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1 Introduction

This booklet aims to present, to contextualize and

to evaluate the pioneering contributions to modal

logic contained in OSKAR BECKER’s essay On the

Logic of Modalities (Zur Logik der Modalitäten) that

appeared in 1930 on the Yearbook for Philosophy and
Phenomenological Research.1

OSKAR BECKER (Leipzig 1889 – Bonn 1964) was a

German philosopher, logician, mathematician and

historian of mathematics. He is often remembered,

together with MARTIN HEIDEGGER, for being

one of the most important students of EDMUND

HUSSERL (1859–1938). He was, together with

MORITZ GEIGER (1880–1937), MARTIN HEIDEG-

GER (1889–1976), ALEXANDER PFÄNDER (1870–

1941), ADOLF REINACH (1883–1917) and MAX

SCHELER (1874–1928), one of the members of the

editorial board of the Yearbook.

OSKAR BECKER got his PhD in mathematics in

1914 with a work2 entitled On the Decomposition

of Polygons in non-intersecting triangles on the Ba-
sis of the Axioms of Connection and Order (Über

die Zerlegung eines Polygons in exclusive Dreiecke

auf Grund der ebenen Axiome der Verknüpfung und
Anordnung). In 1922 he wrote under HUSSERL’s

supervision his Habilitationsschrift, On Investiga-
tions of the Phenomenological Foundation of Ge-
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ometry and their physical Application (Beiträge zur
phänomenologischen Begründung der Geometrie und

ihrer physikalischen Anwendungen).3 In 1927 OS-

KAR BECKER published in the Yearbook his mas-

terpiece Mathematical Existence,4 where he uses the

Husserlian phenomenology to clarify the process

of counting. In 1952 — when the study of modal

logic was already well beyond its pioneering era

— BECKER came back to the subject publishing

a monograph, Investigations on the Modal Calculus

(Untersuchungen über den Modalkalkül), perhaps too

old-fashioned for the time.5

∗ ∗ ∗

The essay On the Logic of Modalities represents an

attempt to treat modal logical issues with a phe-

nomenological method. This enterprise appeared

from the outset not to be easy at all, for logic

and phenomenology are completely different dis-

ciplines. Depending on the way in which it con-

structs its formal systems, formal logic can be seen

as the theory of the correct inferences, or alternatively,

as the theory of purely formal truths, that is, as the

theory of those truths that hold without any con-

dition. Phenomenology, instead, deals with the

description of lived experiences.

Indeed, we might better say that in his investiga-

tions BECKER pursued two loosely related goals.
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The first one, more technical in character, was to

find axiomatic conditions that reduced to the finite

the number of logically non-equivalent combina-

tions arising from the iterated application of the

operators “not” and “it is impossible that (. . . )” in

LEWIS’s modal system, as we will explain in details

below. The second one, more philosophically ori-

ented and in a sense much more ambitious, was to

treat the logic of modalities from a phenomenolog-

ical perspective and to understand, from this per-

spective, the philosophical and logical-ontological

problems underlying the, and posed by, Intuition-

ism.

On the Logic of Modalities consists of two parts,

loosely related as the above mentioned correspond-

ing goals are. Part I contains a general Introduc-

tion that shortly recalls the Aristotelian conception

of modalities as well as HUGH MACCOLL’s pio-

neering modal logical investigations in his Symbolic

Logic and its Applications6 of 1906. It then focuses

on C. I. LEWIS’s Survey of Symbolic Logic7 of 1918.

This latter contains the first presentation of the so-

called “Survey system”, known since 1932 as “modal

system S3.”8

De facto, S3 is the actual object of the investigations

in Part I of BECKER’s essay. As pointed out by

EMIL L. POST, the system LEWIS presents in 1918

collapses into classical logic. LEWIS corrects it in a

11



paper entitled Strict Implication: An Emendation9

and published in 1920, where the system effectively

becomes the logic we nowadays know as “S3.”10 In

his essay BECKER faithfully reports both that the

original version of the “Survey system” proves the

collapse of modalities, as well as LEWIS’s amend-

ment thereof. Incidentally, “collapse of modalities” is

a customary expression in the modal-logical jargon.

It means that a modal logical system proves that ne-

cessity and truth are one and the same, or equiva-

lently (as it is the case in the “Survey system”) that

impossibility and falsity are one and the same. Obvi-

ously, such a system is trivial from a modal point of

view.

BECKER’s Introduction touches on the paradoxes of

material and strict implication and sets out to estab-

lish a propositional modal logic that is decidable as

the classical propositional logic:11

The aim of the present essay has a strict

relation to the investigations of MACCOLL

as well as to those of LEWIS. The ultimate

purpose of our investigations is to develop

an elementary logical calculus that takes

adequately into account the modalities of

the sentence, namely in such a way that
the so-called elementary decision problem is

solvable, as in the ordinary propositional

calculus.

12



Part I, On the Rank Order and the Reduction of Log-
ical Modalities — on which this booklet will con-

centrate — is specifically devoted to the problems of

ranking and iteration of modalities. BECKER sets

out to modify S3 by means of some additional ax-

ioms effecting the reduction of complex modalities

to simple ones in order to obtain two new modal

systems — he calls them “the six modalities calculus”
(henceforth denoted here by S3′) and “the ten modal-

ities calculus” (henceforth S3′′) with the following

properties:

(i) the number of irreducible modalities is finite,

(ii) the positive (and by consequence the negative)

modalities are arranged in a linear order with
respect to logical strength.

He believes that, since the “System of Strict Implica-

tion” has the conjunction, the negation and the im-

possibility as primitive logical constants, it is possi-

ble to generate within it infinitely many non equiva-

lent nested modalities through iteration of the nega-

tion and the impossibility operators. Such modali-

ties, as KURT GÖDEL (1906-1978) puts it in his Re-
view of BECKER 1930, “cannot even be linearly or-

dered according to their logical strength in the sense

that, of any two affirming modalities, one will im-

ply the other, and similarly for negating ones.”12.

Otherwise said, there are modalities that are incom-

parable in LEWIS’s system.

13



That said, it is worth to be mentioned that OSKAR

BECKER neither shows that the two systems he sets

up (and others he tentatively introduces, as we will

see later) really differ from one another, nor that his

additional axioms cannot be derived from those of

Lewis, nor either that in his own systems, with six
and, respectively, with ten “irreducible” modalities,

such modalities cannot be further reduced.13

Actually, nine years later, W. T. PARRY will show,

in a paper entitled Modalities in the Survey System
of Strict Implication14, that, at a variance with what

BECKER seems to believe, S3 has a finite number

of modalities. More precisely, PARRY shows, with

the help of a number of suitable theses he is able to

derive in the system, that it is possible to reduce all

the complex modalities in S3 to a finite number of

irreducible modalities, viz. 42. He also shows that

no further reduction is possible.

Part II of BECKER’s essay explores, more or less

independently from Part I, the connection between

modal and intuitionistic logic both from a formal

and from a phenomenological perspective. From

a formal perspective, the particular interest of a

(propositional) modal calculus with nested modali-

ties that is decidable lies in the fact, so BECKER, that

BROUWER’s idea to set up a finite logic grounded

on evidence, or – to put it with HUSSERL – on

the clarity of evidence (Klarheitsevidenz) seems to be

14



realizable only within the framework of a modal

formal system.

Indeed, BECKER is the first logician and philoso-

pher of mathematics to put forward the idea of a

modal interpretation of intuitionistic logic, more

precisely the idea of a possible sound and faithful

translation of intuitionistic logic into modal logic.

However, the first actual translation is to be found

in a one-page celebrated and influential paper en-

titled An interpretation of the intuitionistic proposi-
tional calculus written in 1933 by KURT GÖDEL.15

The basic idea of GÖDEL is similar to the one OS-

KAR BECKER outlines in On the Logic of Modalities.

BECKER suggests to add to classical logic the pred-

icates “(...) is provable”, “(...) is such, that its nega-

tion is provable” and “(...) is undecided”. Such pred-

icates should express BROUWER’s primitive logical

concepts.

Similarly, GÖDEL’s idea is to add to the language of

classical propositional logic the unary operator “it

is provable that (. . . )”, denoted by “B”, and to an

axiomatic calculus for propositional classical logic

three axiom-schemas and one rule of inference. The

axiom-schemas are the modal schemas K , T and

4 that characterize modal logics that are nowadays

standard, the rule of inference is the necessitation

rule that is contained in all normal modal systems.
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We will introduce both the schemas and the rule of

inference in detail later on.

Notice, incidentally, that both BECKER and GÖ-

DEL seem to take the predicate “(...) is provable”

and the operator “it is provable that (. . . )” as con-

veying the same piece of information. Actually, the

predicate “(...) is provable” denotes the property of

a proposition to be provable, while the operator “it

is provable that (. . . )” takes a proposition as input

and gives a different proposition as output. (Un-

fortunately, such practice of systematically neglect-

ing the difference between predicate and operator is,

even nowadays, quite widespread among logicians.)

GÖDEL writes:16

One can interpret Heyting’s propositional

calculus by means of the notions of the or-

dinary propositional calculus and the no-

tion “p is provable” (written “Bp”), if one

adopts for that notion the following system

S of axioms:

1. Bp → p

if it is provable that p, then it is true

that p

2. Bp → ((B(p → q) → Bq)

if it is provable that p and it is prov-

able that p implies q, then it is prov-

able that q

16



3. Bp → BBp

if it is provable that p, then it is prov-

able that it is provable that p

In addition, [. . . ] the new rule of inference

is to be added
A
BA

From A, it is provable that A may be

inferred

By substituting throughout the operator “B” (“it is

provable that (. . . )”) by the operator “�” (“it is nec-

essary that (. . . )”) one obtains one of the modal

logical systems that are nowadays standard, namely

LEWIS’s system S4.
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2 The Conditional, or The Crows

on the Roofs

Since BECKER as well as MACCOLL and LEWIS all

refer to the old controversy about the right interpre-

tation of conditional sentences, let us briefly dwell

on it.

Such a controversy traces back to the Megarians and

the Stoics. As JÓZEF MARIA BOCHEŃSKI puts it

in his A History of Formal Logic:17

The definition of implication was a matter

much debated among the Megarians and

Stoics: All dialecticians say that a connected

(proposition) is sound, when its consequent

follows from its antecedent — but they dis-

pute about when and how it follows, and

propound rival criteria.

Even so Callimachus, librarian at Alexan-

dria in the 2nd century B.C., said: ‘the very

crows on the roofs croak about which im-

plications are sound’.

In ancient times the quarrel was, above all, between

a truth-functional and a modal interpretation of the

conditional. PHILO (OF MEGARA) said that an im-

plication is true when it is not the case that it be-

gins with the true and ends with the false.18 This

conception of the conditional was later adopted by

19



GOTTLOB FREGE (1848-1925) and by the Ameri-

can logician and founder of American Pragmatism

CHARLES SANDERS PEIRCE (1839-1914).

In his Gedankengefüge (1923) FREGE calls condi-

tional sentences “hypothetische Satzgefüge” and what

is expressed by them “hypothetische Gedankengefü-

ge”. He writes:19

[A] hypothetical compound thought is

true if its consequent is true; it is also

true if its antecedent is false, regardless of

whether the consequent is true or false.

The consequent must always be a thought.

Given [. . . ] that “A” and “B” are sentences

proper, then “not (not A and B)” expresses

a hypotethical compound with the sense

(thought-content) of “A” as consequent and

the sense of “B” as antecedent. We may

also write instead: “if B, then A.” But here,

indeed, doubts may arise. It may perhaps

be maintained that this does not square

with linguistic usage. I reply, it must once

again be emphasized that science has to be

allowed its own terminology, that it can-

not always bow to ordinary language. Just

here I see the greatest difficulty for philos-

ophy: the instrument it finds available for

its work, namely ordinary language, is little

suited to the purpose, for its formation was

20



governed by requirements wholly different

from those of philosophy. So also logic is

first obliged to fashion a usable instrument

from those already to hand. And for this

purpose it initially finds but little in the

way of usable instruments available. [. . . ]

The thought expressed by the compound

sentence “If I own a cock which has laid

eggs today, then Cologne Cathedral will

collapse tomorrow morning” is [. . . ] true.

Someone will perhaps say: “But here the

antecedent has no inner connection at all

with the consequent.” In my account, how-

ever, I required no such connection, and

I ask that “if B, then A” should be under-

stood solely in terms of what I have said

and expressed in the form “not (not A and

B).” It must be admitted that this concep-

tion of a hypothetical compound thought

will at first be thought strange. But my

account is not designed to square with or-

dinary linguistic usage, which is generally

too vague and ambiguous for the purposes

of logic.

Thus, as far as the truth-conditions of conditional

propositions are concerned, FREGE is, whether he

knew it or not, a follower of PHILO.

In turn, PEIRCE is overtly a follower of PHILO:20
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As far as I am concerned, I am a follower

of PHILO [. . . ]. It is completely irrelevant,

whether this conception is in accordance

with ordinary language.

DIODORUS OF SICILY and CHRYSIPPUS OF SOLI

raised objections against PHILO’s truth-functional

conception of implication. While DIODORUS

saw the conditional as a temporal quantification

— namely by regarding a conditional true if and

only if, for every instant of time t, it is not the

case that at the instant t the antecedent is true and

the consequent is false — CHRYSIPPUS had a vir-

tually21 modal conception of the conditional: ac-

cording to him, a conditional is true if and only if

the premise is incompatible with the negation of the

consequence.

As we saw, FREGE and PEIRCE shared PHILO’s

conception. In HUGH MACCOLL’s essay pub-

lished in 1880 in the journal Mind and in his Sym-
bolic Logic (1906)22 a concept similar to that of

CHRYSIPPUS can be found.

CLARENCE IRVING LEWIS, on the basis of

MACCOLL’s investigations, pleaded in favor of the

CHRYSIPPEAN modal reading as an appropriate

interpretation of the conditional, which he called

“strict implication”. In 1918 LEWIS published his

first modal system, later called S3. Later on he de-

veloped his modal systems S1 to S5,23 which are

22



stepwise based on one another. They are conceived

as alternatives to the non-modal logic presented in

RUSSELL’s and WHITEHEAD’s Principia Mathemat-
ica (1910-1913).24

LEWIS formalized strict implication in terms of

negation, possibility and conjunction25 as follows:26

p →s q := ¬♦(p ∧ ¬q)

Due to the interdefinability of � and ♦, this is logi-

cally equivalent to

�(p → q)

Similarities and differences in comparison with

the “material implication”, as RUSSELL called the

PHILONIAN conditional, are obvious:

p → q := ¬(p ∧ ¬q)

LEWIS’s comment on this was the following:27

“p strictly implies q” is to mean “it is false

that it is possbile that p should be true and

q false” [...]

“p materially implies q” is to mean “it is not

the case that p is true and q is false.”

23



LEWIS’s main reason for formally introducing the

CHRYSIPPEAN conditional were the paradoxes of

material implication, in particular:

(1) p → (q → p) (argumentum a fortiori),

(2) ¬p → (p → q) (ex falso quodlibet).

Lewis rephrases them as follows:28

(1*) If p is true, then any proposition q

materially implies p.

(2*) If p is false, then p materially implies

any proposition q.

However, LEWIS admitted that the strict implica-

tion also yields the following analogous paradoxical

theorems:

(3) ¬♦¬p →s (q → p),

(4) ¬♦p →s (p → q),

in his words:29

(3*) A proposition which is necessarily

true is implied by any proposition [...]

(4*) A proposition which is impossible im-

plies any proposition.

In the later Symbolic Logic he will carefully discuss

this issue, arguing that the paradoxicality of these

theorems is just illusory: they are “paradoxical only

in the sense of expressing logical truths which are

easily overlooked”.30
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3 The Decision Problem and

Leibniz’s Dream

Part I of BECKER’s essay pursues the goal, as we

already said, of finding a propositional modal logic

with a finite number of iterated modalities that

is decidable. In the present section we focus on

the decision problem and hint at the problems one

encounters when searching for a decidable propo-

sitional modal logic without an adequate semantic
(and a completeness theorem) for such a calculus be-

ing available.

The Entscheidungsproblem (German for “decision

problem”) is the question whether the first-order

predicate logic is decidable. In this form the ques-

tion is to be found in HILBERT & ACKERMANN

Outlines of Mathematical Logic (Grundzüge der math-

ematischen Logik) published in Berlin in 1928.31 Is

there an effective method to decide the set of of

logically valid formulas of first order logic?

The conceptual issues underlying the problem have

a long history and may be traced back at least to

LEIBNIZ. In his Dissertatio de Arte Combinatoria

(1666)32 early LEIBNIZ had advanced the hypothesis

that all concepts could be reduced, through analysis,

to a finite number of simple concepts with a pro-

cedure analogous to prime number decomposition.
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Such simple concepts should have been transposed

in a lingua characteristica, i.e. in a universal sign-

system capable of directly coding simple concepts

and, by means of syntactical rules, complex con-

cepts. LEIBNIZ takes it to be possible to translate

all deductive problems in the lingua characteristica
and to decide them by means of a calculus ratiocina-

tor. An example of deductive problem may be the

following: “Does the conclusion C logically follow

from the premises A and B? In symbols:

A,B |=? C

A calculus ratiocinator may be thought of as a com-

plex of calculation rules capable of “deciding”, that

is answering mechanically in the positive or in the

negative, any deductive problem, i.e., applied to our

schematization, whether C does follow from A and

B or not. We interpret thus Leibniz’s famous “cal-
culemus!” Leibniz writes:33

I feel that controversies can never be fin-

ished, nor silence imposed upon the sects,

unless we give up complicated reasonings

in favor of simple calculations, words of

vague and uncertain meaning in favor of

fixed symbols [characteres]. Thus, it will ap-

pear that every paralogism is nothing but

an error of calculation [...]

26



If controversies were to arise, there would

be no more need of disputation between

two philosophers than between two calcu-

lators. For it would suffice for them to take

their pencils in their hands and to sit down

at the abacus, and say to each other (and if

they so wish also to a friend called to help):

Let us calculate without further ado!

[Sed ut redeam ad expressionem cogita-

tionum per characteres, ita sentio nunquam

temere controversias finiri neque sectis silen-

tium imponi posse, nisi a ratiocinationibus

complicatis ad calculos simplices, a vocabu-

lis vagae incertaeque significationis ad char-

acteres determinatos revocemur. Id scilicet

efficiendum est, ut omnis paralogismus nihil

aliud sit quam error calculi [. . . ]

Quo facto quando orientur controversiae,

non magis disputatione opus erit inter

duos philosophos, quam inter duos Com-

putistas. Sufficiet enim calamos in manus

sumere sedereque ad abacos, et sibi mutuo

(accito si placet amico) dicere: calculemus.]
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For the sake of convenience let us depict Leibniz’s

idea by the following schema:

DEDUCTIVE PROBLEM

Is the conclusion C

implied by the premises A and B?

A,B |=? C

ENCODING

into the

Universal

language

LOGICAL

ALGORITHM

Calculus

ratiocinator

YES, A,B |= C

NO, A,B 6|= C

A,B,C

To prove the decidability of a certain set, for in-

stance of the set of all S3-tautologies, it suffices to

exhibit a decision algorithm for it; that is, in our

example, an algorithm that takes as input a formula

A in the language of S3 and terminates its compu-

tation with a (conventionally fixed) output/answer

1/yes, if A is a S3-tautology, and 0/no, if A is not

a S3-tautology. However, in order to prove the un-

decidability of a set, one must have a mathematical

counterpart for the informal notion of algorithm

28



(on which the informal notion of decidable set de-

pends).

OSKAR BECKER neither seems to be aware of the

problem of finding an adequate formal counterpart

for the concept of decidability nor seems to have any

inkling of the necessity of making the concept of

algorithm mathematically precise.

Thanks to the investigations of the Hilbert School,

the recognition of distinct logical levels (proposi-

tional, first-order, higher-order), as it is nowadays

standard, was well known since the years 1917–

1919. It was clear for everyone at that time that clas-

sical propositional logic was decidable, since there

was de facto an “effective procedure” that allowed

for any given statement written in the language of

propositional logic to decide, after a finite number

of steps, whether the statement was a tautology or

not, namely the truth tables method.

However, BECKER’s problem in On the Logic of

Modalities is to set up a propositional modal logic

that is decidable, more precisely, to find two differ-

ent extensions of S3 that are are decidable. Such

systems, which we agreed to call S3′ and S3′′, are,

so BECKER, two new modal logics with 6 (S3′)

and, respectively, 10 (S3′′) irreducible modalities.

He seems to take S3 as undecidable on the basis of

his mistaken belief that S3 has an infinite number

of iterated modalities.
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Today we know that S3 is decidable. Indeed, any

(under very general conditions) propositional logic

L that is finitely axiomatizable and has the finite

model property is, by HARROP’s theorem, decid-

able.34

However, it is not so easy to see this in the “Survey
system”, since the latter is not presented by LEWIS

and, later on, by BECKER, as an extension of clas-

sical logic, as it would be natural nowadays. LEWIS

and BECKER just take it to be provable that classical

logic is derivable from S3.

Furthermore, to prove that S3′ and S3′′ are decid-

able there must be an algorithm, that for each for-

mula written in the modal language, proves whether

this formula is a theorem of, respectively, S3′ and

S3′′ or not.

A complete semantic for S3′ and S3′′ together with

the finite model property would apply to obtain the

decidability of theoremhood for each of these logics.

But neither LEWIS provides a semantic for S3 nor

BECKER provides a semantic for S3′ and S3′′.

Decidability could also be proved syntactically by

reducing it to terminating proof-search in an an-

alytic (e.g. GENTZEN’s style) presentation of S3,

S3′ and S3′′, or by proving the equivalence be-

tween S3, S3′ and S3′′ and some other logics,

already known to be decidable, or by developing
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methods based on translations of modal logic into

a fragment of first-order logic. None of these alter-

native was available at that time or had even been

conjectured by LEWIS or BECKER.
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4 Normal Modal Logics: a Quick

Resumé

As a preliminary to the presentation and discussion,

to be found in the next chapters, of BECKER’s in-

vestigations on LEWIS’s system S3, it is convenient

to review here the best known normal modal log-

ics, K, D, T, K4, B, S4, S5, as they are usually

axiomatically characterized as extensions of classi-

cal logic. More precisely, the axioms comprehend

all classical tautologies (or a “sufficient” selection

thereof) as well as one or more additional axioms (in

schematic form) that characterize the specific logic

in question; the inference rules are the modus ponens

of classical logic and one specifically modal rule, the

necessitation rule

A
�A

introduced, as we already said, by GÖDEL in his

1933 paper. It says that if a proposition A is prov-

able within the system in question, its necessitation

�A is also provable.

Once an axiom system for the minimal normal

modal logic K is given, it is simple to give an ax-

iomatization for the other above mentioned modal

logics, for they amount to K with a few additional

axiom schemas.
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Thus, we will recall the standard axiomatization for

the logic K as well as the modal logical schemas T ,

4, B, 5 or E, and then we will see which schemas

give which logic. Doing so turns out to be useful

to the aim of proving, later on, to which standard

modal systems BECKER’s systems S3′ and S3′′ are

equivalent.

The formal modal propositional language L� is de-

fined as usual. The alphabet contains:

– denumerably many propositional variables

(or ‘atoms’): p0, p1, p2 . . .;

– the boolean connectives: ¬ ,∨ ,∧ ,→;

– one modal operator: �, for necessity;

– auxiliary symbols: parentheses.

The modal operator ♦ for possibility is conveniently

not taken as primitive, and ♦A is instead introduced

as a metalinguistic abbreviation for ¬�¬A.

The set of formulas of L� is inductively defined

as usual: atoms are formulas, if A and B are L�-

formulas then also (¬A), (A ∨ B), (A ∧ B), (A →

B), (�A) are L�-formulas, and nothing else is a for-

mula.

An axiomatic calculus for the basic axiom system K

is set up as indicated in Table 1.

A formal proof in K is a finite list A1, . . . , An of

formulas such that for all i (1 ≤ i ≤ n): Ai is an (in-
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Table 1: The calculus K

Axioms and axiom schemas:

— all classical tautologies

— �(A → B) → (�A → �B) (schema K)

Inference rules:

A A → B
MP

B
modus ponens

A
RN

�A
necessitation rule

stance of) an axiom (schema) of K, or Ai follows by

the modus ponens rule from two previous formulas

Aj , Ak (j, k < i) in the list, or Ai follows by the ne-
cessitation rule from a previous formula Aj (j < i)

in the list. A is a theorem of K (in symbols ⊢K A)

iff there exists a formal proof A1, . . . , An in K such

that An is A.

A modal logic which extends K by one ore more

extra axiom schemas is called a normal modal logic.

K is thus the minimal normal modal logic.

Let us now recall the modal schemas D, T , 4, B, E

and their meaning:

T : �A → A
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D : �A → ♦A

B : A → �♦A

4 : �A → ��A

E : �A → �♦A

The schema T claims that if a proposition A is nec-
essary, then it is also true (“ab necesse ad esse valet

consequentia”, in the Scholastics’ reading). It is also

known as “epistemic schema”, since it is compati-

ble with an epistemic interpretation of the modal

operators. If we take “�” to be a placeholder for

the operator “it is known that (. . . )” or “the agent

x knows that (. . . )”, the schema turns out to be in

accordance with the Platonic conception of knowl-

edge displayed in Theaetetus 201d- 210a, namely:

x knows that p if and only if

1. it is true that p

2. x believes that p

3. x is justified in believing that p

or, in other words, the schema T is consistent with

the platonic conception of knowledge as true belief
with an account ( justified ).

The schema D claims that if a proposition A is neces-
sary, then it is also possible. It is known as “deontic
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schema”, since it is consistent with a deontic inter-

pretation of the modal operators. If we take “�”

to be a placeholder for the operator “it is obliga-

tory that (. . . )” (and consequently “♦” to be a place-

holder for the operator “it is permitted that (. . . )”

the schema says that whatever is obligatory is also

permitted.

The schema B is also known (after BECKER35) as

Brouwer schema. It claims that if a proposition A is

true, then it is necessarily possible that it is true.

The schemas 4 and E are both consistent with an

epistemic interpretation of modalities and are also

known as “positive” and “negative” introspection

principle, respectively. Under an epistemic reading

the schema 4 says that “if the agent x knows that p,

he also knows that he knows that p”; while the schema

E, in the equivalent reformulation:

E′ : ¬�A → �¬�A

says that if the agent x does not know that A, then he
knows that he does not know that A.

Let us now recall the most interesting axiomatic ex-

tensions of K which the above schemas give rise to:

– D := K+D

– T := K+ T

– K4 := K+ 4
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– B := K+ T +B

– S4 := K+ T + 4

– S5 := K+ T + E

All the systems K,D,T,K4,B,S4,S5 are there-

fore normal modal logics.

The “strength” relations between them can be sum-

marized in the following diagram, where:

– an arrow leading from a system L1 to a sys-

tem L2 means that L1 ⊂ L2 (that is, any L1-

theorem is also a L2-theorem, but not con-

versely),

– the absence of any arrow between two systems

L1 and L2 means that they are incompara-

ble, that is: there is at least one L1-theorem

which is not a L2-theorem, and there is as

well at least one L2-theorem which is not a

L1-theorem.

D T B

K

K4 S4

S5
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5 LEWIS’s S3 and BECKER’s

Extensions

As we already said, the formal language and the style

of axiomatization employed by LEWIS in his Survey
and by BECKER in his On the Logic of Modalities are

different from the now current ones.

As primitive logical operators, they take:

• the unary operators “−” and “∼”, respec-

tively for negation and impossibility,

• and the binary operators “×” and “=”, respec-

tively for conjunction and (strict) equivalence.

Thus “−A”, “∼ A”, “A×B”, “A = B” correspond,

respectively, to “¬A”, “¬♦A”, “A ∧ B”, “�(A ↔

B)” in our notation.

The other logical boolean and “strict” operators, in

particular “⊃” (material implication), “>” (strict im-
plication) and “+” (disjunction), corresponding re-

spectively to our “→”, “→s” and “∨”, are instead de-

fined in the expected way: A ⊃ B =df −(A×−B),

A > B =df ∼ (A × −B) and A ∨ B =df −(−A ×

−B).

In turn, LEWIS’s (and BECKER’s) axiomatization of

the system S3 is not given as an extension of an ax-

iomatic calculus for classical logic by means of addi-

tional axioms and inference rules (as the axiomati-
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zations of the normal systems reviewed in the pre-

vious chapter are). Actually, it is not at all trivial to

prove that all classical tautologies are theorems of

the original axiomatization of S3.36

All in all, for a contemporary reader with a basic

knowledge of logic it would be cumbersome to deci-

pher and translate in the current formalism LEWIS’s

and BECKER’s formulas and investigations.

In this chapter, we therefore present first of all the

(emended) system S3 not in its original formula-

tion, but in the equivalent standard formulation

now current in modal logic.

Next, we shall present — again not in the origi-

nal but in the now standard formulation — the ax-

iomatization of BECKER’s S3′ and S3′′. BECKER’s

claims and accomplishments will be evaluated in the

next chapter.

All proofs of our assertions (e.g. as to the equiva-

lence or non-equivalence of the logics in question)

in this and the next chapter are omitted: we try to

explain what is going on in On the Logic of Modali-

ties in a way accessible to a wider audience.
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5.1 LEWIS’s Survey System S3

An axiomatic calculus for S3 in the style of the

most known modal logics, see Chapter 3 above, is

found in Table 2.

Table 2: The calculus S3

Axioms and axiom schemas:

— all classical tautologies

— �A → A (schema T )

— �(A → B) → �(�A → �B) (schema K+)

Inference rules:

A A → B
MP

B
modus ponens

A
RN−

�A
provided A is
a tautology or
an instance of
T or K+

Thus, S3 contains the classical logic, the schema

T , the schema K+, the modus ponens and only a re-
stricted version RN− of the necessitation rule RN .

The schema K+ is, like the schema K , a distributiv-

ity law (of the operator � on the connective →). At
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a a variance with K it contains a further � after the

principal connective →.37

The inference rule RN− says that if a proposition

A is a classical tautology, or an instance of T or K+,

then its necessitation �A is a S3-theorem. Thus, if

“⊤” denotes any tautology, say p → p, �⊤ is prov-

able in S3. By contrast, ��⊤ cannot be obtained

from �⊤ by means of RN−, since it is neither a clas-

sical tautology nor an instance of T or K+. Indeed,

it is possible to prove that ��⊤ is not a theorem of

S3, which implies that the unrestricted necessitation

rule RN is not admissible in LEWIS’s system: S3 is

not a normal modal system.

As we said in the Introduction, the original 1918

version of S3 contained an additional axiom, which

was responsible for the modal collapse (as POST

pointed out to LEWIS) and was therefore dropped

by LEWIS in his 1920 “Emendation”. In our nota-

tion, this axiom schema amounts to:38

(∗) (¬♦B →s ¬♦A) →s (A →s B)

It is interesting to notice here how BECKER ac-

counts for the implausibility of (∗), by providing

the following informal, yet convincing and intrigu-

ing countermodel:39

Example: One may think of a sequence of

numbers, which is built up by drawing arbi-

trarily many times, one after another, num-
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bered balls from an urn, whereby each time

the drawn ball shall be put back in the urn

before drawing the next ball. It is unknown
how many balls are in the urn and how they

are numbered. [...]

[T]he converse

(∼ q <∼ p) < (p < q)

does not hold, as our example [. . . ] does

show.

Namely, let now q and p stand for:

q : “19 appears among the first 100 places.”

p : “19 appears among the first 200 places.”

Then

∼ q <∼ p

does hold.

Actually, the impossibility that 19 occurs in

the sequence (at a variance with its contin-

gent, i.e. incidental not-occurring) can be

due exclusively to the fact that no balls with

the number 19 are contained in the urn.

This impossibility holds for all places of the

sequence, if it holds for some.

However, from ∼ q <∼ p it does in no way
follow p < q, i.e. the implication: “If 19 ap-
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pears among the first 200 places, then it nec-

essarily appears within the first 100 places”,

since this sentence is trivially false.

5.2 BECKER’s six modalities System S3
′

Let us now consider BECKER’s system S3′:40

Before considering the real meaning of the

problem of reducing the infinitely many

nested modalities that arise from the itera-

tion and composition of the symbols “∼”

and “−”, we shall present a purely formal

investigation by which LEWIS’s system be-

comes a closed one thanks to the addition

of one further axiom. This can be done

in several ways. [. . . ] The assumptions

introduced by LEWIS are (apparently) not

sufficient to obtain a closed system of irre-

ducible modalities.

Therefore we add to LEWIS’s axioms the

new axiom 1.9:

−(∼ p) <∼ (∼ p)

BECKER is saying that — as summarized in Ta-

ble 3 — this system (once formulated in our no-

tation) is obtained from S3 by adding one single

axiom schema, namely �(♦A → �♦A), which is a

“boxed-version” of the schema E.
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Table 3: The calculus S3′

Axioms and axiom schemas:

— all classical tautologies

— �A → A (schema T )

— �(A → B) → �(�A → �B) (schema K+)

— �(♦A → �♦A) (schema �E)

Inference rules:

A A → B
MP

B
modus ponens

A
RN−

�A
provided A is
a tautology or
an instance of
T or K+

BECKER gives a detailed proof of the fact that this

system has 6 irreducible modalities:

– Positive modalities: �A, ♦A, A (“factual”

truth);

– Negative modalities: ¬�A, ¬♦A, ¬A (“fac-

tual” falsity).
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and that they are linearly ordered, as to logical

strength, as follows

– Positive modalities: �A →s A →s ♦A

– Negative modalities: ¬♦A →s ¬A →s ¬�A

5.3 BECKER’s ten modalities System S3
′′

In BROUWER’s and HEYTING’s41 Intuitionistic

logic the double negation principle, ¬¬A ↔ A, is

not valid. More precisely, the left-to-right direc-

tion of the biconditional, ¬¬A → A, is not intu-

itionistically acceptable. The other direction of the

biconditional,

A → ¬¬A (WDN)

is instead intuitionistically valid.

As we know, BECKER is also trying to explore

the connection between intuitionistic and modal

logic. He is thus naturally led, in particular, to in-

terpret the intuitionistic negation (“¬”) — which is

stronger than classical negation — in modal terms,

as impossibility (“∼”) or, as he uses to say, absurdity

(Absurdität). By replacing, in the intuitionistic law

(WDN), “¬” with “∼” and “→” with “>” one gets

A >∼∼ A

(that is �(A → ¬♦¬♦A), in our notation)
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“Truth — as he puts it42 — implies the absurdity of

the absurdity (but not conversely!)”.

Such principle is easily seen to be equivalent to the

“boxed-version” of the schema B, A → �♦A, con-

sidered in the previous chapter. It should be now

clear why BECKER called it “BROUWER’s Axiom”,

a name still current in the literature.

According to BECKER, this is a reasonable axiom to

consider in order to extend LEWIS’s S3:43

One can now add (this is the weakest addi-

tional postulation we propose) “BROUWER’s

Axiom” to this setting

p = − − p <∼∼ p (1.91)

[. . . ] As an [additional] axiom we choose

[. . . ]:

∼ −p <∼ − ∼ −p (1.92)

[. . . ] If one postulates (1.91) × (1.92) one

can thus set up a ten modalities calculus.

In the current standard form we adopted, BECKER’s

second extension of LEWIS’s S3 — summarized

in Table 4 — results from the latter by adding

two axiom schemas, namely �(A → �♦A), the

“boxed-version” of the BROUWER’s schema B, and

�(�A → ��A) which is a “boxed-version” of the

schema 4.
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Table 4: The calculus S3′′

Axioms and axiom schemas:

— all classical tautologies

— �A → A (schema T )

— �(A → B) → �(�A → �B) (schema K+)

— �(A → �♦A) (schema �B)

— �(�A → ��A) (schema �4)

Inference rules:

A A → B
MP

B
modus ponens

A
RN−

�A
provided A is
a tautology or
an instance of
T or K+

BECKER’s claim, supported by a detailed (putative)

proof, is that this system has 10 irreducible modali-

ties:

– Positive modalities: �A, ♦�A, ♦A, �♦A, A

(“factual” truth);
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– Negative modalities: ¬�A, ¬♦�A, ¬♦A,

¬�♦A, ¬A (“factual” falsity).

and that they are linearly ordered, as to logical

strength, as follows

– Positive modalities: �A →s ♦�A →s A →s

�♦A → ♦A

– Negative modalities: ¬♦A →s ¬�♦A →s

¬A → ¬♦�A →s ¬�A

5.4 BECKER: Further “experiments”

BECKER did also tentatively consider other two

possible ways to extend LEWIS’s S3 in order to get

a system with a finite number of irreducible modal-

ities or, at least, a system with a possibly infinite

number of irreducible modalities, yet all pairwise
comparable with respect to logical strength. Here is

a sketchy account of these two modal “experiments”

– as he calls them.44

A variant of S3′

This variant, let us call it S3′∗, is proposed in a short

Observation45 following the presentation and the in-

vestigation of the six modalities calculus S3′. It is ob-

tained by replacing the characteristic axiom schema

�E
�(♦A → �♦A)
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of S3′ (see Table 2) with the axiom schema �E∗

�(�♦A → �A)

BECKER’s claim is that also this new system S3′∗

has 6 irreducible modalities, exactly the same as S3′,

and that they are ordered with respect to logical

strength in the same way as they are ordered in S3′.

The only remarkable difference between the two

systems, according to BECKER, is that while in S3′

A is stronger than �♦A (∼∼ A in his notation),

in S3′∗ the other way around is the case: �♦A is

stronger than A. His “formalist” conclusion is:46

Thus, ∼∼ p is stronger than p (in con-

trast with BROUWER’s conception). From

a purely formal point of view it seems that

also this approach can be carried through

without contradiction; although it has per-

haps no concrete meaning.

A more abstract approach

In §5 of Part I,47 entitled “On the Calculus of

Modalities with least Requirements, which still

yields a Linear Rank Order”, BECKER tentatively

develops a very interesting, more abstract approach

to the problem of “completing” LEWIS’s calculus

in such a way that in the resulting system, inde-

pendently from the number (finite or infinite) of

50



irreducible modalities, any two modalities (combi-

nations of primitive modalities) be comparable with

respect to logical strength:48

One can try to free oneself from all require-

ments, which are imposed by special fac-
tual assumptions, and to seek to establish

only the most general formal conditions of

a calculus of modalities. Firstly, one can

drop the demand that a reduction to finitely

many fundamental modalities be possible.

[. . . ]

On the other hand, one will have to keep

the demand of a linear rank order of the

modalities, whereby the implicational re-

lation of any two distinct modalities is

uniquely determined. Otherwise a modal-

ity cannot be uniquely determined by its

“rank of logical strength” anymore. This

claim should be in any case the upper

bound of our formal freedom.

Now, on one hand the question is whether

the LEWISIAN Calculus satisfies this de-

mand and, on the other hand, whether

the natural axioms of a theory of the

rank order of the modalities cannot be es-

tablished independently from the LEWIS-

IAN Calculus. The answer to the first ques-
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tion is negative, the answer to the second

question is affirmative.

BECKER conveniently uses here as basic, elemen-

tary positive modality the operator “�” (“N” in

his symbolism, corresponding to LEWIS’s “∼ −”).

He then fixes a number of “rules” to which com-

posed (“non-elementary”) modalities in the calculus

of modalities should obey.

By a composed modality he means a finite, possi-

bly empty string of �’s and ¬’s (e.g. ��, ¬�¬,

¬�¬�¬�, . . . ). Composed modalities are denoted

by capital Greek letters Λ,Π, . . .. Given two com-

posed modalities Λ and Π, the composed modality

arising from their juxtaposition (in the given order)

is denoted by ΛΠ.49 A composed modality Λ is posi-
tive (negative) if and only if it contains an even (odd)

number of ¬’s. Thus e.g. � and ¬�¬ (that is: ♦)

are positive, while �¬ (equivalent to ∼, impossible)

is negative.

The rules are intended to impose a number of con-

ditions concerning the preservation within the calcu-

lus of relations of logical strength between modalities
under composition/juxtaposition,50 and can be equiv-

alently rephrased as follows.

For any basic or composed modalities Λ,Λ′ and Π,

if

ΛA →s Λ
′A
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is a theorem of the calculus of modalities for

every formula A

then also

– ΛΠA →s Λ
′ΠA [rule R1]

– ΠΛA →s ΠΛ′A, where Π is positive
[rule R2]

– ΠΛ′A →s ΠΛA, Π is negative [rule R3]

shall be theorems of the calculus of modalities

for every formula A.

In other words, these three rules say that if the

modality Λ turns out to be at least as strong as the

modality Λ′ in the calculus, then also ΛΠ shall be at

least as strong as Λ′Π (R1), and ΠΛ shall be at least

as strong as ΠΛ′ when Π is positive (R2), as well

as ΠΛ′ shall be at least as strong as ΠΛ when Π is

negative (R3).

Now, the point is that while LEWIS’s calculus is

closed under these three rules, it contains incompa-
rable modalities. So, this is BECKER’s very interest-

ing idea, one should try to devise the “weakest pos-

sible axiomatic conditions” one should add to the

above rules R1 – R3, in order to obtain a calculus in

which all the modalities are linearly ordered, that is

are pairwise comparable in strength.
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At the end of a rather elaborate argument, he ar-

rives at the claim that a stepwise generalization of

BROUWER’s schema (in the form �B, see above):

B1 = �(A → �♦A) (that is �B)

B2 = �(A → ��♦A)

B3 = �(A → ���♦A)

...

provides an infinite number of axiomatic condi-

tions which, added to LEWIS’s S3 together with

the above rules (R1)–(R3), produce a calculus —

let us call it SM, for further reference — whose

modalities, although infinite in number, are linearly

ordered. He leaves as an open problem the ques-

tion whether all these infinite modalities of SM are

irreducible.
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6 BECKER’s accomplishments:

An Assessment

The evaluation of BECKER’s formal investigations,

of the results and claims we illustrated in the pre-

vious chapter, may well start from the questions

raised by GÖDEL in his Review of On the Logic of

Modalities:51

[T]he author proposes various additional

axioms and then seeks to specify a system,

with as few assumptions as possible, for

which a linear ordering [of modalities with

respect to logical strength] still exists. All

in all, three different kinds of the calculus

of modalities emerge [. . . ]. As far as the

purely formal side is concerned, one can

hardly take exception to anything here, but

there remain essential gaps to be filled in,

some of which the author himself points

out. Above all, it is nowhere shown that

the three systems set up really differ from

one another and from Lewis’s system (in

other words, that the additional axioms are

not in fact equivalent and do not follow

from Lewis’s); nor, furthermore, that the

six, or ten, basic modalities obtained can-

not be still further reduced.
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As we have seen, BECKER actually proposed four
calculi altogether: S3′ (the six modalities calculus,

see 5.2), S3′′ (the ten modalities calculus, see 5.3), the

variant S3′∗ of S3′ (see 5.4) and SM (the calculus

with infinitely many linearly ordered modalities, see

5.4). It is likely that “the three different kinds of

the calculus of modalities” GÖDEL is hinting at are

the extensions S3′, S3′′ and SM of S3. Anyway,

including also S3′∗, the questions are:

(i) Are S3′, S3′′, S3′∗ and SM pairwise non-

equivalent?

(ii) Can the additional axioms of these systems be

derived from S3?

(iii) Are the claimed “irreducible” modalities of

these calculi really irreducible?

The deciding answers to these questions follow

from the following three results:

1. Both S3′ and S3′′ are equivalent to the system

S5. S3′ is indeed one of the two equivalent axiomati-
zations of the normal modal system S5 (see Chapter

4), as it is explicitly introduced for the first time (and

thus named) in 1932 in the Appendix II of LEWIS

& LANGFORD Symbolic Logic.52 The other equiv-

alent axiomatization of S5 indicated there is exactly
BECKER’s system S3′′! So, the six and the ten modal-

ities calculi proposed by BECKER are in fact dif-

ferent axiomatizations of one and the same modal
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system, and while the six “irreducible” modalities

of S3′ are really irreducible, the ten “irreducible”

modalities of S3′′ of course boil down to the six

of S3′, alias S5. This said, and given the fact that

BECKER’s axiom schemas �B, �4 and �E are in-

deed not derivable from S3,53 we have a conclusive

answer to questions (i)–(iii) above as to S3′ and S3′′.

2. S3′∗ collapses. This was first observed by

PARRY in 1939, while one year earlier CHURCH-

MAN54 was still conjecturing that S3′∗ had an in-

finite number of irreducible modalities. Indeed,

using the S3-theorem �♦(A → �A), PARRY was

able to show that A →s �A is a theorem of S3′∗

and thus “reduces to the system of material impli-

cation”.55 Of course, this also shows (see questions

(ii) and (iii) above) that the additional axiom �E∗

of S3′∗ cannot be derived from S3, and that the six

“irreducible” (according to BECKER) modalities of

S3′∗ boil down to two, that is (actual) truth and

falsity.

3. SM is equivalent to the system S5. Finally, as

far as the fourth “system of modalities”, SM, tenta-

tively proposed by BECKER, CHURCHMAN proved

in 193856 that it is equivalent to S3′ — that is, by

what we said above, to S5. This claim is indeed cor-
rect, although CHURCHMAN’s proof thereof is not,

because he did not adequately formalize the system

SM as BECKER intended it.57
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All in all, we can say that BECKER’s claims about

S3′ were right — and so also that he was indeed the

first, two years before the official birthdate of the

system S5, to identify this modal system and to in-

vestigate some of its properties.

BECKER’s claims about S3′′, S3′∗ and SM were in-

stead wrong. Yet, concerning S3′′ the proofs he gave

to support his claims were correct, except that he

did not notice that the characteristic schema �E of

S3′ can be (easily) derived from the two character-

istic schemas �B and �4 of S3′′, modulo LEWIS’s

system S3. Concerning SM, again, his proof that

the (supposedly infinite) modalities of this system

are linearly ordered is very clever, and correct. Un-

fortunately he did not notice that, on the basis of

S3, already the first two schemas, B1 and B2, of

the infinite sequence of schemas {Bn}n≥0 he pos-

tulated, together with the rule R2 are sufficient to

prove the schema �4 — and so to make SM equiv-

alent to S3′, alias S5. Whether the same does hap-

pen with a basis weaker than S3 is an interesting

question, open as far as we know and worth to be

investigated.

In the light of these results — of the four systems he

proposed, three are in fact equivalent while the re-

maining one collapses —, one might be tempted to

underrate BECKER’s formal contributions in On the
Logic of Modalities. On the contrary, and notwith-
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standing these shortcomings, BECKER’s pioneering
work, containing sophisticated insights and interest-

ing technical solutions, has played an extremely im-

portant role in the early development of modal logic

in the decade 1930–1940, as witnessed by the sci-

entific contributions of other scholars who, at that

time, referred to BECKER’s investigations and to the

problems raised by him, and took them as a basis for

further developments and investigations.58

Last but not least, BECKER was the first to ad-

vance the idea of a modal interpretation of intuition-
istic logic — the reader should keep in mind that

BECKER was writing in 1930, and that the birth-

date of intuitionistic logic as a formalized system is

1928, thanks to HEYTING’s axiomatization.59

The idea is exposed and elaborated in the Appendix

to the Part I60 of On the Logic of Modalities:61

How is now the HEYTINGIAN calculus re-

lated to the uncompleted and the completed

LEWISIAN calculus?

Firstly, the question of an appropriate “trans-

lation” of the symbols emerges.

More precisely, his idea is to define a vocabulary

translation associating to each intuitionistic logical

operator (→, ∨, ∧, ¬) a corresponding logical op-

erator of LEWIS’s calculus S3, in such a way that

every theorem of the intuitionistic calculus H be-
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comes, once transformed according to the transla-

tion, a theorem of S3. BECKER tentatively consid-

ers three candidate translations:62

(T1) H: →, ∨, ∧, ¬ ⇒ L: →, ∨, ∧, ¬

(T2) H: →, ∨, ∧, ¬ ⇒ L: →s, ∨s, ∧, ¬♦ (where

A ∨s B =df �(A ∨B))

(T3) H: →, ∨, ∧, ¬ ⇒ L: →, ∨, ∧, ¬♦

As to (T1), he observes that the T1-translation

of every intuitionistic theorem is obviously a S3-

theorem, because intuitionistic logic is included in

classical non modal logic, and the latter in turn is

included in the LEWIS’s system. On the other side,

he rightly stresses that63

[. . . ] this is a worthless triviality. Indeed,

the purpose of a comparison between in-

tuitionistic and modal logic can only be

to make the deficits of the former with

respect to the latter comprehensible by in-

terpreting the intuitionistic notions by the

specific modal-logical notions, that is the

LEWISIAN “strict” notions (strict implica-

tion, strict logical sum, impossibility).

Concerning the second translation, he again rightly

observes that the T2-translation A∨sA ↔s A of A∨

A ↔ A, which is one of the axioms of HEYTING’s

calculus, is not a theorem of S3 — the latter would

collapse otherwise!
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Finally, as far as the third of the proposed transla-

tions is concerned, BECKER claims (without giving

a detailed proof) that the T3-translation of the ax-

iom (A → B) ∧ (A → ¬B) → ¬A, that is the

formula

(∗) (A → B) ∧ (A → ¬♦B) → ¬♦A

is not a theorem of S3, and thereby concludes his

“translation-experiments” as follows:64

At this point a further investigation must

begin, with the aim to assess whether and

which additions must be made to the extended
LEWISIAN System (Calculus of 10 Modal-

ities, Calculus of 6 Modalities) so that the

HEYTINGIAN Axiom (11) [i.e. (∗) above]

holds. Further problems can nevertheless

arise because of the difference of the unde-

fined notions in the HEYTINGIAN and the

LEWISIAN System. The solution of these

tasks and the overcome of these difficulties

shall be left to future work.

Indeed, it is not difficult to prove that BECKER

was right in claiming that (∗) is underivable in S3.

Actually, it is possible to prove even more: every
normal modal system containing the schema T and

(∗) collapses. This implies that also with respect

to the extended LEWISIAN systems mentioned by
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BECKER the translation T3 would boil down to the

trivial translation T1.

To conclude, let us tell the end of the story: only

three years later someone else, namely KURT GÖ-

DEL, did the “future work” and “found the solution

of these tasks” as predicted by BECKER. In the al-

ready mentioned An interpretation of the intuitionis-

tic propositional calculus65 GÖDEL, who is his 1931

Review of On the Logic of Modalities had hastily

mentioned and too roughly dismissed BECKER’s

idea of a modal interpretation of intuitionistic logic,
saying66

[. . . ] the author discusses, from a formal

as well as a phenomenological standpoint,

the connections that in his opinion obtain

between modal logic and the intuitionistic

logic of Brouwer and Heyting. It seems

doubtful, however, that the steps here taken

to deal with this problem on a formal plane

will lead to success,

provided the first sound and faithful translation of

propositional intuitionistic logic into a modal sys-

tem, namely S4.67 In the paper, BECKER is men-

tioned for having introduced the axiom �A →s

��A (�4, see 5.3) but, quite unfairly, not for hav-
ing anticipated the very idea of a modal translation of

intuitionistic logic. By the way, as was later proved

by HACKING,68 it is also possible to define a sound
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and faithful translation of intuitionistic logic even

in the LEWIS’s modal system S3 — as BECKER had

tried to do.
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Notes

1. BECKER 1930. The Yearbook for Philosophy and Phenomeno-
logical Research (Jahrbuch für Philosophie und phänomenologis-
che Forschung) was founded by EDMUND HUSSERL in 1912
and served the HUSSERL’s circle as an important organ during

HUSSERL’s Freiburg period (1916–1938). The first issue of the

journal was published in 1913 and contains HUSSERL’s Ideas for
a Pure Phenomenology and Phenomenological Philosophy. Volume
8 includes HEIDEGGER’s masterpiece Being and Time (1927) as

well as OSKAR BECKER’s famous investigation on the logic and

ontology of mathematical phenomena “Mathematical Existence
(Mathematische Existenz).”

2. BECKER 1914.

3. BECKER 1923.

4. BECKER 1927. Hereto see at least: GETHMANN 2003, PECK-
HAUS 2005, MITTELSTRASS & GETHMANN-SIEFERT 2002.

5. BECKER 1952; cp. MARTIN 1969. For a complete bibliogra-

phy of BECKER’s works see ZIMNY 1969.

6. MACCOLL 1906.

7. LEWIS 1918.

8. The name appears for the first time in Appendix II of LEWIS

& LANGFORD 1932.

9. LEWIS 1920.

10. Cp. CRESSWELL et al. 2016, 281 f.

11. BECKER 1930, 4.

12. GÖDEL 1931.

13. Hereto cp. GÖDEL 1931.

14. PARRY 1939.

15. GÖDEL 1933.
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16. GÖDEL 1933, 301.

17. BOCHEŃSKI 1956, 116.

18. Loc. cit., 117.

19. FREGE 1923, 46.

20. PEIRCE 1992, 125 f.

21. If we assume that “incompatibility” and “impossibility” mean

the same.

22. MACCOLL 1880, MACCOLL 1906.

23. LEWIS & LANGFORD 1932.

24. RUSSELL & WHITEHEAD 1910–13.

25. In order to comply with the now current logical notation, we

prefer not to adopt LEWIS’s symbolic apparatus. In particular,

we use “→”, “→s”, “¬”, “∧”, “∨”, “�” and “♦” to denote, re-

spectively, material implication, strict implication, conjunction,

disjunction, necessity and possibility.

26. LEWIS & LANGFORD 1932, 124.

27. Loc. cit. 124, 136.

28. Loc. cit. 142.

29. Loc. cit. 174.

30. C. I. LEWIS & C. H. LANGFORD 1932, 248 ff.

31. HILBERT &ACKERMANN 1928, 4; 7-9.

32. LEIBNIZ 1666.

33. LEIBNIZ 1688, 912–913.

34. A logic L has the finite model property if any non-theorem
of L is falsified by some finite model of L.

35. The reason why BECKER uses this name for the schema is

explained in the next chapter.

36. See LEWIS & LANGFORD 1932, 136 ff.
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37. Notice that K is provable in S3, by using K+, T and the
transitivity of implication.

38. That is, (∼ q <∼ p) < (p < q) in the LEWIS-BECKER

symbolism. Notice that the converse of (∗), (A →s B) →s

(¬♦B →s ¬♦A) is a theorem of S3 (actually an axiom, (p <

q) < (∼ q <∼ p), in LEWIS’s presentation).

39. BECKER 1930, 8-9.

40. BECKER 1930, 11-12. Recall that “−A” corresponds to our

“¬A”.

41. BECKER refers explicitly to HEYTING 1930, which contains

the first (complete) presentation of intuitionistic logic as a for-

malized calculus. The paper was published in the same year of
On the Logic of Modalities, but was circulating since 1928.

42. BECKER 1930, 17.

43. BECKER 1930, 17-18.

44. BECKER 1930, 2.

45. BECKER 1930, 15-16.

46. BECKER 1930, 16.

47. BECKER 1930, 25-30.

48. BECKER 1930, 25.

49. E.g., for Λ = �� and Π = ¬�¬, we have ΛΠ = ��¬�¬.

50. These rules have not been correctly interpreted and formal-

ized in CHURCHMAN 1938, the first (and unique, as far as we

know) paper where this experiment by BECKER is detailedly an-

alyzed. Incidentally, notice that the inference rules

A →s B

�A →s �B
and

A →s B

♦A →s ♦B

known also in the current literature as BECKER’s rules, were

given this name in CHURCHMAN 1938 (cp. HUGHES & CRESS-

WELL 1996, 200, 207) because (uncorrectly) regarded as specific
instances of rule (R2), see below, of BECKER.
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51. GÖDEL 1931, 6.

52. LEWIS & LANGFORD 1932, 501.

53. The irreducibility of the six modalities of S5, alias S3′, and

the other facts and claims we mentioned are proved in LEWIS &

LANGFORD 1932, 497 ff.

54. CHURCHMAN 1938, 78.

55. PARRY 1939, 153 f. The proof is easy, using our “standard”

formulation of S3′∗: S3′∗ ⊢ �(�♦(A → �A) → �(A →

�A)) since this is an instance of BECKER’s schema �E∗, hence

(by using the schema T ) S3′∗ ⊢ �♦(A → �A) → �(A →

�A) and so, by modus ponens with the S3-theorem �♦(A →

�A), one has S3′∗ ⊢ �(A → �A), that is A →s �A.

56. CHURCHMAN 1938, 78 ff.

57. As we explained in Chapter 5, fn. 50. One can prove that

SM (as an extension of LEWIS’s S3) boils down again to S5 as
follows. By ♦�A →s A, which is S3-strictly equivalent to an

instance of the schema B1 of SM, we get by the rule R2 (��

being positive) SM ⊢ ��♦�A →s ��A. On the other side,

SM ⊢ �A →s ��♦�A because it is an instance of the axiom
schema B2. Thus, by transitivity of →s, SM ⊢ �A →s ��A,

that is: SM proves the schema �4. But the latter, together with

B1 (�B), gives BECKER’s S3′ which in turn, as we have seen

above, is equivalent to S5.

58. In this regard, FEYS 1937 and 1938 should at least be added to

the already mentioned works GÖDEL 1931 and 1933, LEWIS &

LANGFORD 1932, CHURCHMAN 1938, PARRY 1939 referring
to, and discussing, BECKER’s work.

59. Published two years later in HEYTING 1930.

60. BECKER 1930, 30-35.

61. BECKER 1930, 31.

62. Here rephrased in the non-Lewisian symbolism so far em-
ployed.
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63. BECKER 1930, 31.

64. BECKER 1930, 33.

65. GÖDEL 1933.

66. GÖDEL 1931, 6.

67. GÖDEL’s translation τ from the formulas of the language L

of intuitionistic propositional logic to the formulas of the modal

propositional language L� of S4 (see Chapter 4) is such that,

for every L-formula A, the following does hold: (i) if ⊢H A

then ⊢S4 τ(A) (soundness), and (ii) if ⊢S4 τ(A) then ⊢H A

(faithfulness). Point (ii) was only conjectured by GÖDEL, and

proved 15 years later in MCKINSEY & TARSKI 1948.

68. HACKING 1963.
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