exposed to the sound field, creating a relatively
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reverberant environment, whereas in set 20 the absorptive side of the panels was

fully exposed. As these changes in the conditions have a significant influence on

the absorptive properties of the space (see Figures 6.2 and 6.4), these series offer

a good foundation to investigate how these changes in the reverberation time

affect spatial fluctuations (Davy, 1981; Kuttruff & Thiele, 1954).

Changed condition: Frequency and bandwidth

The theoretical principles discussed in Chapter 2.1 identify both the frequency

and the bandwidth as having a significant effect on the spatial fluctuations: Bod-

lund (1977) targets the spatial correlation of modes and Davy (1981) addresses

the fluctuation’s amplitude as a function of frequency and bandwidth. Davy’s

discussion of the decay’s variance is closely related to this study’s rationale of

the measurement function, but they are yet to proven equivalent. To qualify the

validity of the measurement function, it is necessary to investigate whether it

matches Davy’s theoretical predictions.

To do so, the measured impulse responses are analyzed in broadband and

filtered in octaves and third-octave bands. The simple comparison of the different

cases permits investigating the changed conditions of frequency and bandwidth.

From the data of the 26 measurement series a set collected in Eurogress, set 5

was picked as an arbitrary example to discuss this effect.

Changed condition: Auditorium

In the final abstraction stage, the measurement functions determined in different

auditoria are compared. Measurements in lecture halls, concert halls, a multi-

purpose hall and an orchestra rehearsal room with variable acoustics cover a

wide range of acoustic environments. As before, these data will be compared to

investigate which properties of the measurement function are meaningful. The

theoretical considerations (Bodlund, 1977; Davy, 1981; Kuttruff & Thiele, 1954)

give raise to the strong expectation that (at least parts of) the measurement

function makes it possible to distinguish between different spaces. In discussing

this last reproducibility condition, the focus is not so much on similarity as it is

on targeting differences that support recognizing the measurement function as a

valid indicator of spatial fluctuations (varying between rooms). To discuss this

question, for each of the six surveyed auditoria, representative measurement sets

are selected and compared to each other.
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8.3 Results

Acoustic properties of the different rooms

(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80.
(d) Strength G.

Figure 8.1: Distribution of room acoustical quantities in different halls. The se-

quence along the x-axes coincides with the listed sets in Table 8.1.

Under the umbrella term of validity, this chapter seeks to identify the driving

factors that influence the properties of the measurement function. The back-

ground provided in Chapter 2.1 highlights that the general acoustic properties

of the surveyed rooms play a role. Figure 8.1 shows a simple statistical summary

of the room acoustical quantities collected in each of the 26 sets. The detailed

properties of the sets’ measurement conditions are listed in Table 8.1. To allow

better interpretation of the data, the acoustic properties in the subplots of Fig-

ure 8.1 are identified by the room names even though they are presented in set

order. Images of the different auditoria can be found in Figure 5.5. The shown



118 CHAPTER 8. Validity of the measurement function

mean and standard deviations are generally determined based on the 16 960 room

impulse responses that were collected in each set’s sampling area.

Across all surveyed auditoria both EDT and T30 show generally similar results,

which suggests a rather homogeneous decay and a relative small influence of

the direct sound. In line with general experience, EDT shows a slightly larger

variance compared to the T30 values. Auditoria used for the performance of

symphonic music (i.e., Concertgebouw Amsterdam, Wuppertal Stadthalle and

Eurogress Aachen) show (without an audience) relatively long reverberation times,

just short of 2.4 s - 2.5 s. Meanwhile, the surveyed large lecture rooms feature

reverberation times around 1.5 s - 1.8 s, and the reverberation times measured in

the rehearsal room are shortest of all the 26 sets. The orchestra rehearsal room is

equipped with variable acoustic wall elements that make it possible to change the

acoustic conditions and alter the reverberation times. Most of the investigated

setups yielded decay times around 0.8 s, but in the two most reverberant scenarios

the measured decay (T30) lasted for 1.3 s and 1.1 s respectively.

Mean values of clarity in the surveyed auditoria confirm the negative correlation

to reverberation times. One data set in Aula 1, Aula 2, Concertgebouw, as well as

the data from the orchestra rehearsal room (i.e., sets 10, 15, 16 - 22 and 26) exhibit

a slightly larger variance in C80. This larger variance is a common property of

measurement series that sample the sound field in relative close proximity to

the sound source. In these cases, the sound field changes considerably over the

sampled area, which manifests in a larger variance. This phenomenon is also

quite pronounced for strength (G).
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8.3.1 Repeatability

(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80. (d) Strength G.

Figure 8.2: Measurement function under repeatability conditions in two halls.

Based on the two measurements in Eurogress Aachen’s main hall (green in

Figure 8.2) and in Aula 2 (blue), each conducted in immediate succession, it is

possible to investigate how the quantile function changes over relatively short

periods of time. The juxtaposition of these repetitions is shown in Figure 8.2.

The two measurements taken in the same room are shown in the same color but

can be differentiated through their hue.

The four tiles show the measurement functions for EDT , T30,C80 andG. Along

the x-axis, the distance between microphones is plotted. The y-axis shows the

rms change in the respective room acoustical quantity. To permit comparability

between different conditions, the presented range across both axes is held constant

throughout the remainder of this chapter. The quantile functions follow the
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general pattern of the initial rise and the extended trend discussed in Section 7.

Comparing the curves of the same color but different hue, it is evident that they

are in very close agreement. Here, close agreement means that the curves of the

repeated measurements cannot be distinguished over wide ranges in the shown

scaling. Regardless of the room acoustical quantity, the initial rises measured

in the same rooms run in almost perfect congruence. Small differences become

evident when contrasting the extended trend of repeated measurements in Aula 2

for EDT and T30 (Figures 8.2a and 8.2b) against each other. With longer dis-

tances between microphones, the differences under repeatability conditions in

reverberation times increase but remain smaller than 0.006 s. Differences between

repeated measurements in clarity (Figure 8.2c) are hardly detectable for both

the initial rise and the extended trend. In regard to strength G (Figure 8.2d),

differences between measurements are generally less than 0.07 dB.

Interim discussion

The observation that the curves from repeated measurements overlap almost

perfectly shows that the determined quantile functions are not the results of

random changes in the sound field. Maximum differences of less than 0.006 s or

0.07 dB are still very small compared to the absolute value of the shown curves.

Without anticipating too much, it can already be said that the differences under

repeatability conditions turn out to be significantly smaller than differences due

to any of the upcoming reproducibility scenarios. Differences between repeated

measurements are just above the noise due to the anisotropic sampling density

(for background see Chapter 7). In any case, such subtleties are beyond the scope

of a reasonable evaluation.
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8.3.2 Reproducibility

Changed condition: Time and observer

(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80. (d) Strength G.

Figure 8.3: Measurement function under reproducibility conditions at different

times.

The differences resulting from independently repeated measurements on differ-

ent days (including complete setup and dismantling of the measurement setup)

can be investigated through sets 1 and 2 that were collected in Aula 2. The rms

change of room acoustical quantities as a function of distance between sensors is

shown in Figure 8.3.

When comparing the initial rise between sets across all of the four room

acoustical quantities, both curves run in close agreement. Differences can be

detected upon very close inspection, but these are small compared to the curves’

covered range (in amplitude) over a wider trend.
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Focusing on EDT (Figure 8.3a), it can be seen that in set 2 the initial rise

terminates at slightly higher amplitudes than in set 1. This difference remains

over the entire extended trend. At the same time, Figure 8.1a shows that the mean

early decay times differ between both sets, with set 2 having considerably longer

decay times. Shifting attention to T30 (Figure 8.3b), a similar picture emerges

with nuanced contrasts. While the curves of both sets exhibit close similarity

at shorter distances, the lines diverge as the distance between sampling points

increases. The larger rms change in T30 for set 2 relative to set 1 over the extended

trend coincides with slightly longer mean reverberation times (Figure 8.1b).

The general trend and the differences in the other parameters discussed (Fig-

ures 8.3c and 8.3d) are characterized by two noteworthy distinctions. The quantile

functions for C80 and G show a continuous rise throughout the extended trend,

and the curves for both sets diverge under the studied repeatability condition. At

very large distances the difference becomes most prominent with 0.2 dB for both

quantities. The continuous slope evident under this reproducibility condition was

not seen under repeatability conditions (Figures 8.2c and 8.2d). In reference to

the generally prevailing conditions (Figure 8.1c), it can be seen that clarity is

generally higher in the first set.

Interim discussion

Compared to repeatability measurements, the differences in reproducibility mea-

surements under the changed condition ”time” are slightly greater but still appear

rather small compared to the range of amplitudes covered in the initial rise and

the extended trend. This is a fundamental result when discussing spatial fluctua-

tions. Even though they still appear small, the EDT and T30 differences in the

fluctuation’s amplitude can be related to simultaneously prevailing differences

in the reverberation times. Consequently, these differences in fluctuations are in

line with qualitative theoretical predictions (Davy, 1981).

Differences in the extended trend of the quantile function with regard to clarity

and strength deserve a nuanced and careful discussion. In general, variations in

the results should not be particularly surprising, given that some conditions were

deliberately uncontrolled in this reproducibility measurement. The upcoming

discussion targets some of the several factors that may play a role; however, the

uncontrolledness aggravates the unique identification of possible causes from the

data shown in this pair comparison.

The observation that the extended trends of the strength and clarity quan-

tile functions cover a wider range (Figures 8.3c and 8.3d compared to Fig-

ures 8.2c and 8.2d) is evidence that the sound field under both reproducibility

conditions changed considerably over larger distances (i.e., d & 2 m). The most ob-
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vious cause seems to be a closer proximity to the sound source of the sets 7 and 8

than sets 1 and 2. Even if, through reference to the critical distance, the RIRs’

main energy contribution can be attributed to the diffuse reverberation, the di-

rect sound still plays a relevant role for C80 and G. Thus, if a continuous increase

in G and C80’s extended trends can be related to an influence of the direct sound,

this is true not only in the joint comparisson of sets 1 and 2 to sets 7 and 8, but

also in the comparison of sets 1 and 2. Thus, it is up for discussion whether the

sampling position ”middle of the room” was reproduced exactly. This doubt is

justified by the fact that the measurement region could not be marked in the

lecture hall as the time between measurements was several months. As a result,

the measurement location is not known exactly.

Other factors to consider are the generally prevailing acoustic conditions (i.e.,

differences in mean EDT and T30) during the different measurement series.

Figure 8.1a suggests a clear difference in EDT between sets 1 and 2. This

difference could be explained quite well by the sampling areas’ distances to

the sound source, but the consistent difference in Figure 8.1b suggests that

a fundamental difference in the sound fields’ damping existed simultaneously.

Differences in the sound field’s decay are a plausible explanation for the differences

in quantile functions’ extended trend in Figures 8.3a and 8.3b.

Despite these differences and their potential explanations, the curves’ overall

similarity in Figure 8.3 indicates a fairly good reproducibility (∆EDT < 0.005 s,

∆C80 < 0.02 dB) in the parts of the measurement series that contribute to

the initial rise and, thus, to spatial fluctuations. The differences found appear

plausible within the scope of the previous discussion’s explanatory power. There

are first indications that the extended trend depends on the measurement location

in the room. This is also plausible in light of Vorländer and Kuttruff’s (1985)

findings (see Chapter 5.2).
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Changed condition: Location

(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80. (d) Strength G.

Figure 8.4: Measurement function at different locations under reproducibility

conditions in different halls.

To test the changed condition of ”location”, measurements were taken in three

spaces in immediate succession at different locations in the room. This data,

featuring a total of eleven curves, is shown in Figure 8.4. The blue curves show

results from Aula 2, red from Aula 1 and orange from Concertgebouw Amsterdam.

In a first step, the EDT curves in Figure 8.4a are investigated. It is noticeable

that the curves from the same rooms (same color, different hue) follow a similar

pattern in terms of the niveau and the general slope in the extended trend. Curves

from different rooms (different color) can be distinguished by the same traits.

When considering T30 in Figure 8.4b, the same trend generally seems to be valid;

however, more sublte differences do excist. Curves 10 and 11 in Aula 2 stand out,
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as the former’s extended trend runs on a noticeably higher level and the latter’s

features a fairly steep slope.

Focusing on the initial rise of EDT in Figure 8.4a, great similarities in all

curves’ slopes starting at the origin are evident. Differences can only be observed

when the curves bend at different amplitudes to transition to the extended trend.

The transitions, albeit occurring at different levels, appear to have a similar

pattern and shape. A similar observation does not seem valid for T30’s initial

rise in Figure 8.4b. Different rooms exhibit different T30 slopes, while T30s from

the same rooms show similar behavior. Visual inspection suggests that Aula 1

(red) shows the highest average quantile function at short distances. According to

the same visual criterion, Concertgebouw ’s quantile functions run slightly above

Aula 2 ’s sets 8, 9 and 11 and show a successively steeper slope at the initial rise.

Shifting attention to C80 and Figure 8.4c, it becomes evident that most of the

curves follow a similar pattern in their initial rise and extended trend. Differences

exist, but they are small compared to the rms change in clarity range covered by

of all curves. From each of the three auditoria there is one set (i.e., 10, 15 and 23)

that shows a diverging extended trend with a significantly steeper slope. Referring

to Figure 8.1c, it can be seen that each of these three sets feature a higher mean

clarity index and a larger standard deviation than the other sets collected in the

same room.

Regarding the strength data presented in Figure 8.4d, a situation emerges

similar to that of the clarity results. The only notable difference is that set 10

from Aula 2 does not stand out as before, and instead follows a relatively flat

extended trend.

Interim discussion

Comparing the trends across the four discussed room acoustical quantities, there

seems to be a distinction between reverberation times and the other two quantities.

With respect to the reverberation times (EDT and T30), curves from the same

room show similar initial rises and extended trends. When discussing EDT ’s

and T30’s spatial fluctuations, this means that the measurement location plays a

minor role. This confirms findings by Davy (1981) and thus increases the validity

of the measurement function.

Similar findings are so far not available for other room acoustical quantities.

The similar pattern of the strength and clarity curves shows, in broad terms, that

there are no significant differences in spatial fluctuations across location. The

outliers from this general assessment (i.e., sets 10, 15 and 23 ) deserve a closer

look as part of a differentiated discussion to further investigate why their extended

trends exhibit a relatively steep rise. Figure 8.5 shows the spatial distribution of
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broadband C80 in two of the surveyed sampling areas: one each in Aula 2 and

Concertgebouw Amsterdam. The data from Aula 1 is not shown, but exhibits a

similar trend as in Figure 8.5b.

(a) Aula 2 (10). (b) Concertgebouw Amsterdam (23).

Figure 8.5: Distribution of broadband C80 in two sampling areas.

The most prominent feature of the sampling areas shown in Figure 8.5 is

that, apart from local fluctuations, clarity follows an overarching trend. Possible

reasons may be a strong early reflection from a surface that exposes only parts

of the sampling areas (Figure 8.5a), or a relatively close proximity to the source

that causes the direct sound to be strongly distance-dependent (Figure 8.5b).

This distance dependence is obviously to be seen in relation to the energy in the

diffuse reverberation.

Noteworthy, but only relevant as a side note, are the horizontal lines in Fig-

ure 8.5a, which originate from the direct sound’s reflection off the table surfaces

(in classroom-style seating). This regular pattern is also found in Aula 2 ’s quantile

functions (particularly obvious in Figure 8.4a).

The ability to relate special properties of the sound field to the quantile function

through clear causal relationships is a very strong argument for the validity of

the measurement function. Given that Davy’s fluctuations occur independently

of location, it can be deducted that an extended trend with a significant slope

results from the superposition of an overarching trend.
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Changed condition: Conditions of use

(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80. (d) Strength G.

Figure 8.6: Measurement function in three halls under different conditions of use.

For some measurement series, the acoustic conditions of the space were changed

between the measurements. In Eurogress, measurements were first conducted in

a completely empty room. Then, for the immediately following series of mea-

surements, rows of stackable chairs were placed underneath the array. Aachen

Symphony ’s rehearsal room features flexible wall elements that can be turned.

At different positions, these elements expose either a reflective or an absorp-

tive surface to the sound field. It is thus possible to change the absorption and

the reflection pattern in the room. In seven subsequent measurement series the

condition of the room was changed in small steps from a relatively reverberant

environment to its most absorptive setup. Measurements in Aula 2 were taken

on different days with rows of seating in set 2 and classroom-style seating in
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set 9. The results of these comparisons are shown in Figure 8.6. The collected

data from the different rooms is shown in different colors: green for Eurogress

Aachen, violet for the rehearsal room and blue for Aula 2.

From Figure 8.6a, it can be seen that EDT quantile function curves from the

same room are clustered. In Eurogress and Aula 2, differences due to the changed

condition of use in the same room are smaller than the differences between the

two rooms. In contrast, the violet curves of the rehearsal room exhibit a relatively

large variance that is most evident through the amplitude at which the initial

rise transitions into the extended trend.

The T30 data in Figure 8.6b permits observations similar to those made for

EDT . The most significant difference relative to Figure 8.6a is the extended trend

running in mostly flat curves. Of the curves showing data from the rehearsal

room, sets 16 and 21 have the largest rms change in EDT and T30 in the extended

trend.

Shifting the focus to C80 and Figure 8.6c, it is evident that the initial rise is

quite similar (relative to the covered rms change in C80) across all of the presented

curves. All data from the rehearsal room exhibits a continuously rising extended

trend, but also features a large variance between different acoustic conditions. The

green curves from Eurogress are very similar in their flat extended trends. This

is in contrast to the blue quantile functions from Aula 2 that follow a diverging

pattern throughout the extended trend. Qualitatively, the same observations made

for C80 can also be made for G in Figure 8.6d.

Interim discussion

Even if the term ”conditions of use” were to correctly summarize the scope of

the discussed reproducibility conditions, a joint analysis of all presented measure-

ment series might not be justified. This is because the changes in the surveyed

acoustic environments are different in extent and nature. Removing chairs from

underneath the sampling area between two successive series of measurements

apparently has a relatively small effect on the sound field compared to changing

the absorption properties and orientation of wall elements. Further considering

that the changes in the acoustic conditions in Aula 2 are intricate, the insight

emerges that the various influences cannot be reduced to a single factor. Instead,

a differentiated discussion is necessary.

Across all tiles in Figure 8.6, it can be seen that the green curves of Aula 2

show a very similar pattern. This is evidence that chairs underneath the sampling

area have a limited influence on the sound field. The only quantitative difference

can be identified in Figure 8.1b. The diagram shows that the chairs reduce the

average reverberation time and thus increase the room’s average absorption ever
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so slightly. According to Davy (1981) this should lead to a reduced variance in

reverberation times, which can be confirmed in Figure 8.6b. Since the added

chairs did not alter any of the sound’s main propagation paths (including via the

hall’s floor), the influence of this changed condition of use is rather small.

The changes in the rehearsal room’s wall elements have (at least) a twofold

influence on the sound field. The first notable change is absorption of the sound,

which reduces the reverberation (see Figure 8.1b) and thus the amplitude of the

extended trend in Figure 8.6b. The same data suggests that not all changes in

settings lead to notable changes in reverberation. As a result, the violet curves

in Figure 8.6b cluster according to their associated reverberation time.

The second notable change to the rehearsal room’s setup is that the orientation

of the wall panels changes the distribution of early reflections. This effect cannot

be shown directly in the presented data, but is hinted at by the change in clarity,

and is plausible from contemplation and general experience. These changes to

the sound field likely manifest in the divergence of the violet curves’ extended

trend in Figures 8.6c and 8.6d.

Detailed comparison of sets 2 and 9 from Aula 2 reveals that many conditions

have changed simultaneously. Table 8.1 indicates that the measurement date,

the location in the room and the condition of use changed: in set 2 the room

was surveyed at a central sampling area with rows of seating set up, whereas

in set 9 the sampling area was located towards the left-rear of the hall with

classroom-style furniture in place. In this intricate situation and based on the

available data, it is not possible to show clear correlations. The only conclusion

that can be drawn is that the changes to the room discussed here are sufficient

change the quantile function notably.

These facts and arguments lead to a situation that makes it difficult to identify

new findings robustly. The influencing factor of reverberation can be identified

(again) and is in line with the theoretical findings of Chapter 2.1 and Davy

(1981). In regard to existing knowledge, the validity of the measurement function

is supported. To other discussed changes influence the overarching gradient of the

sound field that appears in the measurement function’s extended trend. Again,

this supports the validity of the measurement function.

Unfortunately, however, it has to be realized that describing the room’s condi-

tion of use with a single quantity and mapping this to a change in the sound field,

and by further extension the quantile function, is not a unique line of reasoning.

Thus, the available data is too sparse to unambiguously reveal subtle relation-

ships. This leads to the assessment that the measurement function appears valid

based on a sense of proportion and general experience.

Against this backdrop it is evident that an auditorium’s condition of use can

have a significant influence on spatial fluctuations. Although not all of the in-
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fluences discussed here are of the same significance, some cause and effect rela-

tionships could be made plausible, and this notion supports the validity of the

measurement function. Additional, more targeted investigations can shed new

light on the driving driving forces.

Changed condition: Frequency and bandwidth

Since all phenomena in acoustics are due to wave effects, frequency dependen-

cies are considered common knowledge and may therefore not seem particularly

interesting as a focus of investigation. The study by Davy (1981) already paints

a rather clear picture as it proves that the reverberation time’s spatial vari-

ance is proportional to the statistical filter bandwidth’s reciprocal value (Equa-

tion 2.1.19). Since the statistical bandwidth of IEC 61260-1 (2014) filters changes

(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80. (d) Strength G.

Figure 8.7: Measurement functions at different frequencies.
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with center frequency and fractional octave bandwidth, spatial fluctuations are

predicted to vary in amplitude when analyzed at different frequencies with dif-

ferent bandwidths. Quantitatively, the statistical bandwidth changes from one

octave to the next higher by a factor of 2. Octave filters’ statistical bandwidths

are three times larger than third-octave filters.

This background provides an opportunity to empirically replicate the predic-

tions from theory and so discuss the validity of the measurement function. The

changed condition of frequency and bandwidth is investigated using the data set

collected in Eurogress Aachen (set 5) as a representative example. The results

are shown in Figures 8.7 and 8.8.

Figure 8.7 shows the quantile functions for different room acoustical quanti-

ties at different frequencies of full octave band filtered data. It is a unison result

(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80.
(d) Strength G.

Figure 8.8: Measurement function at different frequencies in different bandwidths.
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that the initial rise is steeper at higher frequencies. For the reverberation times

EDT and T30, the transition to the extended trend occurs at higher amplitudes for

lower frequencies. At the same time, it can be observed that at lower frequencies

the transition from the initial rise to the extended trend extends to larger absolute

distances between microphones. Referencing the common acoustical knowledge

mentioned before, the transition occurs at roughly the same wavelength-related

distance (i.e., k∆r ≈ 2.2). Looking at the C80 and G data, both trends are similar;

however, there are some curves in the 1 kHz to 2 kHz octave bands with similar

amplitudes in spatial fluctuations.

When the additional factor of bandwidth is introduced, the graphs shown in

Figure 8.8 become relevant. For the center frequencies given in the legend, the

quantile function was determined both in full and in third-octaves. Curves of

the same center frequency are drawn in the same color. Regardless of the room

acoustical quantity, it can be seen that the spatial fluctuations are significantly

greater with narrow-band evaluation. In addition, it can be observed that the

initial rise is steeper when discussing the data in third-octave bands.

Table 8.2: The ratios of spatial fluctuations at different bandwidths and frequen-

cies

Room Octave Mean rms change in quantity Ratio

acoustical band (1 m < d < 5.3 m)

quantity fraction Frequency band

125 Hz 250 Hz 500 Hz 1 kHz 2 kHz

EDT
1/1 0.440 0.335 0.215 0.155 0.148

}
0.60

1/3 0.738 0.610 0.388 0.251 0.220

T30
1/1 0.176 0.112 0.077 0.059 0.050

}
0.59

1/3 0.304 0.201 0.134 0.090 NaN{ { { {

Ratio 0.72 0.66 0.70 0.89

To permit a quantitative comparison of the spatial fluctuations, Table 8.2 lists

the rms change for EDT and T30 at different center frequencies and octave band

fractions. The presented values show the quantile functions’ mean amplitudes

over the distances between 1 m and 5.3 m (Figures 8.7 and 8.8). At these dis-

tances the spatial fluctuations are fully pronounced, and the curves run into

the extended trend ’s domain. Following Davy’s (1981) discussion the spatial vari-

ance of reverberation times, conversion to rms requires taking the variance’s

squareroot:
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√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 =
√

Var(xi) . (8.3.1)

Reference to theory is given in two stages. First, the absolute comparison

shows that the rms changes in Table 8.2 over all frequencies are on average

almost 75 % higher than Davy’s model prediction (Equation 2.1.19). Second,

comparison indicates that relative rms changes between octave band fractions or

neighboring center frequencies are in agreement with theory’s suggested influence

of the statistical filter bandwidth. The values in Table 8.2 associated with the curly

brackets provide the empirical data to this comparison. It can be seen that the

quantile function’s amplitude is 0.59–0.60 times lower for full octaves compared to

third-octaves. Davy’s theory suggests the ratio should be 1/
√

3 ≈ 0.58. Similarly,

the quantile function is on average lower by a factor of about 0.74 when comparing

data from one octave band center frequency with the next higher. This ratio can

be juxtaposed to theory (Equation 2.1.19; Davy (1981)) that predicts a factor of

1/
√

2 ≈ 0.71.

Interim discussion

The collected data clearly shows that both the filter’s center frequency and its

bandwidth have particularly strong influences on the spatial fluctuations. As

a mater of fact, none of the previously investigated conditions have a similarly

strong effect on the amplitude of spatial fluctuations. Thus, these are the most

important factors influencing spatial fluctuations so far.

The notion of the filter properties ”influencing” a measurement result may

seem unjustified when subscribing to a perspective that recognizes filtering as

a multiplication in frequency domain that has little to no effect on the transfer

function in the passband interval. Although this view is certainly justified for

many applications, it neglects the filter’s impulse response. The reason that filters

are discussed as influence factors in the context of this study can be illustrated

by the following example:

The starting point is an arbitrary room impulse response with homogeneous

characteristics over the entire frequency range. Evaluating the reverberant decay

will lead to identical reverberation times across frequencies and bandwidths as

long as the reverberant decay is long compared to the filter decay. In contrast,

however, despite the RIR’s homogeneity in the frequency domain, spatial fluctu-

ations will be different when analyzed at different frequencies and bandwidths.

The quoted average difference of 75 % between the model prediction and empir-

ical data may seem large at first. These differences have to be put into perspective
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with respect to Davy et al.’s 1979 measurements in reverberation rooms that

intended to validate their theory. In their validation study, Davy et al. (1979) in-

dicate in their Figure 4 that empirical standard deviations can differ from model

predictions by factors of 0.5 to 2 The spatial variances measured in Eurogress

Aachen are thus within the upper range of Davy et al.’s original validation. Thus,

the results shown for the reverberation times indicate a moderate agreement with

the theoretical predictions.

Davy et al.’s predicted change in variance in the spatial fluctuations’ amplitudes

from one octave to the next higher (i.e., 1/2) and the change in variance when

comparing full octave with 1/3 octave bandwidths (i.e., 1/3) is in very close

agreement with the empirically determined rms ratios shown in Table 8.2. Even

when this agreement is expected, it is not guaranteed in the presence of other

factors (e.g., reverberation) that may have changed simultaneously over frequency.

These contributions may also be the reasons for the differences relative to the

absolute model predictions.

These results are very important for the validity assessment of the measure-

ment function. Apart from the conversion needed to transform Davy et al.’s

spatial variance of reverberation times to the rms change discussed here (Equa-

tion 8.3.1), the extended trend discussed in Figures 8.7 and 8.8 targets the same

aspect. Qualitative agreement can be claimed based on the extended trend for the

reverberation times running in flat lines. The ratios shown in Table 8.2 indicate

that the changes in bandwidth are in almost perfect agreement with theory, while

changes over frequency are in fair agreement (less than 6 % deviation), due to

larger differences at higher frequencies.

Even though theory does not permit direct predictions about the spatial fluctua-

tions of other room acoustical parameters, it can be seen in Figures 8.8c and 8.8c

that the factors of ”frequency” and ”bandwidth” are driving forces for these

quantities in a very similar way. This represents a new finding of this study that

is consistent with the other results and with theory.

Changed condition: Auditorium

When comparing the quantile functions of various room acoustical quantities in

different auditoria, the situation shown in Figure 8.9 emerges. The concepts of

initial rise and extended trend can be observed here as well.

Starting with Figure 8.9a and EDT data, it can be seen that the extended trend

of curves from different rooms generally run in parallel with a moderately rising

slope. Two measurement series (i.e., Eurogress(5), rehearsal room(17)) stand out

as they show a slightly steeper rise throughout the extended trend. Starting at

the origin, the initial rises of all curves run in unison. Differences become evident
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(a) Early decay time EDT . (b) Reverberation time T20.

(c) Clarity C80. (d) Strength G.

Figure 8.9: Measurement function in different auditoria.

at the rms change amplitude when the curves take a turn to join the extended

trend that runs at individual levels.

Shifting over to Figure 8.9b and T20, a generally similar picture emerges except

that in all cases the extended trend runs in flat, parallel lines. The different

types of rooms are clustered in different groups: curves measured in the rehearsal

room feature the lowest rms change in T20, the large lecture halls show a similar

extended trend at a medium amplitude, just below 0.04 s, and the concert halls

exhibit the largest spatial fluctuations. For reasons of lacking SNR in Wuppertal

measurements, Figure 8.9b shows curves for T20 rather than T30. In light of

Equation 2.1.19, the only difference to be expected is a slightly higher amplitude

of the shown rms changes in reverberation time, due to the smaller dynamic range

of D = 20 dB. In Figure 8.9b, the initial rise of T20 shows a similar behavior to

that of EDT . The transition between the two domains appears to occur at the
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same distance between microphones.

Shifting attention to the G and C80 data in Figures 8.9c and 8.9d, it can be

seen that there are a few sets where the extended trend shows a continuous rise.

These curves mainly represent data collected in the rehearsal room. To establish

a sense of proportion, it can be seen that the continuous trend to longer distances

spans larger rms changes in room acoustical quantities than does the initial rise.

Compared to curves for EDT or T30, there are finer differences in the G and C80

curves’ that shape how the initial rise transitions into the extended trend. While

(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80. (d) Strength G.

Figure 8.10: Spatial fluctuations as a function of the absolute value of room

acoustical quantities. The blue line marks the linear regression with

its 95 % confidence interval shown in red.
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curves for EDT or T30 data show a very similar pattern in this transition, there

does not seem to be a clear trend for how the C80 or G initial rises flatten off at

short distances.

To investigate how spatial fluctuations over shorter distances depend on the

investigated quantity’s absolute value, Figure 8.10 was prepared. All of the 26

collected sets (from Table 8.1) are marked in each of the subplots as colored

points. For EDT , T30, C80 and G, the y-axis indicates the quantity’s rms change

at a distance of 0.75 m between observation points. With the exception of G, the

x-axis shows the quantity’s mean value (from Figure 8.1). Since the absolute

value of G was not measured (due to the absence of the source’s sound power

calibration), the T30 is used instead, as a simplified and conditional predictor for

G (Barron, 2009, Ch. 2.9). The linear regression is plotted as a dashed line and

the goodness of fit is measured through Pearson’s ρ2.

It can be seen quite clearly that the fluctuations are much more pronounced

with longer reverberation times. In the surveyed rooms, the rms change in rever-

beration times (at least) doubles over the covered range in reverberation times

of 0.7 to 2.5 s. Especially for EDT , the linear model’s goodness of fit is ”very

strong” (Evans, 1996) with ρ2 = 0.92.

Figure 8.10c suggests a slight trend towards larger fluctuations as C80 increases.

With ρ2 = 0.26, however, the goodness of fit is ”weak”. Figure 8.10d indicates

a trend of decreased fluctuations in G with longer reverberation times. The

goodness of fit of ρ2 = 0.76 is ”strong” and comparable to that of T30. In the

mid-range of values across T30 and C80, a few outliers emerge that stem from

sets collected in the large lecture halls.

Interim discussion

The differences between the various curves across rooms are a very important, if

unsurprising, result. Almost all of the previously investigated conditions (time,

observer, location, condition of use) have changed incoherently between measure-

ments series, and as a result the shown data displays a considerable variance, too.

Compared to other repeatability conditions (except frequency and bandwidth),

the range seen in spatial fluctuations is largest. For this measurement function

to have merit as a new tool in the uncertainty discussion, it must be capable of

distinguishing between different acoustic conditions. The versatility of the shown

quantile functions in Figure 8.9 proves that, thus making this measurement

function a valid metric.

Linking the rms change in EDT and T30 at short distances to the generally

prevailing reverberation times in the respective auditoria is in line with theoretical

predictions (Davy, 1981). It is a bit surprising, however, that EDT shows a



138 CHAPTER 8. Validity of the measurement function

higher goodness of fit compared to T30, when EDT is more affected by early

reflections and less by the decay of the diffuse sound field. Possible causes cannot

be determined with certainty, but it seems sensible to consider whether the

assumed diffuse sound field actually prevails to a sufficient degree. Thus, there

is a possibility that other factors contribute to spatial fluctuations in auditoria,

further underscoring the need for this empirical study. Given the range of variance

spanned in the existing results, the presented data set is very well-suited for the

following uncertainty discussion. However, should it be the goal to understand

some of the nuanced observations in more detail, a larger sample of targeted

measurement series would be helpful.

Theory and measurements suggest a clear rise of spatial fluctuations with longer

reverberation times. Although there are no studies on the factors contributing

to spatial fluctuations in clarity and strength, one might be inclined to extrapo-

late the findings that are valid for reverberation time to these room acoustical

quantities. When longer reverberation times correlate with lower C80 and higher

G values, due to the exponential decay, there may be the expectation that spa-

tial fluctuations also increase as clarity decreases or strength increases. This

expectation is not consistent with the data shown in Figures 8.10c and 8.10d.

A closer look at Figure 8.10c reveals that the goodness of fit for the clarity

regression is not particularly high, suggesting merely a ”weak” correlation with

ρ2 = 0.26. This, along with the visual inspection of the shown data points, may

lead the observer to wonder how much the regression is shaped by the measure-

ment results from the orchestra rehearsal room. Leaving the violet points out

of consideration, the remaining data in Figure 8.10c form a relatively homoge-

neous cluster whose visual impression does not imply a clear regression line. This

gives raise to a cautious suspicion that the seven sets of measurements from the

rehearsal room pose a risk of bias in the sample.

As a counterargument, however, it must be noted that the Pearson ρ2 correla-

tion coefficient is significantly higher in Figure 8.10d for the regression over the

strength data. In this plot it does not appear obvious that the violet markers

affect the regression one-sidedly. Instead, a potential bias would more likely come

from the outlier measurement series in Aula 1, Aula 2 and Concertgebouw Ams-

terdam (i.e., sets 10, 11, 15, 26) that feature higher fluctuations in G compared to

their peer sets from the same auditorium. These salient sets result from sampling

areas where the sound field was measured relatively close to the source. Also,

in light of the large dynamic range that G exhibits in the extended trend of

Figures 8.9c and 8.9d, it seems reasonable to ask whether the fluctuations of G

and C80 are subject to a single driving force. It is conceivable that in addition

to the factors that reverberation theory suggests, the change of the direct sound

and the early reflections over space may contribute to the spatial fluctuations.
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In the absence of additional data, it can be summarized that the fluctuations of

C80 cover a range from 0.43 dB to 0.6 dB and do not show a clear dependence on

the measured absolute value. The fluctuations of G range from 0.2 dB to 0.45 dB.

Therefore, here too, the covered value range provides a suitable basis for the

following uncertainty discussion. In order to identify deeper causalities regarding

the question of additional factors driving spatial fluctuations, further series of

measurements would be helpful.

8.4 Discussion

This chapter focuses on the practical validity of the measurement function, i.e.,

the quantile function. Validity was discussed on the grounds of three arguments,

namely the repeatability and reproducibility of measurements and the agreement

with theoretical predictions. Many of these points have been addressed in the

interim discussions. Even though the analysis gives raise for a confident use of

the measurement function in the following line of argument, it should not be

ignored that there are some challenges that the critical reader should be aware

of.

Theoretical predictions cover only a part of the aspects to be modeled by the

measurement function. The most prominent example may be the goal to include

the spatial fluctuations of C80 and G. In subject areas where the theoretical

foundation can still be improved, the evaluation of the measurement function

depends on an expectation which is ultimately fed by experience, and thus cannot

yet be confirmed quantitatively. Against this backdrop, a quantitative relation

can only be established from targeted measurement series, in which individual

variables are varied in a deliberate manner. Not only is the systematic control

of a single variable in complex subject matters an enormous challenge, but this

would also go far beyond the scope required for an uncertainty discussion. In

the simplest case, to investigate uncertainties, it is sufficient to cover the range

of values that reasonably occur. This perspective is comparable to the GUM’s

Type B evaluation of uncertainties (ISO Guide 98-3, 2008, 4.3.7), i.e., assigning

a uniform distribution to an input variable in the absence of specific knowledge

other than the variable’s bounding limits. Consequently, if there were a desire

to show possible causalities beyond the target of this study, a further series of

measurements and a separate investigation would be required.

In discussing spatial fluctuations as a function of distance between observation

points not only for T30 but also for EDT , C80 and G, the results of this chapter

mark a novel perspective. Including room acoustical quantities that target early

reflections adds to the theoretical foundation that relies on concepts like the

diffuse sound field. Since the early part of the RIR is inaccurately captured in
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statistical steady state models, this chapter’s findings address the need for the

empirical studies that have been established in the groundwork of this thesis (see

Chapters 1, 2 and 3).

Investigating measurements under repeatability conditions in controlled con-

ditions is a core GUM concept to establish uncertainties. It needs to be kept in

mind, however, that in complex measurements it is unclear whether the ideal of

quick measurements in immediate succession can actually be reached. In the mea-

surement method discussed here, it takes a significant period of time to complete a

full series of measurements. This raises the question of whether, in addition to the

controlled condition, other factors may have also changed. Eventually, this leads

to the conclusion that the shown curves have to be associated with an unknown

variance. Whether these potential secondary influences have been controlled to

a sufficient extent depends in parts on the experimenter’s experience.

This chapter’s examination of a wide variety of quantile functions from the 26

measurement sets (Table 8.1) allows solidifying some of the concepts introduced

in Chapter 7 (Measurement function). All of the shown curves can be divided

into the domains of initial rise and extended trend. The initial rise marks the

interval of distances between sampling locations where the sound field becomes

increasingly uncorrelated as the distance between observation points gets larger.

At a fixed, wavelength dependent distance around kd ≈ 2.2, the initial rise flattens

out and transitions into the extended trend. In terms of reverberation times

(e.g., T30), the extended trend generally resembles a horizontal line indicating

that spatial fluctuations (spatial variance after Davy (1981)) are constant across

the investigated rooms. Based on the discussion on the changed reproducibility

condition of ”location”, it was found that an extended trend with a rising slope

is an indication that the sound field changes according to an overarching pattern.

As such larger trends are not related to spatial fluctuations, it was discussed

that the rising slope of the extended trend is a superposition of a baseline flat

extended trend, (solely due to spatial fluctuations), and a rising slope (due to

overarching patterns). Differences in conditions ”time”, ”observer”, ”location”

and ”condition of use” are (generally) small compared to the baseline amplitude

of spatial fluctuations.

Comparing the data collected under the various reproducibility conditions

highlights the factors of frequency, bandwidth and prevailing reverberation as

the most significant influences to spatial fluctuations. This coincides exactly with

the points Davy (1981) already identified as driving forces. Relating the predicted

spatial variance to the measured rms change in reverberation time anchors the

results collected here to the existing body of knowledge, and thus supports the

data’s validity. This is especially evident for the influences of ”frequency” and

”bandwidth”. Based on the concept of explained variance, differences between
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Davy’s prediction and the measured rms changes suggest that additional factors

contribute to spatial fluctuations. Early reflections may play a role in this regard,

but the analysis performed is not able to quantify this contribution precisely.

Even when subtle differences in the various quantile functions cannot be ex-

plained in full detail, the collected data must be recognized as a valid sample of

a common range in acoustic conditions. It thus provides a suitable foundation

for the following propagation of uncertainty in Chapter 9.

8.5 Conclusions

� The measurement function for the following uncertainty discussion is valid

as it shows very little change in immediately repeated measurements.

� Frequency, bandwidth and reverberation are an important influence factor

for spatial fluctuations. This is in line with previous findings (Davy et al.,

1979), and thus supports the validity of the measurement function.

� Measurements under reproducibility conditions vary depending on different

factors. The ”condition of use”, the ”location” in the surveyed room or the

”time/observer” generally result in less significant differences compared to

factors of the previous item.

� Room acoustical quantities that place a strong weight on the early part of

the impulse response (e.g., clarity, EDT or strength) are especially suscep-

tible to the distance between the source and the receiver and lead to large

average changes in the measurement function (at larger distances between

sampling points). Such findings are a novel contribution to the existing

body of knowledge.

� The surveyed rooms cover a wide range of acoustic conditions and are thus

a suitable sample to investigate the uncertainty due to spatial fluctuations.

The rooms’ classification into the categories of concert hall, lecture hall

and rehearsal room highlights that several acoustic environments have been

surveyed for each type of use.

� The concepts of initial rise and extended trend are helpful in discussing

the changes of room acoustical quantities as a function of distance between

observation points.

� The initial rise characterizes relatively short distances between observation

points between which the sound field has not become uncorrelated to a

degree that spatial fluctuations are fully pronounced.
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� The extended trend characterizes longer distances between observation

points where spatial fluctuations have reached a base level amplitude and

are thus fully pronounced.

� In diffuse sound fields, the extended trend represents a horizontal line de-

noting the base level amplitude of spatial fluctuations. For reverberation

times this amplitude can be determined based on Davy (1981) and Equa-

tion 2.1.19.

� Overarching trends in the acoustic conditions that manifest in larger-scale

changes of room acoustical quantities lead to an extended trend with a

rising slope. This can be understood as the superposition of an overarching

trend to the base level amplitude of spatial fluctuations.

� Differences in spatial fluctuations between changed conditions of ”time”,

”observer”, ”location” and ”condition of use” are (generally) small compared

to the base level amplitude of spatial fluctuations.

Now that the properties of the measurement function are understood, it is

justified to turn the attention to addressing the central research question.



9
How accurately must a measurement position be

defined?

9.1 Introduction

In this chapter the data collected so far and the findings from the analysis will

be put to practical use: The consequences of an uncertain measurement position

will be investigated under realistic conditions.

The starting point is the understanding that uncertainties arise from the mea-

surand’s incomplete definition or imperfections in realizing the measurement

definition (ISO Guide 98-3, 2008, 3.3.2). In room acoustical measurements, this

statement becomes tangible when measurements under repeatability and repro-

ducibility conditions are compared to each other (see Chapter 8). Small differences

in reproduced measurements already lead to observable changes in their results.

In complex metrological scenarios, it can be quite difficult to characterize the

influence factors, even more so to state how their uncertainty propagates to

the output quantity. In such elusive situations, the only remedy is to describe

measurement scenarios as precisely and meticulously as possible.

In auditorium acoustics, based on results by de Vries et al. (2001), the measure-

ment position (source and receiver) is such an influence, which, if not precisely

controlled, leads to a considerable variance in measured results. At the same

time, the measurement location is a measurand like any other that can only be

determined inaccurately. Consequently, a mismatch between the assumed and

the actual source and receiver positions may exist. A discrepancy between sam-

pling locations in reproducibility measurements presents the same situation in a

different way.

In the acoustical domain, it is intuitively clear that the impulse responses

determined at the actual and the assumed measurement position differ from

each other. Since neither the differences in sampling positions nor the differences

in impulse responses can be established by the observer, an uncertainty must

be assumed for the impulse response. With room acoustical quantities being
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derived from impulse responses, the same need to assume an uncertainty applies

regardless. Since impulse responses are significantly more complex than room

acoustical quantities, this investigation will only consider the uncertainties of

ISO 3382-1 (2009) parameters. The presented methods can be applied in future

studies to RIRs with marginal modifications.

This chapter investigates how exactly the measurement location must be docu-

mented or reproduced. Since the threshold where uncertainties can no longer be

tolerated depends on the situation, a single-value result is not very meaningful.

Instead, a functional relation is aimed at that shows how the uncertainty in room

acoustical quantities changes as the uncertainty in the measurement location in-

creases. Based on the reciprocity principle, this uncertainty discussion is equally

valid for source and receiver positions alike.

9.2 Methodology

The strategy that permits addressing the research question is the law of propaga-

tion of uncertainty (ISO Guide 98-3, 2008, 5.1.2): The uncertainty distribution of

the input quantity is propagated through the measurement function which leads

to the uncertainty distribution of the output quantity (i.e., the measurand).

In the situation discussed here, the measurement position is understood as

the input quantity. The corresponding distribution results from the distance

between the sensor position’s best estimate and its actual position as expressed

in the introduction to this chapter. In the equivalent scenario of reproducibility

measurements, the input quantity is the distance between the positions in the

original and the second measurement.

The input quantity is transformed into the output quantity through the mea-

surement function established in Chapter 7. Since the measurement function

is not available in analytical form, it is not possible to calculate the measure-

ment uncertainty based on the first-order Taylor approximation as the simplest

method. Additionally, the measurement function’s characteristic initial rise and

extended trend suggest a nonlinear relationship between the inputs and outputs,

which also contradicts an analytical solution. In precisely such cases, Monte Carlo

simulations can serve as alternatives to determine the measurement uncertainty.

This method (see Chapter 2.3.2 or JCGM 101 (2008)) samples the input quan-

tity by drawing random numbers. For each of the drawn samples, the correspond-

ing result is determined based on the measurement function. After a sufficient

number of repetitions, a distribution for the output variable emerges that yields

the output uncertainty. Figure 9.1 provides a graphical representation of the

method. The standardized adaptive method allows determining the measure-

ment uncertainty with a minimum calculation effort while ensuring a previously
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determined level of accuracy in the results.

From the classical GUM method’s point of view, a challenge arises because the

measurement function of this study is not a binary relation that maps the input to

a unique output. Instead, it relates the input to a distribution of possible outputs,

as illustrated in Figure 9.1. To establish a summary statistic for the output that

is in agreement with the JCGM 101 (2008) Monte Carlo method, however, it is

necessary for each Monte Carlo trial to lead to a definite result that contributes

to the output distribution (JCGM 101, 2008, 7.9.4.d). This definiteness can be

easily established by a small extension to the standardized procedure based on a

second (independent) Monte Carlo draw from the distribution of possible outputs.

This approach can be understood as a nested two-step process. Its relation to

a Bayesian approach to measurement uncertainties and its validity has been

discussed previously in Chapter 7.2.1.

Figure 9.1: Scematic drawing of the two-stage Monte Carlo method. The mea-

surement function is interpreted as a likelihood function L(d|∆Q). In

each trial, the first random sample determines the parameter d, and

the second sample evaluates the resulting PDF. The sum of all trials

form the output distribution.

9.2.1 Establishing the input quantity distribution

The foremost prerequisite to apply the law of uncertainty propagation is assigning

a distribution to the input quantity (ISO Guide 98-3, 2008, 4.1.6). For the scenario

of positioning a microphone, no empirical data and no reference from literature

seems to exist regarding an appropriate distribution that can reasonably be

assumed. As a result, a plausible GUM-Type B distribution must be aimed for

(ISO Guide 98-3, 2008, 4.3).
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Even though the indefiniteness of this specific scenario does not suggest a

preference towards a specific probability distribution, the normal distribution

plays a prominent role in the GUM framework. This is due to the central limit

theorem, according to which the summary distribution of an increasing number

of contributing distributions approaches normality (Bronstein et al., 2015, 16.2.5).

Normality, however, may not seem an intuitive choice to describe the distances

that occur between sampling points as the distribution extends into the negative

half-space. Negative distances make little sense and can thus be excluded through

truncation, yielding a half-normal distribution (Johnson et al., 1994, Sec. 13.10.1).

From practical experience, the |N (0, σ2)| distribution seems to be a plausible

representation of the distances that occur in the considered situations. The shape

of the Gaussian distribution reflects the expectation that small discrepancies in

the compared locations are somewhat more likely than larger deviations. Larger

distances are supposed to occur increasingly less frequently, and thus have a lower

probability.

The infinite extent of the half-normal distribution introduces disadvantages

that need discussion. First, determining extreme quantiles using Monte Carlo

simulations requires relatively large random samples to converge and thus rela-

tively high computational power. This aspect can be addressed with patience or

brute force.

Perseverance, however, may not be sufficient for the second point: as Monte

Carlo simulations require large samples, large distances will eventually be drawn.

For the uncertainty propagation to work, the measurement function must be

defined at these distances and feature a valid transformation into the room acous-

tical quantity space. Due to the finite size of the measurement setup’s structure,

the evaluation of the measurement function is limited to distances smaller than

5.3 m between sampling locations. This constraint may defeat the original in-

tent to resemble normality when large parts of the distribution are trimmed off.

Against this backdrop the Gaussian distribution can be seen as an ideal, and its

truncation is merely a concession to practical necessities that just have to be

made. The coverage factor k = 1.96 to determine expanded uncertainties finds

regular recognition in the uncertainty discussion as it represents a 95 % level of

confidence. This can be understood as an argument to include this range after

truncation and avoid trimming off ”large” parts of the normal distribution.

Setting the input distribution’s cutoff limits is, to some extent, an act of arbi-

trariness. To the author, limiting the normal distribution to a [0 2.1σ] interval

maintains a resemblance to the starting point of this discussion, as it only re-

moves the largest 3.57 % from the ideally (half-)normally distributed distances.

As the domain of the measurement function limits distances to a maximum of

5.3 m, the underlying normal input distribution (before truncation) is limited to
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a maximum standard deviation of σ = 2.5 m. An illustration of the input’s PDF

is shown in Figure 9.1 in blue.

Strictly speaking, the input’s normality is thus no longer given. As a result,

the previous discussion of normal coverage factors is rendered obsolete. If one

were to consider the truncated 3.57 % to be relatively small, one could still regard

the exploited relationships between confidence levels p and coverage factors k as

roughly valid. In practical measurements, other sources of error are conceivable,

such as simply mixing up measurement positions. Such mistakes could lead to

a large position mismatch that may not be supported by the suggested input

distribution. It is estimated, however, that such lapses happen on very rare

occasions and are, due to their nature, best attributed to the observer.

9.2.2 Implementing the measurement function

The measurement function derived in Chapter 7 plays the central role in the

rationale of this investigation. In Chapter 8 some of the measurement function’s

influencing factors and its relation to theory were identified. Also, a common

general shape of the measurement function became evident through its initial

rise and extended trend.

To recall, the measurement function is available in a minimally-processed data

set as an empirical likelihood function showing the 2D probability of a change in

room acoustical quantity based on a given distance between observation positions

(Mesh grid in Figure 9.1). To facilitate the interpretation and comparison of

different measurement functions, the 2D-distribution was parameterized through

the 68.3 % quantile. This abstraction is valid due to its significant similarity to

a half-normal distribution (see Table 7.1).

From all of the measurement series, 26 different measurement functions (like-

lihood functions) are available. A further data reduction could help reduce the

complexity of this wealth of data. To avoid a bias due to prematurely tapering

down the data, all measurement functions of the 26 sets are used to investigate

how the spatial fluctuations affect the room acoustical quantities’ uncertainty

as a function of distance between two sampling locations. Once experience with

this type of measurement function and the new perspective it allows on spatial

fluctuations has reached a profoundness to identify core influences, further data

reduction may be warranted.
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9.2.3 Determining the measurement uncertainty using Monte

Carlo simulations

In its first step, each Monte Carlo trail consist of a draw from the [0, |2.1σ|]
truncated |N (0, σ2)| distribution. This random sample serves as the distance d

between implied measurement positions, which is the input quantity that will

be propagated through the measurement function. The measurement function

is a L(d|∆Q) likelihood whose properties depend on the parameter d. In Fig-

ure 9.1, the measurement function is illustrated through the mesh grid. Once d

is established, only the red ”slice” through the mesh grid needs to be considered.

Here, two cases need to be distinguished: In the first case, the initial draw from

the input distribution results in a distance d ≥ 5 cm. For these distances the

measurement function is available based on empirical data, and the distribution

of changes in room acoustical quantities at a particular distance is an infinitesimal

slice of the measurement function. Due to its discrete nature, the drawn distance

may not coincide with the grid of the measurement function. Thus, the needed

distribution is determined through linear interpolation along the distance axes.

Theoretically, the second Monte Carlo sample ought to be drawn from the

so determined slice of L(d|∆Q). Since this PDF may not be similar to known

distributions, a detour based on the transformation theorem for probability den-

sities (Johnson et al., 1994, pp. 14-15, Eq. 12.32) has to be considered. This

theorem requires establishing a transformation function that is the inverse of

the target’s cumulative distribution function. In a practical implementation, the

random variable of the second Monte Carlo step is a sample from the uniform

U(0, 1) distribution that is appropriately distorted by the transformation function

to yield the required definite sample of the ”sliced” measurement function. Just

as before, the transformation function is discrete, and so the required sample

is determined through linear interpolation. The resolution of the measurement

function is fine enough that error due to interpolation along both dimensions is

negligible.

In the second case, the sample drawn for the first Monte Carlo step corre-

sponds to distances d < 5 cm where the measurement function was identified as

potentially unreliable. This is due to the 5 cm resolution at which the sound field

was sampled. As discussed in Chapter 7, the linear interpolation of the 68.3 %

quantile function was found to be the best estimate of the measurement function

in the [0 cm, 5 cm) interval (see reasoning that lead to Table 7.1). Thus, when the

sample from the first Monte Carlo step yields distances below 5 cm, the change

in room acoustical quantity in the second Monte Carlo step is based on a draw

from a N (0, σ2) distribution. σ is the result of the 68.3 % quantile function’s

linear interpolation between 0 cm and 5 cm, and thus is a function of d.
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Table 9.1: Termination criteria for the adaptive Monte Carlo procedure.

Smallest

Room acoustical Numerical resolvable

quantity tolerance δ value z

EDT 0.5×10−4 s 0.001 s

Txx 0.5×10−4 s 0.001 s

C80 0.5×10−3 dB 0.01 dB

D50 0.5×10−2 % 0.1 %

tcenter 0.5×10−5 s 0.1 ms

G 0.5×10−3 dB 0.01 dB

Reliable results require a sufficiently large sample that is ensured by the im-

plementation of an adaptive procedure (JCGM 101, 2008, 7.9). In line with the

standardized method, this process is repeated in sets of 104 trials until the stan-

dard deviation of the estimates of Y over all sets have stabilized below half the

numerical tolerance δ given in Table 9.1. The quantities’ required tolerances are

deliberately chosen to be one order of magnitude below what would be consid-

ered meaningful on the grounds of metrological and perceptual experience (see

Table 2.3).

Generally, JCGM 101 (2008) recognizes the mean value y and the standard

uncertainty u(y) as valid estimates of Y . Consequently, the simulations are con-

tinued until these estimates have stabilized sufficiently between the sets of Monte

Carlo trials. In this study, quantiles are recognized as valid estimates of Y , too.

As a result, the termination criterion is extended to also include the integer

percentiles from 5 % to 95 % of the output distribution. Including quantiles as

target values permits a more accurate understanding of the resulting output

distribution.

To ensure that the results carry meaning for the most general range of ap-

plications, the Monte Carlo simulations are not only based on a single input

distribution. Instead, the simulations are repeated in series while the standard

deviation of the input distribution is increased with each successive repetition.

The truncated half-normal |N (0, σ2)| distribution used in the first Monte Carlo

step is varied over the range 1 cm ≤ σ2 ≤ 250 cm in steps of 1 cm. This range

makes best use of the measurement function’s full domain.

The final step to conclude the Monte Carlo simulations that leads to estab-

lishing the measurement function is due to the simple pair comparisons. In

Chapter 7.2.2 it was discussed that a bidirectional pair comparison between any
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two microphones (i.e., a with b and vice versa) would not add information. As

a result, the measurement function only shows the unsigned change in room

acoustical quantities. Regardless, since changes in the sound field can have both

positive and negative signs, the stabilized unsigned output distribution must be

mathematically reflected at the coordinate axis and appropriately normalized.

The resulting output distribution is thus symmetric.

The GUM’s Monte Carlo supplement addresses fundamental conditions that

need to be met to determine elementary uncertainty parameters such as the

standard uncertainty (JCGM 101, 2008, 5.10). One of these prerequisites is the

measurement function’s unimodality. While this aspect bears some relevance for

coverage intervals and standard uncertainties, is not of highest concern in regard

to individual quantiles. Visual inspection and the KS-Test for normality that led

to Table 7.1 establishes overall unimodality of L(d|∆Q), but very small secondary

modes (similar to added noise) cannot be completely ruled out.

9.3 Results

This section presents the results of Monte Carlo simulations for the different

room acoustical quantities. All of the graphs used are structured in the same way

to make them easier to read and compare. The x-axis shows the expanded uncer-

tainty of the microphone position. Since the input distribution after truncation

is no longer genuinely normal, the expanded uncertainty refers to the d = [0 x]

distance interval which accounts for 95 % of the contributing distance samples.

The expanded uncertainty determined for the respective room acoustical quantity

is plotted along the y-axis. Although the output distribution is symmetric around

the origin, normality cannot be assumed. Accordingly, the shown 95 % interval

is also based on the 2.5 %, 97.5 % quantiles.

In Section 7.2, it was pointed out that the measurement function was linearly

interpolated for very small distances between microphones. A broken red line

has been drawn on Figure 9.2 to 9.8 to indicate results that are based on this

compromised solution by more than 68.3 % (two standard deviations if normality

were assumed). The corresponding results (to the left of this line) are drawn

semitransparently. The uncertainties from different sets of measurements are

displayed in color coded form.

Important answers can be derived from the graphs shown. If, for example, the

situation arises that a microphone has been placed with an expanded uncertainty

of 50 cm (i.e., the dimension of a seat in an auditorium), Figures 9.2 to 9.8

indicate the corresponding expanded uncertainty for the different room acoustical

quantities.
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9.3.1 Uncertainty of room acoustical quantities

Early decay time

Starting with the smallest uncertainties of the sensor position u(d), the uncer-

tainty of the early decay time increases rapidly with even slightly larger dis-

tance uncertainties (see Figure 9.2). For larger u(d), the uncertainty of the quan-

tity u(EDT ) quickly reaches an almost constant plateau, which changes only

marginally with larger distance uncertainties. The graphs representing the indi-

vidual rooms/sets rarely cross each other, and the sequence of rooms scaled in

the order of parameter uncertainty remains essentially unchanged for different

u(d). The differences of u(EDT ) in the different rooms lead to the hypothesis

that u(EDT ) correlates with core properties of the prevailing sound field (e.g.,

reverberation time). This question is examined in Section 9.3.2.

Figure 9.2: Expanded uncertainty of EDT (broadband) as a function of uncer-

tainty of the sensor position in different auditoria.

Reverberation time

Figure 9.3 shows the uncertainty curves for the reverberation time T30. Compared

to the early decay time, the increase in u(T30) is even steeper for small u(d). For

larger distance uncertainties, the curves’ trends are even flatter. The uncertainties

of EDT and T30 can be easily compared: the uncertainty of EDT , with about

±0.1 s, is about twice as large as that of T30. Again, this promotes the hypothesis

that the generally prevailing reverberation time correlates to the uncertainties

shown in Figure 9.3. This will also be investigated in Section 9.3.2.
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Figure 9.3: Expanded uncertainty of T30 (broadband) as a function of uncertainty

of the sensor position in different auditoria.

Clarity

In terms of clarity, Figure 9.4 generally shows a rapid increase and flat plateau

for the uncertainty, as was found for the reverberation times. For some auditoria

(e.g., curves 12, 15, 21 or 26 ), however, it is noticeable that u(C80) increases

even more with larger distance uncertainties. At the same time, in these cases

the quantity’s uncertainty is slightly lower for smaller u(d).

In order to identify possible causes for the different shapes of curves, two

extreme cases from Figure 9.4 are compared. Curve 6 and curve 21 are respectively

the flattest and the steepest curves. Figure 9.5 shows for both cases how C80

was measured at different locations in the sampling fields. The left tile shows the

spatial distribution in Eurogress Aachen (set 6), while the right image features

the data collected in the rehearsal room (set 21). Even though the color bar in

each of the tiles represents different values, the covered range in both scenarios

is the same, i.e., the difference between C80 represented in blue and yellow is in

both cases about 5.3 dB. It is obvious that the sound field in set 6 is much more

homogeneous, whereas the sound field in set 21 changes strongly with increasing

distance from the source (outside, to the top left of the graph).

This data provides indications that other effects, such as the influence of the

direct sound, may be superimposed on the basic uncertainty due to local fluctu-

ations. Such added effects may be smaller for curves that run flatter at longer

distances.
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Figure 9.4: Expanded uncertainty ofC80 (broadband) as a function of uncertainty

of the sensor position in different auditoria.

(a) Distribution in Eurogress. (b) Distribution in the rehearsal room.

Figure 9.5: Comparison of C80’s spatial distribution.
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Definition

The definition curves shown in Figure 9.6 are quite similar to what was shown

for clarity in Figure 9.4. The two previously highlighted extreme cases stand out

here for the same reasons.

A detailed comparison of D50 to C80, however, is difficult for three reasons.

First, the evaluated time intervals are different with their respective limits of

50 ms and 80 ms. Secondly, the ratios are formed differently: while for C80 the

energy in the early and the late part of the impulse response are compared to

each other, for D50 the ratio of the early to the total energy is formed. Finally,

the comparison of an absolute and logarithmic ratio is not readily possible.

Figure 9.6: Expanded uncertainty of D50 (broadband) as a function of uncer-

tainty of the sensor position in different auditoria.

Center time

In the original discussion on spatial fluctuations (de Vries et al., 2001), the

question was raised of whether the rectangular time window functions of clarity

and definition were the cause of the discovered phenomena. In this light, the curves

for center time in Figure 9.7 are particularly informative, since they show the same

general trend of a sharp rise and a flattening curve for larger distance uncertainties,

despite the absence of a finite time window in the algebraic definition of center

time.

In contrast to previous observations regarding clarity and definition, small

differences emerge when inspecting two extreme sets of measurements. While
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set 21 still features data with a particularly steeply rising curve in center time

domain, the set 6 data is no longer prominent as an example for small amplitudes.

In addition, when inspecting Figure 9.7 at small position uncertainties, it can

be seen that the 26 curves form clusters that correspond to the different rooms:

series collected in the rehearsal room (violet) have the lowest amplitude, data

from Aula 1 exhibits a medium amplitude and the other series show the highest

tc uncertainty. In the extended trend towards larger position uncertainties, this

order remains generally unchanged except for series that are already known for

their relatively strong dependence on the direct sound (i.e., sets 10, 12, 15, 21,

22 or 26)

Figure 9.7: Expanded uncertainty of tc (broadband) as a function of uncertainty

of the sensor position in different auditoria.

The differences between the three temporal clarity quantities (C80, D50, tc)

give reason to examine the possible causes in more detail. The question arises of

whether the different time windows of the impulse response (i.e., 0 ms to 50 ms

vs. 80 ms), the different terms in the numerator and denominator or the absolute

vs. the logarithmic ratio are affected differently by the spatial fluctuations, i.e.,

whether the uncertainty of definition compared to clarity or center time differs

independently of the unit (dB, % or s) used. This aspect is examined separately

in Section 9.3.3.

Strength

Looking at the strength parameter, essentially the same picture emerges. As

with all previously discussed quantities, a rapid increase in uncertainty can be
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observed for small distance uncertainties. At larger distances, the already known

contrast between the two types of data sets can be seen. On the one hand, there

are auditoria where the uncertainty is nearly independent of the sensor position

uncertainty, and on the other hand, data sets exist where the sound field changes

strongly as a function of source-receiver distance.

Figure 9.8: Expanded uncertainty of G (broadband) as a function of uncertainty

of the sensor position in different auditoria.

9.3.2 Effect of the auditorium’s reverberation

When presenting the uncertainties of the different quantities (especially regarding

the reverberation times), the hypothesis was introduced that the amplitude of

the spatial fluctuations depends on the room’s generally prevailing reverberation

time. In light of the theoretical discussion in Section 2.1 or the examination of

the measurement function (Figure 8.10), this notion appears valid.

First, this question will be investigated for the early decay time of the results

in Figure 9.9. The horizontal axis shows the mean broadband EDT based on

16 960 sampling area data points for each of the 26 sets. The vertical axis shows

the expanded uncertainty of EDT (due to spatial fluctuations). This y-axis value

is based on the 95 % expanded uncertainty of the microphone position with

u95%(d) = 0.5 m in Figure 9.9a and u95%(d) = 2.5 m in Figure 9.9b.

The exact values of the position uncertainties are to some extent arbitrary. The

small uncertainty of 0.5 m serves as a sample of distances between measurement

locations, where fluctuations are obviously evident but usually not perceivable
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(a) Small distance uncertainty. (b) Large distance uncertainty.

Figure 9.9: Correlation between the absolute value of EDT and its uncertainty.

The color code is identical to that used in Figure 9.8.

for listeners. At a distance of 2.5 m there is some potential that macroscopic

changes to the acoustic conditions add to the existing spatial fluctuations. All

too-large differences between these two scenarios may indicate how strongly early

reflections contribute to the spatial change of the sound field.

The mean EDT and the corresponding uncertainties show a ”very strong”

correlation (Evans, 1996) to each other, namely ρ2 = 0.94 for u(d) = 0.5 m and

ρ2 = 0.88 for u(d) = 2.5 m. The dashed lines show in blue the linear regression

and in red the α = 0.05 confidence intervals of the regression model.

The same analysis was performed for the T30 reverberation time. Again, there

is an apparent correlation between the prevailing reverberation time and the un-

certainty induced by the fluctuations (Figure 9.10). In contrast to EDT , however,

the correlation is not quite as strong (ρ2 = 0.77), which is due to the red and

blue measurement points of Aula 1 and Aula 2, respectively, that do not match

the trend of the regression very well. It is not obvious which acoustic features of

these rooms contribute to their ”outlier” position.

On the basis of the previous results, where longer reverberation times corre-

spond to more pronounced spatial fluctuations (Figures 9.9 and 9.10), one might

expect a similar relation for clarity as well. In fact, however, Figure 9.11 does

not show this intuitive trend. Instead, for C80 shorter reverberation times are

associated with slightly greater C80 uncertainties.

At the same time, with ρ2 = 0.39, the correlation is ”weak” (Evans, 1996) for

small position uncertainties. For larger position uncertainties, the correlation is

”very weak” (Evans, 1996) (ρ2 = 0.08) and, thus, it is even more difficult to claim

a robust relation between the decay and clarity’s uncertainty.

Interestingly, this lack of distinctness does not hold for center time. For small
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(a) Small position uncertainty. (b) Large position uncertainty.

Figure 9.10: Correlation between the absolute value of T30 and its uncertainty.

(a) Small position uncertainty. (b) Large position uncertainty.

Figure 9.11: Correlation between the absolute value of T30 and the uncertainty

of C80.

position uncertainties there is a clear, ”very strong” trend (ρ2 = 0.88) towards

larger uncertainties for longer reverberation times. With greater position uncer-

tainties the picture is less clear again, but the correlation is still ”moderate” with

ρ2 = 0.54. The data points from Aula 2 turn out to be outliers again, deviating

rather clearly from the regression line. As far as one is inclined to recognize

the regression in Figure 9.11a (C80) as meaningful, it is worth noting that the

trends shown in Figures 9.11a and 9.12 (tc) are exactly opposite, although both

quantities are supposed to predict similar properties of the sound field.
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(a) Small position uncertainty. (b) Large position uncertainty.

Figure 9.12: Correlation between the absolute value of T30 and the uncertainty

of tc.

9.3.3 Effect of the evaluation interval (time)

Reverberation times

The results shown so far have indicated that the spatial fluctuations of the two

reverberation times differ in detail. This is interesting because EDT and T30

evaluate similar properties of the decay, and therefore the question arises of

whether impulse responses are influenced by the fluctuations in the same way

throughout the running time. In addition, Davy (1981) suggests that the variance

of evaluated dynamic ranges contributes to the differences in the fluctuations. In

order to draw a more precise picture, the different quantities and their spatial

fluctuations are examined in detail.

Figure 9.13 shows as a box chart the fluctuations of the different reverberation

times that were determined according the following scheme: For each of the 26

sets, the expanded uncertainties of the reverberation times (EDT , T10 - T30) were

calculated for the sampling position’s expanded uncertainty of u95%(d) = 0.5 m

in blue and u95%(d) = 2.5 m in red. The line inside each box is the sample median

of the distribution, the top and bottom edges of each box are the 25 % and 75 %

quantiles and the whiskers indicate the maximum and minimum of the spatial

fluctuations. There were no outliers based on a 1.5 interquartile range criterion.

When looking at Figure 9.13, it is immediately obvious that a greater position

uncertainty (red) leads to greater fluctuations than those that occur with more

precisely defined positions (blue). At the same time, it is evident that reverber-

ation times with larger evaluated dynamic ranges exhibit less fluctuation, and

thus feature a lower expanded uncertainty of reverberation time. This general

trend is almost perfectly consistent with findings by Davy (1981), except for a
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Figure 9.13: Comparison of the uncertainty of different reverberation times.

proportionality factor. A perfect, one-to-one, agreement cannot be reasonably

expected because Davy’s variance is calculated differently from the Monte Carlo

uncertainty presented here.

The comparison of the expanded uncertainties of EDT and T10 are very similar.

In this light, there is little evidence that would suggest that the early part of the

RIR is affected differently or more strongly by the spatial fluctuations than by

the late part of the RIR.

Temporal energy distribution

Clarity, definition and center time are three parameters that evaluate the temporal

distribution of signal energy in room impulse responses. They differ from each

other in the length of the time windows, but also in how the energy intervals are

related to each other. These differences raise the question of whether all these

energy ratio quantities are affected by spatial fluctuations in the same way.

Investigating this question is delicate, as the three quantities are difficult to

compare simply because of the different units (dB, %, s) that the energy ratios

are given in. To reach this comparability, a common ground is established that

resorts to diffuse field theory and the propagation of uncertainties depicted in

Figure 2.6.

The starting point is a hypothetical diffuse sound field with a perfectly exponen-

tial decay that matches the mean T25 reverberation time across all 26 measured

scenarios of 1.73 s. This agreement in reverberation time is chosen to ensure an

appropriate operating point for the propagation of uncertainties, and does not

imply a diffuse sound field that may possibly exist in the surveyed auditoria. The

hypothetical exponential decay E(t) = E0 exp(−λt) corresponds to a clarity of

−0.47 dB, a definition of 32.99 % and a center time of 125 ms.
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Based on the methodology in Section 9.2, the uncertainties for D50, C50, D80,

C80 and tc are calculated for u95%(d) = 0.5 m and u95%(d) = 2.5 m (see Fig-

ures 9.4, 9.6 and 9.7). Using the principle of uncertainty propagation, these energy

ratio uncertainties can be converted into uncertainties of the decay constant λ.

To avoid errors due to the first order Taylor approximation, a nonlinear least

squares optimization was used to calculate u95%(λ). Provided that the transform

from Cxx,Dxx or tc to λ is monotonic and the uncertainty distributions of the

room acoustical quantities are each unimodal, the uncertainty of the decay con-

stants determined through the different quantities are now comparable to each

other. The results of this comparison can be found in Figure 9.14. For the room

acoustical quantities listed along the horizontal axis, the expanded uncertainty

of the decay constant λ is shown on the y-axis.

Figure 9.14: Comparison of the decay constant for different room acoustical quan-

tities.

The first and most obvious finding is that the uncertainty is significantly lower

with a more precise measurement position (blue). This confirms the trend already

observed in all situations before.

Somewhat more subtle, but still quite clear, is the observation that the decay

constant has less variance for parameters with an 80 ms time window compared

to corresponding quantities with a 50 ms time window. If the basis of comparison

is extended to include the center time, it becomes clear that this parameter is

least affected by spatial fluctuations.

When examining the quartiles of clarity and definition, it can be seen that in

about three out of four direct comparisons the box plots for definition generally

exhibit marginally smaller uncertainties in the decay constant.
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9.3.4 Effect of the center frequency

It is already clear from Davy’s study and the discussion in Sections 2.1 and 8.3.2

that spatial fluctuations change with the (center) frequency of the filter. To

illustrate that this is valid in auditoria, too, the expanded uncertainty of EDT

as a function of uncertain sensor position at different 1/1-octave band frequencies

is shown in Figure 9.15. In general, the results show a pattern that is quite

similar to what was previously discussed. It is therefore no loss that the complete

presentation of curves from all sets has been forgone, when little new insight was

to be gained. All curves feature a steep initial rise and a flatter extended trend.

Towards higher frequencies the initial rise steepens. while, at the same time, the

extended trend exhibits lower levels. This is consistent with the observations on

the measurement function in Section 8.3.2.

Figure 9.15: Expanded uncertainty of EDT for different 1/1-octave bands as a

function of uncertainty of the sensor position in a concert hall.

Based on the theoretical discussion in Chapter 2.1, and especially in light of

Equation 2.1.7, a discussion in the context of wavelength is appropriate. Fig-

ure 9.16 shows one tile for each of six room acoustical quantities and illustrates

the parameters’ expanded uncertainty as they change with increasing sensor

position uncertainty in ku95%(d).
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(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80. (d) Definition D50.

(e) Center time tc. (f) Strength.

Figure 9.16: Expanded uncertainty of different room acoustical quantities for

different 1/1-octave bands as a function of uncertainty of the sensor

position in wavelengths in a concert hall.
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9.3.5 Effect of the bandwidth

For the same reasons given in the previous section, it is already clear that spatial

fluctuations depend on the bandwidth of the filter. To illustrate that this is

also true in practical measurement scenarios, the expanded uncertainty of room

acoustical quantities as a function of uncertain sensor position at different 1/3-

octave band frequencies is shown in Figure 9.17.

The results shown in Figure 9.17 are very similar to the data shown in Fig-

ure 9.16 except for the frequency resolution. All curves show a rapid increase in

the uncertainty of room acoustical quantities as position uncertainty increases.

Towards relatively large position uncertainties the curves flatten out. The main

difference - that the uncertainties (or fluctuations) of room acoustical quantities

analyzed in third-octave band are significantly greater than the uncertainties oc-

curring in full octaves - becomes apparent when visually comparing Figure 9.16

to Figure 9.17. At both bandwidths, the same general trend can be observed:

spatial fluctuations show the highest amplitudes at lower frequencies and decrease

towards higher frequencies.
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(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80. (d) Definition D50.

(e) Center time tc. (f) Strength G.

Figure 9.17: Expanded uncertainty of different room acoustical quantities for

different 1/3-octave bands as a function of uncertainty of the sensor

position in wavelengths in a concert hall.
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9.4 Discussion

9.4.1 Uncertainty of broadband measurements

Figures 9.2 to 9.8 show the uncertainty of room acoustical quantities determined

in broadband as a function of the measurement position’s uncertainty. These

curves provide the foundation for answering the central research question. A

summary of these findings is shown in Figure 9.18 as the mean of the 26 measured

sets. The red curves shows the 68 % coverage interval (standard uncertainty) while

the blue curves identifies the 95 % coverage interval (expanded uncertainty). The

dashed horizontal line highlights the just noticeable differences (JNDs; from

Table 2.3). Along the x-axis, the expanded uncertainty of the sensor position is

shown. As the underlying distribution is closely related to the normal distribution,

the sensor position’s standard uncertainty can be approximated by dividing the

axis scaling by two.

Since the red curve of the mean 68 % confidence interval consistently runs

well below the dashed just noticeable differences, there are no requirements for

the measurement position’s uncertainty that can be justified in this (standard)

uncertainty class. Up to the maximum standard uncertainty covered by the x-axis

(i.e., 2.1 m), the probability that repeated measurements differ from each other by

more than the perceptual thresholds due to spatial fluctuations is (on average) less

than 68 %. However, if the expanded measurement uncertainty is discussed with

the 95 % coverage interval, occasionally a different situation emerges: the blue

curves of (mean) expanded uncertainties exceed the just noticeable differences

for almost all room acoustical quantities. This means that for larger position

uncertainties, it is - in a repeated measurement - no longer 95 % certain that

the difference in the two results, due to spatial fluctuations, is smaller than the

threshold of perception.

Using the example of C80, it can be read from Figure 9.18c that, on average,

the measurement location needs to be described accurately enough to ensure that

it can be reproduced with a precision of better than ±1.2 m. The blue shaded

area in this figure shows the values covered by the different measurement series.

From this it can be seen that in the most extreme cases (C80, set 10 in Aula 2 ),

the measurement position must be documented even more precisely, namely to

within ±0.75 m.

The discussion of the clarity metric offers yet another perspective. While the

JND determined under laboratory conditions (Cox et al., 1993) is plotted at 1 dB,

other investigations suggest that changes in auditoria are not perceptible until

differences exceed levels of 3 dB (Höhne & Schroth, 1995). The latter threshold

would greatly relax the accuracy requirements of the measurement location. This
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(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80. (d) Definition D50.

(e) Center time tc. (f) Strength G.

Figure 9.18: Standard (68 %) and expanded (95 %) uncertainty of different room

acoustical quantities as functions of the sensor position’s (expanded)

uncertainty. The broken red line indicates the just noticeable differ-

ence. The solid blue area marks the range covered by the 26 sets.
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contradiction offers great potential for future investigations in which frequently

quoted JNDs are put to the test of real sound fields.

From the comparison of different room acoustical quantities, it can be seen

that a T30 reverberation time measurement can be reproduced sufficiently well

even with the measurement position only rudimentarily documented. This is, on

the one hand, because reverberation times with large dynamic ranges fluctuate

relatively little, and, on the other hand, because technical reverberation times

change very little from one region to another in an auditorium.

These arguments do not hold for EDT at all: Figure 9.18a indicates that spatial

fluctuations for the early decay quickly rise to amplitudes that are quite similar to

the JND. Consequently, in particularly adverse conditions, position uncertainties

of some 10 cm can already mean that uncertainties due to spatial fluctuations

exceed just noticeable differences. The maximum coverage intervals of the sensor

position’s uncertainty under both critical and under average conditions can be

taken from Table 9.2

Table 9.2: Maximum expanded uncertainties of the sensor position to ensure the

expanded uncertainty of room acoustical quantities is below JNDs.

Room acoustical Coverage interval (95 %) sensor position

quantity average conditions critical conditions

EDT 15 cm 10 cm

T30 > 4.3 m > 4.3 m

C80 121 cm 73 cm

D50 69 cm 36 cm

tcenter 145 cm 48 cm

G 406 cm 150 cm

9.4.2 Reference to theory

Driving Factor: Reverberation time

In Chapter 8, the properties of the measurement function were successfully

matched with theoretical predictions (Davy et al., 1979). It was found that for

EDT and T30, the amplitude of spatial fluctuations depends on the prevailing

reverberation time. In view of Figures 9.9 and 9.10 and the shown regression,

it can be seen that the general relation holds equally for uncertainties and the

main research question.
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It is interesting to see how C80 and tc behave in different ways. While center

time follows a ”moderate” to ”very strong” trend that exhibits greater uncertain-

ties at longer reverberation times, the trend for clarity is much less pronounced

and shows (at best) a weak, opposite relation. The potential reasons for these

different properties are examined in more detail below.

Driving Factor: Frequency

Amplitude The data presented in Figures 9.15 to 9.17 shows that the mag-

nitude of the spatial fluctuations increases greatly with lower frequencies. This

observation is consistent with the discussion on reverberation times in Chapter 8,

specifically Table 8.2. What is new, however, is the finding that this trend applies

not only to reverberation times but to all the room acoustical quantities discussed

here.

To move towards a more quantitative comparison, the curves shown in Fig-

ures 9.16 and 9.17 were parameterized with a simple model of two straight lines

that meet at an inflection point a:

f(x) =

{
bx : x < a

cx+ (ba− ca) : x ≥ a
(9.4.1)

(a) 1/1-octaves. (b) 1/3-octaves.

Figure 9.19: Expanded uncertainty of EDT in a concert hall as a function of

uncertainty of the sensor position in wavelength, with parameterized

curves in red.

In Figure 9.19, EDT data and the fitted model are shown through red dashed

lines. The inflection point is marked by the red circle. To counteract the risk of

misunderstanding, it is necessary to clearly indicate that this parameterization
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does not imply a physically motivated model. Instead, Equation 9.4.1 should be

seen as a mathematical expression of the visually motivated concepts of the initial

rise and the extended trend. In this light, the parameter b refers to the slope

of the initial rise and c to the slope of the extended trend. The inflection point

at ku95%(d) = a, where both lines intersect, can be understood as a transition

between the domains. These parameters permit comparing the many curves (for

EDT and other quantities) with each other regardless of whether they accurately

represent a physical or theoretical property down to the last detail. The limits

of the linear regression model are discussed in further detail in Section 9.4.3.

Although only shown for EDT , such curves can be prepared for any of the room

acoustical quantities.

To discuss the frequency-dependent amplitude of spatial fluctuations, and thus

Davy’s theory, Figure 9.20 shows ratios of the inflection points at neighboring

frequency bands. The amplitude ratio at different frequencies (color coded) is

plotted for different room acoustical quantities (”shape coded”) along the y-axis.

Quantitatively, Davy et al. (1979) reports a linear proportionality that suggests

a change in the fluctuations’ variance by a factor of 2 (or 0.5 respectively) from

one octave band to the next. Since Figure 9.19 shows uncertainties and since

these are determined by the square root of the variance, a ratio of
√

2 ≈ 1.41

is to be expected between neighboring frequency bands. The amplitude ratio in

Figure 9.20 confirms this expectation up to the second decimal digit.

Figure 9.20: Ratio of the inflection points when neighboring frequency bands are

compared to each other. The x-axis shows the distance ratio. The y-

axis shows the amplitude ratio. The colors represent the compared

center frequencies. The shape of the marker represents the room

acoustical quantity.

Even though the demonstrated relationship is in perfect agreement with theory,
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this finding is particularly noteworthy since, strictly speaking, Davy’s theory is

valid only for the diffuse sound field. Although many of the room acoustical

quantities quantify the contribution of the early (nondiffuse) part of the RIR, the

relative change of the fluctuation’s magnitude over frequency is well predicted

by diffuse field theory.

Spatial extent There is a second expectation that is based on Bodlund’s

(1977) theoretical considerations. They suggest that spatial fluctuations increase

up to a wavelength-dependent distance of d = ka = π as the sound field’s spatial

autocorrelation function rapidly decays to zero with increasing distance.

Even though the inflection points shown in Figure 9.19 cluster around 3 [ku(d)],

it is also evident that there is a trend shifting the inflection points to slightly

shorter distances (in wavelength) as the frequency decreases. This pattern can

be observed for all room acoustical quantities, and, with marginal differences, in

any of the rooms.

This aspect relates to the spatial extent of the initial rise domain and can

therefore be explored with the segment-wise linear regression model and the

associated inflection point. Looking at Figure 9.19a, for full octaves some goodwill

may be required to recognize a cluster point at the predicted distance of π. The

third-octave analysis in Figure 9.19b shows this possible accumulation point a

bit more pronouncedly, at least at frequencies below 630 Hz.

These observations cannot be reconciled with Bodlund’s (1977) predictions

beyond doubt. Instead, the transition from the initial rise to the extended trend

seems to shift to larger distances (relative to wavelength) at higher frequencies.

The quantitative evaluation in Figure 9.20 reveals that this is not an optical

illusion but a quite solid trend: When the distances of inflection points at neigh-

boring frequency bands are compared to each other (along the x-axis), the ratio

is on average 0.80, with a small overlayed trend of larger differences towards

higher frequencies. This illustrates why there appear to be clustering points at

low frequencies that continuously shift to greater distances at higher frequencies.

Possible causes cannot be substantiated by targeted observations, but there

are a number of arguments that come into play. First, at higher frequencies the

limits of the sound field’s spatial sampling grid are reached. As a result, the

fluctuations were sampled at a lower resolution in ka scaling. Second, caveats

against the regression analysis (discussed below) could be cited. Third, it should

be kept in mind that the fluctuations of the sound field that Davy or Bodlund

discuss are not synonymous with Monte Carlo uncertainties discussed here.

Despite these particular differences, there is the qualitative perception that the

general results can still be aligned reasonably well with theoretical expectations.

The transition from the domains of the initial rise to the extended trend occurs
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at around 3 ≈ π wavelengths which translates to a potential mismatch of some

5 %.

Driving Factor: Bandwidth

The influence of the filter bandwidth on the uncertainty due to spatial fluctuations

is best discussed by considering Figure 9.21. The figure’s structure is quite similar

to Figure 9.20, and also represents a compressed display of the curves shown

in Figures 9.16 and 9.17. The distance ratio u(d1/3-octave)/u(d1/1-octave) (along

the x-axis) is plotted against the amplitude ratio of the quantity’s uncertainty,

e.g., u(EDT1/3-octave)/u(EDT1/1-octave) (along the y-axis). Just as before, the

shape of the marker indicates the quantity and the color represents the center

frequency.

Figure 9.21: Ratio of the inflection points determined in 1/1-octave and in 1/3-

octave bands. The x-axis shows the distance ratio. The y-axis shows

the amplitude ratio. The colors represent the center frequencies. The

shape of the marker represents the room acoustical quantity.

Amplitude From Davy’s theory (Davy et al., 1979) and Equation 2.1.22, it

can be taken that the variance of the spatial fluctuations depends linearly on

the inverse of the statistical bandwidth. With the uncertainty being the square

root of the variance and the ratio between third and full octave statistical band-

widths being 3 , there is the expectation that the uncertainty analyzed in both

bandwidths should differ by a factor of
√

3 ≈ 1.73. The empirical analysis in

Figure 9.21 yields an average amplitude ratio of 1.62. Though not quite as accu-

rate as in the previous discussion, this deviation of less than 7 % still represents

a reasonably good agreement with theory. A possible reason is the SNR-related
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outlier of T30 in the 125 Hz band. Again, it is remarkable that Davy’s prediction

holds for reverberation times as well as for other quantities.

Spatial extent A second step investigates whether the fluctuation’s spatial

extent depends on the filter’s bandwidth. The x-axis in Figure 9.21 shows the

distance ratio of the inflection points in third- and full octaves. The vertical

dashed lines show the mean and the standard deviation of ratios. Since these

ratios are very close to unity (i.e., 1.05), it can be seen that the transition

between the initial rise and the extended trend at third and full octaves occurs

at almost identical distance uncertainties. Thus, the investigated bandwidth has

no detectable influence on the areal extent of the spatial fluctuations.

9.4.3 Appropriateness of regression models

The calculation of the uncertainty propagation through a Monte Carlo method

makes it possible to evaluate the empirical measurement function in the first

place, and thus to answer the research question. Since the uncertainty curves of

the different room acoustical quantities exhibit a visually similar characteristic

trend, a breakdown into the two domains of the initial rise and the extended

trend was made in Section 9.3.1. This basic idea along with a segment-wise

linear parameterization of the curves was pursued to allow a limited quantitative

comparison of the numerous different results.

It can be argued that the explanatory power of such a comparison may be

limited for a number of reasons. First, a solely visual fitting suggests a model that

lacks a physical rationale and thus comes with the risk of obscuring underlying

concepts. Second, as pointed out, there is little reasonable justification as to why

the shapes of the empirically determined curves can be reasonably approximated

by a simple linear regression. Third, the quantitative comparison of any two

curves may not be fully robust since there is no proof of validity that shows how

the linear regression parameters correlate to the underlying physical principlest.

As a counterargument, due to its complexity it is unreasonable to perform the

nonuniform sampling of the empirical measurement function by the Monte Carlo

simulations with the expectation that the result will miraculously obeys a simple

functional relationship. Quite the opposite: It would even be surprising if the

output distribution followed simple laws. Consequently, resorting to a basic linear

regression is rather to permit some limited comparability without the intention

of suggesting a curve’s shape for which there is no evidence.

On these grounds, one can consider the concepts of initial rise and extended

trend. It seems that both domains map the properties of the impulse response,

i.e., early reflections and reverberant decay, to changes of the sound field in space.
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In the case of a perfectly diffuse sound field, the stochastic superposition of

uncorrelated standing waves (Section 2.1) leads to spatial fluctuations that are

generally independent of the location in the room. Thus, the extended trend

runs as a flat line at an amplitude suggested by Davy et al.’s theory; a linear

regression model would be a valid parameterization. The T30 uncertainty curves

in Figure 9.3 provide empirical confirmation.

For shorter distances between two observation points (ka < π) the modes are

not fully uncorrelated, which manifests in smaller fluctuations described by the

initial rise. When the extended trend continues to increase to larger distances,

it is an indication that the sound field is not (particularly) diffuse and that the

direct sound and the early reflections significantly influence the spatial profile.

For these parts, the linear regression serves well as an initial approach.

9.4.4 Influence of early reflections

The contribution of early reflections to spatial fluctuations is best discussed by

considering Figure 9.14, which illustrated the uncertainties of clarity, definition

and center time. To lay the foundation, two factors are central to investigate the

influence of early reflections. First, converting the uncertainties of room acoustical

temporal clarity quantities into the uncertainty of the exponential decay constant

λ provides a common ground that all room acoustical metrics relate to. In line

with the previous discussion in Section 9.3.3, this transition does not assume

the investigated sound fields to be diffuse or to have any other specific property.

Second, contrasting the same quantity calculated using different time windows

against each other, i.e., C50 to C80 or D50 to D80, eliminates the influence of the

algorithm (Equations 2.1.14 and 2.1.15) from the comparison and thus highlights

the influence of the time window.

Comparing the quantities relying on a 50 ms time window with those derived

from an 80 ms time window in Figure 9.14, it is evident that C80 and D80 have

slightly lower uncertainties compared to C50 and D50. In this analysis, particular

significance is attached to the clarity metric: In this quantity, only the numerator

of Equation 2.1.15 depends on the varying time window, while the denominator

remains unchanged with the energy of the full decay. This indicates that the

early part of the impulse response also contributes to the spatial fluctuations.

The significantly lower uncertainty of center time compared to other temporal

quantities is worth discussing as well. The question arises of whether this is due

to time windowing of the impulse responses or the weighting of the RIR energy

with its running time t (see Equation 2.1.16). This contrast cannot be resolved

on the basis of the available data; however, the weighting of the RIR’s energy

over time provides a plausible explanation for why tc’s uncertainty increases with
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longer reverberation times.

As far as the uncertainty due to spatial fluctuations is concerned, center time

appears be the quantity best-suited to accurately discuss the temporal energy

distribution in room impulse responses. It appears, however, that tc is the least

commonly used quantity among peers (compared to clarity and definition), which

may imply that general experience in its interpretation is also more limited.

9.4.5 Necessity for measurements

In the discussion so far, the good agreement of the results with theoretical predic-

tions has been emphasized so strongly that one may wonder whether the efforts

for the measurements and Monte Carlo simulations were justified after all. This

sentiment would ignore that, to the best knowledge, so far there is little known

about spatial fluctuations of room acoustical quantities other than reverberation

times. As general theoretical approaches do not consider early reflections, there

is a clear need for empirical studies. Even though other simulation tools are avail-

able to calculate sound propagation (e.g., ray-tracing models), these methods do

not consider modal effects and thus it is uncertain whether these strategies are

suitable to discuss the spatial variance of sound fields.

Previous measurement surveys have been designed to investigate uncertainties

and spatial fluctuations from different perspectives. As a result, the data collected

here permits a new view on spatial fluctuations. The inverse trend between C80

and tc as a function of prevailing reverberation time in Figures 9.11 and 9.12 may

serve as evidence that contributions to spatial fluctuations exist that have not

been discussed before. This is why this study can contribute to understanding

spatial fluctuations.

9.5 Conclusions

In this section, the relationship between an uncertain measurement position

and the resulting uncertainty in reproduced room acoustical measurements was

presented. Based on the empirically determined measurement function and an

assumption about the measurement positions distribution, the resulting uncer-

tainty distribution of room acoustical quantities was determined using a Monte

Carlo method.

Based on the results shown and the discussion, the following conclusions emerge:

� The uncertainty in reproduced measurements of room acoustical quantities

due to spatial fluctuations in the sound field when the receiver (or the

source) position is uncertain was determined
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– in broadband (see Figure 9.2 to 9.8),

– filtered in different bandwidths (see Figures 9.16 and 9.17), and

– at different center frequencies (see Figures 9.16 and 9.17).

� Based on published just noticeable differences, it was determined how ac-

curately measurement positions need to be documented and reproduced to

ensure the uncertainty due to spatial fluctuations does not exceed thresholds

of perception.

– To ensure the standard uncertainty of room acoustical quantities (68 %

coverage interval) remains below the just noticeable difference, the

results indicate that the maximum standard uncertainty of the mea-

surement position can exceed the surveyed range of 2.1 m.

– To ensure the expanded uncertainty of room acoustical quantities

(95 % coverage interval) remains below the just noticeable difference,

the results indicate that the maximum expanded uncertainty of the

measurement position should not exceed a range of approximately

0.40 m. For EDT the requirements are more stringent (for details see

Table 9.2.

� The findings are in good agreement with theoretical predictions (Davy et

al., 1979) in regard to their dependency on

– the mean prevailing reverberation time,

– the filter’s center frequency and

– the filter’s bandwidth.

� Based on empirical results and Monte Carlo simulations, the uncertainties

of clarity, definition, center time and strength due to spatial fluctuations

were determined, which could not previously be predicted based solely on

diffuse field theory.

� A two-segment linear regression model was used for a quantitative discussion

of uncertainties due to spatial fluctuations.

– For very small uncertainties, in position an initial rise indicates that

the uncertainty of room acoustical quantities increases quickly as the

position uncertainty increases.

– At position uncertainties of about ka ≈ π, the uncertainty of room

acoustical quantities reaches a plateau and grows much more slowly

as the position uncertainty continues to increase. There is a small
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frequency dependency towards larger position uncertainties at higher

frequencies.

– For position uncertainties beyond ka ≈ π, an extended trend is defined

by a base level due to spatial fluctuations (Davy et al., 1979) and a

moderate rise towards larger distances that is related to the change

in room acoustical quantities due to the geometry of the room.

� The uncertainty in reproduced measurements due to uncertainties in the

measurement position is not only due to spatial fluctuations of the rever-

berant decay, but also (albeit to a smaller extent) due to changes in early

reflections from one position to the next.

� Not all room acoustical quantities of temporal clarity (C80, D50, tc) are

affected by spatial fluctuations in the same way.

– Quantities without time windows (tc) are affected least,

– quantities with time windows for music are affected moderately and

– quantities for speech are affected most.

� Based on the reciprocity principle, the effect of uncertain source and receiver

positions on the uncertainty of room acoustical quantities needs to be

introduced twice: once due to the source, and once due to the receiver

(when both positions are independent from each other).





10
General results

In this study, the uncertainty of room acoustical measurements in auditoria is in-

vestigated. An emphasis is placed on the contributions due to spatial fluctuations

of room acoustical quantities. Partial results towards this goal are the listing of

uncertainty contributions affecting impulse response measurements. Furthermore,

it is examined how the uncertainties of these influence factors propagate to the

output uncertainty of room acoustical quantities. These results are summarized

in this section.

10.1 Uncertainty of measured impulse responses

Based on studies performed at a number of national metrological institutes, the

uncertainty budget shown in Table 10.1 was established. Along the way, each

individual contribution was scrutinized and adjusted to properly characterize the

performance of the measurement system used here. Thus, the uncertainty budget

presented here needs to be adjusted to represent the properties and capabilities of

other systems. The combined uncertainty refers to the amplitude of the individual

samples in a measured impulse response. The type of uncertainty (random vs.

systematic) indicates whether each sample is affected independently or whether

all of them are affected in the same way. The exact details that lead to this result

can be found in Section 4.
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Table 10.1: Uncertainty budget for room impulse response measurements.

Symbol Probability Type Sensitivity Standard

distribution coefficient uncertainty

bi ci u(bi)

[dB]

bLS-dir Normal Random 1 0.38

bSetup Normal Random 1 0.35

bLS-level Normal Systematic 1 0.26

bMic-cal Normal Systematic 1 0.21

bLTI Normal Random 1 0.2

bLS-spec Normal Systematic 1 0.16

bMic-spec Normal Systematic 1 0.15

bFilter Normal Systematic 1 0.12

bMeteo-ϑ Normal Systematic 1 0.12

bMeteo-p Normal Systematic 1 0.07

bMic-dir Normal Random 1 0.07

bMic-field Normal Random 1 0.011

Combined standard uncertainty uc(bEquip) 0.71

Coverage factor k 2

Expanded uncertainty (95 %) uc, k=2(bEquip) 1.42

10.2 Uncertainty of room acoustical quantities

The random type standard uncertainties in Table 10.1 are the relevant contri-

butions to the combined standard uncertainty of a measured impulse response

necessary to determine the uncertainty of room acoustical quantities (see Chap-

ter 9.3.1). The uncertainty of the room acoustical quantities derived from each

of the 420 470 RIRs collected through 26 measurement series (see Table 8.1) was

calculated according the rules of the standard ISO Guide 98-3 (2008). The re-

sulting range of standard uncertainties of room acoustical quantities is shown in

Figures 6.2 to 6.12. From this standard uncertainty data, Table 10.2 shows the

median standard uncertainty for each of the discussed room acoustical quantities.

Since both smaller and significantly larger standard uncertainties can occur in

individual cases, important quantiles are also listed, which allow deriving the

68 % coverage interval.
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Table 10.2: Standard uncertainty of broadband room acoustical quantities based

on more than 400 000 uncertain impulse response measurements. The

quantiles indicate the range of uncertainties that occurred in the

sample.

Room Standard uncertainty of room acoustical quantities

acoustical Quantiles

quantity Median 15.9 % 84.1 %

T30 3.8×10−5 s 3.3×10−5 s 4.8×10−5 s

EDT 1.6×10−4 s 1.2×10−4 s 2.5×10−4 s

C80 5.9×10−2 dB 4.6×10−2 dB 8.4×10−2 dB

D50 3.8×10−1 % 2.9×10−1 % 5.0×10−1 %

tc 0.6 ms 0.5 ms 0.9 ms

G 3.0×10−2 dB 2.1×10−2 dB 5.3×10−2 dB

10.3 Uncertainty due to spatial fluctuations

The main results of this study are the uncertainties of room acoustical quantities

due to the spatial variance of the sound field. Since general experience with

these uncertainty contributions is not yet widespread, the results are presented

in slightly more detail, in broadband and octave filtered form. Based on 26

measurement series, the uncertainty of room acoustical quantities is shown as a

function of an uncertain measurement position.

The graphic representation in Figures 10.1 and 10.2 shows a solid blue line that

indicates the mean expanded uncertainty for each of the investigated quantities.

The x-axis indicates the expanded uncertainty of the measurement position -

for the broadband results the uncertainty is given in absolute unit, i.e., meter,

whereas for the band-filtered results the position uncertainty is given relative to

the center frequencies’ wavelength kd. The y-axis represents the room acoustical

quantity’s associated uncertainty. The shaded area marks the 2σ interval in which

the expanded uncertainty curves of the 26 sets run. The dashed line results from

the segment-wise linear regression of the mean uncertainty curve and forms the

basis of the summary statistics given in Tables 10.3 and 10.4. In these tables,

the second column lists the expanded uncertainty due to spatial fluctuations,

and the third column shows the expanded position uncertainty, above which the

uncertainties are fully pronounced.
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(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80. (d) Definition D50.

(e) Center time tc. (f) Strength G.

Figure 10.1: Expanded uncertainty of different broadband room acoustical quan-

tities as a function of uncertainty of the sensor position with dashed

parametrized curves. The shaded areas mark the standard deviation

as spanned by the 26 measured sets.
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(a) Early decay time EDT . (b) Reverberation time T30.

(c) Clarity C80. (d) Definition D50.

(e) Center time tc. (f) Strength G.

Figure 10.2: Expanded uncertainty of different full octave filtered room acoustical

quantities as a function of uncertainty of the sensor position with

dashed parametrized curves. The shaded areas mark the standard

deviation as spanned by the 26 measured sets.
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Table 10.3: Expanded uncertainty (95 %) of broadband room acoustical quanti-

ties and the expanded position uncertainty (95 %) above which the

fluctuations are fully pronounced.

Room Expanded uncertainty (95 %) Expanded uncertainty (95 %)

acoustical of room acoustical quantities of position with fluctuations

quantity due to spatial fluctuations fully pronounced [m]

T30 0.05 s 0.23 m

EDT 0.12 s 0.23 m

C80 0.79 dB 0.21 m

D50 4 % 0.21 m

tc 7 ms 0.21 m

G 0.37 dB 0.18 m

Table 10.4: Expanded uncertainty (95 %) of full octave filtered room acoustical

quantities at 1 kHz and the expanded position uncertainty (95 %) in

kd above which the fluctuations are fully pronounced.

Room Expanded uncertainty (95 %) Expanded uncertainty (95 %)

acoustical of room acoustical quantities of position with fluctuations

quantity due to spatial fluctuations fully pronounced [kd]

T30 0.09 s 3.41

EDT 0.23 s 3.73

C80 1.43 dB 3.99

D50 8 % 4.05

tc 12 ms 4.03

G 0.69 dB 3.74

The uncertainty of room acoustical quantities due to spatial fluctuations changes

by a factor of 1/
√

2 from one octave band to the next higher. Relative to the un-

certainties given in Table 10.4 (column 2) for the reference frequency fr = 1 kHz,

the scaling factor xf can be determined according to Equation 10.3.2 to yield

the uncertainties due to spatial fluctuations at higher or lower octaves frequency

bands.
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uk=2(fm) = xfuk=2(fr) (10.3.1)

xf =
√

2
a

with a = −10

3
log10

fm

fr
(10.3.2)

The uncertainty of the position when the fluctuations are fully pronounced

changes by a factor of 1.25 from one octave band to the next higher. Relative to

the position uncertainty given in Table 10.4 (column 3) for the reference frequency

fr = 1 kHz, the scaling factor xd can be determined according to Equation 10.3.4

to yield the position uncertainties at higher or lower octave frequency bands.

upos,k=2(fm) = xdupos,k=2(fr) (10.3.3)

xd ≈ 1.25−a with a = −10

3
log10

fm

fr
(10.3.4)

The uncertainty of room acoustical quantities changes by a factor of
√

3 when

third octave bands are analyzed instead of full octave bands.
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General Discussion

The discussion of uncertainties is not yet part of the standard repertoire in the

field of auditorium acoustics, probably due to the relative complexity of the

problems discussed in this field. While generic questions can be addressed using

mathematical closed-form solutions, more challenging scenarios often feature an

abundance of input variables that can only be approached with simulation tools

on a case-by-case basis. When the flow of information can only be determined

in individual scenarios, it is difficult to identify higher-level influence factors and

how they contribute to the output. At the same time, it is not uncommon that the

many input quantities are not known down to the last detail. In such conditions,

it tends to be challenging to distinguish the important aspects from the less

relevant ones.

This discussion stresses the importance of recording and quantifying all con-

tributing influence quantities to investigate the propagation of uncertainties.

Referring to the previous discussion of Ishikawa diagrams, it is important to

recall that identifying influence quantities is a qualitative process with no guar-

antee of reaching comprehensive results. Against this backdrop, it is important

to move forward in a granular and diligent manner to minimize the likelihood of

overlooking uncertainty contributions. This argument holds even if that means

discussing contributions that turn out to be factors of lesser significance. At

the same time, such a comprehensive approach allows adjusting existing uncer-

tainty contributions or introducing new ones whenever new findings suggest a

reassessment.

To ensure this generality and extendability, it is important to discuss the

measurement uncertainty according to standardized and defined rules, such as

the framework offered in ISO Guide 98-3 (2008). At the same time, it must

be acknowledged that the intricacies of the GUM are its own field of research

in metrology. The discussion in scientific journals highlights two aspects: First,

there are matters that can only be described in a very approximate way using

the standard tools of the GUM. Second, there are numerous examples where

authors autonomously enhance the uncertainty framework, using good reason,
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to allow a more precise discussion of specific uncertainty scenarios. This liberty

was also claimed here, for example when interpreting the measurement function

from a Bayesian perspective and implementing the Monte Carlo simulations in

a two-step process.

11.1 Uncertainty of measured impulse responses

In this spirit, the uncertainty of measured room impulse responses was discussed.

Guided by an extended root cause model of manufacturing reliability, a variety

of possible uncertainty contributions were collected. These input quantities were

then recognized in the uncertainty evaluation in different ways.

Some contributions are listed based on plausibility, however, that could not

be recognized in the uncertainty budget. The reasons are manifold, but can

be as mundane as in the following examples. The influence of the observer on

measurements, for instance, is undisputed; however, its contribution can hardly be

quantified. The same is true for environmental conditions that affect the results:

Calculating the sound propagation in a non-homogeneous and non-stationary

medium is highly complex and exceeds the scope of this study. Such factors must

be investigated in detailed and tailored studies that are specifically designed for

this purpose.

Other influences were included based on a rather basic and simple model of

the measurement process. The intricacies of 2-Ch-FFT correlation techniques

may serve as an example of how a focus was placed on steady state and ener-

getic contributions to the measurement uncertainty. In order to discuss transient

disturbances in specific measurements, reference must be made to other works,

such as that of Eichstädt (2012).

A similar pragmatism is appropriate when discussing the uncertainty con-

tribution measurement chain elements that couple directly to the sound field.

Approaching this matter requires a model on sound propagation. For the sake of

general applicability, the rather elementary concept of the diffuse sound field was

adopted. Especially for early reflections and for typical sound fields in auditoria,

however, this approach may be valid only with limitations.

Also, it has to be noted that the uncertainty model does not yet consider

correlations of input quantities. It has to be discussed that correlations over

time may exist between neighboring time samples of the impulse response. Also,

correlations may exist when the same equipment, the same calibration normal or

the same sensor is used in repeated or reproduced measurements. These factors

can and should be recognized in dedicated future investigations.

Other contributions are recognized in the uncertainty budget based on expe-

rience from other fields of acoustics, e.g., building acoustics. In standardized
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measurements in reverberation rooms to determine the radiated sound power or

in wall testing facilities to determine the sound reduction index, uncertainties

are regularly considered. Despite relying on this existing knowledge and imple-

menting simple models, the uncertainty budget reported in Table 10.1 represents

a step forward in combining different sources of knowledge and making the result

available in architectural acoustics. The hierarchical listing of key uncertainty

contributions to the measurement of room impulse responses provides a structure

and context for open questions. For instance, the discussion about the measure-

ment loudspeaker’s directivity or the influence of nonlinearities can be put into

context by relating their contribution to the combined uncertainty.

Depending on the individual setup and equipment used, adjustments to respec-

tive entries may be necessary. The procedure pursued in Section 4 to compile

this table can serve as a practical example to quantify one’s own measurement

capabilities.

Finally, the shown data provides clear evidence for which influence quantities to

target in order to have the greatest impact in affecting the combined measurement

uncertainty.

11.2 Uncertainty of room acoustical quantities

The uncertainty in the measurement of room impulse responses was propagated

through the algorithms to determine room acoustical quantities. The resulting

uncertainties of the quantities are so small that one may well ask whether this

meticulous effort is really justified. Of course, this objection is especially valid

in that it is already known from ray tracing simulations (Vorländer, 2013) that

many of the metrics can be determined quite accurately with very few sound

particles.

As a rebuttal, it should be pointed out that, until now, a quantitative un-

certainty estimate for room acoustical quantities was unavailable, and thus the

presented findings add to the body of knowledge. This step forward holds, even

if it were only to serve the conclusion that other, more prominent uncertainty

contributions deserve more attention in future investigations.

It seems particularly important, however, to consider the quantities’ intrinsic

uncertainty as a benchmark for uncertainties due to spatial fluctuations. The

magnitude of the fluctuations becomes quantitatively clear through this reference.

Finally, these findings also have a methodological value. Quite obviously, the

uncertainty of room acoustical quantities is far below thresholds of perception. If

this can be taken as a reason to accept larger uncertainties, then the uncertainty

propagation can be reversed and the requirements on the measurement chain can

be relaxed. As a result, alternative quasi-impulsive sound sources (such as fire-
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crackers or popped balloons or paper bags) could be considered to determine room

acoustical metrics. This could warrant a new validity to ad hoc measurements.

11.3 Uncertainty due to spatial fluctuations

The uncertainties of room acoustical quantities due to spatial fluctuations may

be regarded as the most significant findings of this study. Compared to all other

known sources of uncertainty, spatial fluctuation is by far the single most impor-

tant one.

So far, knowledge about the sound field’s spatial fluctuations is essentially based

on the groundbreaking studies conducted when revising ISO 3382 (1997) in the

early 1990s (e.g., Pelorson et al. (1992), J. S. Bradley and Halliwell (1988)), or the

study by de Vries et al. (2001) in Concertgebouw Amsterdam that has brought

new attention to the matter. The fundamentals of Kuttruff and Thiele (1954),

Bodlund (1977) and Davy et al. (1979) provide a solid theoretical framework for

discussing spatial variances in exponentially decaying sound fields.

This present study builds on the previous work and attempts to add to the

existing state of knowledge. A major contribution is establishing the uncertainty

due to spatial fluctuations as it depends on the uncertainty of the measurement

position. This is a new finding compared to existing work both empirical and

theoretical. The reasonable discussion of room acoustical quantities thus requires

a sufficiently precise specification of the measurement location (source and re-

ceiver). This is important so that results can be reproduced in the presence of

spatial fluctuations.

A second advance is the uncertainty of room acoustical quantities like clarity,

definition, center time and strength that cannot be discussed based on theoretical

considerations alone. The comparison of the different quantities indicates that

they are affected differently by spatial fluctuations. Consequently, their uncer-

tainties are not solely due to spatial variances in the sound field’s exponential

decay, but also due to changes in the early reflection patterns.

Relating empirical findings to theoretical predictions is of enormous importance,

as their agreement places additional weight and confidence in the results’ validity.

The consistency in two aspects is particularly noteworthy: First, the linear rise

in the uncertainties of EDT and T30 with longer average reverberation times

is evident in both theory and empirical studies. Second, it is remarkable that

the measured fluctuations’ amplitude over frequency and bandwidth is in almost

perfect agreement with theory. In addition, it was shown for the first time that the

spatial fluctuations’ dependence on frequency and bandwidth also holds for room

acoustical quantities that focus on the early part of the room impulse response.

The fact that these quantities cannot be modeled in the theoretical framework
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stresses the need for empirical investigations. This is also true in light of the fact

that it is not ensured that spatial fluctuations can be modeled with simulation

tools of geometrical acoustics.

11.4 Critical aspects

In empirical studies, the question arises of whether the collected data is valid -

translated to this study, whether the sample of surveyed auditoria is suitable and

representative. When choosing the auditoria to survey, great care was taken to

cover rooms that spanned a wide range of reverberation times and room shapes.

With relatively small orchestra rehearsal rooms, large lecture halls, multi-purpose

halls and full-size concert halls, this target was achieved. The covered range of

clarity, definition and center time also suggests that a practical range of acoustic

conditions has been covered.

Due to the design of the measurement apparatus, all halls had in common

relatively flat floors. The results’ relatively good agreement with theoretical

predictions seems to confirm that the selection was appropriate. However, should

additional factors exist that have an influence on spatial fluctuations, it is not

guaranteed that the selected auditoria exhibit these influences sufficiently.

When looking at the measurement equipment used, it can be seen that the

massive structure that forms the measurement device is, with an uncertainty

of 0.35 dB, the second largest contributor to the uncertainty budget. Obviously,

this has a negative influence on the collected impulse responses; however, the

contribution has to be seen in context.

Interference by the trusswork is the second most important uncertainty con-

tribution after the directivity of the sound source. The high-performance loud-

speaker was meticulously designed to exhibit a directivity as homogeneous as

possible. As a result, general ISO-3382 compliant sound sources show a much

more pronounced directivity. This means that the influence of the measurement

apparatus is smaller than disturbances that can normally be tolerated. Also,

being the second most important uncertainty contribution, the setup used does

not represent an outstanding uncertainty contribution relative to the other ele-

ments of the measurement chain. Finally, it was also shown that the equipment’s

influence on the uncertainty of room acoustical quantities is negligible compared

to the uncertainty due to spatial fluctuations.

This assessment should not hide the fact that some aspects in the design of the

array could have been better addressed. For the author, it is a painful experience

to realize that decisions made in the past can have long-term effects. In this

regard, the anisotropic sampling accuracy is a particularly fitting example. A

supposedly straightforward decision made for reasons of austerity, the effects
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could still be clearly demonstrated years later after several steps of data analysis.

However, to be upfront, these effects are merely small factors that can only

be detected by a targeted analysis, and they are ultimately rendered invisible

through the mixing and smoothing of the Monte Carlo trials.

Another experience is that complicated measurements and large setups increase

the likelihood of errors and failures, and eventually make them inevitable. As

an example of this rendition of Murphy’s law, it has happened that microphones

dropped out at individual positions, or that areas remained unsampled after

running out of time due to delays during setup. Enormous efforts were made to

detect errors early on and to sort out invalid data. Ultimately, the uncertainty

principle also applies here. A clear statement about the proportion of erroneous

data cannot be made, as this data could otherwise be removed from the analysis.

The good agreement of the results with theoretical predictions can be taken as

an indication that flawed measurements did not have a significant influence.

11.5 Implications

This leads to the question of how meaningful the general results are and which

interpretations are legitimate. As things stand today, spatial fluctuations certainly

represent the largest contribution to the uncertainty in measurement of room

acoustical quantities. Whether this uncertainty renders room acoustical quantities

unusable needs to be seen in reference to appropriate just noticeable differences.

For reverberation times, uncertainties due to spatial fluctuations can be within

the just noticeable difference of 5 %. This very general statement needs to be put

into context: Disregarding local fluctuations, reverberation normally changes rel-

atively little throughout the room, which is evident in the relatively flat extended

trend. In light of Figure 9.18, it can be seen that the standard and expanded

uncertainty of T30 is smaller than its JND even for large uncertainties in the

measurement position. Consequently, for T30, there is no evidence for an upper

limit of the measurement position’s uncertainty. This conclusion implies that

it makes little sense to discuss measured reverberation times up to the second

decimal digit. Of course, this assessment is not very new and stands on long

experience, but is reconfirmed by the presented findings.

Because reverberation times are analyzed with smaller dynamic ranges (e.g.,

EDT ), spatial fluctuations easily exceed their JNDs. For this quantity, a dis-

tinction between the regime of standard and expanded uncertainty needs to be

made. When it needs to be ensured that it is 95 % unlikely that fluctuations in

EDT exceed the JND, it becomes necessary to define the measurement position

to an accuracy of about 10 cm. When the 68 % coverage interval is considered,

fluctuations of EDT less frequently (< 32 % probability) exceed the JND even
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for larger position uncertainties. Under the paradigm of expanded uncertainties,

these findings seem to contradict the common experience that the perception

of reverberance does not change over such small distances. Given that the es-

tablished JND for reverberation (Seraphim, 1958) predates the concept of EDT

(Jordan, 1970), it may be reasonable to investigate whether the difference limen

can be confirmed using more modern techniques.

For other room acoustical quantities, the question becomes more delicate. Clar-

ity or strength are significantly more dependent on the position in the auditorium,

making it appropriate to document the measurement position anyway. For clar-

ity, there are a number of studies that address the JNDs. Findings range from

very high sensitivities of 1 dB under laboratory conditions (Cox et al. (1993)) to

about 3 dB under real-life conditions (Höhne & Schroth, 1995). For the situa-

tions addressed here, Höhne and Schroth’s results seem more appropriate, and

thus JNDs seem larger than the uncertainty due to spatial fluctuations. The

evidence is not equally conclusive for the other energy ratio parameters. But,

as both definition and center time characterize similar sound field properties, a

fundamentally different outcome would be surprising.

Since the spatial fluctuations in the broadband case are already fully pro-

nounced after 25 cm, it seems reasonable to specify the measurement position

with at least the accuracy of a seat (≈ 50 cm). Strictly speaking, this would still

not be sufficient, so additional specifications such as ”center” or ”right armrest”

may be helpful. With information of this nature, the uncertainty from Table 10.3

can be assumed. More accurate results require a more precise specification of

the measurement location, and the exact requirements can be obtained from

Figures 10.1 and 10.2 or by linear interpolation from the respective tables.

The same reasoning must apply to the band-limited case. Figure 10.2 shows

that filtering increases the amplitude of spatial fluctuations significantly. Just

as before, the resulting implications have to be discussed with reference to the

applicable JNDs. As of today, however, JNDs at different octave bands are not

yet available. As a result, important information is missing that would identify

these fluctuations as detrimental to interpreting measurement results.

Based on the reciprocity principle, the uncertainty contribution due to spatial

fluctuations applies independently to the sound source and to the microphone.

This implication can also be independently confirmed by Equation 2.1.3, which

notes how the source and receiver are independently coupled to the modes of

the resonant system. Thus, if a measurement is to be reproduced completely, the

uncertainty contribution for fluctuations must be taken into account for both the

source and the receiver. Since these contributions are completely independent of

each other, this means an increase of the uncertainty by a factor of
√

2 compared

to the simple contribution.
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General conclusions and outlook

12.1 General conclusions

Based on the results shown and the previous discussion, the following conclusions

were drawn:

� A GUM conforming strategy was described according to which the main un-

certainty contributions to the measurement of room impulse responses were

discussed. The method allows considering additional factors or adjusting

existing factors when new knowledge becomes available.

� A hierarchical listing of the most important uncertainty contributions to

the measurement of room impulse responses was created. Based on this list,

the effort for accurate measurements can be targeted to the most relevant

influencing factors to improve the efficiency of measurements.

� The uncertainty of room acoustical quantities due to uncertain room im-

pulse responses is very low and in most cases probably not a significant

factor.

� Spatial fluctuations are by far the single most significant uncertainty contri-

bution to room acoustical quantities. For many of the investigated quantities

(i.e., T30,EDT , C80,D50, tc,G), this study marks the first time that spatial

fluctuations have been studied with such precision.

� The uncertainty due to spatial fluctuations has to be recognized indepen-

dently for the source and the receiver (reciprocity).

� In order to reasonably interpret room acoustical quantities, a sufficiently

precise specification of the measurement location (source and receiver) is

necessary.
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� The uncertainty is quantified and reported in Section 10. The uncertainty

is given in broadband but also filtered in full octaves and in third octave

bands.

� For the investigated parts direct theoretical predictions are possible, the

empirically determined uncertainties due to spatial fluctuations show very

good agreement.

� In addition to theoretical predictions, spatial fluctuations are not only due

to variances in the exponential decay of the sound field, but also due to

changes in the early reflection patterns.

� The comparison of C80, D50 and tc shows that center time is least prone

to spatial fluctuations.

� Theoretical predictions regarding the influence of frequency and bandwidth

are not only valid for reverberation times, but also for other room acoustical

quantities (i.e., C80, D50, tc and G).

12.2 Outlook

In Chapter 4 (with reference to Appendix A), the uncertainty of room acoustical

impulse response measurements was discussed. As a result, the sorted list of

influences contributing to the combined uncertainty (Table 4.1) indicates how

significant each individual influence is to the combined measurement uncertainty.

These findings offer the potential to optimize room acoustical measurements.

Either requirements on the most significant influences can be tightened to effec-

tively reduce the combined uncertainty, or the demands on the least significant

influences can be relaxed without deteriorating the overall result.

This argument also holds on an absolute scale as the uncertainty of impulse

response measurements was used in Chapter 9.3.1 to determine the measurement

uncertainty of room acoustical quantities. It was found that all quantities can be

calculated very accurately compared to the uncertainty due to spatial fluctuations

in Chapter 10. It makes little sense to impose excessive requirements on the

measurement hardware when its influence is only noticeable in the fifth decimal

place of the measured reverberation time. Future investigations could study the

validity of ad hoc measurements to determine room acoustical quantities.

In Chapter 10, the uncertainty of room acoustical quantities was presented as

a function of the measurement position’s uncertainty. In reference to theoretic

predictions, the influence of the filter’s center frequency and bandwidth on the

fluctuations was discussed. In addition, it was pointed out that there must be
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other factors contributing to the spatial fluctuations. Future investigations could

therefore target the analysis of variance (ANOVA) and investigate the relevance of

the contributing factors. As a result, it may be possible to identify and understand

the contributions that cannot be presently identified.

For the ANOVA, large data samples are necessary to ensure the possible range

of acoustic environments is sufficiently covered. In order to reduce the reliance

on measurements, it makes sense to investigate whether spatial fluctuations can

be investigated using simulation tools. In this regard it is particularly important

to study whether geometrical methods can correctly predict fluctuations when

their rationale does not consider modal effects. First steps were already made by

Witew, Dietrich, et al. (2013).

The measurement function established in Chapter 7.2 is suitable to discuss

other questions of practical relevance. The question regularly arises of what

resolution the sound field in auditoria must be surveyed at in order to capture

the global trend across the room. This is synonymous with the question of which

size an area a single measurement carries meaning for. The knowledge of how

the sound field changes over the distance to a reference position is available

through the measurement function. Depending on the shape of the discussed

area, a distance distribution to the reference position can be established. Just

like in Chapter 9, the measurement function can be sampled accordingly using a

Monte Carlo method.

Based on the results of de Vries et al. (2001), the validity question regarding

room acoustical measurements has already been raised. On the grounds of the

results presented here, it is now evident how accurately measurement positions

have to be defined to collect valid results. Depending on the room acoustical

quantity and the properties of the filter, it is clear that the measurement positions

usually have to be documented rather precisely. Ultimately, this conclusion is

motivated by reference to perceptual thresholds. However, since JNDs depend

on the test paradigm prevalent in the respective study, it seems reasonable to

investigate these dependencies in future studies. This could provide a better

understanding of how perceptible fluctuations of the sound field in auditoria

actually are. Furthermore, little is known about the frequency dependence of

perceptual thresholds.

In the present study, a clear focus was placed on standardized room acoustical

quantities, even though this focus is not mandatory because of the collected

measurement data. It would therefore be conceivable to reanalyze the data in a

future study and investigate the influence of spatial fluctuations on individual

time intervals of RIRs. This would permit a more detailed investigation of how the

early reflections contribute to spatial fluctuations, and would set the foundation

for a general discussion of other possible room acoustical quantities.
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A
Detailed discussion of uncertainties in

room impulse response measurements

A.1 Introduction

This entire study relies on auditorium impulse response measurements that are

analyzed to investigate spatial fluctuations of the sound field. This leads directly

to the question of uncertainty in these measurements due to the acoustical

measurement chain used and due to other influences on the acoustic conditions

that haven an effect on the uncertainty. This appendix closely follows the stages

of uncertainty evaluation outlined in the ”Guide to the expression of uncertainty

in measurement” (GUM) ISO Guide 98-3 (2008) and its introductory document

JCGM 104 (2008) to address this question. Essentially, this argument divides the

uncertainty evaluation into the formulation stage of the measurement scenario

and actually calculating the uncertainty. Even though a clear focus is placed on

the equipment used in this study, the presented method may serve as a blueprint

for other studies to evaluate the capabilities of their own measurement chains.

A.2 Formulation stage

A.2.1 The output quantity

The measurement problem is identified as determining the acoustic transmission

channel of a given source-receiver combination in a room, i.e., the room impulse

response (RIR), h(t). This makes the RIR the primary output measurand. Room

acoustical parameters such as the reverberation time T , the clarity index C80

or difinition D50, etc., are derived output measurands that will be subject to an

independent discussion in Section 6.2.

In light of the fundamental discussion about the measurement principle of two

channel FFT methods in Section 2.2.1, it becomes clear that the primary output

quantity is derived from secondary quantities, i.e., the systems’ respective input
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and output sound pressure signals s(t) and g(t) that are divided in frequency

domain to yield the transfer function H(ω). According to Dietrich (2013), who

refers to Havelock et al. (2008); Kuttruff (2000); Miyara (2017), there are some

finer details to consider when choosing the locations to pick up these signals

from. In practice, however, the inputs and outputs of the software are usually

understood as best estimates for s(t) and g(t).

A.2.2 The input quantities

With the measurement problem defined, the various influence factors can now be

identified and characterized. JCGM 104 (2008)[6.1] suggests the use of available

knowledge to determine influence quantities. In measurement problems, where

the output quantity is determined through sophisticated simulations or through

highly simplified models, the significance of individual influencing factors cannot

be determined precisely. Identifying uncertainty contributions thus becomes a

creative process in which potential influence factors are collected through brain-

storming sessions, a process that is difficult to control since the participants’

contributions cannot be operationalized. To organize the search, the factors con-

tributing to quality management (Ishikawa, 1996) can be used as a starting point.

As an extension to Ishikawa’s original ”5M” approach (see Figure 2.5) from the

manufacturing industry, an ”8M” model (e.g., E. Bradley (2017),Ch. 5) can be

used to structure the search for uncertainty contributions. Not all of the eight

manufacturing categories seem to relate to questions of measurement uncertainty;

however, the available explanations identify the basic idea behind the grouping

and, thus, an adaptation to the concepts in measurement uncertainty is possible.

A list of potential uncertainty categories is shown in Table A.1.

Assigning the last category of calibration in Table A.1 to the measurement equip-

ment-group, an Ishikawa diagram with seven categories as shown in Figure A.1

emerges. The elements of the measurement chain (Figure 2.3) are referenced

in the classical measurement equipment category. Properties of the propagation

medium and acoustic noise sources are summarized in the group dealing with en-

vironmental conditions. The device under test and its properties as they influence

the measurand are discussed as part of the item auditorium. The influence fac-

tors that can be attributed to the algorithm that calculates the measurand from

the collected data are summarized in the measurement method. This category

includes properties of the 2-Ch-FFT method, but also the calculation of ISO3382

parameters. Influence factors due to the organizational sequence of steps are

discussed under the umbrella term measurement procedure. Here, aspects such

as reproducibility, repeatability, the duration of measurement series or even the

choice of measurement locations in the auditorium play a role. The human factor
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Table A.1: Root causes of manufacturing reliability according to an Ishikawa

(1996)-inspired 8 category model and their interpretation in an (acous-

tical) measurement uncertainty context.

Tautogram Clarification Translation to measurement uncertainty

Man Human resources Observer

Machine Technology Equipment I (Measurement chain)

Method Process Measurement method (logic)

Milieu Environment Environmental conditions

Materials Raw material Measurement object (Documentation)

Consumables

Information

Mission Purpose Equipment II

(Special measurement objective)

Management Leadership Measurement procedure (Organization)

Maintenance Calibration

in measurements is covered in observer -related aspects. Influence factors that are

characteristic of specialized measurement surveys requiring special infrastructure

are discussed as part of another measurement equipment category. As far as this

specific study is concerned, this category includes the special infrastructure of

the large measurement array. Implications regarding measurement uncertainty

of large arrays are discussed in the methodology Section 5 and Appendix B.
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Figure A.1: Ishikawa Diagram of a generic measurement process.
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A.2.3 The measurement model

Basic considerations

Dynamic measurements in the presence of noise

Figure A.2: Systematic drawing of the measurement chain. Elements that are

shaded are referred to in this paragraph.

Measurements using 2-Ch-FFT correlation techniques are widespread, are a stan-

dardized approach (ISO 18233, 2006) and are considered extremely reliable and

robust against disturbances (Müller & Massarani, 2001; Müller-Trapet & Höller,

2018). Discussing the associated uncertainty is challenging as the classical GUM

method requires establishing an algebraic relation between the system’s sta-

tionary input and output quantities. 2-Ch-FFT methods, however, are dynamic

measurements as the impulse response is calculated from a microphone’s time

domain signal, whose value at a given time instant depends on the excitation’s

time domain signal at previous instants in time. The FFT is not an algebraic

relation in the GUM sense, and thus does not suit the basic GUM approach

(Eichstädt, 2015).

For the individual case of a specific measurement, Eichstädt (2012) developed

a mathematical method to establish the uncertainty propagation in a dynamic

measurement. Since the input and output quantities are multi-dimensional vec-

tors (s(t) and g(t)), determining the uncertainty due to a transient disturbance

becomes complex and computationally demanding. Guski (2015) and Farina

(2007) discuss how impulsive disturbances affect impulse response measurements

in architectural acoustics, providing useful considerations when investigating the

uncertainty of already existing measurement results. For large data sets or for

general evaluations on generic measurements, however, these methods reach their

limits. In situations where sources of uncertainty can be identified as constant or

quasi-stationary during the measurement process, existing strategies that align

with the classical tools of the ISO Guide 98-3 (2008) can be used.

Wittstock and Bethke (2005) discuss the uncertainty of ISO 3741 (2011)-

compliant sound level/power measurements: In the presence of stationary back-

ground noise Lnoise a correction term bnoise can be applied to the noise-impaired

signal L′signal to have an estimate of the intended measurand Lsignal.
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bnoise = −10 log10

(
1− 10−

L′signal−Lnoise
10

)
(A.2.1)

u(bnoise) =
10−

L′signal−Lnoise
10

1− 10−
L′
signal

−Lnoise

10

√
u2(L′signal) + u2(Lnoise) (A.2.2)

Since Equations A.2.1 and A.2.2 do not hold exclusively for averaged sound

pressure levels, Wittstock and Bethke’s approach can also be used for individual

samples of a recorded sound pressure signal such as g(t). Thus, according to

Equation A.2.2, determining the uncertainty of the correction term requires

knowledge of the prevailing signal-to-noise ratio, the uncertainty of the recorded

signal, and the variance of the noise.

Provided that the AWGN3-assumption is appropriate for the background noise,

and the amplitude spectrum of the excitation signal s(t) is flat, the signal-to-noise

ratio depends on how the measurement chain’s dynamic range is utilized, and

so follows the established experience with 2-Ch-FFT correlation measurements

(Dietrich, 2013; Müller & Massarani, 2001)4. On these grounds, Equation A.2.2

applies not only to the recorded signal g(t), but also to the calculated impulse

response h(t).

Under suitable conditions, the variance of the noise level could be determined

empirically from the measured impulse response. If the noise level follows a

10 log10(|N (µ = 0, σ2)|) distribution, its variance does not depend on σ2 and

is thus u2(Lnoise) ≈ 23.27 dB. When deterministic excitation signals are used,

u(L′signal) indicates the standard uncertainty that the elements of the measure-

ment chain introduce. When u2(L′signal)� u2(Lnoise), the variance of the signal

can be neglected in the square root of Equation A.2.2.

To make the results of this discussion more tangible, the correction term bnoise

and its uncertainty u(bnoise) (based on JCGM 101 (2008) Monte Carlo simula-

tions) are shown in Figure A.3 for different output-signal-to-noise ratios. The

red line gives an account that the correction term decreases double exponentially

for increasing output signal to noise ratios. The corresponding uncertainty of the

correction term is shown in green. Both the correction term and its standard

uncertainty very quickly assume negligibly small values, i.e., SNR & 10 dB

For systems whose impulse responses decay over time, the uncertainty due to

noise is therefore not constant, but inversely related to the SNR of the impulse

3 Additive white Gaussian noise
4 In practical measurements, a headroom of 10 dB has proven to be sufficient. The maximum

possible dynamic range is further reduced by the crest factor of the excitation signal (3 dB

for sine sweeps).
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Figure A.3: Correction term and its associated uncertainty according to Equa-

tion A.2.1. Based on standard uncertainties of 0 dB for the measured

sound pressure level L′signal and 4.8 dB for the background noise level

Lnoise. The results from Monte Carlo simulations are shown in blue.

response (e.g., see Figure A.4). It remains therefore a valid observation that the

uncertainty due to background noise is negligible for SNRs larger than 10 dB.

Figure A.4: Measured room impulse response including the measurement uncer-

tainty due to noise.
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Nonlinear systems

Figure A.5: Systematic drawing of the measurement chain. Elements that are

shaded are referred to in this paragraph.

Deviations from the linearity of the measurement system’s characteristic curve

pose a problem that may lead to errors when using correlation techniques to

measure impulse responses (ISO 18233, 2006). Dietrich (2013)(Ch. 3) and Novak

(2009) dedicate a substantial investigation to the effects of such nonlinearities on

the measurement of transfer functions. Their modeling is based on the decompo-

sition of the measurement system’s characteristic curve into a Taylor polynomial

series (Bronstein et al., 2015, 7.3.3.3) and trigonometric power series (Zwillinger,

2003) to quantify the system’s distortion. This perspective is extremely helpful

to understand how odd-ordered harmonics contribute energy to the fundamental

signal. The potentially unknown leakage into the fundamental signal may be

detrimental to the correct acquisition of the impulse response’s amplitude. To

this date, there is no estimate of this uncertainty contribution.

Expressing the odd orders of the power series as in Equation A.2.3 shows how

the sum’s k = n term potentially scatters into the fundamental system output.

cos2n+1[x] =

n∑
k=0

Cn,k cos[(2n+ 1− 2k)x], with Cn,k =
1

4n

(
2n+ 1

k

)
(A.2.3)

When fixed rate exponential sine sweeps are used to excite the system it is

generally possible to easily identify any 3rd order responses at the end of the

measured impulse response. These contributions are given in the k = n − 1

summation term in Equation A.2.3. It is evident from Equation A.2.4 that the

disturbing 1st order harmonic can be estimated to have an amplitude of up to

5 dB above the 3rd order response.

Cn,rel =
Cn,k=n

Cn,k=n−1
=
n+ 2

n
≤ 3 ≈ 5 dB (A.2.4)

The quintessence of Equations A.2.2 and A.2.1 holds even when harmonic

distortions are deterministic and the AWGN-assumption may not be fully valid.

When fundamental disturbances have an amplitude more than 10 dB below that

of the linear system response the correction term bnoise becomes negligibly small.

Compared to random noise deterministic disturbances have a lower variance
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(u2(Lnoise)) which leads to a lower uncertainty of the correction term. Both factors

suggest that provisions should be made to prevent third-order harmonics from

reaching amplitudes exceeding levels of 15 dB below the linear system response.

Calibration and equalization of the measurement chain

Figure A.6: Systematic drawing of the measurement chain. Elements that are

shaded are referred to in this paragraph.

The elements of the measurement chain are usually discussed under the realm

of system theory and characterized through their transfer functions. Follow-

ing the principles of the GUM, deviations from ideally flat transfer function

can be separated into systematic and random components (ISO Guide 98-3,

2008, 3.2.1). Systematic influences can be compensated using a correction term

bxi(ω), while random influences directly contribute to the uncertainty u
(
xi(ω)

)
(ISO Guide 98-3, 2008, 3.2.3). Calibration can therefore be understood as a

measurement process to determine the correction term bxi(ω). Of course, this

measurement has uncertainty, i.e., u
(
bxi(ω)

)
. A calibration is therefore only

useful when u
(
bxi(ω)

)
� bxi(ω)

The electrical elements of the measurement chain can be calibrated relatively

easily in a short circuit measurement. If close to the full dynamic range has been

used and there is sufficient SNR, the uncertainty of the electrical calibration

measurement usually plays a minor role. The correction of acoustic measurement

sources and microphones, however, cannot be determined in situ in the same

way. Both transducers are subject to the sound field under test, which permits

no access to a sound pressure that characterizes solely the transducer. As a

result, separate measurements that are more complex and introduce a larger

uncertainty are required (e.g., the sound power calibration in a reverberation

room or a pistonphone calibration).
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Classical measurement equipment

Figure A.7: Ishikawa drawing with shaded category this section refers to.

D/A converters - Quantization

Figure A.8: Systematic drawing of the measurement chain. Elements that are

shaded are referred to in this paragraph.

The audio interface or sound card feeds the output signal into the measurement

chain. In many cases such devices use the MADI, ADAT or comparable protocols

to convey the signal data. This investigation used a RME MADIface XT, that

provides the audio signal at a (chosen) word depth of Q = 24bit at a sampling

frequency of 44.1 kHz to the connected digital-analog-converter. The quantization

adds noise to the measurement: the maximum possible SNR can be determined

through basic formulas (Havelock et al., 2008, Ch. 45)

Lquant, SNR = 20 log10(2−Q)− 1.76 dB = −146.2 dB. (A.2.5)

As this is the introduction of the signal into the measurement chain,u(L′signal) =

0 and u(Lquant-SNR) = 4.8 dB. Based on an effective SNR of 133 dB, Equa-

tion A.2.2 yields an uncertainty due to quantization noise of

u(bSNR-quant) = 2.3×10−13 dB. (A.2.6)

Practical D/A converters present a piecewise constant voltage signal as a

sequence of rect(t)-functions that hold the amplitude coded in the incoming 24-

bit words for the duration of the sampling period. Aliasing that is introduced

through the side bands of the rect(t)-function are attenuated through low pass

filters.

This study used a RME ADI-8 QS DA/AD converter that features eight output

and eight input channels. The manufacturer specifies the conversion’s signal-to-

noise ratios as the level difference between the highest convertible amplitude
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(full scale level) and the amplitude of the total harmonic distortions (THD).

Oftentimes the total harmonic distortions and noise will be summarized as the

THD+N-level.

SNRTHD, D/A-conversion = −104 dB (A.2.7)

SNRTHD+N, D/A-conversion = −102 dB. (A.2.8)

This information does not perfectly correspond to the presented model for

background noise or harmonic distortions. Nonetheless, based on the previous

headroom discussion (e.g., see footnote 3), the resulting effective signal-to-noise

ratios can be estimated to be greater than 90 dB for both scenarios. In line with

the previous discussions this yields an uncertainty of

u(bD/A-SNR) ≈ u(bD/A-THD) . 1×10−8 dB. (A.2.9)

The manufacturer specifies the output channels’ frequency response to be flat

within a range of −0.5 dB between 5 Hz and 22 kHz. This information could be

included in the uncertainty budget as a GUM type B uncertainty. However, since

a compensation of the frequency response is possible without major effort (and

has been carried out), this uncertainty contribution is not to considered.

The accuracy of the analog-digital and digital-analog conversion depends in

part on the accuracy of the sampling clock and its jitter. Inaccuracies in the

times at which samples are taken result in errors in the amplitude of the sampled

signal that can be interpreted as introduced noise. This suggests that the familiar

tools for evaluating background noise can be used. Clock jitter creates larger

amplitude error for signals that have higher slopes. For a sinusoidal signal sin(ωt)

the slope is highest at t = 0 and can be quantified (by taking the signal’s

derivative) as 2πf . From the GUM-framework, the uncertainty of the signal’s

voltage amplitude u(vAmplitude) = cu(tJitter), with the sensitivity coefficient

c = 2πf . The manufacturer specified the used hardware’s jitter u(tJitter) to be

less then 1 ns. The introduced noise due to clock jitter rises by 6 dB with each

doubling of the frequency and can be determined using Equation A.2.10 (Neu,

2010). The resulting SNRs are given in Table A.2 for different octave bands.

SNRJitter = −20 log10(2πfmaxtJitter) (A.2.10)

The signal-to-noise ratios given in Table A.2 are much smaller than what

practical experience would suggest, possibly because in current circuitry it is

common practice to implement approaches which increase the SNR even further,

and, hence, contribute even less to the uncertainty (Pollow, Dietrich, Krechel, &
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Table A.2: SNR for different octave bands due to clock jitter of tJitter = 1 ns.

Octave band [Hz] 63 125 250 500 1000 2000 4000

SNRJitter [dB] -125 -119 -113 -107 -101 -95 -89

Vorländer, 2011). Still, the lowest SNR in Table A.2 indicates that uncertainty

due to clock jitter can be conservatively estimated to be

u(bclock jitter) . 1×10−8 dB. (A.2.11)

Amplifiers (of the excitation signal)

Figure A.9: Systematic drawing of the measurement chain. Elements that are

shaded are referred to in this paragraph.

In the next stage, the analog signal is fed to a power amplifier to provide the

energy needed to drive the sound source. Generally, amplifiers are considered

to have properties sufficient for today’s acoustical measurement tasks: linearity,

flat frequency response and noise suppression. In this study a Stage Line STA-

1508 8-channel amplifier was used. Within the frequency range from 12 Hz to

60 kHz, the transfer function is constant within the limits of ±0.75 dB. These

specifications can be used to establish a GUM type B uncertainty, but this

deterministic deviation from the ideal transfer function also can be compensated.

The manufacturer’s quotes for the signal-to-noise ratio and the THD level is

SNRAmp-SNR = 80 dB and (A.2.12)

SNRAmp-THD ≈ 60 dB. (A.2.13)

Thus, the associated uncertainty due to the power amplifier is likely to be on the

order of

u(bAmp-SNR) . 1×10−6 dB and (A.2.14)

u(bAmp-THD) . 1×10−4 dB. (A.2.15)
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Electroacoustic sound sources

Figure A.10: Systematic drawing of the measurement chain. Elements that are

shaded are referred to in this paragraph.

The next element in the measurement chain is the electroacoustic loudspeaker

that actually feeds the excitation signal into the room. As with the previously

discussed elements, sound sources introduce uncertainties to the measurement

either due to nonlinearities that lead to harmonic distortions, or due to their

nonflat transfer functions. In addition, there are some factors that are specifically

characteristic of electroacoustic sound transducers, such as the directivity or the

long-term stability.

Figure A.11: Measurement loudspeaker designed at ITA set up as a broadband

omnidirectional source.

The loudspeaker system used here is described in detail by Behler and Vorländer

(2018). As shown in Figure A.11, the system consists of three parts: a bass cabinet

to radiate the lowest frequencies up to the 125 Hz-octave, a 30 cm sphere with 12
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membranes to excite the octave bands ranging from 250 Hz to 1 kHz and a high

frequency tweeter that is designed for the octave bands above 2 kHz.

Influence of the sound power calibration For loudspeakers in general,

determining the transducer constant (in V/m3/s2) is of some importance. The

basic idea does not entirely differ from the existing considerations on the equal-

ization of the amplifier’s or D/A converter’s transfer functions. An essential

difference, however, is that loudspeakers change the signal domain from electrical

to acoustical, introducing uncertainties.

Wenmaekers and Hak (2015) have shown that determining the level of the direct

sound in situ, i.e., in the (vaguely controlled) reverberant conditions of an audi-

torium, is prone to significant errors. Such reference measurements are thus best

conducted under the controlled laboratory conditions of an (hemi-)anechoic room.

It is not too surprising that such measurements are also uncertain. Wittstock and

Bethke (2005) have shown that the sound power measurement of a sound source

in a hemi-anechoic room introduces an uncertainty of u(bLS-Level) ≈ 0.45 dB to

the uncertainty budget. This value is due to the uncertainty contributions shown

in Table A.3.

Wittstock and Bethke (2005) refer to ISO 3745 (2017) measurements to de-

termine the sound power levels of noise sources in (hemi-)anechoic rooms. In

such scenarios the sound sources are generally uncorrelated to the measurement

equipment. In the measurement chain discussed here, however, the sound source

is a loudspeaker, which means that not all of the original aspects in Table A.3

contribute to the uncertainty to the same extent. Of the most notable differences,

the uncertainty due to filtering can be omitted, since the targeted sound power

calibration is applied as a function of frequency across the entire bandwidth.

Furthermore, the contribution of background noise is significantly reduced in

correlation measurements. Finally, the influence of the microphone calibration

can be revised due to the discussion in one of the following paragraphs. All of

these revisions are due to differences between the general measurement procedure

Wittstock and Bethke (2005) discuss and the detailed implementation used in

this study. The juxtaposition of both views leads to a revised uncertainty budget

in Table A.3, and consequently to the combined uncertainty of

u(bLS-Level) ≈ 0.26 dB. (A.2.16)

To evaluate the relevance of this uncertainty contribution, the intended use

of the collected data (Chapter 7) needs to be considered. Generally, calibration

measurements serve two goals: They determine the transducer constant, and

they determine the average sensitivity of the sound source over frequency. Thus,
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Table A.3: Uncertainty budget for sound level measurements according to Witt-

stock and Bethke (2005) and with revised contributions.

Contribution Uncertainty

Wittstock Revised

et al. (2005)

Filter 0.34 dB 0 dB

Calibration 0.25 dB 0.21 dB

Microphone

frequency response 0.1 dB 0.15 dB

Background noise 0.1 dB �0.01 dB (SNR >30 dB)

Positioning 0.05 dB 0.05 dB

Display resolution 0.03 dB 0 dB

Changes in

sound emission ≈0 dB 0 dB

Averaging time ≈0 dB 0 dB

Angel of

sound incidence ≈0 dB ≈0 dB

Combined

uncertainty 0.45 dB 0.26 dB

calibration is necessary to determine measurands absolutely. In contrast, most

room acoustical quantities (e.g., reverberation time or clarity) evaluate energy

ratios within the RIR or the decay process over time. These metrics are indepen-

dent of the RIR’s absolute amplitude. Other quantities (e.g., sound strength or

listener envelopment), however, require by definition a sound level calibration. If,

as in Chapter 7, room acoustical quantities are placed in direct comparison to

each other, a sound power calibration becomes obsolete as long as the collected

quantities were determined during the same measurement series in which the

measurement chain’s amplification remained unchanged. As a result, the sound

power calibration is optional for any of the room acoustical metrics examined

here. Consequently, in this study, the calibration’s uncertainty contribution can

be neglected regardless of whether the calibration was carried out or not.

Influence of spectral characteristics Sound sources behaving (approxi-

mately) as point sources have to work against the radiation impedance, which

is a function of frequency. At low frequencies, the sound source displaces the
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medium without compression. At these frequencies sound cannot be radiated,

and so the sensitivity of the source is reduced. At higher frequencies, the size of

the membrane and the proximity of the individual drivers (both relative to the

wavelength) lead to interference effects that reduce the overall radiated sound

power. Figure A.12 shows the sensitivity as a function of frequency for four

different dodecahedron loudspeakers (Witew & Behler, 2005).

Figure A.12: Sensitivity as a function of frequency for different dodecahedron

loudspeakers.

The sensitivity of the sound source can be determined under controlled labora-

tory conditions in a setup very similar to the one used for sound power calibration.

Thus, essentially the same input variables contribute to the uncertainty. How-

ever, since the spectral equalization is only relative, a pistonphone calibration

is not necessary. This reduces the combined uncertainty in Table A.3 for the

loudspeaker equalization to

u(bLS-spec) = 0.16 dB. (A.2.17)

The uncertainty contributions given in Equations A.2.16 and A.2.17 need only

be considered once in the uncertainty budget, obviously depending on the inves-

tigations line of argument. In the measurements discussed here, compensating

the spectral characteristics of the source (i.e., without calibration) is sufficient.

Influence of harmonic distortions Loudspeakers are often identified as

the ”weak link” that is especially prone to introducing nonlinearities into the

measurement chain. This is because loudspeakers used in professional applications

are regularly operated near their load limits (Goertz, 2008) and so harmonic

distortions characterize their acoustic behavior considerably.
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Since the distortion’s contribution depends strongly on the signal amplitude, or

the power fed into the system, it is common to characterize loudspeakers through

the sound pressure levels (measured 1 m away from the speaker) at which the

total harmonic distortions (THDs) provide a defined percentage to the total level.

THD ratios of 1 %, 3 % and 10 % correspond to respective THD levels of −40 dB,

−30 dB and −20 dB relative to the fundamental signal. For the measurement

source used in this study (see Figure A.11), the results of such a maximum level

measurement can be seen in Figure A.13. From left to right, the maximum levels

for the bass cabinet, the mid-frequency dodecahedron and the high-frequency

tweeter are shown. The orange, green and magenta lines indicate the THD ratios

of 1 %, 3 % and 10 %.

(a) Low, Pmax = 500 W. (b) Mid, Pmax = 2800 W. (c) High, Pmax = 160 W.

Figure A.13: Maximum sound pressure level, for the different parts of the loud-

speaker system at different distortion limits. Measurements were

performed under anechoic conditions and calculated for a distance

of 1 m from the loudspeaker (from Behler and Vorländer (2018)).

From a formal point of view, in order to make the best use of the information

shown in Figure A.13 it is necessary to calibrate the sound sources and so ensure

beyond doubt that the loudspeaker operates at a known level. Obviously, this

comes at the cost of introducing the uncertainty of 0.26 dB to the budget, but if

measurements of strength parameters were planned, this calibration would not

involve additional effort.

For the research question discussed here, however, a power calibration is not

necessary. Furthermore, the influence of the harmonic distortions in the measure-

ment chain can be identified in the measured impulse response. Even if a high

3rd order THD level of −40 dB relative to the RIRs maximum were assumed, an

uncertainty of
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u(bLS-THD) ≈ 1×10−3 dB (A.2.18)

would have to be recognized. With the given sound source it is not particularly

problematic to conduct measurements with harmonic distortions of less then

−80 dB. The actual influence of loudspeaker THDs can be much less than the

number in Equation A.2.18.

Influence of the directivity The uncertainty contribution due to the loud-

speaker’s directivity is very similar to the influence of the transfer function’s

flatness, except that the additional variable of ”radiation angle” is introduced to

the spectral characteristics. The strategies to quantify this factor are diverse.

ISO 3382-1 (2009) specifies a measurement method to characterize dodecahe-

dron sources and to evaluate their suitability for measurements in rooms based

on a single number value. This method requires sampling the sound power dis-

tribution over a great circle of one of the source’s enveloping concentric spheres

and calculating an angular average. This pragmatic approach has it’s roots in

standards of building acoustics and fundamental research, e.g., Pelorson et al.

(1992). This ISO 3382-1 (2009) directivity parameter is clearly related to the di-

rectivity of measurement sound sources and, hence, can be seen as a valid metric

to compare different sound sources to each other. On the other hand, however,

this single-number characteristic is defined in a rather abstract manner, making it

meaningful only in reference to the measurement method. Conclusions regarding

the expected measurement uncertainty based on the ISO 3382 directivity metric

are not evident.

To bridge this gap and establish a relation between the ISO 3382-1 (2009)

directivity metric and the uncertainty in measurements, Witew and Behler (2005)

discuss a measurement method that is based on dodecahedron loudspeakers

placed on a turntable and repeated measurements with the source turned in steps.

Such measurements show how quantities describing the acoustics in auditoria (e.g.,

C80, etc.) vary due to the sources’ directivity. Later, in a follow-up, San Martin

et al. (2007) were able to put these results on a broader foundation and discuss

uncertainties of different room acoustical parameters due to the directivity of

sound sources. The value of this approach needs to be discussed in a differentiated

manner. On the one hand, it is a useful result to know the expected uncertainties

when common measurement loudspeakers are used. On the other hand, it would

be even better if the source properties were documented in a way that permitted

establishing a clear functional relationship showing how increasing deviations

from omni-directionality translated to an increasing variance of room acoustical

parameters.
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In an investigation that studied which loudspeaker shapes are most suitable

to achieve the best possible omni-directional sound radiation, Leishman et al.

(2006) free themselves from the limitations of the ISO 3382-1 (2009) directivity

metric. On the basis of numerous free field measurements in different directions

they calculate the area-weighted standard deviation of the radiated sound energy

as a metric to quantify a source’s directivity. Provided that the ray tracing

paradigm and the concept of the source’s radiation into a diffuse sound field

are valid Leishman et al. (2006)’s weighted standard deviation is identical to

the uncertainty of individual reflections in an impulse response. This approach

has the benefit that the source characterization coincides with a metric that is

directly usable for the measurement uncertainty discussion. It may be taken with

a grain of salt that the concepts of ”individual reflections” and the ”diffuse sound

field” cannot be perfectly combined.

(a) Mid frequency sphere. (b) High frequency tweeter.

Figure A.14: Area weighted standard deviation of the dodecahedron loudspeaker

shown in Figure A.11

For the sound source depicted in Figure A.11, Figure A.14 shows the standard

deviation of the radiated sound intensity level. The underlying data is based on

the sound radiation over a 4π solid angle sampled in a 5° resolution. Hence, it

can be assumed that the uncertainty contribution of measurements due to source

directivity, conducted with this source in this study, is about u(bLS-dir) = 0.35 dB.

Instead of blindly accepting this uncertainty, the uncertainty of the measure-

ment method leading to the area weighted standard deviation needs to be taken

into account as well. Due to the automated measurement procedure used at the

Institute of Technical Acoustics, many of the most significant contributions Witt-

stock and Bethke (2005) identfies (e.g., pistonphon calibration, filtering, etc.) are

not applicable in this special case (Pazen, Witew, & Vorländer, 2011). As a result,
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it is reasonable to estimate the measurement method’s uncertainty contribution

to u(bLS−spec) = 0.16 dB, yielding a combined directivity uncertainty of

u(bLS-dir) = 0.38 dB. (A.2.19)

As part of an upfront critical discussion it is important to indicate potential

limitations that may exist:

� Using the loudspeakers’ area weighted standard deviation of the radiated

sound energy to determine the uncertainty in the measured RIR relies on

the concept of the perfectly diffuse sound field. Gade and Rindel (1985) have

shown, however, that the perfectly diffuse sound field is a rare condition in

auditoria.

� The implied model suggests a constant uncertainty contribution over the

running time of the impulse response. Using a very large data collection,

Witew et al. (2014) have shown that the uncertainty of the impulse response

due to the source’s directivity changes over the running time of the impulse

response. The very early parts of the impulse response show a significantly

higher uncertainty compared to the later parts of the (diffuse) exponential

decay.

� The implied model also suggests that other (secondary) influences cannot

contribute to the uncertainty. Witew et al. (2012) have shown on the

same data set, however, that the uncertainty due to the primary factor

”directivity” depends on secondary factors such as ”room volume”, ”surface

scattering” and ”surface absorption”, as well as the interactions of these

factors.

These findings could be taken as evidence that the ”mixing” of the sound field,

and aspects of ”averaging” due to the rising reflection density over time, play a role

in continuously reducing the uncertainty as the running time of the RIR increases.

In contrast to that perception, Knüttel et al. (2013) have shown that despite the

high number of reflections arriving in late parts of the RIR, the influence of the

sources’ directivity was proven beyond doubt. Due to the complex way the various

influences are linked to each other, it is difficult to establish a clear relationship

between deviance from omni-directionality and the measurement uncertainty of

RIRs. Resorting on the uncertainty given in Equation A.2.19 therefore represents

a pragmatic approach, while potential refinements are a question of ongoing

research.
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Microphones

Figure A.15: Systematic drawing of the measurement chain. Elements that are

shaded are referred to in this paragraph.

IEC 60268-4 (2017) lists 48 parameters that can be used to describe the techni-

cal properties of microphones. Generally, not all of the parameters are available

from the manufacturer’s data sheet, and not all are relevant factors contributing to

the uncertainty in measurement. Payne (2004) and Wittstock and Bethke (2005)

discuss the uncertainties associated with sound level meters and provide helpful

information about the factors contributing to the uncertainty in measurements

in general and also to factors associated with microphones.

In the present study, 32 Sennheiser KE 4-221-2 pre-polarized, back-electret

condenser microphone capsules have been used. The manufacturer’s data sheet

(Cat. No. 002280, 2005) quotes sensor characteristics that are similar to the

loudspeaker and amplifier properties that have been discussed before. As a result,

the same strategy to recognize these contributions can be used.

Influence of harmonic distortions Sennheiser publishes the maximum

sound pressure levels while not exceeding THD-values of 1 % and 3 % at the

output as 130 dB and 140 dB respectively. As before, this information cannot

contribute directly to the uncertainty discussion because the prevailing signal-to-

noise ratio during the measurement is unknown for the time being. Considering

a THD level of at least 100 dB, however, implies an uncertainty of less than

u(bMic-THD) . 1×10−9 dB. (A.2.20)

Influence of inherent noise The noise in the microphone’s output voltage

due to the acoustic, mechanical and electric parts of the microphone (Schneider,

2008) is regularly published in the microphone’s data sheet as the equivalent noise

level in dB(A) or as the CCIR rating according to ITU-R BS.468-4 (1986). This

property plays a central role in direct acoustical measurements. In correlation

measurements, however, the microphone’s intrinsic noise only contributes to the

background noise, in conjunction with the properties of the excitation signal

and the utilization of the dynamic range. Thus, determining the (combined)

noise level from the measured impulse response a posteriori is justified. For the
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measurements performed here, a peak-to-noise ratio of 70 dB can be taken as a

reference. This yields

u(bMic-SNR) . 1×10−6 dB. (A.2.21)

This strategy overestimates the uncertainty contribution of the microphone’s

intrinsic noise as the analyzed noise level can be composed from many sources.

Compared to the already discussed uncertainties of up to 0.38 dB, contributions

in the order of 10−6 dB should not play a significant role.

Influence of the microphone-altered sound field The presence of the

microphone distorts the sound field and thus has an effect on the prevailing

sound pressure. According to Payne (2004), manufacturers of microphones and

sound level meters do not provide any indication of the magnitude of associated

uncertainties. In Payne’s study about sound level analyzers in (hemi) free field

conditions, correction terms ranging from 0.04–0.11 dB and an uncertainty of

u(bMic-Field) = 0.011 dB (A.2.22)

has been determined.

Since the disturbance of a scattering body in the sound field is wavelength-

dependent, and since 1/2 inch (12.7 mm) microphone capsules of average sound

level meters and the 5 mm diameter of a KE 4 capsule are different in size, it

is evident that the uncertainty estimation in Equation A.2.22 exceeds the effect

that can be anticipated in this study. Since the wavelength of a 4 kHz tone is

more than one order of magnitude larger than the dimensions of the sensor, the

effect of the microphone on the measured sound pressure is considered negligible

in this study for the discussed frequency range. In order to clearly distinguish

this influence factor from others, it is noted that the disturbance of the sound

field discussed here only concerns the sensor and its support in the immediate

vicinity. Any positioning mechanisms that may play a role in this investigation

are deferred to a later discussion.

Influence of the frequency response Wittstock and Bethke (2005) in-

vestigated the free field sensitivity of five high-quality 1/2 inch microphones and

amplifier cartridges as a function of frequency to determine the uncertainty of

published sensitivity data in calibration charts. They determine the uncertainty

of a measurement microphone’s frequency response to be as shown in Table A.4a.

Based on unpublished reference measurements by Lukas Aspöck in 2017, the

frequency responses of the 32 KE 4-221-2 microphones are available. From this

data, the correction terms bMic-spec and their uncertainties u(bMic-spec) can be
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Table A.4: Uncertainty due to the microphone frequency response.

Frequency Uncertainty

range u(bMic-spec)

[Hz] [dB]

20 – 80 0.15

100 – 5000 0.10

6300 – 10 000 0.15

12 500 – 20 000 0.20

– –

– –

– –

– –

– –

(a) From Wittstock and Bethke (2005).

Frequency Correction Uncertainty

band bMic-spec u(bMic-spec)

[Hz] [dB] [dB]

62.5 −0.44 0.15

125 −0.07 0.10

250 −0.13 0.08

500 −0.18 0.08

1000 −0.19 0.07

2000 −0.09 0.13

4000 −0.35 0.46

8000 0.73 1.57

16 000 5.33 3.94

(b) Based on differences between
32 KE 4 microphones.

determined. The results shown in Table A.4b give evidence that the microphones

used in this study introduce a measurement uncertainty into the measurement

chain that is comparable to the ”high-quality up-to-date instruments” used by

Wittstock and Bethke (2005). Only for the highest frequency bands (i.e., 4–16 kHz-

octaves) is the uncertainty well above typical measurement grade microphones.

As these bands are excluded from the analysis in this present investigation, the

uncertainty introduced due to the microphones’ frequency response can be given

as a single number quanitity:

u(bMic-spec) = 0.15 dB. (A.2.23)

Influence of the directivity Similarly to the radial pattern of the sound

source, the directivity of the microphone is a source of uncertainty as well. Payne

(2004) considers the uncertainty resulting from sound incidence at angles diverging

up to 20° from that which the instrumentation has been calibrated for. Assuming

an excitation with a flat frequency spectrum he determines the uncertainty of

the A-weighted level to be 0.14 dB.

Wittstock and Bethke (2005) provides more detailed data based on directivity

measurements and an assumed uncertainty of 5° in the direction of the incident

sound. They determine the uncertainty to narrow band sound level measurements

as shown in Table A.5a.
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Table A.5: Uncertainty due to the directivity of the microphone.

Frequency band Uncertainty

u(bMic-dir)

[Hz] [dB]

16 – 2000 0.05

4000 0.10

8000 0.20

16 000 0.50

– –

– –

– –

– –

(a) From Wittstock and Bethke (2005).

Frequency band Uncertainty

u(bMic-dir)

[Hz] [dB]

125 0.07

250 0.02

500 0.01

1000 0.02

2000 0.06

4000 0.19

8000 0.48

16 000 0.96

(b) For a KE 4 microphones.

These results, however, cannot be directly applied to the situation discussed

here, because Wittstock and Bethke’s free field conditions do not apply in au-

ditoria. In regard to Payne (2004), the A-weighted levels do not quite relate to

measured impulse responses.

For this reason, directivity measurements of the KE 4 microphones by Markus

Müller-Trapet from 2012 were re-analyzed and the area-weighted standard devia-

tion (see Chapter A.2.3 and Leishman et al. (2006)) was calculated as an estimate

for the uncertainty contribution. The results are shown in Table A.5b. It can be

seen that the uncertainty for omni-directional sound incidence at mid frequen-

cies is well below the reference values determined under free field conditions. At

higher frequencies, however, there are significant deviations in the directivity

and therefore larger uncertainty contributions. The slowly rising measurement

uncertainty at lower frequencies is surprising and cannot be clearly explained. As

this increase in uncertainty is rather subtle, however, it needs not be of concern.

To merge these results in a single number value, the uncertainty is expressed

through

u(bMic-dir) = 0.07 dB. (A.2.24)

The limitations of this approach were already discussed in the context of the

uncertainty due to the sound source’s directivity. Due to reciprocity, they apply

for microphones as well.
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Influence of the calibration During calibration, a known sound pressure

level is produced at the diaphragm of the measurement microphone and the

resulting signal is propagated through the receiving part of the measurement

chain. As a result, the relevant uncertainty contributions of the measurement

chain in Equation A.2.25 must be taken into account when determining the

combined uncertainty of the calibration.

uc(bMic-cal) =
√
u2(LCal) + u2(bcalibrator) + u2(bMic-spec) + u2(bAmp-THD)

(A.2.25)

Hanes (2001) compares voltage calibration data from 13 national metrological

institutions, and determines the uncertainty of sound pressure levels produced

by calibrated pistonphones to be u(bcalibrator) = 0.035 dB. Hanes concludes

that the uncertainty of the calibrator is the greatest contribution to the overall

calibration uncertainty. In contrast, Payne (2004), from the same laboratory, rates

the uncertainty contribution of the calibration to be u(bcalibrator) = 0.025 dB,

based on his investigation of 22 sound level meters. Compared to Wittstock

and Bethke (2005) these uncertainties seem rather low, as they determine the

uncertainties of the sinusodial calibration level to be u(LCal) = 0.09 dB, and of

the pistonphone to be u(bcalibrator) = 0.09 dB. The reason for this discrepancy

may be the accuracy of different calibration methods (Brüel & Kjær, 1996, Ch.

6.6). According to the B&K Microphone Handbook, the combined uncertainty

uc(bcal) of pistonphones may range from 0.035 to 0.15 dB.

Adopting Wittstock and Bethke (2005)’s result and including the remaining

open uncertainty contributions in Equation A.2.25 (i.e., u(bMic-spec) = 0.15 dB

and u(bAmp-THD) ≈ 1×10−4 dB) yields the combined uncertainty of

uc(bMic-cal) = 0.21 dB. (A.2.26)

Finally, it should be mentioned that the previous discussion on calibration

disregards possible correlation of the uncertainty contributions, as they may exist

through use of the same equipment or the same calibration normal. Correlation

effects are not considered by Payne (2004), Wittstock and Bethke (2005) or Hanes

(2001) either.
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Amplifiers (of the microphone signal)

Figure A.16: Systematic drawing of the measurement chain. Elements that are

shaded are referred to in this paragraph.

At the receiving side of the measurement chain, the microphone signal is ampli-

fied twice before quantization. Although the first step is actually to convert the

capacitor’s charge separated by the diaphragm and the backplate into a stable

voltage (and current), it can still be interpreted as an amplification. The second

cascade of the amplification is to make best use of the transmission channel and

amplify the microphone signal so that it (reasonably) covers the A/D converter’s

full dynamic range.

The linearity of the reference range of sound level meters is an important

criterion for type ratings specified in IEC 61672-1 (2013). The acceptance limits

for level linearity are measured with electrical signals that are fed to the sound

level meters through the input of the microphone preamplifier. Payne (2004)

investigated 22 different sound level meter types and determined the uncertainty

due to nonlinearities in the (pre)amplifier’s characteristic curve to

u(bPre-Amp-lin) = 0.10 dB (A.2.27)

in the reference range. In other ranges, i.e., when the signal is amplified a second

time to fall within the range of the sound level meter’s A/D-converter, the

combined uncertainty of

uc(bAmp-lin) = 0.17 dB (A.2.28)

was determined.

The interpretation of these findings on amplifiers presents some challenges to

the critical reader. Payne (2004) determined that the uncertainty contribution

due to nonlinearities in amplifiers’ critical curves on the receiving side is about

seven orders of magnitudes higher than what is determined reasonable on the

transmitting side. To further substantiate these doubts, the series of comparative

measurements by Müller and Massarani (2001) using MLS and sweep excitation

give little indication that such disturbances in 2-Ch-FFT correlation measure-

ments are to be expected. As a result, the question of whether differences in the

respective measurement methods could be reason for the diverging assessments

needs to be considered. Since this question cannot be answered on the basis of

the information available here, greater weight is given to Müller and Massarani
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(2001), Dietrich (2013) and own experience from acoustical measurements in audi-

toria in which u(bAmp-THD) for the transmitting side is valid for the microphone

amplification side, too.

A/D converters

Figure A.17: Systematic drawing of the measurement chain. Elements that are

shaded are referred to in this paragraph.

At the end of the acoustical measurement chain is the A/D converter, which

feeds the received signal back to the computer for calculation of the impulse

response. The discussion of this element’s uncertainty contributions mirrors the

example of the D/A-conversion almost identically. This leads to uncertainties

due to the prevailing SNR, THDs and the quantization of

u(bA/D, THD) . 1×10−9 dB. (A.2.29)

Environmental conditions

Figure A.18: Ishikawa drawing with shaded category this section refers to.

This section discusses the properties of the acoustic environment, extending

beyond purely meteorological influences and including the acoustic properties of

the measurement environment as well. Noise sources related to the measurement

object that impair the result serve as a significant example in this regard.

Noise sources In room acoustical measurements, background noise is a factor

that is introduced to the measurement not only through the elements of the

measurement chain (as discussed in the previous section), but also through other

sources that radiate sound into the auditorium. Such sources can include technical

equipment (e.g., stage elevators, lighting or equipment cooling) or the flow noise

from the hall’s heating and ventilation system (HVAC). Structure-borne sound
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that originates from sources outside the auditorium can be a factor as well. For

a quantitative discussion of noise the reader is referred to the this section’s

basic considerations. In this study the combined influence of noise sources was

determined a posteriori through analysis of the collected impulse responses. The

contribution to the combined uncertainty can be neglected.

Meteorological conditions It is almost obvious that the meteorological con-

ditions prevailing during a measurement affect the result. The room that serves

as the device under test is filled with air whose acoustic properties change with

temperature ϑ, humidity h and the ambient pressure p. The environmental con-

ditions, however, do not only affect the properties of the propagation medium,

but also the microphone sensitivity.

Influence on the microphone sensitivity Based on a mechano-electrical

equivalent parameter network, Rasmussen (1999) discusses how the air enclosed

in the microphone’s back cavity affects the total acoustic impedance of the

microphone. Below the lowest resonance frequency, the back cavity behaves as

a parallel resonance circuit in series with a low-frequency compliance. All the

elements of the resonance circuit are associated to the air’s compliance, mass

(density) and viscosity, which in turn depend on the environmental variables:

compliance ∝ 1

p
, (A.2.30)

mass ∝ p

ϑ
and (A.2.31)

viscosity ∝
√
ϑ . (A.2.32)

Rasmussen (1999) shows that regardless of how these effects are combined, the

microphone sensitivity changes linearly with the ambient pressure p and tem-

perature ϑ. The effect of changes in humidity is comparable to changes in the

density of air. Hence, a change in relative humidity of 30 % is equivalent to a

change in temperature of 1 K.

Payne (2004) conducted comparative measurements between 22 different sound

level meters and determined a temperature coefficient of 0.002 – 0.015 dB K−1 and

a pressure coefficient of 0.0015 – 0.019 dB kPa−1. Based on a valid temperature

rage (in auditoria) from 15 – 31 °C and an ambient atmospheric pressure range

of 975 – 1051 hPa, Payne (2004) determines an uncertainty of

u(bMeteo-ϑ) = 0.12 dB and (A.2.33)

u(bMeteo-p) = 0.0722 dB. (A.2.34)
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Assuming a plausible range for the relative humidity in buildings of about 30 –

60 % yields an associated uncertainty in the microphone sensitivity of

u(bMeteo-rh) = 0.0075 dB. (A.2.35)

Influence on the propagation medium The prevailing meteorologic con-

ditions also influence the properties of the propagation medium. Two driving

properties can be identified, namely a change in the speed of sound and a change

in attenuation due to atmospheric absorption. A change in the propagation speed

will manifest in a compression or a dilatation of the running time of the RIR. The

basic discussion of the speed of sound and its driving properties (e.g., Rossing

(2007), Ch. 2.3, Bohn (1988)) indicates that a change in air temperature by 1 K

leads to a scaling of the RIR’s time axis of 0.18 %.

While the influence of water vapor (humidity) on the speed of sound is generally

considered to be small (for regularly encountered conditions), the attenuation due

to atmospheric absorption is significant. ISO 9613-1 (1993) quotes formulas to

determine the sound attenuation that suggest that the driving meteorological fac-

tors are understood reasonably well and their influences on the measured impulse

response can be predicted with some confidence. Guski and Vorländer (2014)

have investigated how a changes in humidity and temperature affect the mea-

sured reverberation times and other room acoustical measurement parameters.

While they found that model predictions are satisfactory at very high frequen-

cies (> 2 kHz), performance drops significantly for lower frequencies when other

(unknown and uncontrolled) larger effects overlay the results. Such findings cast

doubt on the assumption that measurements can be reproduced provided that

humidity and temperature are constant within the means of simple documentary

measurements.

In ISO 3382-1 (2009), the air temperature needs to be determined with an

accuracy of ±1 °C and relative humidity ±5%. Based on the underlying general

physical relationships, this notion is understandable. On the other hand, however,

the benefit of meticulously documenting environmental conditions is difficult to

recognize, since this information provides little direct gain towards deriving the

measurement uncertainty or compensating the meteorological influences. Instead,

limiting temperature and humidity to close bounds can be thought of creating

classes of measurement conditions within which reproducibility is possible.

Another practical question to address is the assumption that the measured

temperature and humidity at a single position adequately represents the condi-

tions in the entire auditorium. Oftentimes measurements can only be scheduled

for the summer break when there are no regular concerts. During this period the
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HVAC-Systems are regularly not operating, leading to a noticeable temperature

gradient within the hall. As smallest changes in the RIR can be measured in

impulse responses, from a metrological point of view, such deviations from the

ideal are undoubtedly evident in the measured result. There is still little evidence

of whether such deviations are of any relevance.

Changes during measurement series The previous discussion raises the

question of what changes in meteorological parameters are to be expected. During

measurements conducted in Berlin Philharmonic Hall (August 2006), Amster-

dam Concertgebouw (July 2018) and a small community hall in Dorsten (July

2006), meteorological conditions were documented repeatedly as shown in Ta-

bles A.6 and A.7.

The shown standard deviations indicate that the changes in temperature and

humidity during measurement sessions between 7 and 18 hours long are relatively

small. When comparing measurements conducted in subsequent days (e.g., Ta-

ble A.6), it becomes evident that the changes in humidity can be larger. In this

light, documenting the temperature and the relative humidity appears reasonable.

How often these measurements need to be repeated cannot be determined conclu-

sively from this sparse data, but it can be supposed that as long as conditions are

not known to be transient measuring, the temperature and the relative humidity

every once in a while is sufficient.

Table A.6: Change in meteorological conditions during measurements in Berlin

Philharmonic Hall (Witew & Dietrich, 2007).

Time Temp. rel. Humidity

[h:min] [°C] [%]

16 : 46 30.8 42

20 : 01 31.1 41

21 : 16 32.0 41

22 : 48 32.1 41

23 : 32 32.2 40

00 : 55 32.3 40

- - -

Standard 0.64 0.81

Deviation

Time Temp. rel. Humidity

[h:min] [°C] [%]

17 : 25 31.6 33

18 : 47 32.0 34

19 : 50 32.1 34

20 : 12 32.3 34

22 : 28 32.3 34

23 : 43 32.4 35

00 : 55 32.5 35

Standard 0.30 0.72

Deviation
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Table A.7: Change in meteorological conditions during measurements in Con-

certgebouw Amsterdam (left) and Dorsten (right) [Dorsten data from

Witew and Dietrich (2007)].

Time Temp. rel. Humidity

[h:min] [°C] [%]

13 : 15 24.0 44

14 : 30 24.0 45

19 : 50 25.5 41

00 : 25 25.7 41

07 : 00 25.1 45

- - -

Standard 0.81 2

Deviation

Time Temp. rel. Humidity

[h:min] [°C] [%]

11 : 46 24.7 54

12 : 16 25.3 54

13 : 32 24.3 55

14 : 05 24.4 55

14 : 30 24.6 55

20 : 01 25.0 56

Standard 0.38 0.64

Deviation

Air movement Guski and Vorländer (2014) investigated how time variances

due to air movement contribute to the measurement uncertainty. They demon-

strated that running a ventilation system introduced an added variance to acous-

tical measurements. The effect is more prominent at higher frequencies and for

room acoustical quantities with smaller evaluation ranges (e.g., T20 vs. T30). Al-

though an introduced uncertainty of less than 1 % is hardly relevant for room

acoustical metrics, the effect may play a more pronounced role for measurements

in which the phase information is relevant.

For repeated array measurements it seems to be a practical conclusion to avoid

operating ventilation systems as more stable results were achieved without air

circulation. Based on the behavior during the transition periods, there is evidence

showing that it takes a room about 15 min after turning off the ventilation system

to become acoustically stable.

LTI conditions Violations of the paradigm of linear and time-invariant system

conditions are a serious impediment to acoustical measurements. For a detailed

discussion the reader is referred to Müller and Massarani (2001), Dietrich (2013)

or Farina (2007).
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Auditorium/Room

Figure A.19: Ishikawa drawing with shaded category this section refers to.

The geometry of the auditorium determines the sound field through the waves’

interaction with the walls. This makes the room part of the measurement chain

and so it influences how uncertainties propagate from the transmitting to the

receiving side. According to the rules of the ISO Guide 98-3 (2008), theoretical

modeling or empirical surveys are possible tools to quantify the uncertainty

propagation.

In auditorium acoustics, theory covers the fields of statistical room acoustics,

geometrical acoustics, or the solution of the elementary wave equation. Each of

these methods requires different input data and predicts different aspects of the

resulting sound field. Ultimately, these methods map a four-dimensional space

(3-D sound propagation over time) onto the two-dimensional space of an impulse

response. Since this involves a loss of information, the significance of individual

influences cannot always be quantified down to the last detail.

To address this aspect, ISO 3382-1 (2009) requires that the hall’s condition dur-

ing the measurement be documented. From a GUM point of view, this strategy

aims at reducing the uncertainty of input quantities through determining their

values during the measurement. When all influences are sufficiently controlled,

the deterministic nature of sound propagation ensures that acoustical measure-

ments are repeatable and reproducible. This leads to the general question of how

precisely the influence factors must be determined in order to enable sufficiently

accurate measurements. As far as it concerns the measurement position, this

question is exactly this study’s central research target.

Shape and volume Based on the above considerations, the room acts as a

secondary influence quantity on the uncertainty of room acoustical measurements.

This can be illustrated using the studies by Witew et al. (2012) and Witew et

al. (2014) as examples. In extensive measurement series, the influence of the

loudspeaker directivity on measured room impulse responses was investigated.

In these series the volume of the model scale room, the wall absorption, the

scattering properties of the surfaces and the source-receiver distance were varied

and thus examined as influence factors. The test setup is shown in Figure A.20.
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Figure A.20: Setup to investigate the influence of the sound source’s directivity on

room acoustical measurements. The walls’ absorptive and scattering

properties were changed in a large number of measurement series.

Data analysis showed that the influence of the directivity is not constant over

the running time of the RIR. In the early part5 of the impulse response, the

directivity’s influence varied a lot from time interval to time interval, while in

later parts differences got evened out. The influence of the room became apparent

when the other variables were investigated in subgroups. The analysis shows that

the early part of the RIR lasts much longer in large rooms, as sound takes more

time to reach the bounding surfaces of the room and get reflected back to the

microphone. Likewise, it becomes evident that the increased sound-scattering

properties of the walls enhance the mixing of the sound field, which, in turn,

reduces the length of the early part of the RIR.

The exact and sole contributions of the influence factors ”room shape” and

”volume” cannot currently be quantified in the uncertainty budget, and should

be investigated in the context of other influences.

Variable room setup The influence of variable (acoustic) elements or the

presence of an audience during the measurement has an influence on the mea-

surement result that is quite similar to the shape of the auditorium. As the

present state of knowledge does not yet provide the foundation to answer such

complex problems conclusively, it remains necessary to carry out measurement or

simulation series in which the influence of the variable room element is studied

in a controlled manner.

Representativeness of auditorium When measurements are taken to answer

a research question, care must be taken to ensure that the object under test is

5 This paragraph’s notion of earliness refers to a general sequence in time rather than to a

fixed time window.
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suitable for and representative of the research objective. On the other hand, it is

necessary to survey a suitable range of auditoria to make sure that the results

remain meaningful for different types of rooms that are used for the same given

purpose (Weinzierl & Vorländer, 2015).

An earlier discussion on the representativeness of surveyed rooms is conducted

by Barron (1988) when investigating how his findings on the sound perception

in concert halls could not reproduce earlier findings by Wilkens (1977) in all

nuances. Barron considers his selection of British concert halls (with a relatively

high clarity index) as a possible cause. This problem can be easily translated to

the uncertainty discussion when relevant influence factors are limited in range

or cover atypical values. Due to the high number of influencing factors and the

complexity of their interaction, this uncertainty contribution can so far only be

assessed qualitatively.

Measurement method

Figure A.21: Ishikawa drawing with shaded category this section refers to.

The rationale behind a measurement method has a significant influence on the

result and its uncertainty. This becomes obvious when considering that different

measurement strategies go hand in hand with differences in signal processing,

and therefore also with differences in uncertainty propagation. Determining the

reverberation time in rooms using the interrupted noise method compared to

strategies employing the reverse-time integration of the squared impulse response

is a suitable example where the different input data leads to different analyses

and thus different uncertainties.

Different measurement methods should become subject to a thorough uncer-

tainty investigation; however, it is beyond the scope of this work to discuss all

conceivable methods. This is because the room acoustical measurements of this

study serve as a tool to investigate the uncertainty contribution of the measure-

ment position. Consequently, a focus is placed on the methods used here, but

some of the following results may be valid to alternative measurement methods

as well.
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ISO 3382 standardization Defining a procedure of measurement and anal-

ysis is a significant contribution to the uncertainty discussion as it makes the

uncertainty evaluation possible in the first place. When the procedure allows al-

ternative methods or is defined unspecifically, however, new sources of uncertainty

are introduced. Examples are the orientation of directional microphones such as

artificial heads (Witew, Dietrich, & Vorländer, 2010; Witew, Lindau, et al., 2010)

or the sequence of filtering and time windowing (Lundeby et al., 1995; Witew &

Behler, 2005). These studies quickly reach the conclusion that the significance

of these uncertainty contributions depends a lot on the individual case and can

hardly be quantified from only a small sample size.

This study attempts to reduce the uncertainty due to an unspecific definition

of the measurement scenario by explaining the conditions under which the results

were collected. This may come with the disadvantage that some of the results

may not be completely generalizable when other conditions are of interest.

Filtering The requirements on filters and their tolerances are specified in

IEC 61260 (1995). Wittstock and Bethke (2005) derive the uncertainties due

to filtering based on these standardized tolerances regarding linearity, relative

response, the pass-band attenuation for a sinusodial input signal and the effective

bandwidth (or integrated impulse response) for a broadband input signal. In

the time since Wittstock and Bethke (2005) was published, IEC 61260 (1995)

was revised and replaced by IEC 61260-1 (2014). While many of the underlying

concepts went through the revision without change, the classification and the

tolerances for filters were modified. This relatively small update makes it straight-

forward to update the uncertainty based on the same rationale that Wittstock

and Bethke (2005) utilized.

In contrast to Wittstock and Bethke’s original calculations, the contribution

of the relative filter response was slightly modified in this study. Instead of

determining the uncertainty based on the smallest tolerance at the filter’s center

frequency, the average tolerance was determined using

∆Adiff =
1

G0.5 −G−0.5

∫ G0.5

Ω=G−0.5
∆Amax(Ω)−∆Amin(Ω)dΩ, (A.2.36)

with the relative frequency Ω = Gx/b. For class 1 filters, ∆Adiff = 1.76 dB, and

for class 2 filters, ∆Adiff = 2.23 dB. The associated uncertainty is u(brel resp) =

∆Adiff/
√

12 when the input distribution is uniform. This leads to the revised

combined uncertainties as shown in Table A.8.

When critically discussing the lineup in Table A.8, one may wonder if the filter’s

linearity is an aspect that still plays a role in modern digital filter implementations.
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Table A.8: Uncertainty due to filtering, based on contributions from IEC 61260-1

(2014).

Limits in dB Uncertainty in dB

Filter class 1 2 1 2

Relative response IEC 61260-1 (2014) 0.51 0.64

Linearity ±0.7 ±0.9 0.40 0.52

Effective bandwidth /

pass-band attenuation ±0.4 ±0.6 0.23 0.35

u(bFilter) 0.68 0.90

This leads to the question of whether this aspect should have the same weight

as the other uncertainty contributions in Table A.8.

The juxtaposition of the effective bandwidth and the relative response, as part

of the same critical discussion, casts doubt on whether both can be seen indepen-

dently. Both contributions seem to target characteristics of the filter’s shape over

frequency. While the relative response addresses the deviation from the ideally

flat, attenuation-free frequency response, the IEC 61260-1 (2014) definition of the

effective bandwidth could be understood to characterize the match of adjacent

filters in the frequency domain when they are added. The latter characteristic

can be very important for hand-held sound level meters, but plays a minor role in

room acoustical measurements where the analysis is regularly based on genuine

impulse responses.

In a discussion with Wittstock (2018) through personal communication, to bet-

ter understand the relationships between filter properties and their uncertainty,

it was determined that practical reasons motivated Wittstock and Bethke’s recog-

nizing the three uncertainty contributions as equally weighted and independent.

This exchange of ideas highlighted that the ”conditions of use” are an important

part of the uncertainty discussion. When nothing is known about the filters being

used except for their normative class, the uncertainties given in Table A.8 seem

quite large but appropriate. This perspective is very much in line with Wittstock

and Bethke (2005).

When the special circumstances of this study are recognized, it can and should

be considered that in this study, known 10th order Butterworth filters are used

that meet the class 1 IEC 61260-1 (2014) requirements. Figure A.22 shows the

filter attenuation over frequency in red, which yields a mean pass-band attenua-

tion of 0.41 dB. The amplitude linearity does not seem to play a significant role
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Figure A.22: Class 1 filter tolerances from IEC 61260-1 (2014).

with the modern digital filters used, leading to the assumption that this contri-

bution has no effect on the uncertainty. Likewise, the context of this study gives

no indication that the filter’s effective bandwidth contributes to the uncertainty.

Quantitatively, this leads to the following correction term and uncertainty due

to filtering:

bFilter = −0.205 dB and

u(bFilter) =
0.41 dB√

12
= 0.12 dB. (A.2.37)

Measurement procedure

Figure A.23: Ishikawa drawing with shaded category this section refers to.

Sampling - Choice of measurement position Impulse responses in au-

ditoria are regularly considered to depend strongly on the source and receiver

positions. A poor choice of measurement positions can therefore be insufficiently

complete to comprehensively survey the acoustic conditions. The resulting uncer-

tainty is certainly not the same for all room acoustical quantities: While changes

in the early part of the impulse response with dominant individual reflections
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vary from one position to the next, the decay constant of the late reverberation

is generally assumed to be the same in the entire auditorium (within the limits

Davy et al. (1979) indicated). For the latter to hold, the presence of a diffuse

sound field is required. Obviously, both conditions cannot simultaneously be met

in both the early and late part of a specific impulse response. The transition to

the diffusely reverberant part of the impulse response can be determined by the

mixing time according to Polack (1992).

In light of Gade and Rindel (1985), this puristic viewpoint is oftentimes only an

approximation of conditions encountered in practice. Accordingly, the discussion

by Barron (2005) and J. S. Bradley (2005) is relevant as it indicates which

characteristics carry meaning when discussed as an average property over the

entire auditorium. Other metrics hence require an analysis that includes the

measurement position.

These considerations are part of a qualitative discussion that is not intended

to yield a quantitative result that could be interpreted as an uncertainty. Instead,

it emphasizes the need to clearly identify the target of an investigation and

determine a suitable and clearly defined measurement objective and procedure

that recognize the natural variation of the sound field from one position to

another. Under circumstances that recognize the natural variation as a statistical

distribution it is necessary to consider the factor of required sample size.

Sample size - Number of measurement positions Due to the extensive

studies by Barron (1984); J. S. Bradley, Gade, and Siebein (1993); Pelorson et al.

(1992), specifications exist in ISO 3382-1 (2009) that target the required sample

size for measurements in auditoria. This may proove towards an awareness that

a sufficient sample is required for meaningful measurements. At the same time,

the uncertainty target these provisions are linked to remain open. As Vorländer

and Kuttruff (1985) have shown, the distribution of room acoustical quantities

depends on the auditorium’s geometry and, thus, no unique relation between the

number of samples and how they cover the range of the sound field exists.

(Akama et al., 2010) approached this problem from a statistical perspective

and investigated the distribution functions of room acoustical quantities when

sampling at all seats in different auditoria. The collected distributions diverge

from normality and suggest individual nonparametric distributions in different

rooms. As such morphologies cannot be adequately described by their means

or variances, the center of attention shifts to quantiles. According to Maritz

and Jarrett (1978) (and similarly by Harrell and Davis (1982)), the standard

uncertainty of quantiles Qf (p) can be estimated based on the sample size n

distribution function F (x). As F (x) depends on the auditorium’s geometry, the

uncertainty of Qf (p) can only be determined after measurements have been
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conducted. Also, the uncertainty of extreme quantiles increases for ”tail-heavy”

distributions, thus requiring larger sample sizes.

Documentation of the measurement position The need to determine the

measurement location with sufficient precision is addressed in the introduction

to this study and represents the central research question. Section 6 presents

a method to determine the sensor position through acoustical multilateration

methods and Section 10 presents the findings of this study.

Duration of measurement In situations where the time invariance of sup-

posed LTI systems cannot be fully ensured, the data collected during an extended

series of measurements may be inconsistent. Similar to curve fitting or numeri-

cal optimization problems, this leads to a residual due to a mismatch between

the collected data and the underlying measurement model. This difference or

inconsistency can be understood as uncertainty in measurements due to uncon-

trolled changing conditions in combination with the measurement’s duration.

Reasonable candidates for such uncontrolled influences are contributions that

were previously summarized as environmental conditions. Following the termi-

nology of ISO Guide 98-3 (2008), these uncertainties can be associated with the

umbrella term of ”incomplete knowledge”. This classification, however, does not

particularly help in assessing how large this uncertainty contribution may be.

This study relies on measurement series that took a relatively long period of

time. It is thus reasonable to take this uncertainty contribution into considera-

tion. In order to have an estimate on the order of magnitude of this influence

factor, measurements in the Historic Town Hall of Wuppertal and the Berlin

Philharmonic Hall in July and August 2006, respectively, were re-evaluated. In

these measurement series, impulse responses were collected repeatedly in regular

intervals over a long period of time at night. In between these measurements,

there was no controlled change in the conditions of the auditorium. In particular,

this means that the measurements were carried out completely automatically

and no person was in the room during the measurement series. In the case of the

Berlin Philharmonic Hall, measurements were collected every 3 min 13 s over a

period of about 2 h. In Wuppertal, the repeatability of acoustical measurements

was investigated over a period of almost 10 h through measurements every 13 min.

To investigate how the impulse response changed with the progressing mea-

surement time, first the impulse start was determined according to ISO 3382-1

(2009). Next, the signal energy of the impulse response was summarized in fixed

Hanning/raised-cosine time windows that had a length of 10 ms and an overlap

of 5 ms. This summary provides the energy distribution over the running time of

the impulse response in steps of 5 ms. To show the average change in the impulse
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responses’ energy over the time between two measurements (and over the running

time of the RIR), all collected impulse responses in a measurement series were

compared. Taking the example of the Berlin measurements, this means that all

impulse responses, which were taken integer multiples of 193 s apart, would be

compared to each other. For the Wuppertal-data the same was done, except that

the time between measurements was integer multiples of 780 s. In each hall three

microphone positions were analyzed.

Figure A.24: Change of the RIR as a function of time between measurements.

This analysis leads to results that are shown in Figure A.24 for the example

of the first microphone position in Berlin Philharmonic Hall. The axis in the

horizontal plane shown to the left indicates the running time of the room impulse

response. The time between repeated measurements is depicted in the same plane

along the axis to the right. Due to the fixed length in time of this measurement

series, the number of pairs N to be compared to each other decreases linearly;

for a time of 193 s in between measurements, 36 pairs are available. The vertical

axis shows the average difference in level ∆L(tRIR, tpause) according to Equa-

tion A.2.38. Ei(tRIR) refers to the energy in the ith RIR that is collected by the

Hamming window at the running time tRIR.

∆L(tRIR, tpause) =

N∑
i=1

1

N

∣∣∣∣∣10 log10
Ei(tRIR)

Ei+ tpause
(tRIR)

∣∣∣∣∣ (A.2.38)

With

Ei(tRIR) =

tRIR + 5 ms∫
tRIR − 5 ms

sin2
(
π
t+ 5 ms

10 ms

)
h2
i (t)dt (A.2.39)
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In general, it can be seen (as in Figure A.24) that the differences in the

impulse responses become larger with increasing time between measurements.

These differences are not of the same order of magnitude for all time windows

(along the running time of the RIR). Some time windows in particular show

consistently larger average differences, compared to others that show a relatively

small variation. Figure A.25 shows the overall trend of the average energy level

difference, over the time between measurements tpause, based on all time windows,

for both halls, respectively. The blue lines show the measurements in Berlin and

Wuppertal. The red lines show the respective 16 % and 84 % quantiles, i.e., the

68 % coverage interval.

Figure A.25: Change of the RIR as a function of time between measurements.

Figure A.26 shows the average difference over the running time of the impulse

response tRIR for measurements in Berlin. Aside from a very moderate increase

over tRIR, the graphs show the relatively strong variance between samples of tRIR.

This variance is the major factor contributing to the relatively large coverage

interval shown in Figure A.25.

Due to the limited sample size of just two measurement series, this data does

not warrant final conclusions. Nevertheless, in the absence better data, a first

estimate of this uncertainty contribution seems beneficial: From the data shown

in Figure A.25, it is evident that the uncertainty increases with longer time

intervals in between measurements.

In order not to overinterpret the existing data and thus to limit the complexity,

a simple global estimate of this uncertainty contribution is taken. Based on

the (arbitrarily chosen) maximum time of 200 min between measurements, an

uncertainty of

u(bLTI/incomplete knowledge) ≈ 0.2 dB (A.2.40)
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Figure A.26: Change of the RIR as a function of time between measurements.

can be read from Figure A.25.

In a related aspect, the change of the uncertainty over the running time of the

impulse response in Figure A.26 seems to be relatively small compared to the

uncertainties shown in Figure A.25. Since proving the significance of relatively

small effects requires a relatively large sample size, doubts are justified that the

uncertainty over the running time of the RIR can be determined accurately from

the presented data. In light of the relatively small uncertainty contribution and

the open question of validity, this uncertainty contribution will not be recognized

in the uncertainty budget. In future investigations a database can be collected

that addresses this uncertainty contribution in depth.

Reproducibility According to (ISO Guide 98-3, 2008, B.2.16), reproducibil-

ity is the ”closeness of the agreement between results of measurements of the

same measurand carried out under changed conditions of measurements.” This

definition raises the question of whether reproducibility can be considered as an

independent contribution to the measurement uncertainty at all. When a mea-

surement is defined to the last detail, the uncertainty is expected to approach

zero. So, in contrast, if ”changed conditions” are considered as possible sources

of uncertainty, this either means targeting tolerances in defining the measure-

ment procedure, or discussing uncertainties in implementing the measurement

scenario’s strict definitions. Against this backdrop, the different reproducibility

conditions must be investigated as independent uncertainty factors.
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Observer

Figure A.27: Ishikawa drawing with shaded category this section refers to.

The ”observer-expectancy effect” is a researcher’s cognitive bias that influences

the outcome of an experiment. Sackett (1979) compiled a catalog of biases he

considers relevant in psychological investigations, such as the literature review,

the study sample, the measurement, the analysis, the interpretation and the pub-

lishing of results as possible biases. The full set of these concepts can be applied

to technical investigations, too. A researcher’s different experience or background

could lead to a different uncertainty inventory compared to those presented in

this chapter. The selection of auditoria (study sample) has been addressed before.

Since measurements in this context are not limited to psychophysical experi-

ments, it is appropriate to recognize the influence of the observer in technical

measurements as well.

The observer bias takes effect wherever the investigator has to make decisions

about the further steps of the study. Ishikawa’s (1996) model on quality man-

agement recognizes the root cause ”Man (people)” and identifies observer traits

such as experience, qualification, reliability and motivation that govern decisions.

It does not require a strong imagination to align this perspective with the pro-

cess of acoustical impulse response measurements. The immediate interpretation

of collected data is required to identify potential problems with the measure-

ment (e.g., to adjust the usable dynamic range in measurements or to fine-tune

the excitation signal). Actions to address these shortcomings are occasionally

based on rules of thumb or on practical experience. When these relations have

a physical/technological foundation but can only be grasped qualitatively, such

uncertainty influences are particularly prone to bias and misinterpretation by

the observer. Even though these contributions seem intuitively plausible, they

cannot be quantified easily.

Ultimately, humility on the author’s part seems appropriate in realizing that

the present investigation is also subject to uncertainties due the observers and

his bias.
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Special measurement equipment used in this investigation

Figure A.28: Ishikawa drawing with shaded category this section refers to.

The discussion of uncertainty contributions has to this point focused mainly

on factors that affect the ”elementary” measurement problem (i.e., measuring

a RIR). When a specific investigation builds on particular measurement tasks,

recognizing influences that are characteristic to the pursued strategy becomes

necessary.

The methodology described in Section 3 refers to the sampling of sound fields

over a large area with an automated setup. The detailed properties of this array

are discussed in Section 5. Using a larger apparatus, however, raises the question

of how such structures disturb the sound field being measured. Additionally, the

validity and the properties of the sampling strategy need to be investigated.

Disturbance of the sound field The measurement apparatus requires two

elements: a structure that is capable of supporting the mass of the microphones,

and actuators that permit moving the receivers automatically. This structure

introduces surfaces and bodies into the sound field that reflect and scatter the

sound. As a rule of thumb, scattering needs to be considered when the structure

assumes dimensions that are comparable to those of the wavelength in question.

It makes sense to consider this uncertainty component at a later stage in the

uncertainty budget, since the measurement device is custom-made and cannot

be considered part of the established measurement repertoire. In Chapter 5, the

detailed characteristics of the measurement setup are presented. Its influence

on the measurement uncertainty is quantitatively investigated with reference to

Appendix B using analytical and empirical methods. This uncertainty will amend

the uncertainty budget in Chapter 5.

Sampling strategy The topic of sampling needs to be illuminated from dif-

ferent sides and at different scales. From a statistical perspective, sampling is

related to the task of selecting a representative subset from a global population.

This choice must be made both within the spectrum that different auditoria span,

and within the sound field of an individual room. The uncertainty resulting from
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the choice of the sampled sound fields is difficult to quantify, but an honest and

critical discussion can possibly help to identify relevant factors.

In signal processing, sampling refers to transforming a continuous signal into

a discrete signal. When aspects of signal theory are considered in the discussion

about sampling, the measurement position of individual microphones becomes

important. Based on the spatial Nyquist-Shannon sampling theorem, a relation

between the highest spatially resolvable frequency and the minimum distance

between microphone positions can be devised. For frequencies up to and including

the 2 kHz-octave band, a sampling resolution of 5 cm is sufficient for an error-free

synthesis of the sound field. This order of magnitude must be taken as a guiding

rail, even if synthesizing the sound field is not the aim of this study.

In this context, the properties of possible sampling patterns must be observed,

too: Their suitability and potential uncertainty have to be discussed in regard

to the intended analysis. As an example: a regular and rectangular sampling

grid may lends itself to synthesis, yet may introduce preferential directions when

other analyses are pursued. These aspects are investigated in Section 5.

Finally, the implementation of the sampling also plays a role, i.e., how uncertain

the targeted sampling location is. Section 6.3 discusses how the measurement

position can be determined through an acoustical multilateration method. Based

on this data the actual measurement position and its associated uncertainty can

be determined. As far as it concerns a regression or a synthesis problem, the

uncertainty due to inaccurate measurement positions can be described using the

standard Berkson error model (Berkson, 1950; Carroll et al., 2006). As long as the

position error is small compared to the surveyed sampling area, the introduced

uncertainty can be neglected.

Correlations

According to the GUM framework ISO Guide 98-3 (2008) it is necessary to

consider correlations between individual uncertainty contributions, as such corre-

lations can significantly increase the combined measurement uncertainty. Equa-

tion 2.3.3 gives a mathematical account of how the uncertainty contribution’s

mixed terms of covariances add to the uncertainty of the uncorrelated individual

terms.

Wittstock and Bethke (2005) discuss the same measurement equipment and

the same calibration normal or the same measurement sensors as candidates for

such correlated influences. These may be relevant to this investigation as well.

Another factor is that the acoustic propagation model assumes a diffuse field,

which rarely exists in real sound fields. The model that adjacent samples (in

the time domain) of the measured impulse response are subject to uncorrelated
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uncertainties seems a strong simplification. This knowledge can potentially serve

as a basis to refine the underlying models in future studies and thus provide

more accurate estimates of the measurement uncertainty in room acoustics. In

this study correlation terms are not considered, matching the approach taken by

Wittstock and Bethke (2005).

A.3 Results - Calculation stage

The combined uncertainty is determined according to ISO Guide 98-3 (2008),

using Equation 2.3.3. Based on the previous discussion, correlations between input

quantities are not considered, which simplifies Equation 2.3.3 to Equation 2.3.2.

As a result, the combined uncertainty of the measured impulse response is the

root mean square (rms) of the individual influence quantities’ uncertainty.

Uncertainty Budget for classical measurement equipment

The full budget of all the discussed influences in this chapter is given in Ta-

ble A.9. The uncertainty inventory is sorted, starting with the largest uncertainty

contribution.

Table A.9: Measurement uncertainty budget for a basic measurement problem

Symbol Uncertainty Knowledge base Uncertainty

source contribution

bi u(bi)

[dB]

bLS-dir Directivity Behler and Vorländer (2018) 0.38

bLS-level Calibration Wittstock and Bethke (2005) (0.45)

measurement with revised contributions 0.26

bMic-cal Pistonphon Wittstock and Bethke (2005) 0.21

calibration

bLTI Long term Measurements 0.2

repeatability in two auditoria

bLS-spec Equalization Revised contributions based on 0.16

measurement Wittstock and Bethke (2005)
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Table A.9: (continued)

Symbol Uncertainty Knowledge base Uncertainty

source contribution

bi u(bi)

[dB]

bMic-spec Flatness of 32 measurements (LAS) 0.15

microphone

freq. response

bFilter Octave-band Wittstock and Bethke (2005) (0.68)

filtering with revised contributions 0.12

bMeteo-ϑ Change in Payne (2004) 0.12

temperature

bMeteo-p Change in Payne (2004) 0.07

athm. pressure

bMic-dir Directivity measurements in 0.07

3° resolution (MMT)

bMic-field Sound field Payne (2004) 0.011

distortion

bMeteo-rh Change in Payne (2004) 7.5×10−3

rel. humidity

bLS-THD Loudspeaker Behler and Vorländer (2018) ≈ 1×10−3

nonlinearities

bAmp-THD Power Manufacturer’s ≈ 1×10−4

amplification specifications

bMic-amp Amplification Payne (2004) ( 0.17)

linearity own experience ≈ 1×10−4

bAmp-SNR Amplification Technical documentation ≈ 1×10−6

noise

bMic-SNR Microphone Technical documentation ≈ 1×10−6

noise
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Table A.9: (continued)

Symbol Uncertainty Knowledge base Uncertainty

source contribution

bi u(bi)

[dB]

bD/A-SNR D/A Technical documentation ≈ 1×10−8

noise

bD/A-THD Digital-Analog Manufacturer’s ≈ 1×10−8

distortion specifications

bclock jitter clock Neu (2010) ≈ 1×10−8

jitter

bMic-THD Microphone Manufacturer’s ≈ 1×10−9

nonlinearities specifications

bA/D-THD Analog-digital Manufacturer’s ≈ 1×10−9

conversion specifications

bquant-SNR Quantization Havelock et al. (2008), ≈ 1×10−12

noise specifications

uc(bEquip) Combined uncertainty 0.62

U(bEquip) Expanded uncertainty k=2 1.24

The combined uncertainty given in the last row of Table A.9 can be calculated

according to Equation A.3.1 with all significant (larger than 1×10−2 dB) contribu-

tions included. Influences that introduce a background noise to the measurement

are not recognized.

uc(bEquipment) = [u2(bLS-dir) + u2(bLS-level) + u2(bLTI)+

+ u2(bLS-spec) + u2(bMic-spec)+

+ u2(bMic-cal) + u2(bFilter)+

+ u2(bMeteo-ϑ) + u2(bMeteo-p)+

+ u2(bMic-dir) + u2(bMic-field)]
1
2 (A.3.1)
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This leads to a combined standard uncertainty of

uc(bEquip) = 0.62 dB, (A.3.2)

which reduces to

uc(bEquip) = 0.56 dB (A.3.3)

when not considering the sound power calibration, and to

uc(bEquip) = 0.52 dB (A.3.4)

when neither the sound power nor the pistonphon calibration are taken into

account.

For a breakdown between systematic and random effects the reader is referred to

Section 6.2.1. When discussing the uncertainty of most room acoustic quantities,

contributions that systematically affect all time samples of the measured impulse

responses in the same way do not have to be considered.

A.4 Discussion

The practical uncertainty discussion comes with fundamental challenges that can

be discussed effectively using the influence of octave band filters. In this case the

uncertainty contribution has been determined based on literature considering

unfavorable scenarios, leading to a significant increase of Wittstock and Bethke’s

original uncertainty budget. This increase in uncertainty is partially based on

revised IEC 61260-1 (2014) specifications, but also on revised calculation prin-

ciples. However, this modification is not to be misunderstood as ignoring the

experience behind Wittstock and Bethke (2005)’s initial assessment: In personal

correspondence with Wittstock in February 2018, the rationale behind the 2005

review was discussed. It was determined that, oftentimes, pragmatic approaches

are necessary to determine initial uncertainty estimates. Secondly, the acceptable

range of values specified in standards is regularly set large enough to cover a wide

range of conceivable applications. Without additional knowledge, these limits are

definitely a useful basis for determining uncertainties. When it can be argued

in good faith, however, that these general boundaries overestimate the common

practice or do not represent a specific measurement situation, it is necessary to

revise the general uncertainties.

Despite this faithful revision, the uncertainty discussion of the filter contribu-

tions still appears incomplete. With the general correction term of −0.2 dB, an

equalization was pursued that would still not brutally force the filter to an ideal

rectangular shape. This strategy avoids overshooting the discrete and low-pass
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filtered rect-function in the frequency domain and the considerable decay times of

the sinc function in the time domain. The latter aspect highlights that, so far, the

time domain behavior of filters finds no consideration in the relevant standards.

As a result, this aspect is not part of the uncertainty discussion even though

the distribution of energy over the RIR’s running time is a crucial argument in

architectural acoustics.

Uncertainties in the time domain also play a role in the uncertainty due to

changes in the speed of sound (i.e., through a change in temperature) that will

show in the RIR through scaling of the time axis. Brute force methods would

yield enormous uncertainties when phase relationships (i.e., small shifts in energy

over time) are not discussed using sensible tools. Here, further investigations are

required to illuminate open questions.

In other cases, the data to determine the uncertainty is relatively sparse, too.

In such cases it is reasonable to develop a first uncertainty assessment based

on small data samples. Such a first estimate presents an advance compared to

the lack of knowledge in the absence of any data at all, even when this first ad

hoc estimate may have to be revised later once better data becomes available.

The investigations to determine the LTI properties of auditoria may be a valid

example in this regard.

The largest uncertainty contribution relates to the normalized radiated power

of the sound source. This aspect needs to be seen relative to the loudspeaker’s

directivity and frequency response. Determining the radiated sound power is

a relatively complex measurement problem and taxing it with an uncertainty

influence of 0.45 dB (Wittstock & Bethke, 2005) is reasonable. In architectural

acoustics, however, this information is only of interest when individual measure-

ments of sound strength are investigated. As a result, in many cases recognizing

this uncertainty contribution may not be necessary.

At the same time, however, the directivity and spectral properties of the sound

source are quite significant, and knowing these characteristics of the source is im-

portant. The source’s sound power is almost a coincidental byproduct of spectral

directivity measurements, and thus it is not entirely clear how these uncertainty

contributions should and could be kept separate. Correlation effects almost cer-

tainly play a role with these three uncertainty contributions.

Automated goniometric devices are an important tool for directivity measure-

ments that may reduce that uncertainty significantly. It would be interesting and

meaningful to look at this aspect in further detail and add to the work of Pazen

et al. (2011).

A differentiating discussion also becomes necessary when different sources

seemingly contradict each other in their uncertainty assessments. Oftentimes this

is due to seemingly similar measurement problems that differ enough from each
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other that a plain comparison is simply no longer valid. An example may be

the uncertainty due to the linearity of the microphone’s amplifier. The specifics

of hand-held sound level meters may not be transferable to other measurement

environments and may thus require their own assessments.

Further down the list of contributing uncertainties are the influences of the

system’s nonlinear behavior, which have been studied by many investigators.

Based on the uncertainty discussion here, it seems, once basic rules of good

measurement practice are adhered to, nonlinearities do not play a significant role

in (relatively) simple measurement problems.

Two final perspectives are worth discussing: Numerous influences have been

subject to a qualitative discussion in order to point out general relationships.

Many of these contributions feature staggeringly high degrees of freedom, which

makes a proper uncertainty discussion still unfeasible. Approaching this chal-

lenge requires additional studies that may have to place a stronger emphasis on

the properties of dynamic measurement systems. Here, the dynamic nature of

room impulse response measurements (in architectural acoustics) has not been

investigated at the level that may become necessary in the future.

A.5 Conclusions

This section discusses the intrinsic uncertainty of room acoustical measurements.

To follow an organized approach, quality management principles using a cause-

and-effect perspective were used to identify and group different uncertainty con-

tributions. Based on the GUM framework more than 20 influence factors were

discussed quantitatively and reasonable uncertainties were determined that char-

acterize the properties of the measurement environment.

As a result, the expected uncertainty of individual time samples in measured

room impulse responses due to the used equipment is

uc(bEquipment) = 0.52 dB. (A.5.1)

This uncertainty will be used in this study’s main line of argument to determine

the uncertainty of room acoustical single number quantities (see Section 6.2).





B
Influence of the measurement apparatus on the

sound field

B.1 Introduction

The question of how the array setup affects the acoustical measurement was

already raised in Chapter 5, but was only considered phenomenologically there.

Introducing sensors and other equipment may alter sound propagation and thus

disturb the original sound field with additional reflected or scattered sound. The

issue of the measurand being affected by the measurement setup is an impor-

tant factor in measurements in general, but is considered here in the context of

acoustics.

For a more detailed discussion, the question is approached from two directions:

First, computational solutions are considered from the theoretical point of view.

This has the advantage that the disturbance can be examined without secondary

influences. The disadvantage, however, is that the geometry may have to be

simplified in order to build on closed-form solutions. Thus, there is a risk that

the analytical solution does not correctly represent the targeted scenario.

In a second strategy, the influence of the measurement setup is empirically

investigated. This has the advantage that the properties of the measuring ap-

paratus actually being used serve as a basis. In the wide range of influences

that can affect the uncertainty of measurements, there is sometimes a danger

that subtle disturbances will be difficult to detect. The findings from the first

scenario’s analytical predictions may prove helpful in this regard, as they identify

measurement locations which are particularly vulnerable to the disturbance. By

combining both strategies, the plausibility of the results can be evaluated.
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B.2 Analytical approach

B.2.1 Methodology

The profound starting point for the calculation of sound scattering is Huygens’s

principle and its quantification by Kirchhoff, Fresnel and Helmholtz (Morse &

Ingard, 1968, p. 400 ff.). Although this theory is generally suitable to describe

the scattered sound field for arbitrary incident waves and arbitrary scattering

bodies, the resulting surface integrals can become very complicated to solve: It

is not guaranteed that a closed form solution to these integrals is known at all.

For this reason it makes sense to simplify the geometry of the scattering body

and the incident wave in a suitable way so that the complexity of the problem is

reduced to a point where known solutions are available.

Figure B.1: Geometry of Mechel’s case E.1 scenario: A plane wave in the xz-plane,

at an oblique incident angle Θ that is scattered at an infinitely long

cylinder of diameter 2a. The observation point p is in the xy-plane.

For this specific measurement setup, this translates into three simplifications:

The distance between the sound source and the experimental setup (in relation

to the dimensions of the supporting trusses) is recognized to be large. This means

that the incident wave can be considered planar. Second, the detailed geometry

of the trusses, with their triangular cross-section and the small stiffening struts,

is simplified into a single infinitely long cylinder. Ultimately, this simplification
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is justified on pragmatic grounds due to the apparent similarity in geometry and

the availability of relatively simple analytical solutions to calculate the scattered

sound field. Third, the difference in impedance between the propagation medium

and the material of the scattering body (i.e., air and aluminum) is assumed to be

very large. This means the scattering body’s inner sound field can be neglected

and the body’s admittance G is zero.

These assumptions reduce the sound field to a plane wave at an oblique incident

angle Θ that is scattered at an infinitely long cylinder of a diameter 2a (Mechel,

2008, Case E.1). Figure B.1 defines the geometric parameters. The total exterior

sound field is the sum of the incident plane wave and the scattered wave as shown

in Equation B.2.1.

p(r, ϕ, z) = pincident + pscattered

= e−jk0z sin Θ
[
J0(k0r cos Θ) +D0H

(2)
0 (k0r cos Θ)+

+ 2

∞∑
m=1

(−j)m cos(mϕ)
(
Jm(k0r cos Θ) +DmH

(2)
m (k0r cos Θ)

)]
(B.2.1)

with

Dm = −
m
k0a

Jm(k0a cos Θ)− cos ΘJm+1(k0a cos Θ)

m
k0a

H
(2)
m (k0a cos Θ)− cos ΘH

(2)
m+1(k0a cos Θ)

for the admittance G = 0, with Bessel functions Jm(z) and Hankel functions of

the second kind H
(2)
m (z).

Essentially, in Mechel’s E.1 case the impeding wave can be understood as a

superposition of two plane waves propagating in the z-direction and in the x-

direction. The wave traveling along the z-axis does not interact with the scattering

body, as the wave’s particle velocity normal to the rigid cylinder’s surface is zero.

In Equation B.2.1, e−jk0z sin Θ describes this plane wave propagating along the

z-axis with unit amplitude. k0 sin Θ = kz can be understood as the projection

of k0 onto the z-axis, which means that the angle of incidence Θ defines the

period of the wave traveling along the cylinder. Apart from the oscillation in the

z-domain, the amplitude of the total sound field is not affected by the exponential

term. As a result, this term can be omitted when discussing how much the sound

field is altered by the scattered body.

For the second component, i.e., the plane wave in the x-direction, the inner

terms of the Bessel and Hankel function (k0a cos Θ and k0r cos Θ) are impor-

tant. Similarly, k0 cos Θ = kx is the projection of k0 on the x-axis. Thus, when

interested in the scattered sound field, two core aspects emerge:
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� The size of the scattering body (2a) relative to the impeding wave’s (pro-

jected) wavelength (2π/kx).

� The distance r between the investigated field point P (r, ϕ) and the scat-

tering body, in relation to the impeding wave’s (projected) wavelength

(2π/kx).

In this light it becomes clear that the initial approach given through Equa-

tion B.2.1 can be further simplified using Mechel’s case E.2 with kx as the

x-component of k0, yielding Equation B.2.2:

p(r, ϕ) = J0(kxr) +D0H
(2)
0 (kxr) + 2

∞∑
m=1

(−j)m cos(mϕ)[Jm(kxr) +DmH
(2)
m (kxr)]

(B.2.2)

with

Dm = −
m
kxa

Jm(kxa)− Jm+1(kxa)

m
kxa

H
(2)
m (kxa)−H(2)

m+1(kxa)
for the admittance G = 0

In the next steps, Equation B.2.2 is evaluated numerically and the results are

discussed from different perspectives. This is done with the aim to determine

the largest expected disturbance to the sound field by the cylindrical scattering

body.

B.2.2 Results

Angular variation

In Equation B.2.2 it can be seen that the angular dependence (ϕ) essentially

arises from the sum and particularly from the contained cosine weighting of

the Bessel and Hankel functions. Since both Jm and H
(2)
m can assume positive

and negative values, there is no obvious argument that hints at how this sum

converges. Based only on energetic considerations, it could be suggested that

the sum of potentially incoherent terms in Equation B.2.2 becomes extreme for

ϕ = π.

Figure B.2 shows the results of Equation B.2.2’s numerical evaluation of the

total field. The amplitude |p(r, ϕ)| is shown in logarithmic scale relative to the

unit amplitude of the impeding wave for f = 1 kHz and 2a = 35 mm. Since f

and a scale the result along r in cylindrical coordinates, Figure B.2 is evidence

that the assumption that disturbances become extreme for ϕ = π is correct.

The strongest disturbance of the sound field by a cylindrical scattering body is
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therefore to be expected at the side facing the incident wave. Disturbances in

the ”shadow zone” are much smaller and more homogeneous.

Figure B.2: Mechel case E.1 - Total SPL scattered around a rigid cylinder.

Variation over frequency and distance

The next step is to add the frequency as a variable. Since we are interested in

the largest possible disturbance of the sound field, it is sufficient to consider only

ϕ = π as a function of distance r to the origin.

Figure B.3 shows the amplitude of the total field (SPL) at different frequencies

and at different distances from the scattering body. The left edge of the diagram

shows the sound pressure level at the surface of the body. The white line marks

the locations of the disturbance’s largest absolute value as a function of frequency.

It can be seen that the oscillation has a longer spatial period with decreasing

frequency. The maximum disturbances are fairly small at low frequencies, but they

reach relatively large distances from the scattering body. At higher frequencies,

the interference becomes stronger while the absolute maximum moves closer to

the scattering body.

At higher frequencies, there are indications that it may not be sufficient to

focus solely on the greatest disturbance at a given frequency. There are numerous

local extremes in absolute value that extend relatively far into the sound field and

thus may be relevant as well. This raises the question of how close a microphone

can be placed to the scattering body without exceeding a given upper limit of

the disturbance. This question can of course be answered for a given distance
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rmin and frequency f based on the data shown in Figure B.3 by determining the

largest absolute value of the disturbance for all distances between rmin and ∞:

arg max
r≥rmin

|Lp(f, r)|. (B.2.3)

Figure B.3: Mechel case E.2: Disturbance of the sound field relative to the im-

peding plane wave of unit amplitude as a function of frequency and

distance to the scattering cylinder.

These minimal distances are shown as a function of frequency in Figure B.4.

The color indicates the maximum absolute value of the disturbance according to

Equation B.2.3.

Figure B.4: Mechel case E.2: Maximum absolute value disturbance to the sound

field over frequency at a given minimum distance from a scattering

cylinder

Since color gradients are generally difficult to quantify, it makes sense to com-
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press the data from Figure B.4 even further and plot the disturbance’s maxi-

mum absolute value over frequency as a function of distance according to Equa-

tion B.2.4, as shown in Figure B.5. For the frequency range between the 62.5 Hz

and 2 kHz octaves, it can now be determined that, to avoid disturbances exceed-

ing 0.85 dB, microphones may not be placed closer than 20 cm to a scattering

cylinder with a diameter of 3.5 cm. At distances greater than 30 cm, the maximum

disturbance is 0.74 dB. This assumes a sinusoidal excitation at a single frequency.

arg max
62.5 Hz√

2
≤f≤

√
2 2 kHz

(
arg max
r≥rmin

|Lp(f, r)|
)

. (B.2.4)

Figure B.5: Mechel case E.2: Maximum absolute value disturbance to the sound

field at a given minimum distance from a scattering cylinder.

The influence of the disturbance on an incident plane wave appears relatively

large compared to what practical experience would suggest. The main reason for

this discrepancy may be the calculation’s paradigm of vertical sound incidence

on the scattering cylinder. Additionally, the data compression that led to Fig-

ures B.3 and B.4 considered only regions directly in front of the scattering body.

It is easy to see that this represents a worst-case scenario that overestimates the

sound field interference under realistic conditions.

Scattering from a cylinder in the diffuse sound field

With a reflection density increasing towards later times in the impulse response,

theory suggests a transition to the diffuse sound field (Kuttruff, 2000). Due to the

rotational symmetry around the z-axis, it can be seen that Θ and ϕ are evenly

distributed in the interval between 0 to π and 0 to 2π, respectively. The sound
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pressure level p(r) in the diffuse sound field can be determined as a function of

distance according to Equation B.2.5

p(r) =
1

2π2

π∫
0

2π∫
0

|p(r, ϕ,Θ, z)| dϕ dΘ (B.2.5)

Figure B.6 shows p(r) at 1 kHz in logarithmic scale. It can be seen that the

disturbance to the diffuse field is below 0.04 dB for reasonable distances from the

scattering body. These values are one order of magnitude lower compared to the

single plane wave case. Based on previous findings, it can be expected that the

trend shown in Figure B.6 stretches along distance and reduces in amplitude as

the frequency decreases.

Figure B.6: Mechel case E.2: Scattering in the diffuse field at 1 kHz

Reference to the actual measurement situation

In the measurement setup, the microphones are suspended rigidly from the carbon

truss by the approximately 1 m-long carbon tubes. Both the carbon truss and

the aluminum frame structure are therefore at least 1 m away from the sampling

locations. Figure B.5 shows that under the most unfavorable (and therefore less

realistic) conditions, an interference of up to 0.42 dB may be expected.

However, the four supports, which carry the weight of the entire array, are

closer to the sampling grid. The corner positions of the measurement surface are

the most critical locations, as these are only up to 30 cm away from the vertical

pillars. Figure B.5 shows the largest possible interference to be up to 0.74 dB. In

the diffuse sound field, the interference still appears negligible.

Analytical closed-form solutions reach their limits when the scattering body is

no longer assumed to be a simple cylinder, but rather a truss that consist of three
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cylinders. It can be argued that the scattered field of the truss can be determined

in a first-order approximation by superposition of the fields from three individual

cylinders. Mathematically, however, the concept is challenging to implement.

First, the incident plane wave reaches each individual cylinder at a different

phase. Second, for the transmission path from the scatterer to the receiving point

P , a translation must be taken into account either on the sending or receiving

side. In either case, this will makes the expressions in Equations B.2.1 and B.2.2

much more complex as Bessel and Hankel functions are solutions to the wave

equation for rotationally symmetric cases.

For these reasons, it makes sense to also investigate the scattered sound field

empirically.

B.3 Empirical approaches

B.3.1 Methodology

Matching analytical and empirical approaches

In the previous section on analytical approaches, a joint perspective of telecom-

munications and theoretical acoustics was taken that recognized the sound field

as the sum of an incident plane wave (signal) and an interfering scattered wave

(noise). This was essentially done for reasons of mathematical simplicity and to

build on existing solutions. This perspective - and the normalization to the unit

amplitude of the incident plane wave - made it relatively easy to identify the

disturbance as a deviation from 0 dB.

While these theoretical concepts are understood as simplifications of the real-

life scenario encountered in measurements, the findings from theory cannot be

seen as final results. At the same time, the data does highlight spatial regions of

interest and lines of argument of where and how measured data can be analyzed to

evaluate the disturbance. Nevertheless, it is not self-evident how scattered sound

from the supporting structure can be identified in the presence of a complex

sound field featuring direct sound, reflections and reverberation.

In Chapter 5, specifically Figure 5.6 (left), it was discussed how the scattering

from the apparatus could be identified in the empty hall right after the direct

sound. In a simplified view, following the mirror image source model, the impulse

response could be understood as the sum of many sound events, including the

direct sound. This interpretation is not very far from the signal/noise approach

that was considered when following the analytical approach. In fact, because of

the superposition principle, the energetic SNR for the entire RIR is equal to the

SNR of the direct sound and its scattered wave:
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LSNR = 20 log10
|p̄scatter|
|p̄direct|

. (B.3.1)

In this reasoning, the direction of sound incidence is not correctly recognized

for most of the reflections and the reverberation. Therefore, the presented idea

should be understood as a pragmatic approach in the absence of a more accurate

concept.

Analysis of the direct sound

In implementing this approach, the first challenge is determining the energy of

an isolated wave front. Figure B.7a shows the first 10 ms of a measured impulse

response. In contrast to idealized concepts, due to the band limitation during the

measurement, the direct sound does not resemble a perfect delta dirac function.

Instead, it consists of a sequence of oscillations with about three local extremes.

In addition, the direct sound and the reflection at the floor in Eurogress Aachen

are so close to each other in the time domain that the two wave trains partially

overlap.

The appreciation that these are two sound events, nevertheless, results from the

inspection of this impulse response’s initial part measured at different distances

to the source. This detailed observation is not discussed here in depth since this

separation into individual sound events is not essential to the line of argument.

Even when the ”useful” signal consists of a number of signal components that are

difficult to separate, the resulting scattered ”noise” consists of the same number

of signals as well. As long as the signal and noise components can be identified

unambiguously, and as long as both parts are the result of the same sum, their

ratio can be determined.

The start of the impulse response can be determined very easily and reliably

from the definition in ISO 3382-1 (2009) with a reduced threshold of −9 dB. The

inspection of different impulse responses of different distances to the sound source

shows that the first two sound events have a maximum length of 2.2 ms in the

time domain. The signal energy in this time interval can be seen as the best

estimate of the energy of the direct sound and the floor reflection. The energy

is plotted in Figure B.7b over the entire sampling area relative to the maximum

occurring energy.

The geometry of the measurement setup is known, and therefore it is possible to

determine the time window in which the direct sound passes the four supporting

pillars. These vertical trusses are also the origin of the cylindrical scattered waves,

and thus for each measurement location a time window can be calculated at which

the scattered sound travels through the sampling area. Due to the dimensions
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(a) The first 10 ms of a measured impulse
response in Eurogress Aachen without
chairs.

(b) Energy of the direct sound in the sam-
pling area relative to the maximum
encountered direct sound energy.

Figure B.7: Analysis of measured impulse responses.

of the columns, this time window for the scattered sound is slightly longer (i.e.,

2.4 ms) than the time window for the direct sound. The energy of the scattered

sound can be determined in the same way that the energy of the direct sound

was calculated.

B.3.2 Results

Figures B.8a and B.8b show the level of the scattered sound from the two columns

closest to the sound source relative to the direct sound (Equation B.3.1). Many

regions show relatively low levels (in blue and green colors), whereas the areas

directly behind the supports show much higher levels (in yellow). The latter

suggests that the scattered sound has almost the same energy as the initial wave.

Upon close reflection it becomes clear that the direct and the scattered sound

waves pass the sensor at almost the same time, and are thus inseparable using

only simple geometric considerations. In other regions of the sampling area the

two signal components are readily distinguished, and it can be seen that the

scattered waves carry at least 20 dB less energy compared to the direct sound. In

both graphs, narrow-striped regions are evident that show a lower signal-to-noise

ratio in greenish colors. Such a reduction in SNR occurs when tertiary reflections

exist in the evaluation interval of the scattered sound. As an example, the green

region ranging from the top center to the bottom left (1 m in Figure B.8a is

due to the scattering of both frontal pillars interfering with each other. Other

reflections may be due to scattering from the frame above.

Figure B.8c and B.8d show the energy level of the scattered sound from columns
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(a) Front left supporting truss. (b) Front right supporting truss.

(c) Rear left supporting truss. (d) Rear right supporting truss.

Figure B.8: Energy level LSNR of the scattered sound from the supporting pillars

relative to the direct sound.

that are located behind the sampling area (as seen from the sound source). In

the regions close to the supports the signal-to-noise ratio is about −15 dB, which

is shown in blue and turquoise colors. The upper (frontal) part of the sampling

area, however, is dominated by yellow color tones showing narrow regions of very

low SNRs. These isolated areas occur when the scattered waves from the columns

coincide with high amplitude reflections from the hall’s large surfaces. Since these

reflections have significantly more signal energy than the scattered sound, it is

no longer possible to determine a reliable signal-to-noise ratio.

In summary, it can be said that at each measurement location four scattered

waves are to be expected. Reflections from the columns ”in front” of the sampling

field are likely to have amplitudes of about −20 dB, whereas reflections from the

supports ”behind” the sampling area are likely to have amplitudes of around

−15 dB. Adding these four signals incoherently to the direct sound (with a level

of 0 dB) yields a total level of 0.35 dB.
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B.4 Discussion

Theory

The question of how strongly the measurement setup affects the measurand

was investigated in two stages. In the first step, the scattered sound field of

a cylindrical body, irradiated by a plane wave, was discussed on the grounds

of available analytical solutions. From these considerations, it was possible to

identify regions around the scattering body that are particularly affected by the

backscattering. In the reference system of the incoming wave, the zones in front

of the scatterer are of particular relevance to study the adverse effects of the

measurement setup. In the zones behind the cylinder, the scattered sound field

has a significantly lower amplitude.

Based on a worst case scenario, considering the disturbance in front of scattering

bodies, an uncertainty of 0.74 dB can be expected in the frequency range from

the 62.5 Hz to 2000 Hz octaves. In the diffuse sound field, i.e., when averaging all

possible directions of sound incidence, a disturbance of the sound field of up to

0.04 dB at 1 kHz is possible.

The presented approach comes with known shortcomings. First, the calculated

model represents a possibly significant simplification of the measurement array’s

actual geometry. The supposed plane wave sound incidence is also a simplifica-

tion compared to the curved first wave front shown in Figure 5.7. Second, the

worst case scenario considered is likely to overestimate the disturbance since the

critical sampling area is on the side away from the sound, where disturbances are

considerably lower. Since this factor cannot be quantified, it cannot be included

in the worst case assessment. It may be possible, however, to come back to this

argument when comparing the analytical predictions with actual measurements.

Measurements

When evaluating the measurement data, potentially critical imponderables exist.

These arise mainly due to the fact that, in measurements, theoretical assumptions

are rarely met in their purest form, which leads to uncertainties. Prominent exam-

ples are wavefronts which should exist as dirac delta functions according to pure

theory, but instead are extended wave forms due their band-limited excitation or

the mechanical properties of the loudspeaker. As a further factor, wall reflections

and reverberation occur in the complex sound fields of real auditoria. These par-

tially obscure the phenomena that are of actual interest, and thus renders them

invisible at some locations. Figures B.8a to B.8d are graphical representations

of this problem.
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Nevertheless, it was possible to identify measurement locations where the dif-

ferent sound events could be separated adequately to measure the disturbance

caused by scattered sound. In other regions of the sampling area, the scattered

wave is masked by other sound. Since abrupt discontinuities are unreasonable in

the amplitude of propagating cylindrical waves, the results from regions where

the ”signal” and ”noise” part are clearly separable can be transferred to other

regions as well.

Comparison of both strategies

When comparing the theoretical prediction to the measured data, two aspects

stand out: The sampling locations ”in front” of scattering bodies were identified

as particularly susceptible to interference by scattered sound, both in calculations

and in measurements. At the same time, however, the amplitudes of the calculated

and actually measured scattering are quite different. While uncertainty in a

worst case scenario was determined to be 0.74 dB in the theoretical case, (this

corresponds to an SNR level of about −7.3 dB) the comparison to the measured

data suggests a much lower SNR of −15 dB that leads to an empirical uncertainty

of about 0.35 dB.

In this light, it is of course necessary to consider which perspective and which

result should be prioritized. The theoretical approach may represent a patho-

logical worst case that is based on strong simplifications. On the other hand,

individual factors may have been uncontrolled in the empirical approach, which

could imply not having considered a particularly critical case.

Since the empirically investigated case is quite similar to the other measurement

series carried out in different auditoria, there is good reason to assume that the

selected Eurogress case is representative for the other 25 series. Against this

hypothesis, it is not obvious why the simplified numerical solution could yield

more robust predictions of the scattered sound. It is therefore determined that

the analyzed measurement represents a relevant reference scenario, and that the

theoretical discussion serves as a foundation that shows the overall scenario and

identifies critical regions that need to be investigated empirically using special

care.

Diffuse sound field

The previous discussion makes it clear that the measurements and the available

analysis tools cannot provide evidence for the disturbance of the diffuse rever-

beration. Nevertheless, the calculations show that the impairment of the late

reverberation due to scattering from the measurement device is much less than

the scattering’s detrimental effect to the early reflections. Thus, the uncertainty
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due to scattering from the measurement device interfering with reverberation

would take one of the lower positions in the uncertainty budget in Table A.9.

With this in mind, such influence factors would not provide relevant contributions

to the combined uncertainty. In this context, the estimated measurement uncer-

tainty of 0.35 dB may even appear as an exaggeration of the actually encountered

measurement uncertainty.

B.5 Conclusions

� Based on the detailed investigation of a measurement series, the influence

of the measurement setup on the measurand was determined to be

u(bSetup) = 0.35 dB. (B.5.1)

� The uncertainty contribution due to the measurement setup’s disturbance

of the sound field increases the combined uncertainty from 0.62 dB (from

Table A.9, based on Equation A.3.1) to

uc(bEquip) = 0.71 dB. (B.5.2)





C
Uncertainty propagation for room acoustical

quantities

In this appendix, the analytical discussion of uncertainty propagation is presented

in more detailed than would be appropriate in the main body of this study. The

equations listed here make it possible to trace how the uncertainties of room

acoustical quantities arise. In the bigger picture of this studies overall rationale,

it is mainly this appendix’s final result that is relevant.

C.1 Energy decay curve

The energy decay curve is the starting point for many room acoustical quanti-

ties. Its discrete notation, the backward integrated impulse response is given in

Equation 6.2.4:

E(sj) = 10 log10

1−

j∑
k=1

p2(sk)

∞∑
k=1

p2(sk)

 . (C.1.1)

For relatively complex functions, through which the uncertainties are propa-

gated according to Equation 2.3.2, there is a risk that the results become con-

voluted when the entire measurement function is derived with respect to all

variables at the same time. For this reason, it makes sense to perform the un-

certainty propagation step-by-step, in a top-down approach. The main function

in Equation C.1.1 is the logarithm, and so the uncertainty of the energy decay

curve can be represented in the first step as
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u2(E(sj)
)

=

(
∂E(sj)

∂p(sj)

)2

u2 (p(sj))

=

 10

loge (10)

∞∑
k=1

p2(sk)

∞∑
k=j+1

p2(sk)


2

u2

1−

j∑
k=1

p2(sk)

∞∑
k=1

p2(sk)

 . (C.1.2)

The next step is to investigate how the ratio of sums contributes to the prop-

agation of uncertainty. This step of the discussion should not be taken lightly.

If the focus is solely limited to the ratio of the two sums, there is the risk of

missing that many of the individual samples of the impulse response appear in

the denominator and, depending on j, in the numerator as well. This is why the

combined uncertainty of the fraction is a sum of two parts with different partial

derivatives.

u2


j∑

k=1
p2(sk)

∞∑
k=1

p2(sk)

 =

∞∑
k=1

 ∂

∂p2(sk)

j∑
k=1

p2(sk)

∞∑
k=1

p2(sk)


2

u2
(
p2(sk)

)

=

j∑
k=1

−
∞∑

l=j+1
p2(sl)(∞∑

l=1
p2(sl)

)2


2

u2
(
p2(sk)

)
+

+

∞∑
k=j+1


j∑
l=1

p2(sl)(∞∑
l=1

p2(sl)

)2


2

u2
(
p2(sk)

)
(C.1.3)
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Since the running variable of the outer sums, k, is not part of the squared deriva-

tives, the terms in brackets can be factored out.

u2


j∑

k=1
p2(sk)

∞∑
k=1

p2(sk)

 =


∞∑

l=j+1
p2(sl)(∞∑

l=1
p2(sl)

)2


2

j∑
k=1

u2
(
p2(sk)

)
+

+


j∑
l=1

p2(sl)(∞∑
l=1

p2(sl)

)2


2

∞∑
k=j+1

u2
(
p2(sk)

)
(C.1.4)

The uncertainty of the individual samples of the impulse response can be stated

based on Equation 6.2.5 following the same principles (Equation 2.3.2):

u2
(
p2(sk)

)
=

(
∂p2(sk)

∂br

)2

u2 (br)

=

 loge (10)

5
p2
x(sk) 100.2br︸ ︷︷ ︸

=1

2

u2 (br)

=

(
loge (10)

5

)2

p4
x(sk)u2 (br) . (C.1.5)

The terms in Equations C.1.2 to C.1.5 can be combined into a single expression:

u2 (E(sj)
)

= 4

 1
∞∑

k=j+1
p2(sk)×

∞∑
k=1

p2(sk)


2

×

×


 ∞∑
k=j+1

p2(sk)

2
j∑

k=1

p4
x(sk) +

 j∑
k=1

p2(sk)

2 ∞∑
k=j+1

p4
x(sk)

×
× u2 (br) . (C.1.6)

C.2 Reverberation times

The energy decay curve is approximated by a linear regression (Bronstein et al.,

2015, 16.3.4.2), and the reverberation time is reciprocal to the regression’s slope

m:
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TRT =
60

m
(C.2.1)

with

m =

n∑
j=1

(sj − s)(E(sj)− E)

n∑
j=1

(sj − s)2

=

n∑
j=1

µ1µ2

n∑
j=1

µ2
1

. (C.2.2)

Linear regression is a common analysis tool in research and technology. The un-

certainty discussion of both regression parameters is considered an introductory

problem in metrology (Wiese and Wöger (1999)[Ch. 5], Squires (2001)[App. C]).

But, however trivial regression may allegedly be, there are a multitude of so-

phisticated strategies each addressing the specifics of the individual perspective

on the problem. Squires (2001), for example, assumes that the uncertainties of

the amplitudes are independent of the expected value, and takes advantage of

algebraic simplifications which lead to a very compact notation for the regres-

sion uncertainty. Looking beyond the classical Gaussian least-square method,

maximum-likelihood-(bootstrap) approaches or numerical Monte Carlo simula-

tions are available to recognize additional available knowledge. Relatedly, there

are recent efforts to extend the GUM framework to include Bayesian inference

methods (Elster et al., 2015) to overcome some of the disadvantages of the classic

least-squares method. These problems include (a) indefinite equation systems

when the number of observations are smaller than the number of regression

parameters, (b) uncertainties that are not to be treated only in first-order ap-

proximations or (c) input variables that are not normally distributed and cause

some basic assumptions to no longer be met (Wiese & Wöger, 1999, Ch. 6.5.1).

Since these disadvantages are not significant relative to the reasonably pur-

suable depth of discussion (i.e., the number of samples is significantly larger than

the number of regression parameters and the input uncertainties are available

only as first-order estimates and, hence, normal), the procedure of least-square

linear regression can be discussed with the basic GUM tools. Once further knowl-

edge about the input quantities’ distribution becomes available, it may make

sense to revise the uncertainty models and investigate how more complex ap-

proaches benefit the uncertainty discussion. Since the uncertainty of the energy

decay curve is not constant during the decay process, the previously discussed

simplification of Squires (2001) cannot be adopted without modification.

On these grounds, it is appropriate to refer to Equation 2.3.2 and discuss the

uncertainty of the slope m in Equation C.2.2. To make the discussion easier to
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follow, the uncertainties of the individual factors µ1,j and µ2,j for the jth element

of the sum are determined first:

u2 (µ1,j

)
=

(
∂µ1

∂sj

)2

u2 (sj) =

(
1− 1

n

)2

u2 (sj) (C.2.3)

and likewise

u2 (µ2,j

)
=

(
1− 1

n

)2

u2 (E(sj)
)

. (C.2.4)

According to Equation C.2.2, the slope m depends on the variables µ1,j and

µ2,j , which leads to:

u2 (m) =

n∑
j=1

(
∂m

∂µ1,j

)2

u2 (µ1,j

)
+

n∑
j=1

(
∂m

∂µ2,j

)2

u2 (µ2,j

)
(C.2.5)

In cases where clock jitter plays a role, the first part of the sum can be developed

further. It was shown in Section 4 that the sampling time’s uncertainty u
(
sj
)

is in the order of a few nanosenconds, which is small compared to the analysis

periods (of EDT ). As a result, the uncertainty contribution related to u
(
µ1,j

)
can be neglected (Carroll et al., 2006, Ch. 3).

The partial derivative of m with respect to µ2,j yields

∂m

∂µ2,j
=

µ1,j
n∑
k=1

µ2
1,k

, (C.2.6)

and thus the variance

u2 (m) =

n∑
j=1

 µ1,j
n∑
k=1

µ2
1,k


2

u2 (µ2,j

)

=

n∑
j=1

 sj − s
n∑
k=1

(sk − s)2

n− 1

n


2

u2 (E(sj)
)

. (C.2.7)

As a final result, the uncertainty of the reverberation time can be given through
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u2(TRT) =

(
− 60

m2

)2

u2(m). (C.2.8)

Recognizing the previous results from Equations C.2.1, C.2.2 and C.2.7 yields:

u2(TRT) =

n∑
j=1

TRT

n∑
k=1

(sk − s)2

n∑
k=1

(sk − s)(E(sk)− E)

sj − s
n∑
k=1

(sk − s)2

n− 1

n


2

u2 (E(sj)
)

=

n∑
j=1

 TRT

(
sj − s

)
n∑
k=1

(sk − s)(E(sk)− E)

n− 1

n


2

u2 (E(sj)
)

(C.2.9)

=

n− 1

n

TRT
n∑
k=1

(sk − s)2


2

n∑
j=1

(
sj − s

)2
u2 (E(sj)

)
.

The sampling times sj in the denominator’s sum are multiples of the reciprocal

sampling rate nSR. This common term can be factored out with a negligible

error (< 1/2nSR) for s. The remaining elements of the sum represent a discrete

quadratic function symmetrical to n/2 which is the equivalent to a finite geometric

sum. Based on Bernoulli or Faulhaber (Bronstein et al., 2015, Ch. 1.2.4), this

sum can be replaced and further simplified by substituting n/2 = l:

n∑
j=1

(sj − s)2 ≈ 1

n2
SR

n∑
j=1

(
j − n

2

)2
=

2

n2
SR

l∑
j=1

j2 =
2

n2
SR

l(l + 1)(2l + 1)

6
.

(C.2.10)

With n being the number of samples that fit into the reverberation time’s eval-

uation period, l can be expressed as a function of the evaluated dynamic range

∆L:

l =
n

2
=

1

2
TRT

∆L

60
nSR. (C.2.11)

This leads to a revised expression for the reverberation time’s uncertainty:
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u2(TRT) = T 2
RT

(
2l − 1

2l

3n2
SR

l(l + 1)(2l + 1)

)2
1

n2
SR

2l∑
j=1

(j − l)2 u2 (E(sj)
)

=

(
2l − 1

2l

360

∆L(l + 1)(2l + 1)

)2 2l∑
j=1

(j − l)2 u2 (E(sj)
)

. (C.2.12)

C.3 Clarity

The starting point for the uncertainty discussion of the clarity metric is its

definition in Equation 6.2.9.

Cte = 10 log10

te∫
0

p2(t)dt

∞∫
te

p2(t)dt

=̂10 log10

ne∑
j=1

p2(sj)

∞∑
j=ne

p2(sj)

= 10 log10

ne∑
j=1

p2(sj)

ncp∑
j=ne

p2(sj) + Ecomp

(C.3.1)

= 10 log10

Eearly

Elate + Ecomp

The sound pressures in the time-discrete notation p(sj) contain, as before, the

correction factors for random and systematic effects. As βs can be separated

from both sums and canceled from the fraction entirely, systematic effects will

not have an influence on the clarity metric’s uncertainty.

Determining the ”late” energy and its uncertainty in the denominator’s sum

poses some practical difficulties, since measured impulse responses fall below the

noise floor after some point in time, meaning all subsequent samples have an

infinitely large uncertainty. Lundeby et al. (1995) suggested a solution through

an algorithm which determines the energy of the noise floor and replaces it with a

compensation term that represents the energy of the ”hidden” decay. To recognize

this approach, the definition of the clarity metric can be modified by introducing

two new variables to Equation C.3.1, namely the time sample corresponding to

the cross point ncp, where the decaying impulse response falls beneath the noise

floor, and the compensation energy Ecomp. Both variables are uncertain as well,

and thus have an influence on u (Cte).

Following a top-down approach entails investigating how the uncertainties

propagate through Equation 6.2.9 according to Equation 2.3.2.
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u2 (Cte) =

(
∂Cte
∂Eearly

)2

u2 (Eearly

)
+

(
∂Cte
∂Elate

)2

u2 (Elate) +

(
∂Cte
∂Ecomp

)2

u2 (Ecomp)

=

(
10

loge(10)

Elate + Ecomp

Eearly

)2
1

(Elate + Ecomp)2
×

×

(
u2 (Eearly

)
+

(
Eearly

Elate + Ecomp

)2 (
u2 (Elate) + u2 (Ecomp)

))
(C.3.2)

In view of Equation C.3.2, it becomes evident that the mathematical represen-

tations of uncertainties tend to become increasingly complex as the discussion

advances. It is therefore reasonable to establish the uncertainties of the individual

energy components separately. The uncertainty of a sum results from the sum of

the partial derivatives with respect to each summand, and thus the uncertainty

of the energy in the early part of the impulse response is given through

u2 (Eearly

)
=

(
loge (10)

5

)2 ne∑
j=1

p4
x(sj)u

2(br). (C.3.3)

The same holds for the Energy in the late part of the impulse response

u2 (Elate) =

(
loge (10)

5

)2 ncp∑
j=ne

p4
x(sj)u

2(br). (C.3.4)

Next, the focus will be on the uncertainty discussion of Ecomp. The original

description of Lundeby et al. (1995) discusses an iterative approach and a regres-

sion based on a stepwise averaged impulse response. For the sake of simplicity, it

is assumed that the iterative optimization has already been completed, and there-

fore a good estimate for the crosspoint ncp is available. In addition, the stepwise

averaging is not applied, and instead the regression line is determined directly

from the logarithmic impulse response without influence on the uncertainty.

First, the noise floor, i.e., the root-mean-square noise level, needs to be deter-

mined, with

Lnoise = 10 log10 p̃
2
noise (C.3.5)
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and

u2 (Lnoise) =

(
20

loge(10)

)2
u2 (pnoise)

nend∑
j=ncp

p2
noise(sj)

. (C.3.6)

The cross point corresponds to the time from which the regression line, with

the slope m and the y-axis section a, falls below the noise level Lnoise:

tcp =
Lnoise − a

m
(C.3.7)

and the associated uncertainty

u2(tcp) =
1

m2
(u2(Lnoise) + u2(a)) +

(
Lnoise − a

m2

)2

u2(m) (C.3.8)

The uncertainties of the slope u(m) and the noise level u(Lnoise) are already avail-

able through Equations C.2.2 and C.3.6. The y-axis section a and its uncertainty

can be determined on the same grounds (Bronstein et al., 2015, 16.3.4.2):

a = L̄p −ms̄ (C.3.9)

with the associated uncertainty

u2(a) = u2(L̄p) + s̄2u2(m) +m2u2(s̄). (C.3.10)

The last term of this sum can be neglected as long as the assumption that the

clock jitter is insignificant holds. To calculate the average energy level, the raw

impulse response is evaluated, in which systematic effects continue to play a role.

u2(a) ≈ 1

n2
cp

ncp∑
i=1

u2 (Lp) + s̄2u2(m)

=
4

ncp

(
u2(br) + u2(bs)

)
+ s̄2u2(m). (C.3.11)

The determined slope m and the y-axis section a are exactly the parameters

that characterize the supposed exponential decay that is then used to calculate

the compensation term Ecomp:

Ecomp =

∞∫
tcp

100.1ae
ln(10)

10 mtdt = − 10

ln(10)

100.1a

m
e

ln(10)
10 mtcp (C.3.12)
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with the associated uncertainty

u2(Ecomp) =

(
10

ln(10)
100.1ae

10
ln(10)

mtcp
)2

×

×

u2(a)

4m2
+

(
mtcp − ln(10)

10

m2

)2

u2(m) + u2(tcp)


During the analysis of measured impulse responses, it turned out that the tran-

sition time tcp is determined exactly by the Lundeby algorithm down to the

sample, so that this uncertainty contribution can be neglected. This leads to the

following uncertainty of the compensation energy.

Ecomp =

(
10

ln(10)
100.1ae

10
ln(10)

mtcp
)2
(
u2(a)

4m2
+

(
tcp

m
− ln(10)

10m2

)2

u2(m)

)
(C.3.13)

The uncertainties of the energy fractions in Equations C.3.3, C.3.4 and C.3.13

can be introduced into the uncertainty of Equation C.3.2 to determine the global

uncertainty of the clarity parameter. Since the fully spelled out equation is

somewhat convoluted and bulky, it will not be explicitly shown here.
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11 Dirk Schröder Physically Based Real-Time Auralization of
Interactive Virtual Environments
ISBN 978-3-8325-2458-6 35.00 EUR

12 Marc Aretz Combined Wave And Ray Based Room Acoustic
Simulations Of Small Rooms
ISBN 978-3-8325-3242-0 37.00 EUR

13 Bruno Sanches
Masiero

Individualized Binaural Technology. Measurement,
Equalization and Subjective Evaluation
ISBN 978-3-8325-3274-1 36.50 EUR

14 Roman Scharrer Acoustic Field Analysis in Small Microphone Arrays

ISBN 978-3-8325-3453-0 35.00 EUR

15 Matthias Lievens Structure-borne Sound Sources in Buildings

ISBN 978-3-8325-3464-6 33.00 EUR

16 Pascal Dietrich Uncertainties in Acoustical Transfer Functions.
Modeling, Measurement and Derivation of Para-
meters for Airborne and Structure-borne Sound
ISBN 978-3-8325-3551-3 37.00 EUR

17 Elena Shabalina The Propagation of Low Frequency Sound
through an Audience
ISBN 978-3-8325-3608-4 37.50 EUR

18 Xun Wang Model Based Signal Enhancement for Impulse
Response Measurement
ISBN 978-3-8325-3630-5 34.50 EUR

19 Stefan Feistel Modeling the Radiation of Modern Sound
Reinforcement Systems in High Resolution
ISBN 978-3-8325-3710-4 37.00 EUR

20 Frank Wefers Partitioned convolution algorithms for real-time
auralization
ISBN 978-3-8325-3943-6 44.50 EUR



21 Renzo Vitale Perceptual Aspects Of Sound Scattering In
Concert Halls
ISBN 978-3-8325-3992-4 34.50 EUR

22 Martin Pollow Directivity Patterns for Room Acoustical
Measurements and Simulations
ISBN 978-3-8325-4090-6 41.00 EUR

23 Markus Müller-Trapet Measurement of Surface Reflection
Properties. Concepts and Uncertainties
ISBN 978-3-8325-4120-0 41.00 EUR

24 Martin Guski Influences of external error sources on
measurements of room acoustic parameters
ISBN 978-3-8325-4146-0 46.00 EUR

25 Clemens Nau Beamforming in modalen Schallfeldern von
Fahrzeuginnenräumen
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Regardless of the field, measurements are essential for validating theories

and making well-founded decisions. A criterion for the validity and com-

parability of measured values is their uncertainty. Still, in room acoustical

measurements, the application of established rules to interpret uncertainties

in measurement is not yet widespread. This raises the question of the validity

and interpretability of room acoustical measurements.

This work discusses the uncertainties in measuring room acoustical single-

number quantities that complies with the framework of the “Guide to the

Expression of Uncertainty in Measurement”(GUM). Starting point is a struc-

tured search of variables that potentially influence the measurement of room

impulse responses. In a second step, this uncertainty is propagated through

the algorithm that determines single-number quantities.

A second emphasis is placed on the investigation of spatial fluctuations of the

sound field in auditoria. The spatial variance of the sound field in combination

with an uncertain measurement position marks a major contribution to the

overall measurement uncertainty. In extended measurement series, the

relation between changes in the sensor location and the corresponding

changes in measured room acoustical quantities is investigated.

This study shows how precisely a measurement position must be defined

to ensure a given uncertainty of room acoustical quantities. The presented

methods form a foundation that can be easily extended in future investigations

to include additional influences on the measurement uncertainty.
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