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Summary

Summary. In this work, we focus on questions related to solid state phase
transitions studied with the Allen-Cahn model, in use for more than 50 years,
and the hybrid model, first published in 2005. The models are verified by theo-
retical considerations of energy decay properties. We present a discretization in
time and choose a finite element discretisation in space. The resulting system
is implemented in order to investigate the models numerically. We discuss
the obtained results for the phase field models without coupled constitutive
equations and also for a more complex model applied to linear elasticity. We
show differences between the models in terms of numerical efficiency, interfacial
energy, and study the behaviour of the hybrid model on small scales, which
differs from the Allen-Cahn model.
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Summary

Zusammenfassung. In dieser Arbeit befassen wir uns mit Fragen im Zusam-
menhang mit Festkörper-Phasenübergängen, die mit dem Allen-Cahn-Modell,
welches seit mehr als 50 Jahren verwendet wird, und dem Hybrid-Modell,
welches erstmals in 2005 veröffentlicht wurde, untersucht werden. Die Modelle
werden durch theoretische Betrachtungen hinsichtlich ihres Energieverhaltens
verifiziert. Wir präsentieren eine Diskretisierung in der Zeit und wählen eine
Finite-Elemente-Diskretisierung im Raum. Das resultierende System wird im-
plementiert, um die Modelle numerisch zu untersuchen. Wir diskutieren die
erhaltenen Ergebnisse für die Phasenfeldmodelle ohne gekoppelte konstitutive
Gleichungen und auch für ein komplexeres Modell, angewendet auf lineare
Elastizität. Wir diskutieren Unterschiede zwischen den Modellen in Bezug auf
die numerische Effizienz und die Grenzflächenenergie und untersuchen das
gegenüber dem Allen-Cahn-Model abweichende Verhalten des Hybrid-Modells
auf kleinen Skalen.
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NOTATION

A : B := aijbij ; inner tensor product
a · d := aibi; inner vector product
Ia,b := [a, b]

〈v, w〉 :=
∫

Ω
vw dx; L2 scalar product

∂τY
n
h = 1

τ

(
Y nh − Y

n−1
h

)
(̂·) unknown nodal term
[ ] jump brackets
〈〉 mean-value brackets
(·)+, (·)− boundary values at the sharp interface

B(, ) continuous bilinear form
J() continuous functional
l(, ) continuous linear form
L(, ) continuous linear form

H1(Ω) := {v ∈ L2(Ω) | Dv ∈ L2(Ω)}
H1

0 (Ω) := {v ∈ H1(Ω) | v = 0 on ∂Ω}
L2(Ω) :=

{
f : Ω→ R :

∫
Ω
|f(x)|2 dx <∞

}
S3 space of symmetric 3× 3 matrices
Vh finite dimensional subspace of H1(Ω)

Vh,0 finite dimensional subspace of H1
0 (Ω)

Wh finite dimensional subspace of H1(Ω)n

Wh,0 := {vhu ∈ Wh|vhu = 0 in ∂Ω}
Wh,D := {vhu ∈ Wh|vhu = uD in ∂Ω}

notation in [4]
Γ sharp interface
δ constant
ζ local coordinate
η local coordinate
ν asymptotic parameter
ξ local coordinate
σ stress
φ(x, t) indicator function
φµλ(x, t) indicator function
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Notation

ψ2(S) double well potential
ψ̃1(S) double well potential
ψS(S, ε) sum of WS(S, ε) + ψ′2(S)

ω1 constant
ζ := ξ

ν1/2

D tensor of linear elasticity
d1 constant
Ê(S, ε) energy
f() (non)linear function
L1 constant
Pn() orthogonal projection
S(ν)(x, t) asymptotic solution approach for S
S(µ)(x, t) asymptotic solution approach for S
Si(η, ζ, t), i = 0, 2 function in asymptotic solution approach
S

(µ)
i (x, t), i = 1, 2 function in asymptotic solution approach
Ŝ(x, t) function in asymptotic solution approach
S̃i(x, t), i = 1, 3 function in asymptotic solution approach
si constant
T (ν)(x, t) asymptotic solution approach for T
T̂ (S, ε) stress component of ersatz stress
U interface neighbourhood
u(ν)(x, t) asymptotic solution approach for u
ui(η, ξ, t) unknown displacement of asymptotic solution
û(x, t) displacement
v(x, t) part of interface velocity
w constant stress component of ersatzstress
WS,ers(S) derivative of elastic energy with respect to S

notation in [78]
κG, κG calibration constant
c order parameter
CA, CM constant tensors of linear elasticity
f(c) asymetric double well potential
G interface energy density
L interface width parameter
M mobility factor
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Notation

further notation
Φ() function of fixpoint iteration
Ω open domain
Ω+, Ω− subdomains of Ω

Ω̄ domain ∈ Rn

∂Ω boundary of Ω

α parameter of general model
αheat constant
β parameter of general model
Γ(t) center line of ΓU (t)

ΓU (t) diffuse interface area
Γ̂(t) sharp interface
γ̃ij components of ε̃(u)

ε∇uε viscosity term of Hamilton-Jacobi equation
ε(u) Cauchy strain tensor
εL2 error term in [3]
εz constant
εν constant
ε̄ constant eigenstrain
ε̄ij components of ε̄
ε̃(S, u) phase dependend strain tensor
ε̃ij components of ε̃(S, u)

κΓ curvature parameter
λ parameter of the Allen-Cahn model
µ parameter of the Allen-Cahn model
ν parameter of the hybrid model
ξ constant (fundamental theoreme of calculus)
ρ constant
ρ2 constant
τ time step
τ0 constant
ψ(S) double well potential
ψ′(S) derivative of ψ(S) with respect to S
ω1 constant
a domain width in numerical example
a, b constants defining a compact interval [a, b]

a, b placeholder in binomial formulas
a, b placeholder in Young’s inequality
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Notation

B,E, F optimisation parameters in [3]
Br(v) open ball of radius r and center v
b twodimensional time- and space independent force
b(x) time independent force
bx, by components of time independent force
b̄ constant
b̃ constant
C tensor of linear elasticity with constant entries
C(S) phase dependend tensor of linear elasticity
Cδ,i, i = 1, 6 constant
Cε constant
Cψ,i, i = 0, 5 constant
Ci, i = 1, 2 constant tensors of linear elasticity
CP constant
CW,i, i = 0, 2 constant
C ′ constant
C ′′ constant
C ′′′ constant
C̃ constant
C̃min constant
C̃P constant
˜̃CP constant
Ĉ(S, ε) eshelby tensor
c(r) := cr with c = constant ( hybrid model)
c1 parameter of the Allen-Cahn model
cA(r) := cAr with cA = constant ( Allen-Cahn model)
cH(r) := cHr with cH = constant ( hybrid model)
c̃(r) := c̃r with c̃ = constant ( Allen-Cahn model)
D(Snh , S

n−1
h ) difference quotient of ψ(Sh)

d width of interface
di, i = 1, 3 constant
d̄ constant
˜̄d constant
dt time step
dx mesh size
E(S, ε) free energy density
Ē(S, ε) free energy
Ē(Sh, εh) semi discrete free energy
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Notation

Ê(S, ε) free energy term in definition of the Eshelby tensor
Ē(S)AC energy value (Allen-Cahn model)
Ē(S)H energy value (hybrid model)
Ēel(S, ε) free elastic energy
Ēel,b(S, ε) extended free elastic energy
Ēel,uh(Sh, εh) fully discretised free elastic energy
eAC error (Allen-Cahn model)
eH error (hybrid model)
ei, i = 1, 3 constant
eµres error (Allen-Cahn model)
eνres error (hybrid model)
err error
F (Ŝ) vector valued function (in Lemma 8)
F (Snh , S

n−1
h , unh) difference quotient of WS(Sh)

Fel vector of elastic forces
FI(Ŝ) scalar valued function at global node I (in Lemma 8)
F̃ () Lipschitz continuous function (in Lemma 6)
f1() (non)linear function ( Allen-Cahn model)
f2() (non)linear function ( hybrid model)
f̄ constant
˜̄f constant
f̂ vector of nodal forces
g(r) := gr with g = constant ( Allen-Cahn model)
H̃() invertible continuous function (in Lemma 6)
h(|∇S|) reciprocal of the mobility function of the general model
h, h̄ constant
I global node index
I identity tensor
i local nodal index
K global element stiffness matrix
K̄ global element stiffness matrix (with elasticity)
K̃() Lipschitz continuous function (in Lemma 6)
k iteration index
M1 global mass matrix
M2mod global mass matrix (general model)
M2AC global mass matrix (Allen-Cahn model)
M2H global mass matrix (hybrid model)
NI(x) shape function for S
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Notation

Nu
I (x) shape function for u

Nt number of time steps
n space dimension
n time step index
n normal interface unit vector
nx number of nodes per direction
p parameter (shrinking circle)
p
(
ai(ŜI)

i
)

polynomial function
q place holder of function h in Chapter 5
r radius
r place holder for e.g., a sum of functions
reA width relation of interfaces
reB width relation of interfaces
rst time derivative of radius r at tst
rt time derivative of radius r
rtAC,ers interface velocity with ersatz stress (Allen-Cahn model)
rtH,ers interface velocity with ersatz stress (hybrid model)
S(t, x) order parameter
S0 initial condition for S(x, t) at t = 0

Sh(x) semi discrete order parameter ∈ C1([0, T ], Vh,0)

Sh,0 intitial condition for Sh(x) at t = 0

Snh semi discrete order parameter at time step n

Sh,t(x) :=
Snh−Sn−1

h

τ

St time derivative of S (Chapter 7-10)
∂tS time derivative of S (Chapter 1-6)
S̃nh another semi discrete order parameter at time step n

Ŝ vector of nodal unknown order parameters
Ŝn vector of nodal unknown order parameters at time step n

ŜI scalar nodal unknown order parameter at global node I
Ŝi scalar nodal unknown order parameter at local node i
Ŝk iterated vector of nodal unknown order parameters
Ŝt vector of time derivatives of nodal unknown order parameters
s1 normal interface velocity (Allen-Cahn model)
s1err error term of normal interface velocity (Allen-Cahn model)
s1µ part of normal interface velocity (Allen-Cahn model)
s2 normal interface velocity (hybrid model)
s2err error term of normal interface velocity (hybrid model)
s2ν part of normal interface velocity (hybrid model)
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Notation

sµ normal interface velocity (Allen-Cahn model)
sν normal interface velocity (hybrid model)
selAC normal interface velocity (elastic Allen-Cahn model)
selH normal interface velocity (elastic hybrid model)
sAC,ers normal interface velocity (ersatz Allen-Cahn model)
serr,AC error term (Allen-Cahn model)
serr,H error term (hybrid model)
sH,ers normal interface velocity (ersatz hybrid model)
shG normal interface speed in Garcke model
sMart. normal interface speed in martensite model
ŝ driving force due to elastic terms
T (S, u) Cauchy stress tensor
t time
tst point in time of stagnation
tol constant
u(x, t) displacement
u1(x) horizontal displacement boundary value
u2(x) vertical displacement boundary value
uD(x) Dirichlet border displacements
uh(x) semi discretised displacement
unh uh at time step n

û vector of nodal displacements
ûn vector of û at time n
ûI unknown global nodal displacement
uheat(x, t) unknown temperature
v(x) continuous function (Lemma 8)
vhS(x) semi discrete test function (general model)
vhu(x) semi discrete test function (elasticity)
vS test function (general model)
vSI nodal test function (general model)
vu test function (elasticity)
vuI nodal test function (elasticity)
W (S, ε) elastic energy density
WS(S, ε) derivative of W (S, ε) with respect to S
widthAC interface width (Allen-Cahn model)
widthH interface width (hybrid model)
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PART I: BACKGROUND

1 Introduction

Almost a hundred years ago, Lev Davidovich Landau introduced the concept of
an order parameter, indicating the state of a specific phase by a certain scalar
value, in the context of superconductivity and phase transitions. Since then, a
large amount of literature has been published around different order parameter
concepts, applying the Allen-Cahn model to phase field problems in different
gaseous states partially coupled to different material laws and other physical
conditions.

This thesis compares this classical Allen-Cahn model to the new stated hy-
brid model applied to solid phase field problems and later on coupled to linear
elasticity. Both models differ in terms of their numerical behaviour and their suit-
ability to specific problems as for example material inclusions with high or low
interfacial energy. The development of numerical methods for the simulation
of phase transformations is explained proving the thermodynamic consistency
of the discrete models. To confirm the theoretical results in [4] for the hybrid
model, we extend the few simple numerical examples shown by the authors.
Encountering special differences, we finally examine the behaviour of both mod-
els numerically applied to small martensite nuclei and explain the peculiarities
of the hybrid model.

Remark 1.1. To aid understanding, we summarise contents of the original liter-
ature [1]–[6] to explain the correlation between the author’s arguments and our
investigations and to enable the reader to work with the original publications.
It might be useful to consult the original literature for a deeper understanding
of the analytical considerations of the hybrid model at some point.

Before we start with the mathematical theory, we want to say something about
the appearance and the classification of phases and introduce the order parame-
ter, we will use throughout this work.

Examples of phase fields. Phase field models are used to describe various
phenomena in technology and nature. The existence of two or more different
phases, partially even in different gaseous states, is an apparent characteristic of
a melting glacier, a binary alloy below a critical temperature, a malign tumour or

1



Part I: Background - Motivation

an oil slick. In many situations, we are interested in the changes of the involved
phases in order to, e.g. forecast the danger of avalanches.

(a) Oil and water. (Böttcher, 2020) (b) Melting ice. (Böttcher, 2019)

(c) Martensite. (TAZ GMBH, 2020) (d) Rusting process. (Böttcher, 2019)

Figure 1.1: Examples of phases.

Phase transitions inducing topological changes at domain interfaces occur, e.g.
in medical contexts in conjunction with the mutation of neoplasm. In materials
science, diffusion of atoms or electrons cause interface changes with or without
chemical reactions. The oxidation of iron with air and water leads to corrosion
with phases of steel, rust, air and water. Snowflakes develop under a certain
temperature from water vapour accumulating on condensation nuclei and in a
martensite transformation the crystal lattice changes by sudden undercooling,
building up new domains.

Phase field problems can be classified in different ways. Beneath the aggregate
state combinations solid-solid, solid-liquid, solid-gaseous, liquid-liquid and
liquid-gaseous there are other concepts of phase classification. The order param-
eter S(x, t) can be a characteristic function for the concentration of a chemical
component, the direction of a magnetic field, the polarisation in ferroelectric
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Part I: Background - Motivation

materials or the percentage of ionised particles in the earth’s atmosphere. The
kind of problem determines the methodical approach.

The topological development of a two-phase domain can be analysed by the
spatial and temporal movement of the interface area. The movement of each
material point belonging to this interface can be specified by its normal veloc-
ity. For such an analysis we need the more detailed definition of the above
introduced order parameter.

Order parameter. The distribution of two phases can be modeled by an order
parameter S(x, t) : Rn × R → R, x ∈ Ω ⊂ Rn, t ≥ 0 with dimension n = 2

or n = 3. We define the two subdomains Ω+ = {x : S(x, t) > 1
2} ⊂ Ω and

Ω− = {x : S(x, t) < 1
2} ⊂ Ω corresponding to the location of the two phases.

The pure phases are specified by a constant value of S = 0 and S = 1. They
are separated by an interface region in which the order parameter increases
continuously from 0 to 1 and we specify this region as the diffuse interface
area

ΓU (t) = {x : S(x, t) ∈ (0, 1)} ⊂ Ω . (1.1)

The set
Γ(t) = {x : S(x, t) = 0.5} ⊂ Ω (1.2)

denotes the centerline of the diffuse interface area ΓU (t), see Fig. 1.2.

ΓU (t)

Ω
Ω−

S = 0

Γ(t)

Ω+

S = 1

Figure 1.2: Two phases with smooth interface.

Another concept is the model of a sharp interface. We define it as a two-
dimensional manifold Γ̂(t) embedded in the three-dimensional manifold Ω.
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Part I: Background - Motivation

In two dimensions we can, in contrast to the diffuse interface ΓU (t) with the
centerline Γ(t), imagine the sharp interface as a line on which the value of the
order parameter jumps. The diffuse interface ΓU (t) becomes very narrow when
the asymptotic parameters, which we will explain in the following, approach
zero. Then the so called limit model of the diffuse interface ΓU (t) goes towards
the sharp interface Γ̂(t), which means that Γ(t) agrees with Γ̂(t).

Both kinds of phase transition are found in nature. Examples of a sharp interface
are interfaces in martensite materials. The lattice is either in the metastable face-
centered cubic austenite phase or in the stable body-centered cubic martensite
phase. However, since the lattices of the martensitic and austenitic phases do
not match, distortions occur, which lead to the formation of an interstitial lattice
in a narrow area. Therefore, we can not speak of a real sharp interface, even
though the interface is very narrow.

An example of diffuse interfaces are magnetic Bloch walls between magnetic
domains. The direction of the magnetisation can not abruptly turn in the oppo-
site direction, which is why magnetic transition zones form diffuse interfaces.
Whether a physical interface is actually sharp or not also depends on the scale
we choose to study the material (e.g. on the atomic level).

In numerical simulations, we often need to resolve the interface by defining
nodes and, e.g. Finite Elements within. Thus, the width of the numerical diffuse
interface region might (related to the respective domain) be wider than the
interface of the research object.

In solid-solid phase field systems, on which we focus on in the present work, the
evolution of S(x, t) is characterised by a system of partial differential equations.
It may depend on material properties such as Young’s modulus, eigenstrain,
crystal lattice constants and more. Boundary conditions like pressure, heat and
other outer forces can be applied to the solid material in order to induce phase
transformation processes. Furthermore, there are inner processes like chemical
reactions or diffusion, which influence the distribution of the phases and thereby
the topology and the properties of the material.

Historical embedding. Solid phase field problems can be described by phase
field models found in literature already in the first half of the last century. Lev
Landau presented a concept for phase transition in 1937, introducing the Landau
potential and an order parameter, see [65], [63], [64], [25] and the references
given therein. In 1950 Lev Landau and Witali Ginzburg used the concept of an
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Part I: Background - Motivation

order parameter describing the change from normal electrical conductivity to
superconductivity with the Ginzburg-Landau-theory, see [48].

In 1979, John W. Cahn and Samuel M. Allen published their first work on the
Allen-Cahn equation, see [7]. In this basic work, the time dependent change of
an order parameter associated with the antiphase boundary motion is compared
to the interface velocity depending on local principal curvatures. The related
theory of mean curvature flow or mean curvature motion was discussed in many
publications, see [29], [37], [36], [44], [57] and [32]. Since 1957 a huge amount of
literature was published on Allen-Cahn type equations, e.g. [18], [70], [27], [58]
and [76].

Solid-solid phase transformations are often caused by internal and external
loads and then the phase field equations are coupled with constitutive mate-
rial equations. These can represent the effects of lattice distortion, elastic and
inelastic strains caused by heat, pressure and other loads, see [73], [72] and the
references given therein. The Allen-Cahn equation was originally developed for
iron-aluminum alloys and later on applied to other problems, inter alia marten-
site transformations, see [78], [77], crack extension, see [89], [80] and ferroelectric
materials, see [16], [79], [83] and [85]. As mentioned before, Allen-Cahn type
phase field equations can also deal with solid-fluid problems, e.g. the Stefan
problem related to the melting and freezing of ice, see [20] and the references
given therein.

The Allen-Cahn equation is a classical reaction-diffusion equation, see [61], [68]
and a partial differential equation of (semilinear) parabolic type. It can be
derived as a gradient flow of an associated free energy, see [14].

A good overview of publications on the Allen-Cahn equation, sometimes de-
noted as time-dependent Ginzburg-Landau equation, see [42], on many aspects
such as asymptotic behaviour, error estimates, existence and uniqueness of
solutions up to coupled problems is given in [84] and [26]. A summary of a
general phase field theory and different limit models can be found in [24].

In 2005, the hybrid model was published in [6] and advanced in further works
of the author’s, see [1]–[5]. In [4], the hybrid model is explained as a model that
replaces the (rescaled) mobility function of the Allen-Cahn model, regulating
the propagation velocity of the interface by a term depending on the gradient of
the order parameter.
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Part I: Background - Elastic Allen-Cahn model

In the following sections we will introduce the Allen-Cahn model and the hybrid
model in particular. We will point out commonalities of and differences between
both models also by means of numerical examples in Part II and Part III.

2 Elastic Allen-Cahn model

Fig. 1.2 shows a model for a system with two phases. Here, the order parameter
has values S ∈ [0, 1] and both phases are separated by an interface given by
Eq. (1.1). To describe the movement of the (diffuse) interface ΓU (t), the later
named Allen-Cahn model was 1979 introduced in [7] by Samuel M. Allen and
John W. Cahn, based on earlier works [8].

The Allen-Cahn formulation in [7] had no coupling to constitutive laws repre-
senting inner and outer forces. Anticipating the purpose of the third part of
the present work, we start with the formulation of an elastic phase field model,
which includes an additional term due to elastic effects.

We start with the definition of a free energy that leads to the respective phase
field equation. In [4], the free energy density function of the Allen-Cahn model,
coupled to linear elasticity, is given as

E(S, ε) = W (S, ε) +
1

µ1/2
ψ(S) +

µ1/2λ

2
|∇S|2 (2.1)

with S = S(x, t) and ε = ε(u(x, t)), defining the free energy

Ē(S, ε) =

∫
Ω

E(S, ε) dx . (2.2)

The scalar-valued elastic energy density function

W (S, ε) =
1

2
(ε− ε̄S) : (C(ε− ε̄S)) (2.3)

depends on the symmetric linear Cauchy strain tensor

ε(u) =
1

2

(
∇u(x, t) + (∇u(x, t))T

)
∈ S3 (2.4)

with S3, the space of symmetric 3x3-matrices. It is valid for small deformations
and depends on the displacement u(x, t) ∈ R3 and we state
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Part I: Background - Elastic Allen-Cahn model

Assumption 1. ||ε(u)|| ≤ Cε, Cε ∈ R+
0 .

The tensor C : S3 → S3 of linear elasticity is a positive definite mapping and
describes the resistance of a material against inner and outer forces like eigen-
strains and pressure. We will later define a linear dependency on the order
parameter to adjust C to the respective phase.

The scalar-valued double well potential with minima in 0 and 1 is in [4] defined
by

ψ = 4S2(1− S)2 (2.5)

and λ ∈ R+ and µ ∈ R+ are constant parameters.

Before we explain the meaning of these parameters in detail, we will show
the correlation between the free energy function Eq. (2.2) and the Allen-Cahn
model.

In the following, we use the notation

L2(Ω) :=

{
f : Ω→ R :

∫
Ω

|f(x)|2 dx <∞
}

for the vector space consisting of all Lebesgue-measurable functions, whose
squares can be integrated and we define the Sobolev space

H1(Ω) := {v ∈ L2(Ω) | Dv ∈ L2(Ω)}

with Dv denoting the weak derivative of v. Based on these definitions, we have
the subspace

H1
0 (Ω) := {v ∈ H1(Ω) | v = 0 on ∂Ω}

for the later given homogeneous boundary conditions.

Remark 2.1. In the course of the paper we will sketch proofs in terms of exis-
tence and uniqueness and in Part III a general phase field model coupled with
linear elasticity, representing the Allen-Cahn model and the hybrid model, will
be implemented numerically. To keep both, the proofs and the implementation,
simple, we assume that we always first calculate the displacements and strains
of the elasticity equations and analyse and implement the phase field model
with these known quantities. Therefore, the phase field formulations within the
coupled elasticity do not contain any unknown displacement.
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Part I: Background - Elastic Allen-Cahn model

Lemma 1 (Gradient flow). Let Eq. (2.2) be the free energy for the elastic phase field
problem and assume u and S to be given and to be sufficiently smooth for the following
correlations. The negative gradient flow of the free energy with respect to a weighted
metric yields the elastic Allen-Cahn equation in terms of

∂tS = −cA
(
WS(S, ε) +

1

µ1/2
ψ′(S)− µ1/2λ∆S

)
(2.6)

with homogeneous Dirichlet or homogeneous Neumann boundary conditions for S.

Proof. The variation of the global formulation of the free energy Eq. (2.2) with
known displacements in direction of v ∈ H1

0 (Ω) is defined by

δĒ

δS
(S)(v) =

d

dρ
Ē(S + ρv)|ρ=0

, ρ ∈ R , (2.7)

leading to

δĒ

δS
(S)(v) =

∫
Ω

WS(S, ε)v +
1

µ1/2
ψ′(S)v + µ1/2λ∇S · ∇v dx . (2.8)

We denote by WS the partial derivative of the elastic energy function W (S, ε)

with respect to the order parameter S and we define ψ′(S) as the derivative of
the double well energy function ψ(S) with respect to S.

The Allen Cahn equation arises from the negative gradient flow of a related free
energy with respect to a weighted metric, see [32]. Together with Eq. (2.8) we
obtain

〈∂tS, v〉 = −cA
∫

Ω

WS(S, ε)v +
1

µ1/2
ψ′(S)v + µ1/2λ∇S · ∇v dx (2.9)

∀v ∈ H1
0 (Ω) and t > 0 ,

see [44].

Integrating by parts, applying homogeneous boundary conditions and using the
fundamental lemma of calculation of variations, see [31], the elastic Allen-Cahn
equation (2.6) results and the correlation between Eq. (2.8) and Eq. (2.9) proves
the Lemma.
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Part I: Background - Elastic Allen-Cahn model

Referring to the rescaling in [4], we have

cA(r) =
f1

(µλ)1/2
(r) . (2.10)

As explained in the original literature, the function f1 is possibly non-linear, but
the authors assume it to be linear by setting

f1(r) := c̃r , c̃ ∈ R+ , (2.11)

yielding

cA(r) =
c̃

(µλ)1/2
r . (2.12)

Inserting Eq. (2.10) into Eq. (2.6) leads to the more specific formulation

∂tS = − 1

(µλ)1/2
f1

(
WS(S, ε) +

1

µ1/2
ψ′(S)− µ1/2λ∆S

)
. (2.13)

We denote the factor in front of the brackets as mobility, scaling the velocity of
the order parameter ∂tS. A case of a non-linear mobility was discussed in [13]
in the context of the Cahn-Hilliard equation. We will not regard a non-linear
mobility in the present work.

Inserting Eq. (2.12) into Eq. (2.6), we formulate the elastic Allen-Cahn phase
field equation with a linear mobility, we will regard in the following, as

∂tS = − c̃

(µλ)1/2

(
WS(S, ε) +

1

µ1/2
ψ′(S)− µ1/2λ∆S

)
. (2.14)

In addition, initial- and boundary conditions are required to completely describe
the evolution of the phase fields. We assume, following [4],

S(x, t) = 0, x ∈ ∂Ω , t ≥ 0, (2.15)

S(x, 0) = S0, x ∈ Ω

throughout this work.

Next, we will explain the meaning of the parameters λ and µ in Eq. (2.14).
Therefore, we need an understanding of interfacial energy.
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Part I: Background - Elastic Allen-Cahn model

Interfacial energy in the context of phase boundaries. Without additional
inner and outer forces, the particles inside a bounded domain are first balanced.
Dominating surface tension causes shrinking interfacial areas in order to reduce
the number of the unbalanced outer particles. Thus, nucleus inclusions in
technical alloying applications round out and shrink. The formation of minimal
surfaces can be observed in the example of soap bubbles, where the interfacial
energy is related to the better known surface energy, see Fig. 2.1.

(a) soap bubbles t0
(Böttcher, 2017)

(b) soap bubbles t1
(Böttcher, 2017)

Figure 2.1: Minimisation of surface energy.

In contrast, additional inner and outer forces can counteract the interface min-
imising effects. The rearrangement or transformation of atomic structures can
cause distortions of the well-balanced lattice and elastic forces gain influence.
Their relation to the interfacial energies controls the corresponding phase evo-
lutions. So, particles may grow and coarsen due to outer mechanical forces or
inner misfittings, see [46], [45], [42].

In the present work, we understand λ as a interfacial energy parameter, depend-
ing on the respective material and the related effects such as, e.g. the dislocation
of atoms close to the interface and their imbalance of forces, see Fig. 2.2. We will
assume λ as a temperature independent constant.
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interface

solid 1

solid 2

Figure 2.2: Interfacial energy.

The parameter µ is small and stands in the denominator in front of the derivative
of the double well potential in Eq. (2.14) . Choosing a constant λ, a smaller µ
increases the influence of the double well potential that separates the phases and
thus, the interface width decreases. We will explain in Chapter 5.4 why a larger
µ increases the numerical solution error for the normal interface velocity.

In general, there is no relation between the numerical and the physical width of
a diffuse interface. In numerical simulations, the width of the diffuse interface
depends on the parameter µ. This fact is important because the numerical reso-
lution of the interface region needs about five grid points for sufficient accurate
results, observed in numerical experiments, see [10], [75] and Chapter 7.

Interpretation of the energy functions. Omitting the term WS in Eq. (2.14),
the phase field behaviour and the movement of the interface ΓU (t) depend on the
curvature, the interface energy, controlled by the value of λ, and the double well
potential ψ, scaled by the parameter µ. The derivative of the elastic energy WS

couples the equations of linear elasticity to the phase field model. Thus, inner
as well as outer forces have an impact on the interface movement. Moreover,
the phase field models can be coupled to other material laws, e.g. describing
piezoelectricity, see Appendix 9.

The number and the values of the minima of the double well potential, here
given by Eq. (2.5), depend on the given situation: the number and the influence
of the involved phases. Static solutions minimise the free energy and therefore
push the order parameter into one of these minima, promoting phase separa-
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tions. For this reason, ψ is also called separation potential in literature. The
(double well) potential has to be adjusted to the specific problem, see [78] and
Chapter 10. For phase field systems with more than two phases multiple order
parameter can be used. This situation is not discussed in this work.

Sharp interface limit: The limit model of the sharp interface normal velocity
of the Allen-Cahn model

s =
c̃

c1

(
n · [Ĉ]n+ λ1/2c1κΓ

)
,

c̃

c1
(r) =

c̃

c1
r ,

c̃

c1
∈ R+ (2.16)

with

c1 =

∫ 1

0

√
2ψ(Θ) dΘ (2.17)

was defined within the asymptotic solution analysis in [4].

The brackets [(·)] = (·)+ − (·)− indicate the jump of the value of the respective
term at the sharp interface. The indices + and −mark the respective sides.

In [4], approaches of asymptotic solutions were inserted into the belonging
system consisting of the Allen-Cahn equation coupled to linear elasticity. The
inner and the outer expansion, meaning the parts of the asymptotic approaches
that are valid in the respective phase at both sides of the interface region, were
matched within the diffuse interface region. Residual terms of the resulting
system had to be estimated. Within these estimations, the expression (2.16)
arised, describing the normal velocity of the diffuse interface ΓU (t), converging
to the normal velocity of the sharp interface Γ̂(t) by sending µ to zero.

The dependence of this approximation of the sharp interface velocity on the
choice of µ was only clarified in a further publication [2]. Similar approaches
can be found in [76], [43] and [34].

The formulation (2.16) contains the Eshelby tensor, which is in general given
as

Ĉ(S, ε) = Ê(S, ε)I − ε(u)TT (ε(u)) (2.18)

with the particular free energy

Ê(S, ε) = W (S, ε) + ψ(S) , (2.19)
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the identity tensor I ∈ R3×3, the strain tensor ε, given by Eq. (2.4), and the
definition of the Cauchy stress tensor as

T (ε(u)) = Cε(u) ∈ S3 . (2.20)

We will later define a dependency of T on the order parameter S.

The Eshelby tensor represents the energy-momentum tensor in the context of
configurational forces, see [62], [74]. The term [Ĉ] stands for the jump of the
Eshelby tensor, which is zero in the homogeneous phase and has non-zero-
values at the sharp interface Γ̂(t), see [71], [1] and the references given therein.
The normal interface unit vector n(x, t) points into the direction of the phase
indicated by S = 1. The constant c1, given by Eq. (2.17), is a function of the double
well potential ψ and κΓ is twice the mean curvature. Dropping the Eshelby-term
in Eq. (2.16) yields a mean curvature motion depending on interface properties
only, omitting inner and outer forces.

Now that we have explained all terms contained in the Allen-Cahn model, as
well as the meaning of the associated energy functions and the (sharp) interface
velocities, we conclude this chapter with some final remarks on the literature
and the well-posedness of systems associated with the Allen-Cahn model.

The Allen-Cahn model is related to the Cahn-Hilliard equation describing phase
separation under mass conservation [49], [17]. Here, instead of chemical reaction
and diffusion, only diffusion influences the interface evolution. The modeling
of mass conservation leads to a fourth-order partial differential equation.

The Cahn-Hilliard and the Allen-Cahn equation can be treated numerically in
a similar way. One approach is to determine a coupled system of two second-
order partial differential equations, replacing the second derivative of the order
parameter by a new unknown, see [33]. In [46], [45], the Cahn-Hilliard model
coupled to linear elasticity is given by an elliptic-parabolic system and the
author shows existence and uniqueness of variational solutions under special
assumptions. In [54], this proof is adapted to the elastic Allen-Cahn model by
similar considerations.

Eq. (2.14) has no analytical solution in general. Therefore, numerical schemes
have to be used to find solutions of the order parameter, describing the move-
ment of the interfaces. There are many publications on numerical schemes
applied to the Allen-Cahn problem with or without elastic energy, e.g. [66], [27].
An interesting approach, known as the splitting method, is proposed in [82].
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A posteriori error estimates are found, among other references, in [60], [39]
and [38]. Comparisons of different explicit and implicit implementation schemes
connected to energy decay properties are given in [40], [69], [90].

A basic aspect of this work is that the choice of µ defines the width of the diffuse
interface in numerical simulations. The numerical interface has to be resolved
finely to obtain appropriate results. Therefore, the size of µ has a strong impact
on the computational effort but also on the error of the simulation results. In
Chapter 5.4 we will estimate the numerically developed width of the transition
zone between the two phases based on a local scaling at the sharp interface and
we will verify our predictions by numerical tests in Chapter 7.

3 Elastic hybrid model

In contrast to the Allen-Cahn model, the hybrid model was published only
recently and so far there is almost no literature beyond the original publications
on it. This work aims to fill this gap a little and will extend and supplement the
investigations started in [1]–[6]. For this purpose, we will first introduce the
model.

In 2005, Hans-Dieter Alber and Peicheng Zhu published their first work about
the hybrid model [6], followed by further publications on analytical properties
and asymptotic solution analysis, see [3]–[5].

To describe the behaviour of the order parameter S, the hybrid model was given
by

∂tS = −f2(WS(S, ε) + ψ′2(S)− ν∆xS)|∇xS| . (3.1)

The function f2(r) in Eq. (3.1) can be non-linear like the function f1(r) in Eq. (2.13).
Here, we will only define it as a linear function.

In [4], the authors gave some simple examples of a two-dimensional numerical
implementation at the end of their publication, comparing the hybrid model to
the Allen-Cahn model. In the present work, we will extend their tests to some
more complex numerical examples, assuming, e.g. f2(r) = c r, with a constant
c ∈ R+. We drop the index x and write Eq. (3.1) as

∂tS = −c (WS(S, ε) + ψ′2(S)− ν∆S)|∇S| . (3.2)

The Laplacian term, multiplied with the parameter ν ∈ R+, determines the
width of the diffuse interface, but in a less restrictive way as µ for the Allen-
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Cahn model. This will be an important aspect of the simulations in Chapter 7
and will be explained in Chapter 5.4. For ν → 0 the solution converges to the
sharp interface limit of the hybrid model.

Similar as explained in Chapter 2, the hybrid model can be derived as a gradient
flow for a specific free energy with or without coupled constitutive equation
terms. The associated free energy density function for the elastic hybrid model
is given by

E(S, ε) = W (S, ε) + ψ2(S) +
ν

2
|∇S|2 (3.3)

with S = S(x, t) and ε = ε(u(x, t)), leading to the free energy function in terms
of

Ē(S, ε) =

∫
Ω

E(S, ε) dx . (3.4)

The proof is performed like in Chapter 2.

Lemma 2 (Gradient flow). Let the free energy for the elastic phase field problem be
given by Eq. (3.4) and assume u to be known and S to be sufficiently smooth. Then the
gradient flow of the free energy leads to the elastic hybrid model equation

∂tS = −c (WS(S, ε) + ψ′2(S)− ν∆S)|∇S| , c(r) = cr, c ∈ R+ (3.5)

with homogeneous Dirichlet or homogeneous Neumann boundary conditions for S.

Proof. The variation of the free energy Eq. (3.4) goes along the lines of the proof
of Lemma 1 leading to the hybrid model coupled to linear elasticity

∂tS = −cH
(
WS(S, ε) + ψ′2(S)− ν∆S

)
and the degenerate mobility function

cH(r) = |∇S|c(r) = |∇S|cr , (3.6)

see [12], yields Eq. (3.5). Thus, the elastic hybrid model arises from the weighted
gradient flow of the respective free energy and a function depending on the
order parameter S induces the respective metric, see [32].

The elastic energy W (S, ε) is defined by Eq. (2.3) and

ψ2(S) =
S(S − 1)(S + 0.06)(S − 1.06)

(1
2 + 0.06)2

(3.7)
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is the double well function, given in [4], which is very close to ψ(S) in Eq. (2.5),
see Fig. 3.1. The slight difference between ψ(S) and ψ2(S) is related to technical
details of the proofs in [4].

(a) ψ(S) Allen-Cahn model (b) ψ2(S) hybrid model

Figure 3.1: Double well potentials.

In the following, we will set ψ2(S) to ψ(S), so Eq. (3.5) turns to

∂tS = −c (WS(S, ε) + ψ′(S)− ν∆S)|∇S| . (3.8)

We choose the initial- and boundary conditions from Eq. (2.15).

Using Eq. (3.8), setting the parameter ν = 0 and dropping the elasticity term WS ,
gives the first order hyperbolic Hamilton-Jacobi type equation

∂tS = −c ψ′(S)|∇S| . (3.9)

In [35], existence and uniqueness of Hamilton-Jacobi equations are examined by
introducing the term −ε∆uε, corresponding to the Laplacian term in Eq. (3.8),
denoted as the method of vanishing viscosity. In this context, the coefficient ν can
be seen as a viscosity coefficient regularising the Hamilton-Jacobi equation.

Therefore, Eq. (3.8), representing a degenerative parabolic partial differential
equation, shows properties of a hyperbolic Hamilton-Jacobi equation. For this
reason, the authors in [4] named it hybrid model.
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Asymptotic solutions In phase field modeling, asymptotic solution meth-
ods use inner and outer expansions for the unknowns and match them in the
neighbourhood of Γ(t). This technique leads to a sharp interface formulation
of the respective phase field models, see [44], [47], [59], [9]. To explain the
asymptotic approach for the hybrid model with respect to the original literature,
the nomenclature, used in [4], is adopted in this paragraph.

Summary of the original literature Some aspects of the original literature [4],
we will explain next, are very useful for the understanding of the numerical
considerations in Chapter 5 and Chapter 7. Some more details are given in
Appendix 1 and for the rest we refer to the proofs in [4].

In the notation of [4], the system of the hybrid phase field model coupled with
equations of linear elasticity reads

−divx T = b , (3.10)

T = D(ε(∇xu)− ε̄S) , (3.11)

∂tS = −f(ψS(S, ε(∇xu))− ν∆xS)|∇xS| . (3.12)

The stress tensor is denoted by T (x, t) ∈ S3, the external time independent force
by b ∈ R3, the linear elasticity tensor by D : S3 → S3 (in the general notation
of the present work, D corresponds to C), the strain tensor by ε(∇xu) ∈ S3, the
displacements by u(x, t) ∈ R3, the eigenstrain by ε̄ ∈ S3 and the order parameter
by S(x, t) ∈ R. The function f(r) describes the mobility, the function ψS(S, ε) ∈ R
represents the sum WS(S, ε) + ψ′2(S) as in Eq. (3.1) (in the general notation of
the present work, we have no corresponding term to ψS) and ν ∈ R+ is a small
parameter.

The asymptotic solutions approaches u(ν)(x, t) for u(x, t), S(ν)(x, t) for S(x, t) and
T (ν)(x, t) for T (x, t) are in [4] given as

u(ν)(x, t) = φ(x, t)

1∑
i=0

ν
1+i
2 ui (η, ζ, t) + v(x, t), (3.13)

S(ν)(x, t) = φ(x, t)

1∑
i=0

ν
i
2Si (η, ζ, t) + (1− φ(x, t)) Ŝ(x, t) , (3.14)

T (ν)(x, t) = D
(
ε
(
∇u(ν)(x, t)

)
− ε̄S(ν)(x, t)

)
. (3.15)

17



Part I: Background - Hybrid model

The Eqn. (3.13)-(3.15) are based on a local coordinate variable

ζ =
ξ

ν1/2
, (3.16)

defined by local coordinates (ξ, η) attached to the neighbourhood of the inter-
face

U = {(η + n(t, η)ξ, t) | (η, t) ∈ Γ, |ξ| < δ} ⊂ R3 × [t1, t2] , (3.17)

see Fig. 3.2. Γ denotes the sharp interface between the two material phases of
Ω ⊂ R3 in the notation of [4] (in the general notation of the present work, Γ corresponds
to Γ̂). The terms ui ∈ R3 and Si ∈ R are unknown functions to be determined, the
function φ(x, t) indicates a point within or outside of U and Ŝ(x, t) is the order
parameter of the respective phase (in the general notation of the present work, we
have Ŝ denoting the nodal values of S in the Finite Element formulation. This is very
different from the meaning of Ŝ in [4]. Expressions for asymptotic solution terms are not
defined in the present work.). The displacement of the respective phase is denoted
by v(x, t). The inner and the outer expansion of the unknowns are matched in

Γ(t) = {(0, η)} (= sharp interface in [4])

ηξ S = 0

S = 1

U(t)

n(η, t) ∈ R3

Figure 3.2: Local coordinate system in [4].

the neighbourhood region U(t) of the interface. For a diffuse interface, they must
describe the order parameter S ∈ (0, 1) increasing smoothly and continuously
within the neighbourhood domain and they must give the value S(x, t) = 0 for
the first phase and the value S(x, t) = 1 for the second phase.
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Part I: Background - Hybrid model

The approaches (3.13)–(3.15) are inserted into the system (3.10)–(3.12) and satisfy
it asymptotically for ν → 0. This means that the residual estimates go to zero
with ν → 0. This fact is proven by defining the normal velocity of the sharp
interface as s = −∂tξ , see Appendix 1 for more details and further definitions.
The calculation leads to the normal sharp interface velocity in terms of

s = f(n · [Ĉ]n+ ν1/2ω1κΓ) with ω1 =

∫ 1

0

√
2ψ̃1(Θ) dΘ . (3.18)

The modified double well potential ψ̃1 (in the general notation of the present work,
ψ̃1 corresponds to ψ) is similar to Eq. (3.7) and will not be explained in detail, see
[4] for the exact definition. The function f (in the general notation of the present
work, f corresponds to f2) is not primary linear. Anyhow, the authors in [4] re-
stricted it to a linear case for their analytical considerations and their numerical
examples. In the present work, this will be done in the same way. As explained
above, the difference between the double well potentials of the Allen-Cahn
model and the hybrid model is very small and thus we set ψ̃1 =: ψ, see. Fig 3.1.
The curvature of the sharp interface is denoted by κΓ.

Concluding we point out two important aspects of the proofs in [4]:

• The residuals of the system (3.10)–(3.12) with the inserted asymptotic
approaches for the hybrid phase field model go to zero with ν → 0.
The estimates of these residuals use the normal velocity definition of
the sharp interface in terms of s = f(n · [Ĉ]n+ ν1/2ω1κk). Note that f(r)

in the original literature refers to f2(r) in the present work.

• The proofs for existence and the bounds of the asymptotic solutions
for the hybrid model are based on the scaling of the local variable
ζ = ξ

ν1/2 . This motivates the scaling employed in Chapter 5.4.

Especially the scaling allows a coarser grid at the interface for the hybrid model
compared to the Allen-Cahn model. This fact leads to a numerical advantage
and we will explain this aspect in Chapter 5.4 and Chapter 7.
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Part I: Background - Outline

4 Outline

In Part I we introduced the Allen-Cahn model and the hybrid model containing
in particular a term of linear elasticity.

Part II describes phase field modeling without elasticity and we focus on the
commonalities and the differences of the models without the elasticity term WS .
In Chapter 5, a general form of Allen-Cahn type phase field equations related to
a non-elastic free energy is derived, including both models with the respective
parameters. A general variational formulation is given and the energy decay
property of the general model is shown.

In the second part of Chapter 5, we explain the error terms in the modelling
presented. We distinguish between low and high interfacial energies determin-
ing the phase field evolution. Their magnitude influences the deviation of the
numerical solutions from the expressions of the (sharp) interfacial velocities of
the original literature. We present a relationship for the widths of the interfaces
of both models that motivates the advantage of coarser mesh using the hybrid
model in numerical implementations. We include the elastic terms within this
error analysis, preparing the elastic simulations of Part III as well. This is an
important part of the present work as it is the basis for the understanding of the
results of the numerical implementation.

In Chapter 6, the general model without elasticity is discretised in time and space.
The well-posedness of the discretised formulation and its energy decay property
are discussed to confirm the numerical simulation results in the following
chapter. Chapter 7 then gives one- and two-dimensional numerical examples
with a focus on the width-development and the propagation velocity of the
interfaces. Varying the parameters, we understand the differences between the
two specific models. We compare some numerical results to available analytical
solutions.

In Part III of this work, the general phase field model is expanded to linear
elasticity. Chapter 8 explains the general formulation for the elastic phase field
problem including the discussion of the energy decay and the well-posedness
of the equations. Chapter 9 prepares the implementation by fully discretising
the models. The proofs of well-posedness are partially transferred to the fully
discretised formulation and we show the energy decay properties as well.

Part III concludes with examples of the numerical validation in Chapter 10.
For numerical simulations with a simplified stress term adapted from [4], the
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Part I: Background - Outline

results are compared to an analytical solution. Further examples are related to
validated results in literature in the context of martensite transformations.

A difficulty in applying the hybrid model within very small scales is discussed
in Part II and Part III. We analyse and explain this behaviour, which has not yet
been published, and choose parameter values different from the Allen-Cahn
model to reach comparable results for the martensite transformations using the
hybrid model.

The work ends with some thoughts on further applications and open questions
for future research.
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PART II: SYSTEM WITHOUT ELASTICITY

5 A general phase field model

In Part II and III we discuss discrete formulations of the phase field equations
and examine the well-posedness of the stated problems. This ensures the reliabil-
ity of the implementations and thus of the numerical results we will present.

To simplify our considerations, we restrict the numerical examples of Part II to
phase field problems without coupled elastic material laws. For this reason, we
preminilary drop the elastic term W (S, ε).

Setting W (S, ε) = 0 and inserting α = µ1/2λ, β = µ−1/2 for the Allen-Cahn model
and α = ν, β = 1 for the hybrid model, the free energy Eq. (2.2) of the Allen-Cahn
model and the free energy Eq. (3.4) of the hybrid model can be formulated as a
general energy function in terms of

Ē(S) =

∫
Ω

βψ(S) +
α

2
|∇S|2 dx . (5.1)

As discussed in Chapter 2 and 3 and [22], solutions of the order parameter S
follow the negative gradient of a respective free energy function in order to
reduce the energy of the system.

The general phase field model is formulated as

h(|∇S|)∂tS = −βψ′(S) + α∆S , α ≥ 0, β ≥ 0 . (5.2)

We define h(q) = 1/cA for the Allen-Cahn model, with cA given by Eq. (2.12),
and h(q) = 1/q for the hybrid model, with q = cH , given by Eq. (3.6), choosing
c = 1.

To avoid dividing by zero, we regularise this term for the hybrid model by
defining

h(|∇S|) :=


(√
|∇S|2 + εz

)−1

, 0 ≤ εz � 1 hybrid model ,

(µλ)1/2

c̃
Allen-Cahn model .

(5.3)
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Part II: System without elasticity - A general phase field model

Thus, we can formulate

Assumption 2. 0 < h ≤ h(q) ≤ h̄ <∞ ∀q ≥ 0.

Remark 5.1. The function h(q) stands as reciprocal of the mobility functions
on the left-hand side of Eqn. (5.2). In the original literatur [4], h(q) = q−1

multiplies the right-hand side like in Eq. (5.6) and q−1 = |∇S| = 0 indicates a
constant phase outside the neighbourhood of the interface. The last property is
somehow destroyed by the definition in Eq. (5.3), but since εz is very small, we
get h(q)−1 ≈ 0 in the pure phases modeled with the hybrid model.

The unusual representation with h(|∇S|) on the left-hand side of Eq. (5.2) is used
within the numerical implementation and therefore already introduced here.

Remark 5.2. We can write Eq. (5.2) as

∂tS = αh(|∇S|)−1∆S − βh(|∇S|)−1ψ′(S) . (5.4)

This is a quasilinear (degenerate) parabolic partial differential equation, since
the coefficient function of the highest derivative of the unknown S depends on
lower derivatives of S.

Inserting α, β and h(|∇S|), we have the respective phase field equations

∂tS = − c̃

(µλ)1/2

(
1

µ1/2
ψ′(S)− µ1/2λ∆S

)
, (5.5)

∂tS = −c
(
ψ′(S)− ν∆S

)
|∇S| , (5.6)

referring to the formulations (2.14) and (3.8).

Eq. (5.5) and Eq. (5.6) are supplemented by the initial- and boundary conditions
given by Eq. (2.15).

To confirm the well-posedness of the discretised phase field formulation in
Chapter 6, we need conditions on the term ψ(S). Throughout this work we
require the following

Assumption 3. We assume that ψ(S) is twice continuously differentiable with re-
spect to S, ψ(S) ≥ 0, ψ(S) ≥ Cψ,0|S| − Cψ,1 and |ψ′′(S)| ≤ Cψ,2 with constants
Cψ,i ∈ R+

0 , i = 0, 2 ∀S ∈ Ia,b = [a, b], a, b ∈ R.

The assumption is evident for the definition of the double well potential given by
Eq. (2.5) in I = [0, 1] and an extendable to compact intervals Ia,b ∈ [a, b], a, b ∈ R.
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Part II: System without elasticity - A general phase field model

To ensure the upper limit, the double well potential must be changed to a
function that tends towards a constant maximum outside of Ia,b . Modified
potentials can be found in literature and will not be discussed in the present
work.

5.1 Variational formulation

In contrast to equation Eq. (5.5), Eq. (5.6) generally does not have a classical
solution. An approach for a numerical treatment of this type of (degenerate)
quasilinear parabolic differential equation is given by a variational formula-
tion.

Therefore, we multiply Eq. (5.2) with a test function vS ∈ H1
0 (Ω) and integrate

over the domain Ω to the result∫
Ω

h(|∇S|)∂tSvS dx = −β
∫

Ω

ψ′(S)vS dx+ α

∫
Ω

(∆S)vS dx .

Integrating by parts and using homogeneous boundary conditions, we obtain∫
Ω

h(|∇S|)∂tSvS dx+ β

∫
Ω

ψ′(S)vS dx+ α

∫
Ω

∇S · ∇vS dx = 0 .

This can be rewritten as

〈h (|∇S|) ∂tS, vS〉+ β〈ψ′(S), vS〉+ α〈∇S,∇vS〉 = 0 , ∀vS ∈ H1
0 (Ω), t > 0 , (5.7)

with the L2−scalar product 〈v, w〉 =
∫

Ω
vw dx.

5.2 Energy decay

For physical reasons, the value of the free energy function of the respective phase
field model should decay in time. We want to verify this in the following.

Lemma 3 (Energy decay of the general model). Let S be a sufficiently smooth solution
of Eq. (5.2) and Eq. (2.15). Further assume ∂tS ∈ H1

0 (Ω). Then the free energy (5.1)
satisfies

d

dt
Ē(S(t)) = −

∫
Ω

h (|∇S(t)|) ∂tS2 dx ≤ 0 . (5.8)
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Part II: System without elasticity - A general phase field model

Proof. Taking the derivative of Eq. (5.1) with respect to time t we have

d

dt
Ē(S(t)) =

∫
Ω

βψ′(S(t))∂tS + α∇S(t) · ∇(∂tS) dx .

Now we choose vS = ∂tS as a test function for Eq. (5.7) yielding

〈h (|∇S(t)|) ∂tS, ∂tS〉 = −〈βψ′(S(t)), ∂tS〉 − 〈α∇S(t),∇∂tS〉

and calculate

d

dt

∫
Ω

Ē(S(t)) = −〈h (|∇S(t)|) ∂tS, ∂tS〉 = −
∫

Ω

h (|∇S(t)|) (∂tS)2 dx ≤ 0 .

5.3 Correlation

So far we considered a general phase field model including the Allen-Cahn
model and the hybrid model as special cases. Remarkable is the definition
of h(|∇S(x, t)|) by Eq. (5.3) for the hybrid model changing the character of the
equation compared to the constant mobility given for the Allen-Cahn equation.
Numerically we can treat both equations in the same way using the general
formulation Eq. (5.2) although their analytic type of partial differential equation
differs. We will explain the numerical implementation of the general form in
more detail in Chapter 6 and Appendix 4. Before that, we want to study an
aspect that will play an important role in the numerical analysis.

The authors of [3] and [4] state that if both models are acting on the same
topology with the same (physical) parameters and equal boundary conditions,
their convergence to a sharp interface solution would be approximately the
same. Additionally, they argue that the numerical simulation effort for the
hybrid model could be reduced in a significant way due to a coarser mesh
especially inside the neighbourhood of the interface.

Anyhow, since the values of the parameters µ, ν and λ as well as c̃ and c in
Eq. (5.5) and Eq. (5.6) have a distinguished meaning, as explained in Chapter 2
and 3, we could ask if the two models behave really in the same way. To consider
this, we will examine the commonalities and the differences of both models in
the following.
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Part II: System without elasticity - A general phase field model

Remark 5.3. To achieve sufficient generality also for the third part of this work,
we include the elasticity term WS and the corresponding term n · [Ĉ]n in the ex-
pression of the normal interface velocity. All expressions given in the following
are valid for the non-elastic case as well, setting both terms to zero.

In [2] and [3], one-dimensional existence proofs are derived, yielding an expres-
sion for the normal interface velocity given as

selAC = g
(
n · [Ĉ]n+ λ1/2c1κΓ +O(µ1/2)

)
(5.9)

for the Allen-Cahn model and

selH = f2

(
n · [Ĉ]n+ ν1/2ω1κΓ

)
(5.10)

for the hybrid model. They refer to the formulations Eq. (2.14) and Eq. (3.8),
containing the elasticity term WS which is presented by the term n · [Ĉ]n.

The functions in front of the brackets on the right-hand side can in general be
non-linear and we will specify them in the following. We want to indicate that
the expression O(µ1/2) in Eq. (5.9) was not part of the interface velocity in [4] but
in the later publication [3].

Eq. (5.10) corresponds to Eq. (3.18) in Chapter 3. Note that we name the function
f(r) of the original literatur f2(r) in the present work, to distinguish it from the
function f1(r) related to the Allen-Cahn model. As in the original literature, the
function f2(r) in Eq. (5.10) is concordant with the one in Eq. (3.1).

The connection between the functions g(r) = gr, g ∈ R+ and c̃(r) = c̃r, c̃ ∈ R+

in Eq. (2.14) and in Eq. (5.9) is explained further below. The definition of c1
in Eq. (2.17) is close to ω1 in Eq. (3.18), since the double well potentials of the
Allen-Cahn model and the hybrid model differ only slightly, see Fig. 3.1.

Omitting the elasticity term WS , the term n · [Ĉ]n vanishes and Eq. (5.9) and
Eq. (5.10) read

sµ = g
(
λ1/2c1κΓ +O(µ1/2)

)
, (5.11)

sν = f2

(
ν1/2ω1κΓ

)
. (5.12)

These expressions can be interpreted in two ways. Since Eq. (5.11) and Eq. (5.12)
both contain the curvature term κΓ, related to an interface energy, they can be
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Part II: System without elasticity - A general phase field model

seen as descriptions of a curvature dependent driving force. On the other hand,
if this interface energy is very small compared to the rest of the total free energy,
as, e.g. in martensite transformations, the expressions in Eq. (5.11) and Eq. (5.12)
can be seen as error terms. We will examine this second aspect in the following
chapter.

5.4 Error terms

To compare the function g(r) = gr in Eq. (5.9) with the function f2(r) in Eq. (5.10),
we state that f2(r) = cr as in (3.8). The conformity of f2 in Eq. (5.10) and Eq. (3.1)
is valid for a non-linear function f2(r) as well. This more general case will not
be discussed in the present work.

The fact that the constant functions g(r) in Eq. (5.9) and f1(r) in Eq. (2.13) are
connected by an integral operator is stated in [4] and we will have a short view
on the involved terms for the linear case.

Lemma 4 (Integral operator). The functions g(r) in Eq. (5.9) and f1(r) in Eq. (2.13)
are connected by an integral operator

g−1(r) =

∫ 1

0

f −1
1

(
r
√

2ψ(ζ)
)
dζ (5.13)

and lead for the linear relation, g(r) = gr, to the kinetic expression Eq. (2.16) of the
Allen-Cahn model.

Proof. With g(r) = g r, Eq. (2.11) and c1, defined by Eq. (2.17), we calculate

g−1(r) =

∫ 1

0

c̃−1
(
r
√

2ψ(ζ)
)
dζ

= c̃−1(r)

∫ 1

0

√
2ψ(ζ) dζ = c1 c̃

−1(r) =

(
c̃

c1

)−1

(r) ,

thus, g(r) =
c̃

c1
(r) .

Inserting r = n · [Ĉ]n+ λ1/2c1κΓ +O(ν1/2) and neglecting the error term by setting
O(ν1/2) = 0, leads to

g(r) =
c̃

c1

(
n · [Ĉ]n+ λ1/2c1κΓ

)
.
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With s = g(r), the normal interface velocity of the Allen-Cahn model Eq. (2.16) is
given.

For non-linear functions g(r) and f1(r) the lemma holds also as shown in [4].

Remark 5.4. The third term on the right-hand side of Eq. (5.9) is not provided
in [4], where asymptotic solutions of second order for the hybrid model are
compared to asymptotic solutions of first order for the Allen-Cahn model. In [3],
asymptotic solutions of second order are discussed for the Allen-Cahn model
also and lead to the additional term O

(
µ1/2

)
in Eq. (5.9). Numerical examples

in [4] therefore do not consider the O
(
µ1/2

)
-term that however is part of the

model error.

Including the error-term O
(
µ1/2

)
of the second-order asymptotic for the Allen-

Cahn model, we compare the normal interface velocities Eq. (5.9) and Eq. (5.10)
with linear mobility functions in terms of

s1 =
c̃

c1

(
n · [Ĉ]n+ λ1/2c1κΓ +O

(
µ1/2

))
, (5.14)

s2 = c (n · [Ĉ]n+ ν1/2ω1κΓ) , (5.15)

including the elastic terms n · [Ĉ]n, considering the extension in Part III.

For equal double well potentials we have c1 = ω1 and the curvature terms are
equal if we choose the same values for λ and ν. For simplicity, we define c = 1

and set c̃ = c1. With these definitions, the differential equations for the phase
field models Eq. (2.14) and Eq. (3.8) read

∂tS = − c1

(µλ)1/2
(WS(S, ε) +

1

µ1/2
ψ′(S)− µ1/2λ∆S) , (5.16)

∂tS = −
(
WS(S, ε) + ψ′(S)− ν∆S

)
|∇S| . (5.17)

Table 5.2 summarises the previous considerations including the elastic term that
will be dropped in the following.

The function f1(r) represents the possibly non-linear formulation of the mo-
bility function of the Allen-Cahn model that we do not adress in the present
work. Anyhow, we include it in this table for a conforming description of both
models.
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In Eq. (5.14) and Eq. (5.15), the constant terms λ1/2c1 and ν1/2ω1 stand in front
of the curvature and therefore λ and ν can be interpreted as interface energy
parameters. At once, the parameter ν is an asymptotic solution parameter, see
Chapter 3. Thus, setting λ = ν implies that the size of the interface energy
parameter λ determines the convergence behaviour against the sharp interface
solution of the hybrid model.

Table 5.2: Summary of the model parameters.

Allen-Cahn model hybrid model

∂tS = − 1

(µλ)1/2
f1(WS(S, ε) +

1

µ1/2
ψ′(S)− µ1/2λ∆S) ∂tS = −f2(WS(S, ε) + ψ′(S)− ν∆S)|∇S|

selAC = g
(
n · [Ĉ]n+ λ1/2c1κΓ +O(µ1/2)

)
selH = f2 (n · [Ĉ]n+ ν1/2ω1κΓ)

f1(r) = c̃ r, g(r) =
c̃

c1
r , c1 ∈ R+, c̃ ∈ R+ f2(r) = c r, c ∈ R+

choose c̃ = c1c. choose c.

Conclusion:

• The choice of f1(r) = c̃ r determines g(r) = g r for the Allen-Cahn
model.

• Comparing the hybrid model to the Allen-Cahn model implies to set
f2(r) = g(r) and thus, defines the mobility function for the hybrid
model.

In case of very small interface energies (λ→ 0 and ν = λ) we identify

ŝ = n · [Ĉ]n (5.18)

as the driving force due to, e.g. elastic deformations and we regard the remaining
terms of Eq. (5.14) and Eq. (5.15) as error terms
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s1µ = s1 − ŝ , (5.19)

s2ν = s2 − ŝ . (5.20)

The interfacial velocities given by Eq. (5.9) and Eq. (5.10) have to be supple-
mented by an additional model error term originating from the residual esti-
mates in [4]. We call this eµres = O(µ1/2) for the Allen-Cahn model and eνres = O(ν)

for the hybrid model and define

s1err = s1µ + eµres , (5.21)

s2err = s2ν + eνres (5.22)

and with c = 1 and c̃ = c1 (see Table 5.2) we have

s1err = λ1/2c1κΓ +O(µ1/2) +O(µ1/2), (5.23)

s2err = ν1/2ω1κΓ +O(ν) . (5.24)

The order of the error terms assuming negligible interfacial energy are hence
given by

s1err = O
(
λ1/2

)
+O

(
µ1/2

)
, (5.25)

s2err = O
(
ν1/2

)
. (5.26)

So we have to distinguish two situations. In case of a non-negligible interfacial
energy we set ν = λ and the first terms on the right-hand sides of Eq. (5.25) and
Eq. (5.26) stand for the curvature influence on the driving force at the interface.
They are represented by the second terms on the right-hand sides of Eq. (5.14)
and Eq. (5.15).

In this situation of influential interfacial energy, the asymptotic parameter µ can
be chosen sufficiently small for the Allen-Cahn model, minimising the error.
Since the normal velocities of the sharp interfaces depend on the sizes of λ and ν,
the O−terms in Eq. (5.23) and Eq. (5.24) additionally illustrate that the choice of a
large λ = ν (> 1) increases the error of the hybrid model quadratically compared
to the influence of the curvature term. Thus, the Allen-Cahn model is suited
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better for significant interfacial energies. We can even say that the hybrid model
is quite unsuitable in this case.

In the other case, we consider a problem with very small interface energy.
A small value for λ however relates to a small value for ν. Choosing λ = ν

very small, the sharp interface solution for the hybrid model converges well,
recognisable in Eq. (5.24) and Eq. (5.26). To achieve a comparable convergency
for the Allen-Cahn model, the parameter µ has to be chosen in the order of λ
or smaller, see Eq. (5.23) and Eq. (5.25). If we choose at least µ = λ, the scaling
of the diffuse interface shows a disadvantage. We will explain this fact in the
following using the notation of the original literature.

Scaling in terms of the original literature. We recall the asymptotic ap-
proach for the hybrid model in Chapter 3 in the notation of [4],

S(ν)(x, t) = φ(x, t)

1∑
i=0

ν
i
2Si

(
η,

ξ

ν1/2
, t

)
+ (1− φ(x, t)) Ŝ(x, t) (5.27)

and compare it to the asymptotic approach for the Allen-Cahn model in [3],

S(µ)(x, t) = S
(µ)
1 (x, t)φµλ(x, t) + S

(µ)
2 (x, t)

(
1− φµλ(x, t)

)
.

The function φµλ(x, t) is a C∞0 -function that is equal to 1 for the phase with
S = 1, transits smoothly from 1 to 0 within the interface region and vanishes
for the phase with S = 0. Thus, the asymptotic solution terms S(µ)

1 and S
(µ)
2 are,

depending on the respective phase, switched on and off and weighted within
the neighbourhood Γ(t). The outer expansion term is defined by

S
(µ)
2 (x, t) = Ŝ(x, t) + µ1/2S̃1(x, t) + µS̃2(x, t) + µ2/3S̃3(x, t)

with the unknown functions S̃i, i = 1, 3. The function Ŝ is constant 0 or 1 with
a jump at the sharp interface. Note that the third term on the right-hand side
with S̃3 is not part of the outer expansion in [4].

The inner expansions are in [3] given as

S
(µ)
1 (x, t) = S0(

ξ

(µλ)1/2
) + µ1/2S1(η,

ξ

(µλ)1/2
, t) + µS2(η,

ξ

(µλ)1/2
, t) (5.28)
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with the unknown functions Si, i = 0, 2. Here, also the last term including S2

on the right-hand side is not given in [4]. The additional terms with S̃3 and S2

in [3] lead to the additional term (µ1/2) in Eq. (5.9) that is part of the normal
interface velocity in [3] but not in [4]. Comparing Eq. (5.27) and Eq. (5.28), we
recognise the author’s argument that the hybrid model scales with ν1/2 and the
Allen-Cahn model scales with (µλ)1/2. This is the reason why the numerical
widths of the interfaces relate like

reA =
widthAC

widthH
=

(µλ)1/2

ν1/2
(5.29)

for the same precision of the results. For modeling a system with low interfacial
energy we choose µ ≤ λ to control the error term for the Allen-Cahn model and
λ = ν to compare it to the hybrid model. For the limit case µ = λ the width
relation for the interfaces thus yields

reB =
widthAC

widthH
= ν1/2 . (5.30)

Thus, in the case of low interfacial energy, the hybrid model is significantly
better suited if we want a coarser mesh, because a relation ν1/2 = 0.1 means that
we have a ten times wider diffuse interface of the hybrid model compared to the
Allen-Cahn model for similar results. This implies a better numerical resolution
of the interface area.

Table 5.3 is an extension of Table 5.2 and considers the different error behaviour
of both models depending on the interfacial energy situation.

In summary we could say that in the case of a rather small interfacial energy
problem, the choice µ = λ for the Allen-Cahn model might be motivated by
Eq. (5.25): µ should not increase the error (for µ > λ) but should also not decrease
the smooth interface width (for µ < λ) related to the coordinate ξ(S → 1) in
Fig. 3.2. For that reason, µ = λ might be a reasonable choice for this case.

Using, e.g. a two-dimensional Finite Element method requires a fine resolution
of the transition zone and the choice of the best compromise concerning the grid
spacing for the Allen-Cahn model and for the hybrid model as well.

In [3], the authors stated the conflict between low numerical effort and good
convergence behaviour as an optimisation problem for the total model error of
the Allen-Cahn model εL2, defined by the interface width parameter B = (µλ)1/2,
the energy parameter E = λ1/2 and the error parameter for the normal interface
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velocity F = µ1/2, related to Eq. (5.25). Further details are given in the original
literature.

Numerical examples will be given in Chapter 7.

Table 5.3: Summary for the functions f1, f2, interfacial energies and error terms

Allen-Cahn model hybrid model

∂tS = − 1

(µλ)1/2
f1(WS(S, ε) +

1

µ1/2
ψ′(S)− µ1/2λ∆S) ∂tS = −f2(WS(S, ε) + ψ′(S)− ν∆S)|∇S|

selAC = g
(
n · [Ĉ]n+ λ1/2c1κΓ +O(µ1/2)

)
selH = f2 (n · [Ĉ]n+ ν1/2ω1κΓ)

f1(r) = c̃ r, g(r) =
c̃

c1
r , c1 ∈ R+, c̃ ∈ R+ f2(r) = c r, c ∈ R+

choose c̃ = c1c. choose c.

high interfac. energy→ choose λ large. high interfac. energy→ choose ν large.

error→ serr,AC = O
(
µ1/2

)
error→ serr,H = O (ν)

interface width → f(µ) interface width→ f(ν)

low interfac. energy→ choose λ small. low interfac. energy→ choose ν small.

error→ serr,AC = O
(
λ1/2

)
+O

(
µ1/2

)
error→ serr,H = O

(
ν1/2

)
interface width → f(µ, λ) with µ ≤ λ interface width→ f(ν)

Conclusion: for a negligible interfacial energy, the numerical advantage of
the hybrid model is high.

• If the curvature term can be neglected, we can make ν small and
thereby minimise the error term using the hybrid model.

• Minimising the error and the curvature term by choosing
λ = µ = ν � 1, the numerical effort increases for the Allen-Cahn
model compared to the hybrid model.
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6 Discretisation of the general model

Discretisation in space. The phase field Eq. (5.2) is implemented with the Fi-
nite Element method using MATLAB. We define shape functionsNI(x) represent-
ing the basis of the finite dimensional subspaces Vh ⊂ H1(Ω) and Vh,0 ⊂ H1

0 (Ω),
ŜI for the nodal unknowns and a semi-discretised order parameter

Sh(x) =

N∑
I

NI(x)ŜI .

The index 0 considers homogeneous Dirichlet boundary conditions, see Ap-
pendix 2 - 4 for details of the Finite Element implementation.

With these preliminary remarks we consider the semi-discrete phase field equa-
tion. We begin with the

Problem (Variational semi-discrete formulation). Let Sh,0 ∈ Vh,0 be given. Find
Sh ∈ C1([0, T ], Vh,0) such that

〈h (|∇Sh|)Sh,t, vhS〉+ β〈ψ′(Sh), vhS〉+ α〈∇Sh,∇vhS〉 = 0 (6.1)

for all discrete test functions vhS ∈ Vh,0 and t > 0.

With the semi-discrete energy function

Ē(Sh) =

∫
Ω

βψ(Sh) +
α

2
|∇Sh|2 dx (6.2)

the energy decay can be shown along the lines of the above given proof for the
general continuous model.

Lemma 5 (Energy decay for the semi-discretisation formulation). Let Sh ∈ C1([0, T ];Vh,0)

be a solution of Eq. (6.1). Then the free energy function satisfies the condition

d

dt
Ē(Sh) = −

∫
Ω

h (|∇Sh|)S2
h,t dx ≤ 0 . (6.3)

Proof. The semi-discretised energy function (6.2) can be differentiated with
respect to the time t leading to

d

dt
Ē(Sh) =

∫
Ω

βψ′(Sh)Sh,t + α∇Sh · ∇(Sh,t) dx . (6.4)
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Inserting vhS = Sh,t as a test function into Eq. (6.1) yields

〈h (|∇Sh|)Sh,t, Sh,t〉 = −〈βψ′(Sh), Sh,t〉 − 〈α∇Sh,∇Sh,t〉 (6.5)

and the combination of Eq. (6.5) and Eq. (6.4) gives the result

d

dt
Ē(Sh) = −〈h (|∇Sh|)Sh,t, Sh,t〉 = −

∫
Ω

h (|∇Sh|)S2
h,t dx ≤ 0 .

Next, we examine the well-posedness of the semi-discretised phase field formu-
lation Eq. (6.1) in terms of

Lemma 6 (Existence and uniqueness of the semi-discrete formulation). Let Sh,0 ∈ Vh,0
be given. Then we have an existing unique solution Sh ∈ C1([0, 1];Vh,0) of Eq. (6.1).

Proof. We can restate Eq. (6.1) to

H̃(Sh)Sh,t + F̃ (Sh) + K̃Sh = 0, Sh(0) = Sh,0 . (6.6)

With the Assumptions 2 and 3 we have Lipschitz continuity of the functions
K̃ and F̃ (·) and an inverse for H̃(Sh). Thus, the Picard-Lindelöf theorem guaran-
tees a local unique solution of

Sh,t = −H̃(Sh)−1(F̃ (Sh) + K̃Sh) . (6.7)

Eq. (6.7) is an autonomous differential equation. For this type of differential
equation the boundedness of Sh allows to transfer the existence of a local unique
solution to the existence of a global unique solution, see [51]. So we have to
show the boundedness of Sh.

With the belonging semi-discrete energy (6.2) and the energy decay property (6.3)
we can find a constant

C ′ := Ē(S0,h) ≥ Ē(Sh) = β||ψ(Sh)||L1(Ω) +
α

2
||∇Sh||2L2(Ω) . (6.8)

With Assumption 3 we get

C ′ ≥ βCψ,0||Sh||L1(Ω) +
α

2
||∇Sh||2L2(Ω)
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and we can find a constant

C ′′ ≥ ||∇Sh||L2(Ω) . (6.9)

With the definition of the Sobolev norm

||Sh||H1(Ω) =
(
||Sh||2L2(Ω) + ||∇Sh||2L2(Ω)

)1/2

(6.10)

and the Poincaré inequality, using homogeneous boundary conditions, see [81],
we have

||Sh||L2(Ω) ≤ CP ||∇Sh||L2(Ω) . (6.11)

So we can follow

||Sh||H1(Ω) ≤
(
C̃P ||∇Sh||2L2(Ω) + ||∇Sh||2L2(Ω)

)1/2

≤
(

(1 + C̃P )||∇Sh||2L2(Ω)

)1/2

≤ ˜̃CP ||∇Sh||L2(Ω)

and with the estimate (6.9) we see that

||Sh||H1(Ω) ≤ C
′′′
. (6.12)

According to this result and with the local existence from above, the lemma is
proven.

For further notes, see [22].

Discretisation in time. For the proof of uniqueness of the fully discretised
formulation of problem (6.1) we need to approximate the derivative of the
double well potential ψ′(Sh) by the difference quotient

D(Snh , S
n−1
h ) :=


ψ(Snh )− ψ(Sn−1

h )

Snh − S
n−1
h

for Snh 6= Sn−1
h ,

ψ′(Snh ) for Snh = Sn−1
h .

(6.13)
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The discrete time derivative of the order parameter Sh,t in Eq. (6.1) is given by
the backward difference quotient at time tn = nτ in terms of

∂̄τS
n
h =

Snh − S
n−1
h

τ
. (6.14)

We restate Eq. (6.1) with h(|∇Sn−1
h |) instead of h(|∇Snh |) and formulate the

Problem (Variational fully-discrete formulation). Let Sh,0 ∈ Vh,0 be given. For any
n ≥ 1 find Snh ∈ Vh,0 such that

〈h(|∇Sn−1
h |)

Snh − S
n−1
h

τ
, vhS〉+ β〈D(Snh , S

n−1
h ), vhS〉+ α〈∇Snh ,∇vhS〉 = 0 (6.15)

for all discrete test functions vhS ∈ Vh,0.

To prove the physical plausibility, we show the energy decay property for the
fully-discrete scheme.

We define
∂̄τY

n
h =

1

τ
(Y nh − Y

n−1
h ) . (6.16)

Lemma 7 (Energy decay for the fully discretised general model). Let Snh ∈ Vh,0 ∀t be a
solution of Eq. (6.15). Then the free energy satisfies the condition

∂̄τ Ē(Snh ) = −
∫

Ω

h(|∇Sn−1
h |)|∂̄τSnh |

2 dx− τ α
2
||∂̄τ∇Snh ||

2
L2(Ω) ≤ 0 . (6.17)

Proof. From the semi-discretised free energy function (6.2) we calculate

Ē(Snh )− Ē(Sn−1
h ) = β〈ψ(Snh )− ψ(Sn−1

h ), 1〉+
α

2

(
〈∇Snh ,∇S

n
h 〉 − 〈∇S

n−1
h ,∇Sn−1

h 〉
)

= β〈
ψ(Snh )− ψ(Sn−1

h )

Snh − S
n−1
h

, Snh − S
n−1
h 〉+ α〈∇Snh ,∇S

n
h −∇S

n−1
h 〉 − α

2
||∇Snh −∇S

n−1
h ||2L2(Ω) .

For the last step we used
1

2
(a2−b2) = a(a−b)−1

2
(a−b)2 for a = ∇Snh and b = ∇Sn−1

h .

Division by τ then yields

∂̄τ Ē(Snh ) =
β

τ
〈
ψ(Snh )− ψ(Sn−1

h )

Snh − S
n−1
h

, Snh − S
n−1
h 〉 (6.18)

+
α

τ
〈∇Snh ,∇S

n
h −∇S

n−1
h 〉 − α

2τ
||∇Snh −∇S

n−1
h ||2L2(Ω) .
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Testing with vhS = (Snh − S
n−1
h )/τ , Eq. (6.15) reads∫

Ω

h(|∇Sn−1
h |)|∂̄τSnh |

2 dx = −β
τ
〈
ψ(Snh )− ψ(Sn−1

h )

Snh − S
n−1
h

, Snh−S
n−1
h 〉−α

τ
〈∇Snh ,∇S

n
h−∇S

n−1
h 〉

and insertion into Eq. (6.18) leads to

∂̄τE(Snh ) = −
∫

Ω

h(|∇Sn−1
h |)|∂̄τSnh |

2 dx− τ α
2
||∂̄τ∇Snh ||

2
L2(Ω) ≤ 0 . (6.19)

Now we will look on the well-posedness of the fully-discrete phase field equa-
tion to confirm the numerical implementation.

Lemma 8 (Existence and uniqueness of the fully discrete formulation). Let Sn−1
h ∈ Vh,0

be given. Then Eq. (6.15) has a unique solution Snh ∈ Vh,0 for all time steps 0 < τ < τ0

with τ0 small enough.

Proof. We use the lemma from [35], known as the lemma of "Zeros of a vector
field", which states that for a continuous function v : RN → RN , satisfying

v(x) · x ≥ 0 if |x| = r for some r > 0 , (6.20)

there exists a point x ∈ Br(0) such that v(x) = 0.

To adapt our problem to the requirements of the lemma, we use that we can
express the discrete order parameter by

Sh(x) =

N∑
I=1

NI(x)ŜI ,

with the orthogonal basis functions NI , see Chapter 7.1 and Appendix 2- 4 for
the similar Finite Element formulations.

So we can define a vector

F (Ŝ) = (F1(Ŝ), F2(Ŝ), · · · , FN (Ŝ))T ∈ RN (6.21)

with the nodal unknowns

Ŝ = (Ŝ1, Ŝ2, · · · , ŜN )T ∈ RN (6.22)
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and the continuous functions

FI(Ŝ) = 〈h(|∇Sn−1
h |)

Sh − Sn−1
h

τ
,NI〉+β〈D(Sh, S

n−1
h ), NI〉+α〈∇Sh,∇NI〉 for I = 1, N

to define the scalar product

F (Ŝn) · Ŝn−1 =

N∑
I=1

FI(Ŝ
n)Ŝn−1

I =



F1(Ŝn)

F2(Ŝn)

...

FN (Ŝn)


·



Ŝn−1
1

Ŝn−1
2

...

Ŝn−1
N


. (6.23)

If we can prove that F (Ŝ) · Ŝ ≥ 0 for |Ŝ| = r, this affirms the existence of a Snh in
Eq. (6.15) as Snh is uniquely defined by Ŝn.

For the timestep n and with the notation of Eq. (6.23) we express F (Ŝ) · Ŝ by

N∑
I=1

FI(Ŝ)ŜI =

N∑
I=1

FI(Ŝ)(ŜI − Ŝn−1
I )︸ ︷︷ ︸

(I)

+

N∑
I=1

FI(Ŝ)Ŝn−1
I︸ ︷︷ ︸

(II)

. (6.24)

Now we argue that

(I) = 〈h(|∇Sn−1
h |)

Sh − Sn−1
h

τ
, Sh − Sn−1

h 〉+ β〈D(Sh, S
n−1
h ), Sh − Sn−1

h 〉

+ α〈∇Sh,∇(Sh − Sn−1
h )〉

≥ h

τ
||Sh − Sn−1

h ||2L2(Ω) + β

∫
Ω

ψ(Sh)− ψ(Sn−1
h ) dx+

α

2
||∇Sh||2L2(Ω)

− α

2
||∇Sn−1

h ||2L2(Ω) +
α

2
||∇(Sh − Sn−1

h )||2L2(Ω) .

For the last three terms, see Appendix 7.

Further we have that

(II) = 〈h(|∇Sn−1
h |)

Sh − Sn−1
h

τ
, Sn−1

h 〉+ β〈
ψ(Sh)− ψ(Sn−1

h )

Sh − Sn−1
h

, Sn−1
h 〉+ α〈∇Sh,∇Sn−1

h 〉 .

(6.25)
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With the weighted Young’s inequality

ab ≤ ρa2 +
1

4ρ
b2 (6.26)

and using Assumption 2, the first term on the right-hand side of Eq. (6.25) yields

〈Sh,
h(|∇Sn−1

h |)
τ

Sn−1
h 〉 − 〈Sn−1

h ,
h(|∇Sn−1

h |)
τ

Sn−1
h 〉

≤ ρ||Sh||2L2 +
h

4ρτ
||Sn−1

h ||2L2 −
h

τ
||Sn−1

h ||2L2 = ρ||Sh||2L2 + Cδ,1(Sn−1
h ) .

The last term on the right-hand side of Eq. (6.25) can be estimated by

α〈∇Sh,∇Sn−1
h 〉 ≤ ρ||∇Sh||2L2 +

α

4ρ
||∇Sn−1

h ||2L2 = ρ||∇Sh||2L2 + Cδ,2(Sn−1
h ) .

Now we need to look at the second term on the right-hand side of Eq. (6.25)
containing the double well potential ψ(S). From Assumption 3 we have that
|ψ′′(S)| ≤ Cψ,2 and thus we find a function with

ψ(S) ≤
Cψ,2

2
S2 + Cψ,3 , Cψ,3 ∈ R (6.27)

and know that ∣∣∣∣ψ(Sh)− ψ(Sn−1
h )

Sh − Sn−1
h

∣∣∣∣ ≤ Cψ,4|Sh|+ Cψ,5 .

So we rewrite the second term on the right-hand side of Eq. (6.25) as

β〈
∣∣∣∣ψ(Sh)− ψ(Sn−1

h )

Sh − Sn−1
h

∣∣∣∣ , |Sn−1
h |〉 ≤ β〈Cψ,4|Sh|+ Cψ,5, |Sn−1

h |〉

≤ ρ||Sh||2L2 +
βCψ,4

4ρ
||Sn−1

h ||2L2 + βCψ,5||Sn−1
h ||2L2

= ρ||Sh||2L2 + Cδ,3(Sn−1
h ) .

Inserting these estimates in Eq. (6.25) yields

(II) ≤ 2ρ(||Sh||2L2 + ||∇Sh||2L2) + Cδ,4(Sn−1
h ) . (6.28)

Combining Eq. (6.28) with Eq. (6.25) we have

(I)+(II) ≥ h

τ
||Sh − Sn−1

h ||2L2(Ω) + β

∫
Ω

ψ(Sh)− ψ(Sn−1
h ) dx+

α

2
||∇Sh||2L2(Ω)

− α

2
||∇Sn−1

h ||2L2(Ω) +
α

2
||∇(Sh − Sn−1

h )||2L2(Ω)
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− 2ρ(||Sh||2L2 + ||∇Sh||2L2)− Cδ,4(Sn−1
h )

≥ h

τ
||Sh − Sn−1

h ||2L2(Ω) +
α

2
||∇(Sh − Sn−1

h )||2L2(Ω)

− 2ρ(||Sh||2L2 + ||∇Sh||2L2)− Cδ,5(Sn−1
h )

≥ min
{
h

τ
,
α

2

}
||Sh − Sn−1

h ||2H1(Ω) − ρ2(||Sh||2H1(Ω))− Cδ,5(Sn−1
h )

≥ C̃min(||Sh||2H1(Ω) − ||S
n−1
h ||2H1(Ω))− ρ2(||Sh||2H1(Ω))− Cδ,5(Sn−1

h )

≥
(
C̃min − ρ2

)
||Sh||2H1(Ω) − Cδ,6(Sn−1

h ) (6.29)

with C̃min = C̃Cmin, C̃ > 0, Cmin = min
{
h

τ
,
α

2

}
.

In the penultimate step we used binomial formulas. Due to the fact that Vh is
finite dimensional and Sh ist defined by Ŝ, we can find an r > 0 such that for Ŝ
with r = |Ŝ| it holds that F (Ŝ) · Ŝ > 0. Due to the stated lemma "Zeros of a vector
field" it follows that there exists a solution Snh fulfilling Eq. (6.15).

Additionally we have to show the uniqueness of a solution Snh . Let Snh and S̃nh be
two different solutions of Eq. (6.15). Using Assumption 2 and testing Eq. (6.15)
with vhS = Snh − S̃

n
h we obtain

h(|∇Sn−1
h |)
τ

〈Snh − S̃
n
h , S

n
h − S̃

n
h 〉 + β〈D(Snh , S

n−1
h )−D(S̃nh , S

n−1
h ), Snh − S̃

n
h 〉

+ α〈∇Snh −∇S̃
n
h ,∇S

n
h −∇S̃

n
h 〉 = 0 . (6.30)

With Assumption 3 and 2 and the Cauchy-Schwarz inequality we get

h

τ
||Snh−S̃

n
h ||

2
L2

+ α||∇Snh−∇S̃
n
h ||

2
L2
≤β||D(Snh , S

n−1
h )−D(S̃nh , S

n−1
h )||L2

||Snh−S̃
n
h ||L2

. (6.31)

To estimate the term ||D(Snh , S
n−1
h )−D(S̃nh , S

n−1
h )||2L2(Ω), we use the fundamental

theorem of calculus

ψ(Snh )− ψ(Sn−1
h ) ≤

∫ 1

0

ψ′
(
Sn−1
h + ξ(Snh − S

n−1
h )

)
· (Snh − S

n−1
h ) dξ

leading to

D(Snh , S
n−1
h ) ≤

∫ 1

0

ψ′
(
Sn−1
h + ξ(Snh − S

n−1
h )

)
dξ .
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So we can calculate the difference

|D(Snh , S
n−1
h ) − D(S̃nh , S

n−1
h )|

≤
∫ 1

0

∣∣ψ′(Sn−1
h + ξ(Snh − S

n−1
h ))− ψ′(Sn−1

h + ξ(S̃nh − S
n−1
h ))

∣∣ dξ
≤ max

{
|ψ′′(S)| : S ∈ [a, b]

}
|Snh − S̃

n
h |

≤ d̄|Snh − S̃
n
h | .

For the last step we used Assumption 3 with d̄ := Cψ,2.

So we conclude from Eq. (6.31) that

h||Snh − S̃
n
h ||

2
L2(Ω) + ατ ||∇Snh −∇S̃

n
h ||

2
L2(Ω) ≤ βd̄τ ||Snh − S̃

n
h ||

2
L2(Ω) ,

leading to (
h

τ
− βd̄

)
||Snh − S̃

n
h ||

2
L2(Ω) + α||∇Snh −∇S̃

n
h ||

2
L2(Ω) ≤ 0 .

For τ small enough, the left-hand side is positive and we must have Snh = S̃nh .
Thus, the lemma is proven.

7 Numerical validation

With Eq. (6.15) we have a fully discretised variational formulation of the phase
field equation, which we can implement numerically. We will explain the
implementation in Chapter 7.1, using two-dimensional Finite Elements.

In this section, we will look at some simple one-dimensional tests that verify
basic features of the models. This one-dimensional implementation will not be
explained in detail.

First, we set WS = 0, µ = λ = ν = 1 and choose the mobility functions f1 and f2

as explained in Table 5.2 with c = 1. Accordingly, the phase field formulations
Eq. (5.5) and Eq. (5.6) read

∂tS = −c1 (ψ′(S)−∆S), (7.1)

∂tS = −(ψ′(S)−∆S)|∇S| , (7.2)
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with c1 = 0.4714 calculated by Eq. (2.17).

Although the Allen-Cahn model and the hybrid model are seen as special cases
of the general model in Chapter 5, we want to go back one step and consider
the models individually.

We drop the separation term, setting ψ(S) = 0, and investigate the equations

∂tS = c1 ∆S, (7.3)

∂tS = ∆S|∇S|. (7.4)

We recognise in Eq. (7.3) the structure of the homogeneous heat conduction equa-
tion, a partial differential equation of parabolic type. For the one-dimensional
case it is given by the equation

∂tuheat(x, t)− αheat∂xxuheat(x, t) = 0 , (7.5)

with a constant thermal diffusion coefficient αheat and uheat(x, t) for the unknown
temperature.

Fig. 7.1 shows the stationary solution of the numerical simulation of Eq. (7.3)
and Eq. (7.4), completed by the initial- and Dirichlet boundary conditions

S(0, x) = Heaviside(x) , (7.6)

S(t,−3) = 0 , (7.7)

S(t, 3) = 1 .

Both plots (coloured red and blue) lie exactly on each other. We see that the
numerical solutions of Eq. (7.3) and Eq. (7.4) tend to the stationary solution of the
one-dimensional heat equation. The development of the solution of the hybrid
model is based on the jump at x = 0 of the initial condition and its numerical
implementation in a finite dimensional grid. As we have explained, a gradient
term ∇S = 0 in fact prevents an evolution of the order parameter S in time.

Next, we switch on the double well function Eq. (2.5) as separation term and
study numerical solutions of the Allen-Cahn equation (7.1) and the hybrid
equation (7.2) with the initial and boundary conditions Eq. (7.6). We refer to
Eq. (5.29) and calculate for µ = λ = ν = 1 the width relation

reA =
widthAC

widthH
=

(µλ)1/2

ν1/2
= 1 . (7.8)
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(b) stationary solutions.

Figure 7.1: Initial condition and stationary solution of the hybrid model and the
Allen-Cahn model without double well potential.

The relation is in agreement with the fact that the numerically simulated curves
in Fig. 7.2 lie exactly on each other. The length of the interval of x belonging to
S ∈ ]0, 1[ represents the width of the interface and is exacty the same for both
models. As explained before, the parameters ν and µ determine the width of the
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(a) Heavyside function.
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1

Stationary solution with double well potential

x
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(b) λ = µ = ν = 1.

Figure 7.2: Initial condition and stationary solution of the hybrid model and the
Allen-Cahn model with double well potential.

interface that has to be resolved numerically.

To improve the solution and to check the condition Eq. (5.29) for the width of
the transition zone between the phases, we set λ = µ = ν = 0.1 and calculate
reA = widthAC

widthH =
(µλ)1/2

ν1/2 ≈ 0.316. Fig. 7.3 confirms this result.
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(b) λ = µ = ν = 0.1.

Figure 7.3: Initial condition and stationary solution of the hybrid model
(red dotted line) and the Allen-Cahn model (blue solid line).

The dotted red line belongs to the hybrid model which shows an about three
times wider transition zone. Both curves meet at the point (0, 0.5), denoting the
midpoint of the transition zone between the two phases given by Eq. (1.2).

This simple numerical study confirms that choosing the model parameters very
small, the mesh can be adjusted coarser for the hybrid model.

Another interesting point is that the solution for a constant initial condition
S(0, x) = c and the Dirichlet boundary conditions S(t, 3) = S(t,−3) = c differs for
both models, see Fig. 7.4. Only for the initial condition S(0, x) = 0.5 the values of
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(b) λ = µ = ν = 0.1.

Figure 7.4: Initial condition and stationary solution of the hybrid model
(red dotted line) and the Allen-Cahn model (blue solid line).
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the Allen-Cahn model remain constant (but might change as soon as we apply a
small singular disturbance as first test simulations showed).

This confirms that an interface simulated by the hybrid model does not move
as long as ∇S = 0 while the Allen-Cahn model (without gradient term in the
mobility function) forces the order parameter into the value S(t, x) = 1 for initial
values S(0, x) > 0.5 and into the value S(t, x) = 0 for initial values S(0, x) < 0.5.

To complete our one-dimensional studies, we verify that the free energy de-
creases in time. To prove this, we track solutions of the Allen-Cahn model and
the hybrid model comparing their energies. The results are shown in Table 7.4.

Since the values ν = µ = λ = 1 are chosen large, they cause a large error for the
hybrid model compared to the Allen-Cahn model, so its curve descends slower.
For the same reason the Allen-Cahn model forms a smoother curve (blue solid
line) while the curve of hybrid model (red dotted line) remains more angular.

Calculating the energy values by Eq. (5.1), we see that they decay as we expected.

Table 7.4: Numerical evidence of the energy decay property for the Allen-Cahn
model (blue solid line) and the hybrid model (red dotted line).

t = 0 t = 0.1 t = 1 t = 5 t = 30

Ē(S)AC/[units] 2.19 0.93 0.05 0

Ē(S)H/[units] 4.49 1.00 0.97 0
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λ = µ = ν = 1, dt = 0.01, dx = 0.01

Zooming into the point (0, 0) in the last diagram, we recognise that the value of
S at x = 0 does not reach 0 for the hybrid model. Further calculations with finer
grids cannot completely eliminate this fact, see Fig. 7.5. We will come back to
this point in Chapter 7.2.
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Figure 7.5: Critical size at (0, 0) - hybrid model (red dotted line) and Allen-Cahn
model (solid blue line) using very fine discretisation in x and t.

7.1 Two-dimensional numerical implementation with the Finite Element
method

Now we introduce the two-dimensional implementation of the general model
by the Finite Element method.

In literature there is a huge amount of publications on numerical schemes for
Allen-Cahn type models. Implicit schemes for two- and three-dimensional
numerical formulations proving energy properties for the Allen-Cahn and the
Cahn-Hilliard equation can be found, e.g. in [41]. More implicit and explicit
schemes concerning the implementation of the Allen-Cahn model are given
in [58], [86].

We also will use an implicit scheme to solve a non-linear system applying a
Banach fixed-point iteration. Therefore we rewrite Eq. (6.15) as fixed-point
equation

〈Snh , vhS〉 = − β

h(|∇Sn−1
h |)

τ〈D(Snh , S
n−1
h ), vhS〉 −

α

h(|∇Sn−1
h |)

τ〈∇Snh ,∇vhS〉+ 〈Sn−1
h , vhS〉︸ ︷︷ ︸

Φ(〈Snh , vhS〉)
(7.9)

to implement it for numerical considerations.
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Using the Finite Element method, explained in more detail in Appendix 2-4, we
define approximate solutions for the respective time step (index n) by

Sh(x) =

N∑
I=1

NI(x)ŜI (7.10)

with N for the number of global nodes. The “hat”-Symbol (̂·) stands for nodal
values of the unknowns and the index (·)h denotes the interpolated continuous
function. The unknowns ŜI are the coefficients multiplying the shape functions
NI(x) and the test functions are along the lines of Eq. (7.10) given by

vhS(x) =

N∑
I=1

NI(x)vSI . (7.11)

The shape functions NI have values 1 or 0 at the respective node I and we
have Sh(I) = ŜI . The local shape functions refer to two-dimensional four-node
element we implemented in MATLAB, see Appendix 2.

We go back one step and insert Eq. (7.10) and Eq. (7.11) into the semi-discrete
variational formulation of the general model Eq. (6.1) leading to

M2modŜt + αKŜ = −βM1F (Ŝ) (7.12)

with mod standing for the respective model and Ŝt ∈ RN containing the time
derivatives of the nodal order parameters. M2mod and M1 stand for the (weighted)
mass matrices and K for the stiffness matrix, see Appendix 2 - 4.

Inserting the respective matrix M2mod yields

M2AC Ŝt + αKŜ = −βM1F (Ŝ) (7.13)

for the Allen-Cahn model and

M2H Ŝt + αKŜ = −βM1F (Ŝ) . (7.14)

for the hybrid model.

For further details on the Finite Element method, see Appendix 2 - 4, [23], [88]
and [15].
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The extension to the fully-discrete formulation of Eq. (7.12) is only one step and
will be shown below, but first we consider the term F (Ŝ) on the right-hand side
of Eq. (7.13) and Eq. (7.14).

The vector F contains the respective difference quotients of the double well
potential, defined by Eq. (6.13). We implement the difference quotient instead
of deriving ψ, defined by Eq. (2.5), in order to be concordant with our theoret-
ical discussion on the well-posedness and the energy decay properties in the
previous chapters.

We calculate

ψ(Snh )− ψ(Sn−1
h )

Snh − S
n−1
h

=
4
(
(Snh )4 − 2(Snh )3 + (Snh )2

)
− 4
(
(Sn−1
h )4 − 2(Sn−1

h )3 + (Sn−1
h )2

)
Snh − S

n−1
h

=
4
((

(Snh )4 − (Sn−1
h )4

)
− 2
(
(Snh )3 − (Sn−1

h )3
)

+
(
(Snh )2 − (Sn−1

h )2
))

Snh − S
n−1
h

= 4
(
(Snh )2 + (Sn−1

h )2
) (
Snh + Sn−1

h

)
−

8((Snh )3 − (Sn−1
h )3)

Snh − S
n−1
h

+ 4(Snh + Sn−1
h )

= 4
(
(Snh )2 + (Sn−1

h )2 + 1
) (
Snh + Sn−1

h

)
− 8
(

(Snh )2 + SnhS
n−1
h +

(
Sn−1
h

)2
)
,

so we have

ψ(Snh )− ψ(Sn−1
h )

Snh − S
n−1
h

= 4
(
(Snh )3 + d1 (Snh )2 + d2 S

n
h + d3

)
(7.15)

with d1 = −2 + Sn−1
h ,

d2 = 1− 2Sn−1
h +

(
Sn−1
h

)2
,

d3 = Sn−1
h − 2

(
Sn−1
h

)2
+
(
Sn−1
h

)3
.

Now we can discretise Eq. (7.12) in time. For the fully-discrete scheme we
approximate the time derivative of the nodal order parameter by

ŜtI =
ŜnI − Ŝ

n−1
I

τ
. (7.16)

Inserting Eq. (7.16) in Eq. (7.12) yields

M2mod
Ŝn − Ŝn−1

τ
+ αKŜn = −βM1F (Ŝn) (7.17)
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with the index mod = AC for the Allen-Cahn model and mod = H for the hybrid
model. Eq. (7.17) can be transformed to

Ŝn (M2mod + ατK)︸ ︷︷ ︸
Kmod

= M2modŜ
n−1 − βτM1 F (Ŝn) (7.18)

and for the positive definite matrices M2mod and K we can calculate

Ŝn = K−1
mod

(
M2modŜ

n−1 − βτM1 F (Ŝn)
)
. (7.19)

This scheme is explained in Table 7.5. We implement the two to be compared
phase field models with α = µ1/2λ and β = µ−1/2 for the Allen-Cahn model and
α = ν and β = 1 for the hybrid model.

Table 7.5: Implicit scheme.

Initialisation: Ŝ1 = S(0, x), tol=1e-2, err=1

Loop n=1,Nt

Calculate K,M1

k=-1, Ŝk+1 = Ŝn

While err > tol

k = k + 1

Solve Ŝk+1 = K−1
mod(Ŝ

n)
(
M2mod(Ŝn)Ŝn − βτM1 F (Ŝk, Ŝ

n)
)

err =
||Ŝk+1 − Ŝk||max
||Ŝk+1||max

end

Ŝn+1 = Ŝk+1

end

7.2 Shrinking circle and comparison to an analytical solution

As first numerical example we use the analytical solution of a shrinking circle
derived in [4]. Inside the circle, we define the first phase by the order parameter
S(x, t) = 1 and the phase outside the circle has the value S(x, t) = 0. Omitting
inner and outer forces and the coupling to some constitutive material equation,
the shrinking is due only to the curvature term.
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We recall Eq. (5.23) and Eq. (5.24) and compare both models in terms of the
curvature dependent driving force, setting ν = λ. The definition of ω1 is given in
Eq. (3.18), based on the considerations in [4], using a slightly different double
well potential ψ̃1. As explained in Chapter 5.3 we set ω1 equal to c1.

The formulation (6.15) is implemented as explained in Chapter 7.1 with the
respective parameters for each model. For the boundary condition we set

S(x, t) = 0 for x ∈ ∂Ω (7.20)

and the initial conditions are given as

S(x, 0) = S0 with S0(x, y) = max{0; 3− 2.5((x− 1.5)2 + (y − 1.5)2)} (7.21)

inside the domain
Ω̄ = {(x, y) : 0 ≤ x ≤ 3 , 0 ≤ y ≤ 3}.

Using Eq. (5.23) and Eq. (5.24) for an analytic solution, we drop the error terms
and inserting s1err = s2err = −rt for the time derivative of the radius and κΓ = 1/r

for the curvature yields

rt = −p 1

r
with p = λ1/2c1 = ν1/2ω1 . (7.22)

With the initial condition
r(t = 0) = 1 , (7.23)

the analytic solution of this first order ordinary differential equation follows
by

r(t) =
√

1− 2 p t . (7.24)

Calculating discrete solutions of Eq. (7.19) and tracking the radius evolution
over time, gives us the interface velocities, expressed by Eq. (5.23) and Eq. (5.24),
including the error termsO(µ1/2) andO(ν) for the centerline of the interface given
by Eq. (1.2) (with the value S = 0.5). We compare these numerical solutions
to the analytical solution (7.24). This procedure is illustrated in Fig. 7.6 (a)-(d),
where we see the circle with the inner phase with S = 1 (red) and the outer phase
with S = 0 (blue) and the circular diffuse interphase. We measure the radius r
as the distance from the midpoint to the contour line of S = 0.5. The value of S
changes smoothly within the interface, even though the plots show contour lines
(due to technical reasons). The difference between the analytical and numerical
solution, which can be seen in Fig. 7.6 (d), is due to error terms from Eq. (5.25)
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and Eq. (5.26), as well as other numerical errors, such as discretisation errors,
round-off errors, truncation errors and approximation errors. Since we can
keep these other errors comparatively small through choice of our elements,
modelling and refinement, we neglect them and concentrate on the error terms
explained in chapter 5.4 and their influence on the accuracy of the solution
(depending on the spatial and temporal discretisation).

(a) order parameter S with r(t1 = 0.2) ≈ 0.9 (b) order parameter S with r(t2 = 0.5) ≈ 0.76

(c) order parameter S with r(t3 = 1.0) ≈ 0.4 (d) plot of the radius r(t)

Figure 7.6: Comparison of the analytical and the numerical solution.

In Fig. 7.7, the numerical and the analytical solutions of the shrinking circle
for the Allen-Cahn model and the hybrid model are compared for the given
time step dt = 0.001, the parameters µ = ν = λ = 0.1 and different spatial
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discretisations. We specify the mesh size dx = a/nx with nx for the number of
nodes per direction and a = 3.0 for the width of the domain.

We used the implicit scheme from Table 7.5.

(a) Allen-Cahn model. (b) hybrid model.

Figure 7.7: Convergence study with dt = 0.001, λ = µ = ν = 0.1.

Fig. 7.7 shows that the hybrid model converges faster on the same grid compared
to the Allen-Cahn model for the given rather small interfacial energy. This can
be understood by the fact that the numerical interface width of the hybrid model
is wider and therefore, the interface area is numerically better resolved.

Eq. (5.25) and Eq. (5.26) predict the same error order resulting from the model-
and the residual error by choosing λ = µ = ν. Eq. (5.30) predicts that the widths
of the interfaces, we indicate by the letter d from now on, behave like reB = ν1/2,
see Eq. (5.30). We obtain reB = 0.316 choosing ν = 0.1, which explains the wider
transition zone for the hybrid model.

Since the time step was chosen sufficiently small, the models should converge
to the same values by refining the meshes accordingly. Regarding Eq. (5.30) we
should achieve the same convergence behaviour by choosing the mesh three
times coarser for the hybrid model.

Fig. 7.8 shows simulation results using the spacial discretisation, defined by
nx = 120 for the Allen-Cahn model and nx = 40 for the hybrid model and their
widths d at t = 0.1. Apparently, the relation of their widths d is of order ≈ 1 : 3,
whereas their solutions, seen in Fig. 7.8(c), are quite similar and shrink with a
comparable velocity.
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(a) order parameter plot
Allen-Cahn nx = 120.

(b) order parameter plot
hybrid nx = 40.

(c) curves of r(t).

Figure 7.8: Comparison with λ = µ = ν = 0.1.

To adjust the width d of the hybrid model to the width d of the Allen-Cahn
model, Eq. (5.29) predicts the width relation

1 =
(µλ)1/2

ν1/2
. (7.25)

Thus, we have to choose ν = 0.01, keeping µ = λ = 0.1. The widths d compared
for this case are shown in Fig. 7.9.

(a) Allen-Cahn model. (b) hybrid model.

Figure 7.9: Width of interface d for reA = 1 at t = 1.

Note that the corresponding analytical solutions differ due to different values
for ν and µ. The numerical solutions in Fig. 7.10 both follow the analytical
solutions quite well.
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(a) Allen-Cahn model. (b) hybrid model.

Figure 7.10: ν = 0.01, µ = λ = 0.1→ reA = 1, dt = 0.001, dx = 0.01.

Finally, the theory is confirmed by the given examples. The widths d, shown
in the respective solution plots, depend on the parameter µ and ν. For small
values of λ, defining the interfacial energy, the hybrid model has a numerical
advantage as explained in Chapter 5.4. In this case, we can choose a coarser
mesh for the hybrid model, whereas for the Allen-Cahn model a finer mesh is
needed for comparable results.

In case of high interfacial energy values we have to be careful using the hybrid
model. The error analysis in Chapter 5.4 explained the dependency of the error
terms on the interfacial energy density. This has to be considered by choosing
the best model.

Critical size. Concluding, we come to one point which we already identified
as a possible difficulty for the hybrid model in the beginning of this chapter,
see Fig. 7.5. If we let the radius go to zero, the hybrid model behaves somehow
strange. Simulating a completely shrinking, thus dissolving circle, the numerical
hybrid model curve for the radius branches off closely before the radius becomes
zero, see Fig. 7.11.

After discussing with the author of [44], we tried a simulation with a new
rescaling for the hybrid model, namely

∂tS = −c 1

εν
(ψ′(S)− ν∆S)|∇S| , ν = ε2

ν . (7.26)
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(a) Allen-Cahn model. (b) hybrid model.

Figure 7.11: Comparison with dt = 0.001, dx = 0.01, ν = µ = λ = 0.1.

Following the asymptotic solution analysis in [34], we obtain an expression of
the normal velocity of the diffuse interface of the hybrid model in terms of

shG ≈ c ω1κΓ . (7.27)

The advantage of this rescaling is that the normal interface velocity gets rid of
the asymptotic parameter ν in Eq. (5.24) that was originally introduced as an
asymptotic solution parameter and not as a interfacial energy parameter. The
idea was that sending ν → 0 stopped the shrinking at a certain time point and
that a formulation without ν in the analytical solution of shG could adjust this
solution to the solution of the Allen-Cahn model.

The implementation of Eq. (7.26) and Eq. (7.27) and the comparison with the
former calculation of the hybrid model of [4] unfortunately did not solve the
problem of the non-disappearing circle, see Fig. 7.12.

To understand which parameters influence the point in time of the almost stag-
nation tst, we varied the parameter ν determining the interface width d. We
recognice a large influence of ν on the point in time tst related to the correspond-
ing interface width d. The adjustment to a smaller numerical interface width,
done by the choice of a smaller ν, reduces the radius rst ≈ d, belonging to the
time tst, see Fig. 7.13. Refining the mesh discretisation, however, has almost no
influence on this fact, see Fig. 7.14.

So it seems as if the circle stops shrinking as soon as the inner phase, indicated
by S = 1, disappears and accordingly, the values of the radii of the hybrid
model, shown in Figs. 7.12 – 7.14, converge to the width d. The fact that the radii
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(a) Eq. (7.26). (b) Eq. (7.27).

Figure 7.12: hybrid model with Eq. (7.27) and dt = 0.001, dx = 0.01, ν = 0.01 .

(a) ν = 0.1. (b) ν = 0.01.

—-rst

tst

————rst

tst

Figure 7.13: Hybrid model dt = 0.001, dx = 0.01.

(a) dx = 0.02. (b) dx = 0.005.

Figure 7.14: Hybrid model dt = 0.001, ν = 0.01.
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converge to zero after a long time (not shown here) was not further examined.
We can only guess that this is due to numerical effects.

At this point, we state that the hybrid model shows an odd behaviour on small
scales and we will explore this point further in the last chapter of Part III. With
these final conclusions and open questions we close Part II and turn to the elastic
phase field formulation introduced in Part III.
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8 Elastic phase field model

In this section, we leave the solely curvature driven phase field situation and
extend the models to linear elasticity. The effects of inner and outer forces on the
interface development are overlapping with the influence of interface properties
like interface energy and curvature. In some cases the interface terms can be
neglected compared to the terms of the inner and outer forces, in other situation
they are quite important, see [67], [42].

In the introduction in Chapter 1 we gave some examples of inner and outer forces
and related problems. A further application of coupled phase field research is
the topology optimisation under mass conservation, see [17] and another use is
the development of nickel-base superalloys and their behaviour under pressure
and thermal loads, see [71]. Besides, materials scientists are interested in the
development of crystal twinning under mechanical loadings, see [56], to give
just a few examples of the countless applications.

The coupling to constitutive material laws can be extended to plasticity, vis-
coelasticity, piezoelectricity and others. For simplicity, we restrict our considera-
tions to linear elasticity.

Linear elasticity An elastic body undergoes shape changes due to inner
strains or outer forces. In the theory of linear elasticity, the original shape
of the deformed material is regained as soon as the applied forces are removed
(reversible deformation). In materials science, rheological models explain the
restoring forces between the individual material particles by an idea of elastic
springs.

Furthermore, the theory of plastic deformations describes the situation where de-
fects migrate and permanent deformations remain above a material dependent
yield stress (irreversible deformation). Such plasticity effects are not examined
in the present work, though they could also be coupled to the phase field models
by constitutive equations.

To extend the general phase field equation (5.2) to an elastic formulation we
need an additional elastic energy term W (S, ε(u)). To emphasise that the strain ε

depends on the displacement u, we will use the notation ε(u) from now on. With

61



Part III: Systems coupled to elasticity - Elastic phase field model

the notations of Chapter 5, knowing that S = S(x, t) and u = u(x, t), the global
free energy for an elastic phase field formulation can be defined by

Ēel(S, ε(u)) =

∫
Ω

W (S, ε(u)) + βψ(S) +
α

2
|∇S|2 dx , (8.1)

with the respective parameters α and β. The elastic phase field equation

h(|∇S|)∂tS = −WS(S, ε(u))− βψ′(S) + α∆S (8.2)

arises as gradient flow of the free energy (8.1) as explained in Chapter 2. The
elastic energy W (S, ε(u)) was defined by Eq. (2.3) and we denoted its partial
derivative with respect to S by WS . Its derivative with respect to the strain ε led
to the definition of the Cauchy stress tensor, introduced by Eq. (2.20). We now
extend this stress tensor to a dependency of S in terms of

T (S, ε(u)) = C(S)(ε(u)− ε̄S) ∈ S3 . (8.3)

The included phase dependent strain tensor is given by

ε̃(S, u) = ε(u)− ε̄S ∈ S3 , (8.4)

as a function of the unknowns u ∈ R3, see Eq. (2.4), and S ∈ R. Eq. (8.3) is also
known as Hooke’s law, see [50] for more details.

The constant tensor ε̄ ∈ S3 is used in physical applications, for example within
the description of metal alloys, where each phase contains an own eigenstrain
due to misfitting atomic lattices. In the present work, the phase with S = 0 has
a zero eigenstrain and the phase with S = 1 has a constant eigenstrain ε̄, being
part of the strain ε̃(S, u), defined by Eq. (8.4).

In parallel, we construct a dependency of the elasticity tensor C on the order
parameter S to define the elastic properties as a function of the respective phase
in terms of

C(S) = C1 + S(C2 −C1) . (8.5)

Primary, C is a fourth order tensor, but for the implementation of the model we
reduce C : S3 → S3 to a tensor of second order, see Appendix 5 and [53]. We
assume constant entries in the elasticity tensor C1 for phase 1 and C2 for phase
2 and preserve a smooth transition represented by the values of C(S) within
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the diffuse interface. We assume the extension of C(S) outside of I = [0, 1] to be
linear, symmetric and positive definite.

With these definitions, the elastic energy for an elastic phase field problem is
given by

W (S, ε(u)) =
1

2
(ε(u)− ε̄S)T : ((C1 + S(C2 −C1)) (ε(u)− ε̄S)) . (8.6)

In Part II we studied the phase field models containing as unknown only the
order parameter S. To extend this theory to a coupled material problem of linear
elasticity we need an additional constitutive material law and the corresponding
balance equation. For the equilibrium condition we have

−∇ · T (S, ε(u)) = b (8.7)

with b = b(x) as a given time-independent force field on the right-hand side.

Adopting the initial- and boundary conditions Eq. (2.15), we need additional
boundary conditions for the additional unknowns u. For our later numerical
simulations, we choose Dirichlet boundary conditions

u(x) = uD(x) , x ∈ ∂Ω , ∀t. (8.8)

Thus, we state the following partial differential equation system

−∇ · T (S, ε(u)) = b , (8.9)

T (S, ε(u)) = C(S)(ε(u)− ε̄S) , (8.10)

h(|∇S|)∂tS = −WS(S, ε(u))− βψ′(S) + α∆S , (8.11)

S(x, t) = 0 , x ∈ ∂Ω , t ≥ 0 , (8.12)

S(x, 0) = S0 , x ∈ Ω , (8.13)

u(x) = uD(x) , x ∈ ∂Ω , t ≥ 0 (8.14)

for the unknown displacements u and the unknown order parameter S that will
be examined and implemented in the following part.

For the numerical tests in Chapter 10 we will restrict our considerations to the
two-dimensional case assuming plane strain, see Appendix 5.
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Part III: Systems coupled to elasticity - Elastic phase field model

8.1 Variational formulation

In general, the system (8.9)–(8.14) has no classical solution. In order to solve
the phase field problem numerically, we need to transform it into a variational
formulation, which will be done next.

Let S and u be smooth enough solutions of the system (8.9)–(8.14). For a vari-
ational formulation, we multiply Eq. (8.11) with test functions vS ∈ H1

0 and
integrate over the given domain leading to∫

Ω

h(|∇S|)∂tSvS dx = −
∫

Ω

(
WS(S, ε(u)) + βψ′(S)− α∆S

)
vS dx . (8.15)

Applying the product rule, the divergence theorem and homogeneous boundary
values for vS , yields∫

Ω

h(|∇S|)∂tSvS dx = −
∫

Ω

(
WS(S, ε(u)) + βψ′(S)

)
vS dx− α

∫
Ω

∇S · ∇vS dx . (8.16)

Next, we test Eq. (8.9) with vu ∈
(
H1

0

)3 to have

−
∫

Ω

(∇ · T (S, ε(u))) · vu dx =

∫
Ω

b · vu dx . (8.17)

With the product rule and the divergence theorem we obtain∫
Ω

(∇ · T (S, ε(u))) · vu dx =

∫
Ω

∇ · (T (S, ε(u))vu) dx−
∫

Ω

T (S, ε(u)) : ∇vu dx

=

∫
∂Ω

(T (S, ε(u))vu) · n da−
∫

Ω

T (S, ε(u)) : ∇vu dx .

Exploiting the homogeneous Dirichlet boundary condition of vu, the first term
on the right-hand side disappears and Eq. (8.17) transforms to∫

Ω

T (S, ε(u)) : ∇vu dx =

∫
Ω

b · vu dx . (8.18)

Using the symmetry of the stress tensor, we calculate

T (S, ε(u)) : ∇vu =
1

2
T (S, u) : ∇vu +

1

2
T (S, u)T : ∇vu

=
1

2
T (S, u) : ∇vu +

1

2
T (S, u) : (∇vu)T
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= T (S, u) :
1

2

(
∇vu + (∇vu)T

)
= T (S, u) : ε(vu)

and receive ∫
Ω

T (S, ε(u)) : ε(vu) dx =

∫
Ω

b · vu dx . (8.19)

Thus, the variational formulations of Eq. (8.9) and Eq. (8.11) are given by

〈T (S, ε(u)), ε(vu)〉 − 〈b, vu〉 = 0 , (8.20)

〈h(|∇S|)∂tS, vS〉+ 〈WS(S, ε(u)) + βψ′(S), vS〉+ α〈∇S,∇vS〉 = 0, (8.21)

∀vS ∈ H1
0 (Ω) , ∀vu ∈

(
H1

0 (Ω)
)3
, t > 0.

The well-posedness and the existence of weak solutions of a system related to
(8.20)–(8.21) was studied in [46], [45], [21], [19].

The well-posedness of the elastic hybrid model was studied in [1]–[4], [92], [91]
and [87], giving existence proofs for the one-dimensional case. To show the
existence and uniqueness of solutions for the hybrid model in two- and three
dimensions is an open problem.

8.2 Energy decay

In general, phase transitions can depend on different types of inner energies,
such as for example, thermal energy as a disordered movement of molecules,
which can be measured by temperature changes. A general approach to show
the thermodynamic consistency of a physically motivated model is the veri-
fication of the second law of thermodynamics. Since the parameters µ, λ and
ν are assumed as temperature-independent in the present work, we refer the
interested reader to Appendix 6 and restrict ourselves to the discussion of the
energy decay property along the lines of Chapter 5.

In addition to the phase field equation (8.11) we have the equilibrium condition
equation (8.9) that has to be considered within the formulation of the respective
free energy. Adding the respective term− b ·u to the free energy function Eq. (8.1)
we have
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Ēel,b(S(t), ε(u(t))) =

∫
Ω

1

2
(ε(u(t))− ε̄S(t)) : C(S(t)) (ε(u(t))− ε̄S(t))− b · u

+ βψ(S(t)) +
α

2
|∇S(t)|2 dx . (8.22)

For ease of notation we use St for ∂tS from now an and state

Lemma 9 (Energy decay for the general model with elasticity). Let S and u be suffi-
ciently smooth solutions of the Eq.-system (8.9)-(8.14). Further assume ut ∈

(
H1

0 (Ω)
)3.

Then the energy function (8.22) satisfies the condition

d

dt
Ēel,b(S(t), ε(u(t))) = −

∫
Ω

c (|∇S(t)|)S2
t dx ≤ 0 . (8.23)

Proof. We calculate

d

dt
Ēel,b(S(t), ε(u(t))) =

∫
Ω

d

dt

(
1

2
(ε(u(t))− ε̄S(t)) : C(S(t)) (ε(u(t))− ε̄S(t))

− b · u(t) + β ψ(S(t)) +
α

2
|∇S(t)|2

)
dx

=

∫
Ω

(ε(ut)− ε̄St) : (C(S(t)) (ε(u(t))− ε̄S(t)))

+
1

2
(ε(u(t))− ε̄S(t)) : ((C2 −C1)St (ε(u(t))− ε̄S(t)))

−b · ut + β ψ′(S(t))St + α∇S(t) · ∇St dx

=

∫
Ω

[(−ε̄) : C(S(t)) (ε(u(t))− ε̄S(t))

+
1

2
(ε(u(t))− ε̄S(t)) : ((C2 −C1) (ε(u(t))− ε̄S(t)))

+ β ψ′(S(t)) ]St + α∇S(t) · ∇St − b · ut

+ ε(ut) : (C(S(t)) (ε(u(t))− ε̄S(t))) dx .

Inserting Eq. (8.20) with vu = ut yields

d

dt
Ēel,b(S(t), ε(u(t))) =

∫
Ω

[(−ε̄) : (C(S(t)) (ε(u(t))− ε̄S(t)))

+
1

2
(ε(u(t))− ε̄S(t)) : ((C2 −C1) (ε(u(t))− ε̄S(t)))
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+ β ψ′(S(t)) ]St + α∇S(t) · ∇St dx

and using Eq. (8.21) with vS = St leads to

d

dt
Ēel,b(S(t), ε(u(t))) = −

∫
Ω

h(|∇S(t)|)S2
t dx ≤ 0 .

Now, that we have explained the additional terms for the continuous elastic
phase field model and shown its energy decay property, we will prepare the
numerical implementation by discretising the model in the next chapter.

9 Discretisation of the general model coupled to linear
elasticity

Discretisation in space. Along the lines of Chapter 7.1, where we defined
the finite dimensional spaces Vh ⊂ H1(Ω) and Vh,0 ⊂ H1

0 (Ω) for the Finite Element
method, we define the finite dimensional space Wh ⊂

(
H1
)3 and its subspaces

Wh,0 = {vhu ∈ Wh|vhu = 0 in ∂Ω} ,

Wh,D = {vhu ∈ Wh|vhu = uD in ∂Ω} .

Problem (Variational semi-discrete formulation with elasticity). Let Sh,0 ∈ Vh,0 be
given. Find Sh ∈ C1([0, T ];Vh,0) and uh ∈ C1([0, T ];Wh,D) such that

〈T (Sh, ε(uh)), ε(vhu)〉 = 〈b, vhu〉 , (9.1)

〈h (|∇Sh|)Sh,t, vhS〉+ 〈WS(Sh, ε(uh)), vhS〉 (9.2)

+〈βψ′(Sh), vhS〉 + 〈α∇Sh,∇vhS〉 = 0

for all discrete test functions vhS ∈ Vh,0, vhu ∈ Wh,0 and t > 0.

Since the discretised elastic strain εh depends on the discretised values Sh and
uh, we replace the arguments of the respective functions by (Sh, uh) instead of
(Sh, εh). For the later two-dimensional numerical implementation we define a
time independent outer force b = (bx, by)

T ∈ R2.

67



Part III: Systems coupled to elasticity - Discretisation in space

With definition (8.6), the discrete elastic energy is given by

W (Sh, uh) =
1

2
(ε(uh)− ε̄Sh)T : ((C1 − Sh(C2 −C1)) (ε(uh)− ε̄Sh)) , (9.3)

ε(uh) =
1

2

(
∇uh + (∇uh)T

)
(9.4)

and the discrete stress tensor yields

T (Sh, uh) = C(Sh)(ε(uh)− ε̄Sh) . (9.5)

First, we prove the

Lemma 10 (Energy decay for the time discretisation for the elastic model). Let Sh ∈
C1([0, T ];Vh,0) be a solution of Eq. (9.2) and let uh ∈ C1([0, T ];Wh) ∩ C0([0, T ];Wh,D)

be a solution of Eq. (9.1). Further assume uh,t ∈ C0([0, T ];Wh,0). Then the free energy
function satisfies the condition

d

dt
Ēel,b(Sh, uh) = −

∫
Ω

h (|∇Sh|)S2
h,t dx ≤ 0 . (9.6)

Proof. The energy decay is verified by discretising and deriving Eq. (8.22). We
insert Eq. (9.2) with vhS = Sh,t and Eq. (9.1) with vhu = uh,t and this leads to

d

dt
Ēel,b(Sh, uh) =

∫
Ω

[(−ε̄) : C(Sh) (ε(uh)− ε̄Sh)

+
1

2
(ε(uh)− ε̄Sh) : ((C2 −C1) (ε(uh)− ε̄Sh))

+ β ψ′(Sh) ]Sh,t − α∇Sh · ∇Sh,t − b · uh,t

+ ε(uh,t) : (C(Sh) (ε(uh)− ε̄Sh)) dx

= −
∫

Ω

h(|∇Sh|)S2
h,t ≤ 0 .

Now we look at the well-posedness of the semi-discretised phase field equation.
For our theoretical considerations and the following numerical implementations
we uncouple Eq. (9.1) and Eq. (9.2). In the numerical simulations we will first
solve Eq. (9.1) and insert the calculated value for the displacements uh at the
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timestep n into Eq. (9.2). We will use this approach also in our theoretical
numerical considerations in the following and formulate the

Assumption 4. W (S) is twice continuously differentiable with respect to S,
W (S) ≥ CW,0|S| − CW,1 and |WSS(S)| ≤ CW,2 ∀S with CW,i,∈ R+

0 , i = 0, 2.

The existence of uh will be discussed in the next section within the fully discre-
tised formulation and we formulate

Lemma 11 (Existence and uniqueness of the semi-discrete formulation with elasticity).
Let Sh,0 ∈ Vh,0 be given and let uh ∈ Wh,D be known. Then we have an existing unique
solution Sh ∈ C1([0, 1];Vh,0) for Eq. (9.2).

Proof. The variational form Eq. (9.2) is the same as Eq. (6.1) with an additional
term 〈WS(Sh, ε(u)), vS〉. With Assumption 4, the Lipschitz continuity of the right
hand side of Eq. (6.7) is given and therefore we argue exactly as in Chapter 6 to
justify the local existence of the solution of Sh.

The boundedness of ||Sh||H1(Ω) is also shown in a similar way along the lines of
Chapter 6.

Therefore, the existence of a global solution is given.

Discretisation in time. In the next chapter, we validate the Allen-Cahn model
and the hybrid model numerically, related to linear elasticity. For this purpose,
an appropriate fully-discrete scheme is needed. The formulations Eq. (9.1) and
Eq. (9.2) will now be discretised in time and we address some issues on the
well-posedness. Further, the energy decay properties of the fully discretised
phase field model will be shown.

We define the approximation of the time derivative of the discrete order param-
eter by

Sh,t =
Snh − S

n−1
h

τ
. (9.7)

The difference quotients for the double well potential and the elastic energy
with respect to the order parameter are given by Eq. (6.13) and

F (Snh , S
n−1
h , unh) :=


W (Snh , u

n
h)−W (Sn−1

h , unh)

Snh − S
n−1
h

for Snh 6= Sn−1
h

WS(Snh ) for Snh = Sn−1
h .

(9.8)
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As in Chapter 6, these definition are needed for the proofs of the energy decay
property and on the well-posedness of the elastic phase field problem. The
formulations chosen within these proofs are implemented in the same way to
guarantee confidence in the results.

Thus, with h(|∇Sn−1
h |) known from the last time step the fully-discrete phase

field model can be formulated as

Problem (Variational fully-discrete formulation with elasticity). Let Sh,0 ∈ Vh,0 be
given. For any n ≥ 1 find Snh ∈ Vh,0 and unh ∈ Wh,D such that

〈T (Sn−1
h , unh), ε(vhu)〉 = 〈b, vhu〉 , (9.9)

〈h(|∇Sn−1
h |)

Snh − S
n−1
h

τ
, vhS〉 + 〈

W (Snh , u
n
h)−W (Sn−1

h , unh)

Snh − S
n−1
h

, vhS〉

+ 〈β
ψ(Snh )− ψ(Sn−1

h )

Snh − S
n−1
h

, vhS〉 + 〈α∇Snh ,∇vhS〉 = 0 (9.10)

for all discrete test functions vhS ∈ Vh,0 and vhu ∈ Wh,0 .

To confirm the following numerical implementation, we want the fully-discrete
energy to decay. Therefore, we need to define the stress tensor and the test
function in exactly the following way

T (Sn−1
h , unh) = C(Sn−1

h )ε̃(Sn−1
h , unh) , (9.11)

vhu = 2(unh − u
n−1
h ) . (9.12)

Now we can examine the energy decay property of the system (9.9)-(9.10).
Defining Ēnel,uh = Ēel,b(S

n
h , u

n
h) and using the definition (6.16) we state

Lemma 12 (Energy decay for the fully discretised general model with elasticity). Let
Snh ∈ Vh,0 ∀t be a solution of Eq. (9.10) and let unh ∈ Wh,D ∀t be a solution of Eq. (9.9).
Then the discrete free energy satisfies the condition

∂̄τ Ēel,uh ≤ 0 . (9.13)

Proof. With the discretised free energy (8.22)

Ēnel,uh =

∫
Ω

W (Snh , u
n
h) + βψ(Snh ) +

α

2
|∇Snh |

2 − b · unh dx
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and
W (Snh , u

n
h) =

1

2
(ε(unh)− ε̄Snh ) : C(Snh ) (ε(unh)− ε̄Snh ) (9.14)

we calculate

Ēnel,uh − Ē
n−1
el,uh

τ
=

1

τ

∫
Ω

W (Snh , u
n
h)−W (Sn−1

h , un−1
h )

− b(unh − u
n−1
h ) + β

(
ψ(Snh )− ψ(Sn−1

h )
)

+ α∇Snh · (∇S
n
h −∇S

n−1
h )− α

2

∣∣∇Snh −∇Sn−1
h

∣∣2 dx .
For the last two terms, see Appendix 7.

This equation can be transformed to

Ēnel,uh − Ē
n−1
el,uh

τ
=

1

τ

∫
Ω

W (Snh , u
n
h)−W (Sn−1

h , unh) +W (Sn−1
h , unh)

− W (Sn−1
h , un−1

h )− b(unh − u
n−1
h ) + β

(
ψ(Snh )− ψ(Sn−1

h )
)

+ α∇Snh · (∇S
n
h −∇S

n−1
h )− α

2τ

∣∣∇Snh −∇Sn−1
h

∣∣2 dx
=

1

τ

∫
Ω

W (Snh , u
n
h)−W (Sn−1

h , unh)

Snh − S
n−1
h

(Snh − S
n−1
h )

+ β
ψ(Snh )− ψ(Sn−1

h )

Snh − S
n−1
h

(Snh − S
n−1
h )

+ α∇Snh · (∇S
n
h −∇S

n−1
h )− α

2τ

∣∣∇Snh −∇Sn−1
h

∣∣2
+

1

τ

∫
Ω

W (Sn−1
h , unh)−W (Sn−1

h , un−1
h )− b(unh − u

n−1
h )︸ ︷︷ ︸

∗∗
dx .

Using Eq. (9.14) and Eq. (8.4) leads to

∗∗ =
1

2
ε̃(Sn−1

h , unh) :
(
C(Sn−1

h )ε̃(Sn−1
h , unh)

)
− 1

2
ε̃(Sn−1

h , un−1
h ) :

(
C(Sn−1

h )ε̃(Sn−1
h , un−1

h )
)

− 1

2
ε̃(Sn−1

h , unh) :
(
C(Sn−1

h )ε̃(Sn−1
h , un−1

h )
)

+
1

2
ε̃(Sn−1

h , un−1
h ) :

(
C(Sn−1

h )ε̃(Sn−1
h , unh)

)
=

1

2
ε̃(Sn−1

h , unh) :
(
C(Sn−1

h )(ε̃(Sn−1
h , unh)− ε̃(Sn−1

h , un−1
h )

)
+

+
1

2
ε̃(Sn−1

h , un−1
h ) :

(
C(Sn−1

h )
(
ε̃(Sn−1

h , unh)− ε̃(Sn−1
h , un−1

h )
))
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=
1

2

(
ε̃(Sn−1

h , unh) + ε̃(Sn−1
h , un−1

h )
)

:
(
C(Sn−1

h )
(
ε̃(Sn−1

h , unh)− ε̃(Sn−1
h , un−1

h )
))

= ε̃(Sn−1
h , unh) :

(
C(Sn−1

h )(ε(unh − u
n−1
h ))

)
+

− 1

2
(ε(unh − u

n−1
h ) :

(
C(Sn−1

h )(ε(unh − u
n−1
h ))

)
.

For the last term, see Appendix 7. So we have

Ēnel,uh − Ē
n−1
el,uh

τ
=

1

τ

∫
Ω

ε̃(Sn−1
h , unh) :

(
C(Sn−1

h )(ε(unh − u
n−1
h ))

)
− b · (unh − u

n−1
h ) +

W (Snh , u
n
h)−W (Sn−1

h , unh)

Snh − S
n−1
h

(Snh − S
n−1
h )

+ β
ψ(Snh )− ψ(Sn−1

h )

Snh − S
n−1
h

(Snh − S
n−1
h ) + α∇Snh · (∇S

n
h −∇S

n−1
h )

− 1

2
(ε(unh − u

n−1
h ) :

(
C(Sn−1

h )(ε(unh − u
n−1
h ))

)
dx

− α

2τ
||∇Snh −∇S

n−1
h ||2L2(Ω) . (9.15)

Applying Eq. (9.9) with vhu = unh − u
n−1
h we can drop the first two terms on the

right-hand side and have

Ēnel,uh − Ē
n−1
el,uh

τ
=

1

τ

∫
Ω

W (Snh , u
n
h)−W (Sn−1

h , unh)

Snh − S
n−1
h

(Snh − S
n−1
h )

+ β
ψ(Snh )− ψ(Sn−1

h )

Snh − S
n−1
h

(Snh − S
n−1
h ) + α∇Snh · (∇S

n
h −∇S

n−1
h ) dx

− 1

2

∫
Ω

(ε(unh − u
n−1
h ) :

(
C(Sn−1

h )(ε(unh − u
n−1
h ))

)
dx

− α

2τ
||∇Snh −∇S

n−1
h ||2L2(Ω)

and inserting vhS = (Snh − S
n−1
h ) in Eq. (9.10) yields

Ēnel,uh − Ē
n−1
el,uh

τ
= −1

τ

∫
Ω

1

h(|∇Snh |)
(Snh − S

n−1
h )2 dx

− 1

2τ

∫
Ω

(ε(unh − u
n−1
h ) :

(
C(Sn−1

h )(ε(unh − u
n−1
h ))

)
dx− α

2τ
||∇Snh −∇S

n−1
h ||2L2(Ω) ≤ 0 .

72



Part III: Systems coupled to elasticity - Time discretisation

Before we start to explain the implementation, we will at last examine the well-
posedness of the fully discretised uncoupled elastic phase field system and
state

Lemma 13 (Existence and uniqueness of the fully discretised system with elasticity).
Let Sn−1

h ∈ Vh,0 be given. Then the uncoupled system (9.9)–(9.10) has a unique solution
Snh ∈ Vh,0 and unh ∈ Wh,D for all time steps 0 < τ < τ0 with τ0 small enough.

Proof. Since we solve Eq. (9.9) and Eq. (9.10) consecutive, we start with the
uniqueness and existence of the solution unh. The Finite Element discretisation of
Eq. (9.9) leads to the formulation (A.4.9) in Appendix 4.2. This equation can be
expressed as

B(uh, vhu) = 〈b̄, vhu〉 −B(uD, vhu) , (9.16)

minimising the functional

J(uh) :=
1

2
B(uh, vhu)− l(b̃, vhu) (9.17)

with
b̄ = b+Bu

J
TC(NI ŜI)ŜJ ε̄ , (9.18)

B(uD, vhu) adjusting B(uh, vhu) to a homogeneous boundary condition in order to
have uh ∈ H1

0 at the left hand side of Eq. (9.16) and b̃ for a more compact notation
of the right-hand side of Eq. (9.16). With L(vhu) = l(b̃, vhu), L : H1

0 → R we can
rewrite Eq. (9.16) as

L(vhu) = B(uh, vhu) ∀vhu ∈ H1
0 (Ω) . (9.19)

This problem was studied in [30] with the result that for the ellipticity and the
continuity of B : H1

0 × H1
0 → R in Eq. (9.19) the Riesz representation theorem

garanties a unique solution for uh, assuming C(S) being positive-definite. For
more details see also [23] and [28].

With the existing, given unh we can now examine Eq. (9.10). With the abbrevia-
tions Eq. (9.8) and Eq. (6.13) the discrete variational formulation reads

〈h(|∇Sn−1
h |)

Snh − S
n−1
h

τ
, vhS〉 + 〈F (Snh , S

n−1
h , unh), vhS〉

+β〈D(Snh , S
n−1
h ), vhS〉 + α〈∇Snh ,∇vhS〉 = 0 . (9.20)
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Same as Eq. (7.9), Eq. (9.20) can be formulated as fixed-point equation

〈Snh , vhS〉 = − τ

h(|∇Sn−1
h |)

〈F (Snh , S
n−1
h , unh), vhS〉 −

β

h(|∇Sn−1
h |)

τ〈D(Snh , S
n−1
h ), vhS〉

− α

h(|∇Sn−1
h |)

τ〈∇Snh ,∇vhS〉+ 〈Sn−1
h , vhS〉 . (9.21)

Using Assumption 4 and knowing unh from the time step before, we can adapt
our proof of the existence of the solution of Snh of Chapter 6. The fully discretised
elastic term F (Snh , S

n−1
h , unh) in Eq. (9.20) is structured like the double well term

D(Snh , S
n−1
h ). As shown in Eq. (7.15) we can perform a polynomial division for

F (Snh , S
n−1
h , unh) leading to a polynom of second order in Snh .

We replace the expression ψ(Snh )− ψ(Sn−1
h ) by

ψW (Snh )− ψW (Sn−1
h ) := ψ(Snh )− ψ(Sn−1

h ) +W (Snh )−W (Sn−1
h ) (9.22)

and assume that ψW (Snh ) fulfills the conditions of Assumption 3.

Thus, the proof goes along the lines of the proof in chapter 6 and we have the
existence of a solution of Snh .

The uniqueness of the solution Snh can also be shown analogously, expanding
the proof in Chapter 6 to the elasticity term, premising that the displacements
unh are given.

Adding the term 〈F (Snh , S
n−1
h )− F (S̃nh , S

n−1
h ), Snh − S̃

n
h 〉 on the right-hand side of

Eq. (6.30), we repeat the proof of Lemma 8. With Assumption 4 and applying
Cauchy-Schwarz we get

h

τ
||Snh − S̃

n
h ||

2
L2(Ω) + α||∇Snh −∇S̃

n
h ||

2
L2(Ω) (9.23)

≤ ||F (Snh , S
n−1
h )− F (S̃nh , S

n−1
h )||L2(Ω)||Snh − S̃

n
h ||L2(Ω)

+ β||D(Snh , S
n−1
h )−D(S̃nh , S

n−1
h )||L2(Ω)||Snh − S̃

n
h ||L2(Ω) .

If we know the displacements unh, we apply the fundamental theorem of calculus
as in Lemma 8 on the respective terms, leading to

|F (Snh , S
n−1
h )− F (S̃nh , S

n−1
h )|+ β|D(Snh , S

n−1
h )−D(S̃nh , S

n−1
h )| ≤ (βd̄+ f̄)|Snh − S̃

n
h | .

(9.24)
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Combining Eq. (9.23) with Eq. (9.24) yields

h||Snh − S̃
n
h ||

2
L2(Ω) + ατ ||∇Snh −∇S̃

n
h ||

2
L2(Ω) ≤ (β ˜̄d+ ˜̄f)τ ||Snh − S̃

n
h ||

2
L2(Ω) (9.25)

and can be transformed to(
h

τ
− (β ˜̄d+ ˜̄f)

)
||Snh − S̃

n
h ||

2
L2(Ω) + α||∇Snh −∇S̃

n
h ||

2
L2(Ω) ≤ 0. (9.26)

If we choose τ small enough, the only way to satisfy the inequality is to define
Snh = S̃nh , which proves the uniqueness of Snh .

10 Numerical validation

We have confirmed the well-posedness of the fully discretised formulation of the
general uncoupled elastic phase field system (9.9) - (9.10) and we have proven
that the free energy decays along discrete solutions. This allows us to implement
the models into a numerical environment in order to carry out some exemplary
tests.

10.1 Ersatzstress-Term

First, we show a numerical example from [4]. For a better understanding, we
summarise some of the details in [4]. Instead of solving the coupled linear
elasticity system, the authors derive a term we call “ersatzstress”. Again we
use the nomenclature of the original literature, and thus, the elasticity tensor is
denoted by D.

The following terms are the result of studying the original literature and discus-
sions with the author. The explanations should give an idea of what is simulated
in this chapter.

In [4], the stress tensor is splitted into a first part independent of the boundary
value problem of elasticity and a second part that depends on it

T = [T̂ ]S + w . (10.1)

The elastic energy enters the phase field equation via the term

WS,ers = −T : ε̄ . (10.2)
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The stress component w is evaluated as a one-dimensional solution of a bound-
ary problem of linear elasticity and given as a constant value, see [4] for more
details. The term [T̂ ] describes the jump of the stresses at the sharp interface and
can be expressed by

[T̂ ] = (D(ε− ε̄S))(−) − (D(ε− ε̄S))(+)

= D(ε(−) − ε(+) − ε̄)

= Dε̄(Pn − 1) . (10.3)

The last step is based on the equation

Pnε̄ = [ε(∇xû)]

with the orthogonal projection Pn. Inserting Eq. (10.1) and Eq. (10.3) into
Eq. (10.2) yields

WS,ers = −L1S − si (10.4)

with L1 = ε̄ : D(Pn − 1)ε̄, si = ε̄ : w . (10.5)

The calculation of L1 is based on the assumption that the eigenstrain is a multiple
of the identity tensor

ε̄ = d1 I, d1 ∈ R (10.6)

and that the material is isotropic

Dσ = ν1σ + ν2 trace (σ)I . (10.7)

The calculation in [4] leads to

L1 = d2
1(ν1 + 3ν2)

(
ν1 + 3ν2

ν1 + ν2
− 3

)
≤ 0, ν1 > 0, ν1 + 3ν2 > 0 . (10.8)

Insertion of Eq. (10.4) into Eq. (8.2) gives the general ersatzstress model in terms
of

h(|∇S|)∂tS = L1S + si− βψ′(S) + α∆S . (10.9)

To compare the solution of this model applied to a shrinking circle as in Chap-
ter 7.2, we need to adjust the normal interface velocities Eq. (5.14) and Eq. (5.15).
For the jump of the Eshelby tensor we have

n · [Ĉ]n = [Ê(S, ε)]− 〈T̂ 〉 : ε̄ , (10.10)
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see [71]. The energy term Ê is continuous over the sharp interface so that its
jump is zero. The mean value

〈T̂ 〉 :=
1

2

(
T (−) + T (+)

)
(10.11)

and the jump of the stresses at the sharp interface

[T̂ ] := T (+) − T (−) (10.12)

lead to n[Ĉ]n = −〈T̂ 〉 : ε̄

= −1

2
[T̂ ] : ε̄− T (−) : ε̄

= −1

2
ε̄D(I − Pn) : ε̄− T (−) : ε̄

= −1

2
L1 − si . (10.13)

Thus, the normal interface velocities (5.14) and (5.15), choosing c = 1 and c̃ = c1,
with the ersatzstress term read

sAC,ers = −1

2
L1 − si+ λ1/2c1κΓ +O(µ1/2) (10.14)

for the Allen-Cahn model and

sH,ers = −1

2
L1 − si+ ν1/2ω1κΓ (10.15)

for the hybrid model.

We start a simulation to validate this example with ν1 = ν2 = 20 and d1 = 0.05,
yielding a value of L1 = −0.2. The value si depends on the boundary condition
and is set to si = −0.3. So we have n · [Ĉ]n = 0.4 and define the solution of the
shrinking circle by solving

rtAC,ers = 0.4 + λ1/2c1r
−1 and rtH,ers = 0.4 + ν1/2ω1r

−1 , (10.16)

omitting the error term O(µ1/2) in Eq. (10.14).

There is no classical solution in general for Eq. (10.16) as we had for Eq. (7.22)
and therefore, we use a MATLAB ode23 solution algorithm causing a negligible
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additional numerical error. The obtained numerical solution is compared to the
shrinking circle simulated by the phase formulation Eq. (10.9) in terms of

h(|∇S|)∂tS = −0.2S − 0.3− βψ′(S) + α∆S . (10.17)

The implementation method follows the steps in Chapter 7.1 also explained in
Appendix 4. We insert the above calculated values of L1 and si into Eq. (10.4)
and add the resulting expression

WS,ers = 0.2S + 0.3 (10.18)

to the derivative of the double well potential multiplied with the respective
prefactor.

To preserve the double well character of the energy function depending on the
sum of the first, second and third term at the right-hand side of Eq. (10.17), we
need to confirm the double well character of the functions

eAC := 4S2(1− S)2 − 0.1S2 − 0.3S (10.19)

for the hybrid model and

eH :=
4

µ1/2
S2(1− S)2 − 0.1S2 − 0.3S (10.20)

for the Allen-Cahn model, which is confirmed, if we choose ν = µ ≤ 1.

Fig. 10.1 shows the simulation results (in blue) of Eq. (10.17) based on the
domain Ω and the initial conditions (7.20) and (7.21). For a sufficient small time
step of dt = 0.001 the hybrid model and the Allen-Cahn model are compared to
the numerical solutions Eq. (10.16) (in red). The mesh relation is based upon
Eq. (5.29) with reA ≈ 3. For this reason, we refine the mesh of the Allen-Cahn
model by a factor 3. In contrast to the numerical simulations in Chapter 7, the
circle grows due to a different boundary term within Eq. (10.18).

The agreement shown in Fig. 10.1 is sufficient for us at this point, since we only
wanted a correspondence in principle with the given examples in [4]. We omit
more detailed investigations for this simulation and show further examples of a
coupled elasticity system in Chapter 10.3 and Chapter 10.4.
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(a) Allen-Cahn, nx = 600. (b) hybrid, nx = 200.

Figure 10.1: Comparison of the Allen-Cahn and the hybrid model with
the elastic ersatz stress from [4], choosing ν = µ = λ = 0.1.

10.2 Implementation

The implementation of the variational form Eq. (9.9) is based on the definition
of the stress tensor in Eq. (9.11). The unknown unh in Eq. (9.9) can be calculated
in one step by solving a linear system with known values of Sn−1

h , calculated in
the former time step.

The implementation of the fully discretised variational formulation (9.10) fol-
lows the steps explained in Appendix 4.1 and 4.2, adapting the coefficients of
the polynoms p

(
ai(ŜI)

i
)

in Eq. (A.4.4) to the extension of the energy expressions
ψ′ + WS instead of ψ′. We will show below that WS(Snh , u

n
h) is structured like

the double well potential and therefore can be included in the force F on the
right-hand side as in Eq. (7.13) and Eq. (7.14).

The implementation scheme processes in the following way.

Step 1: solve
û =

(
K̄
)−1

f̂ ∈ R2N (10.21)

for the time step n. The relation arises from the Finite Element discretisation of
Eq. (9.10) and refers to the expression

uh(x) =

N∑
I=1

Nu
I (x)ûI ∈ R2 (10.22)
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with the nodal unknowns ûI , which are summarised in û. Eq. (10.21) contains
the elastic global stiffness matrix K̄ and the vector of the given forces f̂ . The
right-hand side depends on the order parameter Snh of the current time step. For
the first time step the initial condition Sh,0 is inserted. The derivation of the
terms involved is explained in Appendix 4.2. The relation is linear and is solved
in one step yielding unh.

Step 2: With the determined unh we solve Snh for the variational discrete formu-
lation Eq. (9.10). The application of the Banach fixed-point theorem leads to a
fixed-point equation

Snh = Φ(Snh )

to be iterated in the current time step n.

The scheme of implementation is shown in Table 10.6. For details see the
derivation of Eq. (7.19) and Appendix 4 with an additional entry of the elastic
energy WS in the force F , defined as Fel, on the right-hand side. We will show
below that this additional entry does not change the structure of Fel compared
to F . The unknown displacements in WS are taken from step 1.

Table 10.6: Implicit scheme for elasticity.

Initialisation: Ŝ1 = S(0, x), tol=1e-2, err=1

Loop n=1,Nt

Calculate K̄ and f̂

Solve ûn = K̄−1f̂

k = −1, Ŝk+1 = Ŝn

While err > tol

k = k + 1

Solve Ŝk+1 = K−1
mod(Ŝ

n)
(
M2mod(Ŝn)Ŝn − βτM1 Fel(Ŝk, Ŝ

n, ûn)
)

err =
||Ŝk+1 − Ŝk||max
||Ŝk+1||max

end

Ŝn = Ŝk+1

end
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Implementation of the elastic energy term The free energy term was ex-
panded to the elastic energy W and instead of F = ψ′, as in Chapter 7.1, we
calculate

Fel(S
n
h ) = WS(Snh , u

n
h) + αψ′(Snh ) . (10.23)

We use Eq. (7.15) for the derivative of the discrete double well potential.

The additional term WS(Snh , u
n
h) can be calculated in the following way. In the

variational formulation Eq. (9.10) the derivative of the elastic energy term is
defined by

WS(Snh , u
n
h) =

W (Snh , u
n
h)−W (Sn−1

h , unh)

Snh − S
n−1
h

. (10.24)

We calculate the denominator of the elastic energy term as

W (Snh, u
n
h)−W (Sn−1

h , unh) = ∗

∗ =
1

2
ε̃(Snh , u

n
h) : (C(Snh )ε̃(Snh , u

n
h))

− 1

2
ε̃(Sn−1

h , unh) :
(
C(Sn−1

h )ε̃(Sn−1
h , unh)

)
=

1

2
[ε(unh) : (C(Snh )ε(unh))− ε̄Snh : (C(Snh )ε(unh))

+ ε(unh) : (C(Snh )ε̄(−Snh )) + ε̄(−Snh ) : (C(Snh )ε̄(−Snh ))]

− 1

2

[
ε(unh) :

(
C(Sn−1

h )ε(unh)
)
− ε̄Sn−1

h :
(
C(Sn−1

h )ε(unh)
)

+ ε(unh) :
(
C(Sn−1

h )ε̄(−Sn−1
h )

)
+ ε̄(−Sn−1

h ) :
(
C(Sn−1

h )ε̄(−Sn−1
h )

)]
=

1

2
ε(unh) :

(
(Snh − S

n−1
h )(C2 −C1)ε(unh)

)
−
(
ε̄Snh : C(Snh )ε(unh)− ε̄Sn−1

h : C(Sn−1
h )ε(unh)

)
+

1

2

(
ε̄Snh : (C(Snh )ε̄Snh )− ε̄Sn−1

h :
(
C(Sn−1

h )ε̄Sn−1
h

))
=

1

2
ε(unh) :

(
(Snh − S

n−1
h )(C2 −C1)ε(unh)

)
− ε̄ :

(
C1ε(u

n
h)(Snh − S

n−1
h )

)
− ε̄ :

(
(C1 −C2)ε(unh)(Snh + Sn−1

h )(Snh − S
n−1
h )

)
+

1

2
ε̄ :
(
C1ε̄ (Snh + Sn−1

h )(Snh − S
n−1
h )

)
+

1

2
ε̄ :
(
(C2 −C1)ε̄ (Snh − S

n−1
h )((Snh )2 + SnhS

n−1
h + (Sn−1

h )2)
)
,

leading to

W (Snh , u
n
h)−W (Sn−1

h , unh)

Snh − S
n−1
h

=
(

1

2
ε(unh)− ε̄(Snh + Sn−1

h )
)

: ((C2 −C1)ε(unh))

− ε̄ : (C1ε(u
n
h)) +

1

2
ε̄ :
(
C1ε̄ (Snh + Sn−1

h )
)
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+
1

2
ε̄ :
(
(C2 −C1)ε̄

(
(Snh )2 + SnhS

n−1
h + (Sn−1

h )2
))

.

We simplify the notation by writing

W (Snh , u
n
h)−W (Sn−1

h , unh)

Snh − S
n−1
h

= e1 (Snh )2 + e2 S
n
h + e3 (10.25)

with

e1 =
1

2
ε̄ : ((C2 −C1)ε̄)

e2 = −ε̄ : ((C2 −C1)ε(unh)) +
1

2
ε̄ : (C1ε̄) +

1

2
Sn−1
h ε̄ : ((C2 −C1)ε̄)

e3 =
1

2

(
ε(unh)− ε̄Sn−1

h

)
: ((C2 −C1)ε(unh))− ε̄ : (C1ε(u

n
h))

+
1

2
ε̄Sn−1

h : (C1ε̄) +
1

2
ε̄ :
(
(C2 −C1)ε̄ (Sn−1

h )2
)
.

Remark 10.1. As an alternative to the implementation of the Banach fixed-
point solution, a Newton method could be applied. For future research, the
implementation is provisionally outlined in the Appendix 8.

10.3 Comparison of the models

We restrict the following numerical simulations to isotropic linear elastic materi-
als. We assume phase-dependent constant entries in the linear elasticity tensors
and phase-dependent constant eigenstrains. We choose the parameters in such a
way that we get clearly visible displacements and can compare both models.

Furthermore, we show another example in Chapter 10.4, comparing our results
to results of published literature adapted to physical experiments.

To compare both phase field models, we apply inhomogeneous Dirichlet bound-
ary conditions on the right-hand side for the displacement u(x), so the boundary
conditions read

u1(x) = 0.0 ∀x ∈ ∂Ω1 ,

u2(x) = 0.0 ∀x ∈ ∂Ω2 ,

u1(x) = −0.03 ∀x ∈ ∂Ω3 ,

u2(x) = 0.0 ∀x ∈ ∂Ω4 ,
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with u1(x) denoting the horizontal displacement and u2(x) denoting the vertical
displacement, see Fig. 10.2 with uD = u1(x) on Ω3. The initial- and boundary
conditions for the order parameter remain given by Eq. (7.20) and Eq. (7.21).

uD = −0.03

∂Ω1

∂Ω2

∂Ω3

∂Ω4

Figure 10.2: Dirichlet boundary condition.

We set the isotropic elasticity tensors to

C1 =


1.2 0.4 0.0

0.4 1.2 0, 0

0.0 0.0 0.4

 103 ; C2 = 2C1 .

For the implementation, we rewrite the strain tensor, defined by Eq. (8.4), based
on the symmetry of ε(u) and ε̄ and the assumption of plane strain, see Appendix
5, setting the third direction of the strains to zero, to

ε̃(S, u) =


ε̃11 ε̃12 ε̃13

ε̃21 ε̃22 ε̃23

ε̃13 ε̃32 ε̃33

 =


ε̃11 ε̃12 0

ε̃12 ε̃22 0

0 0 0

 =⇒
Implem.


ε̃11

ε̃22

γ12

 . (10.26)
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Here we defined γ̃12 = 2ε̃12 and we omitted the arguments u and S for clarity.
The eigenstrain vector, we implement, reads

ε̄ =


ε̄11 0 0

0 ε̄22 0

0 0 0

 =⇒
Implem.


ε̄11

ε̄22

0

 .

We define λ = µ = ν = 0.1, dt = 0.001 and compare solutions for nx = 240 for the
Allen-Cahn model and nx = 80 for the hybrid model. Figs. 10.3, 10.4 and 10.5
show the shrinking circles and the respective displacement plots. Since we have
no analytical solution for the shrinking circle, we compare the time-dependent
radius development of both models which is done in Fig. 10.6.

The curves in Fig. 10.6 look quantitatively similar. We leave it with this example
and show more detailed investigations in Chapter 10.4: the example of a growing
martensite nucleus, adapted to experimental data.

(a) Allen-Cahn, nx = 240. (b) hybrid, nx = 80.

Figure 10.3: Comparison of the circles with λ = µ = ν = 0.1, dt = 0.001,

dx = 0.01 at t = 1.0.

So far we can state: Because there are no classical solutions for the elastic phase
field problem, we compared the numerical simulation results to some examples
from [4] with a so-called ersatzstress term.
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Further, we compared solutions of both models taking the Allen-Cahn model as
reference model.

(a) Allen-Cahn, nx = 240. (b) hybrid, nx = 80.

Figure 10.4: Comparison of the displacements u1 with λ = µ = ν = 0.1,

dt = 0.001, dx = 0.01 at t = 1.0.

(a) Allen-Cahn, nx = 240. (b) hybrid, nx = 80.

Figure 10.5: Comparison of the displacements u2 with λ = µ = ν = 0.1,

dt = 0.001, dx = 0.01 at t = 1.0.

It seems that the hybrid model behaves similar to the Allen-Cahn model applied
on the same configuration with adapted parameters explained above. For the
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phase field problem coupled to linear elasticity and given eigenstrain, the curves
of the Allen-Cahn model and the hybrid model look similar with a considerable
numerical advantage for the hybrid model.

(a) Allen-Cahn. (b) hybrid.

Figure 10.6: Decreasing radii.

The problem, identified at the end of Chapter 7.2, the radius stagnation, appears
with the hybrid model at the same critical size applied to elastic problems, see
Fig. 10.7.

(a) nx = 80. (b) nx = 240.

Figure 10.7: Hybrid behaviour at the critical size.
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We will at last look upon a problem on very small scales with reference results
verified by molecular-dynamic experiments in literature, namely the martensite
transformation. For this purpose, the frame of martensite transformations used
for this last example, will be explained.

10.4 A coupled elasticity problem - martensite

The transformation from austenite to martensite is of high technical interest. By
a sudden undercooling the austenite steel changes its crystal structure from a
metastable cubic face-centered austenite phase to a stable cubic body-centered
martensite phase with different material properties, see Fig. 10.8.

Figure 10.8: Martensite transformation, R. Müller [2015].

Since the undercooling takes place fast, the atoms are cumbered to change their
places and the original topology is maintained on the costs of inner stresses and
strains. The new martensite phase grows spicolar into the present austenite
phase and causes a complex microstructure. Due to the eigenstrain of martensite
versus the austenite domain, the atomic lattice deforms causing micro cracks
and plastic deformations. Alloys of iron and carbon, copper, zinc, nickel or
titanium show such a behaviour [11]. A shape memory alloy effect occurs if the
martensite material is deformed plastically. As soon as the deformed martensite
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material is reheated, it regains its original austenite cubic face-centered structure
and simultaneously turns back to its primary shape.

The generally temperature-dependent double well potential for martensite
transformations determines the energy barrier that has to be overcome for the
transformation process, see figure 10.9.

Figure 10.9: Temperature dependent double well potential martensite,
R. Müller [2015].

The topology of the martensite inclusions associated to certain material prop-
erties can be influenced by specific external loads and/or material-dependent
inner eigenstrains. To produce functional materials, combined temperature and
loading procedures are applied to achieve direction dependent properties like
hardness or Young’s modulus parameter.

To verify our implementation we will examine a martensite nucleus included
in an austenitic matrix under mechanical loading and compare it to some data
given in literature. Since we do not address temperature dependent phase
field simulations in the present work, we choose a double well potential for a
constant temperature from [78] and compare our results to the results of this
publication. We found this a good example for our former considerations. The
interfacial energy of the included martensite nucleus is small compared to the
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volume forces and the relation of inner forces and interfacial energy influences
our error terms discussed in Chapter 5.

The double well potential, shown in Fig. 10.10, does not fulfil all the require-
ments of the proofs in [4]. However, analogous proofs are very likely possible
and adapting the proofs for different potentials is another project for future
research.

The images of growing inclusions, we want to simulate now, are confirmed
in [78] by molecular dynamic computations. The paper defines the calibration
constants κS = 1.3592, κG = 0.6960, the interface energy density G = 0.1 J/m2,
the interface width determining parameter L = 5 nm and the mobility factor
M = 10−6m3/Js. The corresponding rescaled Allen-Cahn equation is in the
notation of [78] given by

ċi = −M
[
∂W

∂ci
+G

(
κs
L

∂f

∂ci
− κGL∆ci

)]
, i = 1, 2 . (10.27)

For i = 1 the variable ci denotes our order parameter S and f is the asymmetric
double well potential specified as

ψ(S) = 1 + 0.075S2 − 4.15S3 + 3.075S4 , (10.28)

plotted in Fig. 10.10.

Figure 10.10: Double well potential martensite.
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Compared to our previous examples, the two minima of the austenite-martensite
double well potential have different values. The first local minimum represents
the metastable austenite phase and the second global minimum represents the
martensite phase as the stable phase. The first minimum in S = 0 is almost
invisible in Fig. 10.10 and the transformation process will start upon very small
applied forces and /or temperature changes.

In this experiment, the energy that forces the order parameter value to leave the
first minimum, is provided by mechanical loadings. We speak of mechanical
induced martensite transformation opposite to thermal induced martensite
transformation.

The parameter G can be identified with the interface energy. Comparing the
model in [78] and adapting their notation

Ṡ = −M
(
WS +G

(
κs
L
ψS − κgL∆S

))
(10.29)

to the Allen-Cahn model

Ṡ =
c̃

(µλ)1/2

(
WS + λ1/2

(
1

(µλ)1/2
ψS − (µλ)1/2∆S

))
(10.30)

yields the system

M =
c̃

(µλ)1/2
,

Gκs
L

=
1

µ1/2
, GκgL = µ1/2λ , (10.31)

giving us the expressions

c̃ = ML

(
κg
κs

)1/2

, µ =

(
L

GκS

)2

, λ = G2κgκs . (10.32)

To analyse the dimension of µ and λ we insert Eq. (10.32) into Eq. (5.14) and,
replacing the index 1 by AC, we compare the interface velocities

sAC =
c̃

c1

(
n · [Ĉ]n+ c1λ

1/2κΓ +O(µ1/2)
)
, (10.33)

sMart. =
ML

c1

(
κg
κs

)1/2(
n · [Ĉ]n+ c1G

√
κgκsκΓ +O

(
L

G

))
. (10.34)

This demonstrates the apparent meaning of the parameter µ for this rescaled
Allen-Cahn model, because the interfacial energy parameter G is in the denomi-
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nator of the last term in Eq. (10.34). Thus, a very small or negligible interfacial
energy enlarges the error term in a strong way. The interface width parame-
ter L has to become very small to counteract this effect. On the other hand, a
small value of L requires a finer mesh for numerical simulations and therefore,
increases the simulation time.

Comparing Eq. (10.33) and Eq. (10.34) we recognise

err = O(µ1/2) = O

(
L

G

)
= O

(
interface width

interfacial energy

)
. (10.35)

With the given values and Eq. (10.31) we get

c̃ = 3.578 · 10−15 , (10.36)

µ = 1.353 · 10−15 ,

λ = 9.463 · 10−3 .

As in [78] we set the elasticity tensors to

CA =


1.40 0.84 0.00

0.84 1.40 0.00

0.00 0.00 0.28

 · 105 N
mm2

,

CM = 1.1CA

and the eigenstrain to

ε̄ =

(
−0.1 0.1 0.0

)T

.

In the numerical examples in Chapter 7 and Chapter 10 we chose parameters
and boundary conditions in such a way that the contexts, we studied, became
clear. Now we want to compare our simulations to results of a publication that
was based on molecular-dynamical computations. The goal is to show that the
hybrid model provides comparable results also in real physical situations.

In the following, we show simulations comparing the Allen-Cahn model to the
hybrid model in the context of martensite transformations. We select a time step
size of dt = 0.001 and discretise the domain with 400× 400 nodes.
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Fig. 10.11 shows the simulation result with the Allen-Cahn model matching the
picture from [78].

(a) t0 = 0. (b) t0 = 0.05. (c) t0 = 0.2.

Figure 10.11: Growth of martensite phase with Allen-Cahn.

To simulate the problem with the hybrid model we have to set ν = λ, see
Table 5.2.

Remark 10.2. Strictly speaking, c1 in Eq. (10.33) does not correspond exactly to
ω1 in Eq. (3.18), as permissibly assumed for the non-elastic case, if we consider
elasticity as in this martensite example. For the linear elastic case instead of
the double-well potential Eq. (2.5) determining the value of c1 by Eq. (2.17),
the effective double-well potential from [4] would have to be used to calculate
ω1 6= c1. This effective potential contains an additional expression depending on
the eigenstrain ε̄ and the elasticity tensor C(S). A rough estimation, not carried
out here, however showed that this term is not significantly influencing the
value of ω1 in this example, so we continue with the assumption that c1 ≈ ω1.

With ν = λ and Eq. (5.30) we calculate a relationship of reB = 0.0367, giving an
about 27 times wider interface zone for the hybrid model. It is obvious that we
receive a huge interface width and thus the interface reaches the centerline of the
ellipse immediately, destroying the simulation, see Fig. 10.12. This conclusion is
a result of our investigations into the conditions of the critical size in Chapter 7.2
and helps us here to better understand these simulations.

To achieve reA = 1, we set ν = λµ. This means that we reduce the influence of
the interfacial energy, which we can do, because martensite transformations
have very little interfacial energy. As explained before we regard the O()-terms
in Eq. (5.25) and Eq. (5.26) as error terms beyond the elastic driving force.
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(a) t0 = 0. (b) t0 = 0.001. (c) t0 = 0.004.

Figure 10.12: Growth of martensite phase with hybrid.

Beneath adjusting the width of the interface we expect a better convergence
by minimising the error between the classical and the numerical solution as
explained in Chapter 5.4.

Anyhow, the result is not satisfactory, because the interface of the hybrid model
does not move at all, see Fig. 10.13. Neither mesh refinement nor time refinement
seems to change this fact.

(a) t0 = 0. (b) t0 = 0.1. (c) t0 = 0.2.

Figure 10.13: Growth of martensite phase with hybrid and ν = µλ.

Trying to find out which mechanism initiates the interface to move, we vary the
function f2, explained in Table 5.2, and recognise that increasing the mobility
constant causes the nucleus to grow, see Fig. 10.14. We notice that we get results
comparable to the Allen-Cahn simulation in Fig. 10.11 by setting f2 = 1.0e8 · c̃/c1,
see Fig. 10.15.

The question to be answered is obvious. Before we said that setting f2 = c̃/c1

leads to comparable results for the Allen-Cahn model and the hybrid model. So
we have to explain the very different choice of f2 = 1.0e8 · c̃/c1 for a comparable
simulation in this situation.
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(a) f2 = 105. (b) f2 = 106. (c) f2 = 107.

Figure 10.14: Growth of martensite phase with hybrid and ν = µλ at t1 = 5.

(a) t0 = 0. (b) t0 = 0.05. (c) t0 = 0.2.

Figure 10.15: Growth of martensite phase with hybrid f2 = 108 · c̃, ν = µλ.

To consider this, we have a look at Eq. (5.25) and Eq. (5.26), where we have an
error term of O(λ1/2) + O(µ1/2) for the Allen-Cahn model and an error term of
O(ν1/2) for the hybrid model. Additionally, we have to transfer O(ν) to O(µλ)

for our last examples. So with the values of Eq. (10.36) we compare errors of
O(10−1) to errors of approximately O(10−8).

If we try to explain the choice of f2 = 108 · c̃/c1 for the results of the last simulation
in Fig. 10.15 this way, this would mean that the solution of the hybrid model
is very much closer to the exact sharp phase field solution. This in turn would
mean that the parameters chosen for the Allen-Cahn model contain a large error
regarding the sharp interface solution.

Anyhow, the parameters given in [78] were adapted by physical experiments
and not by the best possible approach to the sharp interface solution. So it
should also be valid to choose the parameters for the hybrid model in the best
way to imitate the behaviour of the given nucleus.

It might be interesting for future research to examine both models in terms of
such problems including very small scales.
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10.5 Conclusion

In the present work, we studied the hybrid model as a new phase field model
compared to the well-known Allen-Cahn model. We examined the phase field
equations in terms of well-posedness, convergence behaviour, numerical errors
and thermodynamic consistency. A semi-discrete approximation was intro-
duced and transformed into a fully-discrete numerical scheme. The numerical
Finite Element implementation was applied to simple examples with exist-
ing analytical solutions. The results were compared especially regarding the
convergence behaviour focusing on the scaling of the interface widths.

The model was expanded to a coupled elasticity term connected to a constitutive
equation and a momentum balance. Proofs for well-posedness and energy decay
properties of the fully discretised form were partially given and numerical
examples with reference to results published in literature were simulated. The
hybrid model was confirmed as a good alternative to the Allen-Cahn model,
at least for cases of small interface energy. This in turn was related to the
combination of error terms regarding the Allen-Cahn model we examined in
detail. We argued that for vanishing interfacial energies under the condition of
small error terms, the use of the Allen-Cahn model required a very fine mesh
compared to the hybrid model.

Finally, our analysis showed that for simulations near singularities, like a disap-
pearing circle or developing inclusions, the hybrid model behaves differently.
In order to use the hybrid model for martensite transformations or other small-
scale problems, the situation on small scales had to be given special attention.
This was done by the adaption of the asymptotic parameter ν and the adaption
of the mobility function.

In summary, we can say that the use of the hybrid model in certain contexts
indicates a precise analysis in terms of interface energy, simulation effort, do-
main size and other physical factors. For special situations with low interfacial
energy, adapting the parameters on very small scales, the hybrid model can
describe phase field problems with an essential advantage. It is certainly worth
continuing the research on the hybrid model. Especially the numerical im-
plementation for small inclusions, different boundary conditions, more-phase
problems, different material laws, among others, deserve further investigations
to make the hybrid model widely applicable.
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1 Proof in [4]

We consider the interface neighbourhood in the notation of [4], defined by
Eq. (3.17), and the indicator function φ(x, t) ∈ C∞ defining a point inside (φ = 1)
or outside (φ = 0) of U . The function v(x, t) in the equation system

u(ν)(x, t) = φ(x, t)

1∑
i=0

ν
1+i
2 ui (η, ζ, t) + v(x, t),

S(ν)(x, t) = φ(x, t)

1∑
i=0

ν
i
2Si (η, ζ, t) + (1− φ(x, t)) Ŝ(x, t) ,

T (ν)(x, t) = D
(
ε
(
∇u(ν)(x, t)

)
− ε̄S(ν)(x, t)

)
,

stands for the additional displacement inside and the only displacement outside
of U and Ŝ(x, t) denotes the value of the order parameter outside of the Γ-
neighbourhood. These approaches are inserted into the system (3.10) - (3.12)
in order to determine the unknowns u0, u1, S0 and S1. Combining the terms of
same order of ν leads to a system of second order differential equations

T ′0(ζ)n = 0, (A.1.1)

T ′1(ζ)n = −divηT0(ζ), (A.1.2)

ψ̃S(S0(ζ))− S′′0 (ζ) = 0, (A.1.3)

ψ̃SS(S0(ζ))S1(ζ)− S′′1 (ζ) = g1(t, η, ζ) + ω(t, η), (A.1.4)

supplemented by boundary conditions and a free energy function

ψ̃(t, η, S) = ψ̂(S)− ψ̂(0)(1− S)− ψ̂(1)S +
1

2
p(n(t, η))S(1− S).

The local coordinate variable
ζ =

ξ

ν1/2

is introduced and derivates (·)′ apply on it. Further we have the definition

p(n) = −ε̄ : D(I − Pn)ε̄
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with Pn being the projection onto S3
n. The definitions of the right-hand side in

Eq. (A.1.4) are given in [4] and depend on stresses and strains, as well as on the
unknowns of the system (3.10) - (3.12).

Instead of solving Eq. (A.1.3), the initial value problem

∂ζS0(n, ζ) =

√
2ψ̃(n, S0(n, ζ)), S0(n, 0) =

1

2

is examined and yields S′′0 =
ψ̃S(n, S0(n, ζ))

√
2ψ̃(n,S0(n,ζ))︷︸︸︷
∂ζS0√

2ψ̃(n, S0(n, ζ))
.

The existence of a unique bounded and strictly increasing solution S0(n, ζ) is
shown in the proof of Theorem 2.3 in [4]. To show existence of solutions,
Eq. (A.1.4) is written in terms of

LS1 = F1 with L = ψ̃SS(S0(ζ))− ∂ζζ .

Deriving Eq. (A.1.3) with respect to ζ yields

(ψ̃SS − ∂ζζ)S′0 = 0 ,

so that S′0 = ∂ζS0 is an eigenfunction to the eigenvalue zero of the linear boundary
value problem

ψ̃SS(S0(ζ))S1(ζ)− S′′1 (ζ) = F1(t, η, ζ) .

The spectral theory of self-adjoint differential operators states that

(LS1, S
′
0)Ω = (S1, LS

′
0)Ω = 0

and therefore the boundary value problem (A.1.4) has solutions if∫ b(t,η)

a(t,η)

F1(t, η, ζ)S′0(t, η, ζ) dζ = 0

holds; see [4], theorem 2.4 and the respective proof. Extending the functions S0

and S1 to ζ ∈ R\ [a(t, η), b(t, η)] with

S0(t, η, ζ) =

{
0, ζ < a(t, η),

1, ζ > b(t, η),

; S1(t, η, ζ) = 0 ,
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the authors show that the Eqs. (A.1.1) and (A.1.2), supplemented by the bound-
ary conditions, can be solved with unique continuously differentiable solutions
for the functions of (3.13) - (3.15). Details of the one-dimensional proofs and the
associated assumptions, e.g. symmetry conditions applied on the double well
potential, can be studied in the original literature. For unsymmetric double well
potentials the proofs can be adjusted.

Inserting the asymptotic solutions (u(ν)), T (ν)), S(ν)) into (3.10) - (3.12), the authors
show the estimates

∣∣∣divx T
(ν)(x, t) + b(x, t)

∣∣∣ ≤


K1ν
1/2, (x, t) ∈ Γ[ν],

K2ν, (x, t) ∈ Q\Γ[ν] ,

||∂tS(ν) +f(ψS
(
S(ν), ε(∇xu(ν))

)
− ν∆xS

(ν)|∇xS(ν)|||L∞(V )

≤



K3ν
1/2, forV = Γk[ν],

K4, forV = Γ̃k[ν],

0, forV = Q\Γk[ν] .

(A.1.5)

The regions Γk[ν] and Γ̃k[ν] are attached to Γ(t) and Q ∈ R3 denotes the whole
domain. For a two phase-system, described by an order parameter S ∈ [0, 1],
this order parameter goes within the neighbourhood domains smoothly and
continuous from 0 to 1. The outer expansions are S(x, t) = 0 for the one phase
and S(x, t) = 1 for the other.

With the proof of the estimate Eq. (A.1.5) in [4], the normal interface speed s

appears with
s = −∂tξ .
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2 Four-node two-dimensional Finite Elements

To connect our global system with the local configuration, we divide our domain
Ω̄ in standard finite elements; see Fig. A.2.1, and give them local and global
node numbers; see Fig. A.2.2.

1 2 3

4 5 6

7 8 9

el1 el2

el3 el4

Figure A.2.1: Domain with four Finite Elements

Following the notation from [55], we specify the four-noded standard element
Ωst = [(0, 1)× (0, 1)] with the local coordinates ξ = {ξ, η}T. Here we define the
standard bilinear shape functions

N1(ξ, η) = (1− ξ)(1− η) , (A.2.1)

N2(ξ, η) = ξ(1− η) ,

N3(ξ, η) = ξη ,

N4(ξ, η) = (1− ξ)η ,

for ξ, η ∈ [0, 1] .

We choose the same shape functions for the unknowns and the test functions in
Ωst expressed by

v
(el)
S,loc,h =

4∑
i=1

Ni(ξ, η)vSi ; S
(el)
loc,h =

4∑
i=1

Ni(ξ, η)Ŝi . (A.2.2)
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To transfer these terms into the global matrices, they have to be mapped first
from the local element reference configuration Ωst to the global element reference
configuration Ωel, which represents the actual shape of the respective element.
This is done by a mapping

X = {x, y}T = Φe(ξ, η) (A.2.3)

with X standing for the coordinates (x, y) of Ωel and Φ for the mapping applied
on functions in (ξ, η) in Ωst. For further details see [55].

The entry of the terms, calculated by the Gaussian quadrature in Ωst and then
projected onto Ωel, into the global element matrices is done by assignment rules,
in which the node numbers of the element configuration Ωel are assigned to
node numbers of the global configuration Ω̄. We recognize this assignment in
Fig. A.2.2.

>>

> >

> >

> >

>>

> >

> >

> >

Element 2
(global)

Element 2
(local)

4 3

21

2 3

65 U51

U52

U61

U62

U31

U32

U21

U22

U51 = u1

U52 = v1

U61 = u2

U62 = v2

U31 = u3

U32 = v3

U21 = u4

U22 = v4

Figure A.2.2: Global and local coordinates and unknowns

The unknowns Uij , i = 1, N ; j = 1, 2 and ui, vi, i = 1, 4 correspond to the unknown
displacements unh in Chapter 10.2. The scalar unknown order parameter values
Snh in Chapter 7.1 are assigned in a similar way not shown in Fig. A.2.2. For the
assembling scheme see Appendix 3.
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3 Assembling

The entries of the global Finite Element matrices have values only in the fields,
which belong to the respective elements and are zero everywhere else. The sizes
of the element matrices calculated at the global element reference configuration
Ωel are of dimension nel× nel, with nel for the number of nodes per element and
the sizes of the global system matrices are N ×N with N for the number of all
nodes of the global structure.

We call the indices for the local element nodes inode,loc, jnode,loc and the indices
for the global element nodes Inode,glob, Jnode,glob. The local indices are assigned
to the respective global node indices of the respective elements by a surjective
mapping

inode,loc → Inode,glob (A.3.1)

jnode,loc → Jnode,glob i, j = 1, 4; I, J = 1, N

E.g.: if an element has the global node indices 5, 6, 3, 2; see Fig. A.2.2, then the
positions of the local element stiffness matrix K(el) inside the global system
stiffness matrix K are assigned by

(1, 1), (1, 2), (1, 3), (1, 4) → (5, 5), (5, 6), (5, 3), (5, 2) , (A.3.2)

(2, 1), (2, 2), (2, 3), (2, 4) → (6, 5), (6, 6), (6, 3), (6, 2) ,

(3, 1), (3, 2), (3, 3), (3, 4) → (3, 5), (3, 6), (3, 3), (3, 2) ,

(4, 1), (4, 2), (4, 3), (4, 4) → (2, 5), (2, 6), (2, 3), (2, 2) .
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4 Spatial discretisation - Finite Element method

4.1 General model without elasticity

The spatial discretisation is based on the definitions

Sh,t :=
∑N

I=1NI ŜtI ; ∇Sh :=

N∑
I=1

BI ŜI ,

∇vhS :=
∑N

I=1BIvSI ; ψ′(Sh) :=

N∑
I=1

NIψ
′(ŜI) (A.4.1)

with

BI =

 NI,x

NI,y


for the spatial derivatives of the basis functions (A.2.1). The hat-symbol denotes
the unknown nodal variables. Insertion of Eq. (A.4.1) into Eq. (6.1), using the
Einstein notation, leads to∫

Ω

h(|BI ŜI |)NI ŜtINJvSJ dx+ α

∫
Ω

BI ŜIBJvSJ dx = −β
∫

Ω

NIψ
′(ŜI)NJvSJ dx .

The choice of arbitrary test functions vSJ yields∫
Ω

h(|BI ŜI |)NINJ ŜtI dx+ α

∫
Ω

BT
I BJ ŜI dx = −β

∫
Ω

NINJψ
′(ŜI) dx , I, J = 1, N .

The nodal unknowns ŜI are independent of the integration domain, so we
have∫

Ω

h(|BI ŜI |)NINJ dx ŜtI + α

∫
Ω

BT
I BJ dx ŜI = −β

∫
Ω

NINJ dxψ
′(ŜI) . (A.4.2)

As explained in Chapter 5.1 we have h(|∇hS|) = (µλ)1/2/c1 for the Allen-Cahn
model and h(|∇hS|) =

(
(NI,xŜI)

2 + (NI,yŜI)
2
)−1/2

for the hybrid model.

The function ψ′(ŜI) is calculated deriving the double well potential (2.5) only
for the starting value of the implementation scheme explained in Table 7.5. The
further steps use the difference quotient, evaluated by Eq. (7.15), for the non-
elastic case. Thus, within the implementation the function ψ′(ŜI) is substituted
by a polynom p(ai(ŜI)

i), i = 0, 3.
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With Eq. (A.4.2) we formulate

M2AC Ŝt + αKŜ = −βM1F (Ŝ) (A.4.3)

for the Allen-Cahn equation with

M2AC =
(µλ)1/2

c1

∫
Ω

NINJ dx ∈ RN×N , M1 =

∫
Ω

NINJ dx ∈ RN×N , (A.4.4)

K =

∫
Ω

BT
I BJ dx ∈ RN×N ,

F =

(
p(ai(Ŝ1)i) p(ai(Ŝ2)i) . . . p(ai(ŜN )i)

)T

∈ RN ,

Ŝt =

(
Ŝ1,t Ŝ2,t . . . ŜN,t

)T

∈ RN , Ŝ =

(
Ŝ1 Ŝ2 . . . ŜN

)T

∈ RN ,

for I, J = 1, N and N equal the total number of global nodes.

The integrals are calculated by computing the terms with Gaussian quadrature
on the local element reference configuration Ωst. Before they are assembled into
the global matrices M1,M2AC , K and F , they are transferred to the global element
reference configuration Ωel by the mapping Eq. (A.2.3); see Appendix 2 and
Appendix 3.

For the hybrid model the calculation goes straightforward using the same steps
with

M2h =
1

|∇Ŝ|

∫
Ω

NINJ dx ∈ RN×N (A.4.5)

and

|∇Ŝ| =

∣∣∣∣∣∣∣
 NI,xŜI

NI,yŜI


∣∣∣∣∣∣∣ . (A.4.6)

So we have instead of Eq. (A.4.3)

M2hŜt + αKŜ = −βM1F (Ŝ) . (A.4.7)
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4.2 General model with elasticity

Inserting Eq. (9.11) into Eq. (9.9), discretising the arising equation and using
Eq. (7.10) and the definitions

vhu :=
∑N

I=1N
u
I vuI , ∇vhu :=

∑N
I=1B

u
I vuI ,

Bu
I =


Nu
I,x 0

0 Nu
I , y

Nu
I,y Nu

I,x

 , (A.4.8)

we have∫
Ω

(
C1 +NI ŜI(C2 −C1)

) (
Bu
I ûI −NI ŜI ε̄

)
Bu
JvuJ dx =

∫
Ω

bNu
J vuJ dx ,

rewritten as∫
Ω

Bu
J
TC(NI ŜI)B

u
I ûIvuJ dx =

∫
Ω

(bNu
J +Bu

J
TC(NI ŜI)NI ŜI ε̄)vuJ dx . (A.4.9)

For arbitrary test functions vuJ and the unknowns û independent of the integrals,
this yields the equation∫

Ω

Bu
J
TC(NI ŜI)B

u
I dx ûI =

∫
Ω

bNu
J +Bu

J
TC(NI ŜI)NI ŜI ε̄ dx , (A.4.10)

which we can write as
K̄û = f̂ ∈ R2N (A.4.11)

with
K̄ =

∫
Ω

Bu
J
TC(NI ŜI)B

u
I dx ∈ R2N×2N , (A.4.12)

û =

(
û1 û2 . . . ûN

)T

∈ R2N , f̂ =

∫
Ω

bNu
J +Bu

J
TC(NI ŜI)NI ŜI ε̄ dx ∈ R2N .

The calculation of the integrals is explained at the end of Appendix 4.1.
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5 Linear elasticity and Voigt Notation

In index notation, the linear elasticity relation between the strains and the
stresses is given by

σij = Cijklεkl . (A.5.1)

We denote the 81 components of the elasticity tensor by Cijkl, the components
of the stress tensor by σij and the components of the strain tensor by εkl. With
the symmetry of the stress tensor σij , the elasticity tensor depends on only 36
independent components and the stress tensor contracts to six independent
components; see [52]. The symmetric strain tensor is given by

ε =
1

2
(∇u+∇uT) =


ε11 ε12 ε13

ε21 ε22 ε23

ε13 ε32 ε33

 . (A.5.2)

In this case, the Voigt notation assigns its components along the lines of the
stress tensor in the form (11)→ (11), (22)→ (22), (33)→ (33), (12)=(21)→ (12),
(23)=(32)→ (23) and (13)=(31)→ (13). We further set γij := 2εij .

The constitutive equation of linear elasticity for an isotropic material is defined
as the relation

σ11

σ22

σ33

σ12

σ23

σ13


=



λ̃+ 2µ̃ λ̃ λ̃ 0 0 0

λ̃ λ̃+ 2µ̃ λ̃ 0 0 0

λ̃ λ̃ λ̃+ 2µ̃ 0 0 0

0 0 0 µ̃ 0 0

0 0 0 0 µ̃ 0

0 0 0 0 0 µ̃





ε11

ε22

ε33

γ12

γ23

γ13


(A.5.3)

with the elastic constants λ̃ and µ̃ calculated by

λ̃ =
ν̃E

(1 + ν̃)(1− 2ν̃)
, µ̃ =

E

2(1 + ν̃)
(A.5.4)

from the Young’s modulus E and the Poisson’s ratio ν̃.
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Plane strain is obtained by constraining one direction (e.g. direction (33)) in
a three-dimensional body, so no displacement occurs in this direction. This
situations puts the components γ13, γ23 and ε33 to zero.

In thin plates with forces only in plate-direction, we assume plane stress with
σ33, σ23 and σ13 set to zero.

Table A.5.1 lists the relations for plane stress and plane strain, derived in [53].

Table A.5.1: Reduced equation for plane stress and plane strain

case reduced Eq.

plane stress


σ11

σ22

σ12

 =


λ̃+ 2µ̃ λ̃ 0

λ̃ λ̃+ 2µ̃ 0

0 0 µ̃




ε11

ε22

γ12


ε11 =

1

E′
(σ11 − ν̃σ22)

ε22 =
1

E′
(σ22 − ν̃σ11)

γ12 =
2(1 + ν̃)

E′
σ12

additional Eq.: σ33 = ν̃(σ11 + σ22)

parameters: E′ =
E

(1− ν̃2)
, ν̃ ′ =

ν̃

1− ν̃

plane strain


σ11

σ22

σ12

 =


λ̃+ 2µ̃ λ̃ 0

λ̃ λ̃+ 2µ̃ 0

0 0 µ̃




ε11

ε22

γ12


ε11 =

1

E
(σ11 − ν̃σ22)

ε22 =
1

E
(σ22 − ν̃σ11)

γ12 =
2(1 + ν̃)

E
σ12

additional Eq.: ε33 = −ν̃(σ11 + σ22)/E
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6 Dissipation inequality

The second law of thermodynamics combined with the entropy-balance reads

ρ0ṡ+ div(Φ) = ξ ≥ 0,

with the density ρ0 ∈ R, the entropy production ξ ∈ R and the entropy-flux
Φ ∈ R3. Because the specific entropy s ∈ R depends on the inner energy e ∈ R,
the deformation gradient F ∈ R3×3, the order parameter S ∈ R and its gradient
∇S ∈ R3, we get

ξ = ρ0

(
∂s

∂e
ė+

∂s

∂F
: Ḟ +

∂s

∂S
Ṡ +

∂s

∂∇S
(∇S )̇

)
+ div(Φ).

The temperature ϑ ∈ R can be calculated by

ϑ =
∂e

∂s

and thus, we write

ξ =
ρ0

ϑ
ė+ ρ0

∂s

∂F
: Ḟ + ρ0

∂s

∂S
Ṡ + ρ0

∂s

∂∇S
(∇S )̇ + div(Φ).

Inserting the energy balance

ρ0ė+ div(Q) = ḞT · T

with the heat Q ∈ R3 and the stress tensor T ∈ R3×3, we get

ξ =
1

ϑ

(
−div(Q) + ḞT : T

)
+ ρ0

∂s

∂F
: Ḟ + ρ0

∂s

∂S
Ṡ + ρ0

∂s

∂∇S
(∇S )̇ + div(Φ)

and with
−1

ϑ
div(Q) = −div

(
Q

ϑ

)
− 1

ϑ2
Q · ∇ϑ

this equation reads

ξ = −div
(
Q

ϑ

)
− 1

ϑ2
Q · ∇ϑ+

1

ϑ
ḞT : T + ρ0

∂s

∂F
: Ḟ + ρ0

∂s

∂S
Ṡ + ρ0

∂s

∂∇S
(∇S )̇ + div(Φ).

With index notation

Q → Qk ; T → Tik ; Ḟ → Ḟik ; ∇ → ∇k ; Φ → Φk
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we write

ξ = −∇k ·
(
Qk
ϑ

)
− 1

ϑ2
Qk · ∇kϑ+

1

ϑ
ḞkiTik +

+ ρ0
∂s

∂Fik
: Ḟik + ρ0

∂s

∂S
Ṡ + ρ0

∂s

∂∇kS
· (∇kS)˙+∇k · Φk.

With the product rule for the second last term

∇k
(

∂

∂∇kS
Ṡ

)
= ∇k

(
∂

∂∇kS

)
Ṡ +

(
∂

∂∇kS

)
∇kṠ

we have

ξ = −∇k ·
(
Qk
ϑ

)
− 1

ϑ2
Qk · ∇kϑ+

1

ϑ
ḞkiTik +

+ ρ0
∂s

∂Fik
: Ḟik + ρ0

∂s

∂S
Ṡ + ρ0

(
∇k
(

∂s

∂∇kS
Ṡ

)
−∇k

(
∂s

∂∇kS

)
Ṡ

)
+∇k · Φk.

Sorting the terms yields

ξ = ∇k ·
(

Φ−
(
Qk
ϑ

)
− ∂s

∂∇kS
Ṡ

)
+

(
1

ϑ
Tik + ρ0

∂s

∂Fik

)
Ḟik +

+

(
ρ0
∂s

∂S
− ρ0∇k

(
∂s

∂∇kS

))
Ṡ +Qk ·

∇k
ϑ
≥ 0.

The inequality can be fulfilled by the following assumptions

Φk =
Qk
ϑ

+
∂s

∂∇kS
Ṡ, (A.6.1)

Tik = −ρ0ϑ
∂s

∂Fik
, ϑ∂s = ∂e, (A.6.2)

0 ≤ Qk ·
∇k
ϑ
, (A.6.3)

0 ≤
(
∂s

∂S
−∇k

∂s

∂∇kS

)
Ṡ. (A.6.4)

- Eq. (A.6.1) denotes the resulting entropy flux.

- Eq. (A.6.2) describes the stresses as a function of the deformations.

- Eq. (A.6.3) is true, since temperature- and heat flux have the same direction.

- Eq. (A.6.4) leads to a phase field equation.
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7 Binomial formulas

Lemma 14 (Formula). Let a, b, c be in Rn×n, n ∈ N. Let a : b =
∑

ij aijbij denote the
matrix scalar product. Then we have

1

2
(a+ b) : (c(a− b)) = a : (c(a− b))− 1

2
(a− b) : (c(a− b)) . (A.7.1)

Proof. We show the lemma by the following calculculation

1

2
(a+ b) : (c(a− b)) =

1

2
a : (c(a− b)) +

1

2
b : (c(a− b)) (A.7.2)

= a : (c(a− b))− 1

2
a : (c(a− b)) +

1

2
b : (c(a− b))

= a : (c(a− b))− 1

2
a : (ca) +

1

2
a : (cb) +

1

2
b : (ca)− 1

2
b : (cb)

= a : (c(a− b))− 1

2
(a : (ca)− a : (cb)− b : (ca) + b : (cb))

= a : (c(a− b))− 1

2
(a− b) : (c(a− b)) .

If we repeat the proof for a, b, c in Rn, defining a : b =
∑

i aibi, omitting the vector
c and using the third binomial formula on the left hand side, this yields

1

2
(a2 − b2) = a(a− b)− 1

2
(a− b)2 (A.7.3)

and with a =: ∇Snh and b =: ∇Sn−1
h we have

1

2
((∇Snh )2 − (∇Sn−1

h )2) = ∇Snh (∇Snh −∇S
n−1
h )− 1

2
(∇Snh −∇S

n−1
h )2 . (A.7.4)

For a =: ε(Sn−1
h , unh), b =: ε(Sn−1

h , un−1
h ) and c =: C(Sn−1

h ) we achieve with Eq. (A.7.2)

and ε =
1

2
(∇un−1

h + (∇un−1
h )T)︸ ︷︷ ︸

ε(un−1
h )

−Sn−1
h ε̄ the relation

1

2
(ε(Sn−1

h , unh) + ε(Sn−1
h , un−1

h )) :
(
C(Sn−1

h )(ε(Sn−1
h , unh)− ε(Sn−1

h , un−1
h ))

)
= ε(Sn−1

h , unh) :
(
C(Sn−1

h )(ε(Sn−1
h , unh)− ε(Sn−1

h , un−1
h ))

)
− 1

2
(ε(Sn−1

h , unh)− ε(Sn−1
h , un−1

h )) :
(
C(Sn−1

h )(ε(Sn−1
h , unh)− ε(Sn−1

h , un−1
h ))

)
= ε(Sn−1

h , unh) :
(
C(Sn−1

h )(ε(unh − u
n−1
h ))

)
− 1

2
(ε(unh − u

n−1
h ) :

(
C(Sn−1

h )(ε(unh − u
n−1
h ))

)
.
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8 Newton’s method

Before solving the fully discretised scheme Eq. (9.10) with the Banach fixed-point
theorem, we tried the implementation by Newton’s method, we will briefly
sketch, in case, it will be needed for some future research and implementation.

We want to solve the equation system F (Ŝn, ûn−1) = 0. We calculate

(Ŝn)k+1 = (Ŝn)k −
(
dF
(
(Ŝn, ûn−1)k

))−1
F
(
(Ŝn, ûn−1)k

)
,

(Ŝn)0 = Ŝn .

Beginning with the actual time step, the next time step will start after the
Newton-Iteration fulfills an error criterion

||(Ŝn)k+1 − (Ŝn)k|| ≤ ||e|| (A.8.1)

with a given error e. The terms of F are calculated per element by

F =
∑
el

F (el) ∈ RN ;
(
F

(el)
loc

)
i

=



F
(el)
1

F
(el)
2

F
(el)
3

F
(el)
4


∈ R4

with

F
(el)
j

(
(S

(el)
loc,h)n

)
=

∫
Ωel

c

(
|
∑
i

BiŜ
n−1
i |

)
Nj

(∑
i

NiŜ
n
i −

∑
i

NiŜ
n−1
i

)
+τ NjWS

(
arg1

)
+ τβ Njψ

′
(arg2) + τα

∑
i

KijŜ
n
j dxel ,

arg1 =
∑

NiŜ
n
i ;
∑

NiŜ
n−1
i , un−1

h and arg2 =
∑

iNiŜ
n
i ;
∑

iNiŜ
n−1
i .

The matrix containing the derivatives of FI with respect to ŜJ is called Jacobian
matrix and it is calculated (element-wise) by

(
dF (Ŝ)

)
IJ

=
∂FJ(Ŝ)

∂SI
=
∑
el

dF (el)(Ŝ) =
∑
el

∂Fi
∂Sj

(Ŝ)
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with

(
dF

(el)
loc

)
ji

=



dF
(el)
11 dF

(el)
12 dF

(el)
13 dF

(el)
14

dF
(el)
21 dF

(el)
22 dF

(el)
23 dF

(el)
24

dF
(el)
31 dF

(el)
32 dF

(el)
33 dF

(el)
34

dF
(el)
41 dF

(el)
42 dF

(el)
34 dF

(el)
44


∈ R4×4 .

The components are calculated by

dF
(el)
ji

(
(S

(el)
loc,h)n−1

)
=

∫
Ωel

((
|
∑
i

BiŜ
n−1
i |

)
NiNj + τ WSS(arg1)NiNj

+ τβ ψ
′′
(arg2)NiNj + τα

∑
i

Kij dxel with

WjS = ej1 (NiŜ
n
i )2 + ej2NiŜ

n
i + ej3 ,

WjSS = 2ej1 (NiŜ
n
i ) + ej2 ,

ψ
′

j = (NiŜ
n
i )3 + dj1 (NiŜ

n
i )2 + dj2NiŜ

n
i + dj3 ,

ψ
′′

j = 3((NiŜ
n
i )2 + dj1 2NiŜ

n
i + dj2 ,

dj1 = −2 +NiŜ
n−1
i ,

dj2 = 1− 2NiŜ
n−1
i + (NiŜ

n−1
i )2 ,

dj3 = NiŜ
n−1
i − 2(NiŜ

n−1
i )2 + (NiŜ

n−1
i )3 ,

ej1 =
1

2
ε̄((C2 −C1)ε̄) ,

ej2 = −ε̄((C2 −C1)(ε(un−1
h )j) +

1

2
ε̄(C1ε̄) +

1

2
NiŜ

n−1
i ε̄((C2 −C1)ε̄) ,

ej3 = (
1

2
ε(un−1

h )j − ε̄NiŜn−1
i )((C2 −C1)ε(un−1

h )j)− ε̄(C1ε(u
n−1
h )j)

+
1

2
NiŜ

n−1
i ε̄(C1ε̄) +

1

2
ε̄((C2 −C1)ε̄ (NiŜ

n−1
i )2) .

Kij = BiBj ; Bi =

 Ni,x

Ni,y

 ; ε(uh)j =
1

2

(
(∇uh)j + (∇uh)Tj

)
, ∇(uh)j = Bu

j ûj .
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9 Piezoelectricity

The structure of a piezoelectric system is almost identical to the equation system
of linear elasticity. To transfer a phase field model to piezoelectricity the terms
shown in table A.9.2 have to be replaced.

Table A.9.2: Analogies of linear elasticity and piezoelectricity.

1 Description Elasticity Piezo

2 Balance law divσ = f divσ = f

3 Balance law - divD = ρ

4 Stress tensor σ = ∂εW σ = ∂εW

5 Stress tensor σ = Cε σ = Cε− EE

6 Strain tensor ε = 1
2

(
∇u+ (u)T

)
ε = C−1σ + DE

7 Electric field - E = ∇ϕ

8 Electric displacement - D = −∂EH; D = ξE + Eε+ P 0

9 Enthalpy / mech. work W = 1
2
εTCε H = 1

2
εTCε− ε(ETE)− 1

2
E(ξE)− P 0E

10 Polarisation order parameter P = Dσ + KE

Table A.9.3: Notation.

C: Elasticity tensor K : Tensor of susceptibility
D : Electric displacement ξ : Electric field constant
D : Piezoelectric tensor P 0 : Spontaneous polarisation
E : Electric field ρ : External electric load
E : Piezoelectric tensor σ : Strain tensor
ε : Mechanical displacement ϕ : Electric potential
f : External force u : Displacement
H : Electric enthalpy W : Mechanical work
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In 2005, the hybrid model was published by Prof. H.-D. Alber and Prof. P.

Zhu as an alternative to the Allen-Cahn model for the description of phase

field transformations. With low interfacial energy, it is more efficient, since

the resolution of the diffuse interface is numerically broader for the same

solution accuracy and allows coarser meshing. The solutions of both models

are associated with energy minimisation and in this work the error terms

introduced in the earlier publications are discussed and documented using

one and two dimensional numerical simulations. In the last part of this

book, phase field problems, initially not coupled with material equations, are

combined with linear elasticity and, after simple introductory examples, a

growing martensitic inclusion is simulated and compared with literature data.

In addition to the confirmed numerical advantage, another phenomenon not

previously described in the literature is found: with the hybrid model, in contrast

to the examples calculated with the Allen-Cahn model, an inclusion driven

mainly by curvature energy does not disappear completely. The opposite

problem prevents inclusions from growing from very small initial configurations,

but this fact can be remedied by a very finely chosen diffuse interface width

and by analysing and adjusting the terms that generate the modelling errors.

The last example shows that the hybrid model can be used with numerical

advantages despite the above mentioned peculiarities.
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