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1 Introduction

This booklet aims to present, to contextualize and
to evaluate the pioneering contributions to modal
logic contained in OSKAR BECKER’s essay On the
Logic of Modalities (Zur Logik der Modalititen) that
appeared in 1930 on the Yearbook for Philosophy and
Phenomenological Research.!

OSKAR BECKER (Leipzig 1889 - Bonn 1964) was a
German philosopher, logician, mathematician and
historian of mathematics. He is often remembered,
together with MARTIN HEIDEGGER, for being
one of the most important students of EDMUND
HUSSERL (1859-1938). He was, together with
MORITZ GEIGER (1880-1937), MARTIN HEIDEG-
GER (1889-1976), ALEXANDER PFANDER (1870-
1941), ADOLF REINACH (1883-1917) and MAX
SCHELER (1874-1928), one of the members of the
editorial board of the Yearbook.

OSKAR BECKER got his PhD in mathematics in
1914 with a work? entitled On the Decomposition
of Polygons in non-intersecting triangles on the Ba-
sis of the Axioms of Connection and Order (Uber
die Zerlegung eines Polygons in exclusive Dreiecke
auf Grund der ebenen Axiome der Verkniipfung und
Anordnung). In 1922 he wrote under HUSSERL’s
supervision his Habilitationsschrift, On Investiga-
tions of the Phenomenological Foundation of Ge-



ometry and their physical Application (Beitrige zur
phanomenologischen Begriindung der Geometrie und
ihrer physikalischen Anwendungen).’ In 1927 Os-
KAR BECKER published in the Yearbook his mas-
terpiece Mathematical Existence,* where he uses the
Husserlian phenomenology to clarify the process
of counting. In 1952 — when the study of modal
logic was already well beyond its pioneering era
— BECKER came back to the subject publishing
a monograph, Investigations on the Modal Calculus
(Untersuchungen iiber den Modalkalksil), perhaps too
old-fashioned for the time.?

* * *

The essay On the Logic of Modalities represents an
attempt to treat modal logical issues with a phe-
nomenological method. This enterprise appeared
from the outset not to be easy at all, for logic
and phenomenology are completely different dis-
ciplines. Depending on the way in which it con-
structs its formal systems, formal logic can be seen
as the theory of the correct inferences, or alternatively,
as the theory of purely formal truths, that is, as the
theory of those truths that hold without any con-
dition. Phenomenology, instead, deals with the
description of lived experiences.

Indeed, we might better say that in his investiga-
tions BECKER pursued two loosely related goals.
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The first one, more technical in character, was to
find axiomatic conditions that reduced to the finite
the number of logically non-equivalent combina-
tions arising from the iterated application of the
operators “not” and “it is impossible that (...)” in
LEWIS’s modal system, as we will explain in details
below. The second one, more philosophically ori-
ented and in a sense much more ambitious, was to
treat the logic of modalities from a phenomenolog-
ical perspective and to understand, from this per-
spective, the philosophical and logical-ontological
problems underlying the, and posed by, Intuition-
ism.

On the Logic of Modalities consists of two parts,
loosely related as the above mentioned correspond-
ing goals are. Part I contains a general Introduc-
tion that shortly recalls the Aristotelian conception
of modalities as well as HUGH MACCOLL’s pio-
neering modal logical investigations in his Symbolic
Logic and its Applications® of 1906. It then focuses
on C. L. LEWIS’s Survey of Symbolic Logic’ of 1918.
This latter contains the first presentation of the so-
called “Survey system”, known since 1932 as “modal
system S3.”8

De facto, S3 is the actual object of the investigations
in Part I of BECKER’s essay. As pointed out by
EMIL L. POST, the system LEWIS presents in 1918
collapses into classical logic. LEWIS corrects it in a
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paper entitled Strict Implication: An Emendation’
and published in 1920, where the system effectively
becomes the logic we nowadays know as “S3.”1° In
his essay BECKER faithfully reports both that the
original version of the “Survey system” proves the
collapse of modalities, as well as LEWIS’s amend-
ment thereof. Incidentally, “collapse of modalities” is
a customary expression in the modal-logical jargon.
It means that a modal logical system proves that 7e-
cessity and truth are one and the same, or equiva-
lently (as it is the case in the “Survey system”) that
impossibility and falsity are one and the same. Obvi-
ously, such a system is trivial from a modal point of
view.

BECKER’s Introduction touches on the paradoxes of
material and strict implication and sets out to estab-
lish a propositional modal logic that is decidable as
the classical propositional logic:!!

The aim of the present essay has a strict
relation to the investigations of MACCOLL
as well as to those of LEWIS. The ultimate
purpose of our investigations is to develop
an elementary logical calculus that takes
adequately into account the modalities of
the sentence, namely in such a way thar
the so-called elementary decision problem is
solvable, as in the ordinary propositional
calculus.

12



Part I, On the Rank Order and the Reduction of Log-
ical Modalities — on which this booklet will con-
centrate — is specifically devoted to the problems of
ranking and iteration of modalities. BECKER sets
out to modify S3 by means of some additional ax-
ioms effecting the reduction of complex modalities
to simple ones in order to obtain two new modal
systems — he calls them “the six modalities calculus”
(henceforth denoted here by S3') and “the ten modal-
ities calculus” (henceforth S3”) with the following
properties:

(i) the number of irreducible modalities is finite,

(i1) the positive (and by consequence the negative)
modalities are arranged in a linear order with
respect to logical strength.

He believes that, since the “System of Strict Implica-
tion” has the conjunction, the negation and the im-
possibility as primitive logical constants, it is possi-
ble to generate within it infinitely many non equiva-
lent nested modalities through iteration of the nega-
tion and the impossibility operators. Such modali-
ties, as KURT GODEL (1906-1978) puts it in his Re-
view of BECKER 1930, “cannot even be linearly or-
dered according to their logical strength in the sense
that, of any two affirming modalities, one will im-
ply the other, and similarly for negating ones.”!2.
Otherwise said, there are modalities that are incom-
parable in LEWIS’s system.

13



That said, it is worth to be mentioned that OSKAR
BECKER neither shows that the two systems he sets
up (and others he tentatively introduces, as we will
see later) really differ from one another, nor that his
additional axioms cannot be derived from those of
Lewis, nor either that in his own systems, with six
and, respectively, with ten “irreducible” modalities,
such modalities cannot be further reduced.!?

Actually, nine years later, W. T. PARRY will show,
in a paper entitled Modalities in the Survey System
of Strict Implication', that, at a variance with what
BECKER seems to believe, S3 has a finite number
of modalities. More precisely, PARRY shows, with
the help of a number of suitable theses he is able to
derive in the system, that it is possible to reduce all
the complex modalities in S3 to a finite number of
irreducible modalities, viz. 42. He also shows that
no further reduction is possible.

Part IT of BECKER’s essay explores, more or less
independently from Part I, the connection between
modal and intuitionistic logic both from a formal
and from a phenomenological perspective. From
a formal perspective, the particular interest of a
(propositional) modal calculus with nested modali-
ties that is decidable lies in the fact, so BECKER, that
BROUWER’s idea to set up a finite logic grounded
on evidence, or - to put it with HUSSERL - on
the clarity of evidence (Klarbeitsevidenz) seems to be

14



realizable only within the framework of a modal
formal system.

Indeed, BECKER is the first logician and philoso-
pher of mathematics to put forward the idea of a
modal interpretation of intuitionistic logic, more
precisely the idea of a possible sound and faithful
translation of intuitionistic logic into modal logic.
However, the first actual translation is to be found
in a one-page celebrated and influential paper en-
titled An interpretation of the intuitionistic proposi-
tional calculus written in 1933 by KURT GODEL."?
The basic idea of GODEL is similar to the one Os-
KAR BECKER outlines in On the Logic of Modalities.

BECKER suggests to add to classical logic the pred-
icates “(...) is provable”, “(...) is such, that its nega-
tion is provable” and “(...) is undecided”. Such pred-
icates should express BROUWER’s primitive logical

concepts.

Similarly, GODEL’s idea is to add to the language of
classical propositional logic the unary operator “it
is provable that (...)”, denoted by “B”, and to an
axiomatic calculus for propositional classical logic
three axiom-schemas and one rule of inference. The
axiom-schemas are the modal schemas K, T and
4 that characterize modal logics that are nowadays
standard, the rule of inference is the necessitation
rule that is contained in all normal modal systems.

15



We will introduce both the schemas and the rule of
inference in detail later on.

Notice, incidentally, that both BECKER and GO-
DEL seem to take the predicate “(...) is provable”
and the operator “it is provable that (...)” as con-
veying the same piece of information. Actually, the
predicate “(...) is provable” denotes the property of
a proposition to be provable, while the operator “it
is provable that (...)” takes a proposition as input
and gives a different proposition as output. (Un-
fortunately, such practice of systematically neglect-
ing the difference between predicate and operator is,
even nowadays, quite widespread among logicians.)

GODEL writes: 1

One can interpret Heyting’s propositional
calculus by means of the notions of the or-
dinary propositional calculus and the no-
tion “p is provable” (written “Bp”), if one
adopts for that notion the following system
S of axioms:

1. Bp—p
if it is provable that p, then it is true
that p

2. Bp = ((B(p = ) = Bg)
if it is provable that p and it is prov-
able that p implies ¢, then it is prov-
able that ¢

16



3. Bp — BBp
if it is provable that p, then it is prov-
able that it is provable that p

In addition, [...] the new rule of inference
is to be added
A
BA
From A, it is provable that A may be
inferred

By substituting throughout the operator “B” (“it is
provable that (...)”) by the operator “00” (“it is nec-
essary that (...)”) one obtains one of the modal
logical systems that are nowadays standard, namely
LEWIS’s system S4.

17






2 The Conditional, or The Crows
on the Roofs

Since BECKER as well as MACCOLL and LEWIS all
refer to the old controversy about the right interpre-
tation of conditional sentences, let us briefly dwell
on it.

Such a controversy traces back to the Megarians and
the Stoics. As JOZEF MARIA BOCHENSKI puts it
in his A History of Formal Logic:'

The definition of implication was a matter
much debated among the Megarians and
Stoics: All dialecticians say that a connected
(proposition) is sound, when its consequent
follows from its antecedent — but they dis-
pute about when and how it follows, and
propound rival criteria.

Even so Callimachus, librarian at Alexan-
dria in the 2nd century B.C., said: ‘the very
crows on the roofs croak about which im-
plications are sound’.

In ancient times the quarrel was, above all, between
a truth-functional and a modal interpretation of the
conditional. PHILO (OF MEGARA) said that an im-
plication is true when it is not the case that it be-
gins with the true and ends with the false.!® This
conception of the conditional was later adopted by
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GOTTLOB FREGE (1848-1925) and by the Ameri-
can logician and founder of American Pragmatism
CHARLES SANDERS PEIRCE (1839-1914).

In his Gedankengefiige (1923) FREGE calls condi-
tional sentences “hypothetische Satzgefrige” and what
is expressed by them “hypothetische Gedankengefii-
ge”. He writes:!’

[A] hypothetical compound thought is
true if its consequent is true; it is also
true if its antecedent is false, regardless of
whether the consequent is true or false.
The consequent must always be a thought.
Given [...] that “A” and “B” are sentences
proper, then “not (not A and B)” expresses
a hypotethical compound with the sense
(thought-content) of “A” as consequent and
the sense of “B” as antecedent. We may
also write instead: “if B, then A.” But here,
indeed, doubts may arise. It may perhaps
be maintained that this does not square
with linguistic usage. I reply, it must once
again be emphasized that science has to be
allowed its own terminology, that it can-
not always bow to ordinary language. Just
here I see the greatest difficulty for philos-
ophy: the instrument it finds available for
its work, namely ordinary language, is little
suited to the purpose, for its formation was

20



governed by requirements wholly different
from those of philosophy. So also logic is
first obliged to fashion a usable instrument
from those already to hand. And for this
purpose it initially finds but little in the
way of usable instruments available. [...]
The thought expressed by the compound
sentence “If I own a cock which has laid
eggs today, then Cologne Cathedral will
collapse tomorrow morning” is [...] true.
Someone will perhaps say: “But here the
antecedent has no inner connection at all
with the consequent.” In my account, how-
ever, I required no such connection, and
I ask that “if B, then A” should be under-
stood solely in terms of what I have said
and expressed in the form “not (not A and
B).” It must be admitted that this concep-
tion of a hypothetical compound thought
will at first be thought strange. But my
account is not designed to square with or-
dinary linguistic usage, which is generally
too vague and ambiguous for the purposes
of logic.

Thus, as far as the truth-conditions of conditional
propositions are concerned, FREGE is, whether he
knew it or not, a follower of PHILO.

In turn, PEIRCE is overtly a follower of PHILO:®

21



As far as I am concerned, I am a follower
of PHILO [...]. It is completely irrelevant,
whether this conception is in accordance
with ordinary language.

DIODORUS OF SICILY and CHRYSIPPUS OF SOLI
raised objections against PHILO’s truth-functional
conception of implication. ~While DIODORUS
saw the conditional as a temporal quantification
— namely by regarding a conditional true if and
only if, for every instant of time ¢, it is not the
case that at the instant ¢ the antecedent is true and
the consequent is false — CHRYSIPPUS had a vir-
tually?! modal conception of the conditional: ac-
cording to him, a conditional is true if and only if
the premise is incompatible with the negation of the
consequence.

As we saw, FREGE and PEIRCE shared PHILO’s
conception. In HUGH MACCOLL’s essay pub-
lished in 1880 in the journal Mind and in his Sym-
bolic Logic (1906)2 a concept similar to that of
CHRYSIPPUS can be found.

CLARENCE IRVING LEWIS, on the basis of
MACCOLL’s investigations, pleaded in favor of the
CHRYSIPPEAN modal reading as an appropriate
interpretation of the conditional, which he called
“strict implication”. In 1918 LEWIS published his
first modal system, later called S3. Later on he de-
veloped his modal systems S1 to S5,2 which are

22



stepwise based on one another. They are conceived
as alternatives to the non-modal logic presented in
RUSSELL’s and WHITEHEAD’s Principia Mathemat-
ica (1910-1913).2¢

LEWIS formalized strict implication in terms of

negation, possibility and conjunction? as follows:*

P q:=~0(p A )

Due to the interdefinability of O and ¢, this is logi-
cally equivalent to

O(p — q)

Similarities and differences in comparison with
the “material implication”, as RUSSELL called the
PHILONIAN conditional, are obvious:

p—q:=-(pA—q)

LEWIS’s comment on this was the following:?’

“p strictly implies ¢” is to mean “it is false
that it is possbile that p should be true and
q false” [...]

“p materially implies ¢” is to mean “it is not
the case that p is true and q is false.”

23



LEWIS’s main reason for formally introducing the
CHRYSIPPEAN conditional were the paradoxes of
material implication, in particular:

1) p—(qg—p) (argumentum a fortiori),
2 —p— (p—q) (exfalso quodlibet).

Lewis rephrases them as follows:?8

(1*)  If p is true, then any proposition ¢
materially implies p.
(2%) If pis false, then p materially implies
any proposition g.
However, LEWIS admitted that the strict implica-
tion also yields the following analogous paradoxical
theorems:

(3) =0=p = (¢ —p),
(4) —~0p = (p = q),
in his words:?’

(3%) A proposition which is necessarily
true is implied by any proposition [...]
(4%) A proposition which is impossible im-
plies any proposition.
In the later Symbolic Logic he will carefully discuss
this issue, arguing that the paradoxicality of these
theorems is just illusory: they are “paradoxical only
in the sense of expressing logical truths which are

easily overlooked”.?°
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3 The Decision Problem and
Leibniz’s Dream

Part I of BECKER’s essay pursues the goal, as we
already said, of finding a propositional modal logic
with a finite number of iterated modalities that
is decidable. In the present section we focus on
the decision problem and hint at the problems one
encounters when searching for a decidable propo-
sitional modal logic without an adequate semantic
(and a completeness theorem) for such a calculus be-
ing available.

The Entscheidungsproblem (German for “decision
problem”) is the question whether the first-order
predicate logic is decidable. In this form the ques-
tion is to be found in HILBERT & ACKERMANN
Outlines of Mathematical Logic (Grundziige der math-
ematischen Logik) published in Berlin in 1928.%! Is
there an effective method to decide the set of of
logically valid formulas of first order logic?

The conceptual issues underlying the problem have
a long history and may be traced back at least to
LEIBNIZ. In his Dissertatio de Arte Combinatoria
(1666)* early LEIBN1Z had advanced the hypothesis
that all concepts could be reduced, through analysis,
to a finite number of simple concepts with a pro-
cedure analogous to prime number decomposition.
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Such simple concepts should have been transposed
in a lingua characteristica, i.e. in a universal sign-
system capable of directly coding simple concepts
and, by means of syntactical rules, complex con-
cepts. LEIBNIZ takes it to be possible to translate
all deductive problems in the lingua characteristica
and to decide them by means of a calculus ratiocina-
tor. An example of deductive problem may be the
following: “Does the conclusion C' logically follow
from the premises A and B? In symbols:

ABE'C

A calculus ratiocinator may be thought of as a com-
plex of calculation rules capable of “deciding”, that
is answering mechanically in the positive or in the
negative, any deductive problem, i.e., applied to our
schematization, whether C does follow from A and
B or not. We interpret thus Leibniz’s famous “cal-
culemus!” Leibniz writes:>

I feel that controversies can never be fin-
ished, nor silence imposed upon the sects,
unless we give up complicated reasonings
in favor of simple calculations, words of
vague and uncertain meaning in favor of
fixed symbols [characteres]. Thus, it will ap-
pear that every paralogism is nothing but
an error of calculation [...]

26



If controversies were to arise, there would
be no more need of disputation between
two philosophers than between two calcu-
lators. For it would suffice for them to take
their pencils in their hands and to sit down
at the abacus, and say to each other (and if
they so wish also to a friend called to help):
Let us calculate without further ado!

[Sed ut redeam ad expressionem cogita-
tionum per characteres, ita sentio nunquam
temere controversias finiri neque sectis silen-
tium imponi posse, nisi a ratiocinationibus
complicatis ad calculos simplices, a vocabu-
lis vagae incertaeque significationis ad char-
acteres determinatos revocemur. Id scilicet
efficiendum est, ut omnis paralogismus nihil
aliud sit quam error calculi|...]

Quo facto quando orientur controversiae,
non magis disputatione opus erit inter
duos philosophos, quam inter duos Com-
putistas. Sufficiet enim calamos in manus
sumere sedereque ad abacos, et sibi mutuo
(accito si placet amico) dicere: calculemus.]

27



For the sake of convenience let us depict Leibniz’s
idea by the following schema:

LOGICAL

A;B,C | ALGoRITHM /’ YES, A B C

I Calculus \ NO, A, B £ C
ENCODING ratiocinator
into the

Universal
language

DEDUCTIVE PROBLEM
Is the conclusion C
implied by the premises A and 3?

?
ABE'C

To prove the decidability of a certain set, for in-
stance of the set of all S3-tautologies, it suffices to
exhibit a decision algorithm for it; that is, in our
example, an algorithm that takes as input a formula
A in the language of S3 and terminates its compu-
tation with a (conventionally fixed) output/answer
1/yes, if A is a S3-tautology, and 0/no, if A is not
a S3-tautology. However, in order to prove the un-
decidability of a set, one must have a mathematical
counterpart for the informal notion of algorithm

28



(on which the informal notion of decidable set de-

pends).

OSKAR BECKER neither seems to be aware of the
problem of finding an adequate formal counterpart
for the concept of decidability nor seems to have any
inkling of the necessity of making the concept of
algorithm mathematically precise.

Thanks to the investigations of the Hilbert School,
the recognition of distinct logical levels (proposi-
tional, first-order, higher-order), as it is nowadays
standard, was well known since the years 1917-
1919. It was clear for everyone at that time that clas-
sical propositional logic was decidable, since there
was de facto an “effective procedure” that allowed
Jor any given statement written in the language of
propositional logic to decide, after a finite number
of steps, whether the statement was a tautology or
not, namely the truth tables method.

However, BECKER’s problem in On the Logic of
Modalities is to set up a propositional modal logic
that is decidable, more precisely, to find two differ-
ent extensions of S3 that are are decidable. Such
systems, which we agreed to call S3’ and S3”, are,
so BECKER, two new modal logics with 6 (S3')
and, respectively, 10 (S3”) irreducible modalities.
He seems to take S8 as undecidable on the basis of
his mistaken belief that S3 has an infinite number
of iterated modalities.
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Today we know that S3 is decidable. Indeed, any
(under very general conditions) propositional logic
L that is finitely axiomatizable and has the finite
model property is, by HARROP’s theorem, decid-

able.3*

However, it is not so easy to see this in the “Survey
system”, since the latter is not presented by LEWIS
and, later on, by BECKER, as an extension of clas-
sical logic, as it would be natural nowadays. LEWIS
and BECKER just take it to be provable that classical
logic is derivable from S3.

Furthermore, to prove that S3" and S3” are decid-
able there must be an algorithm, that for each for-
mula written in the modal language, proves whether
this formula is a theorem of, respectively, S3’ and
S3” or not.

A complete semantic for S3’ and S3” together with
the finite model property would apply to obtain the
decidability of theoremhood for each of these logics.
But neither LEWIS provides a semantic for S3 nor
BECKER provides a semantic for S3’ and S3”.

Decidability could also be proved syntactically by
reducing it to terminating proof-search in an an-
alytic (e.g. GENTZEN’s style) presentation of S3,
S3’ and S3”, or by proving the equivalence be-
tween S3, S3’ and S3” and some other logics,
already known to be decidable, or by developing
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methods based on translations of modal logic into
a fragment of first-order logic. None of these alter-
native was available at that time or had even been
conjectured by LEWIS or BECKER.
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4 Normal Modal Logics: a Quick
Resumé

As a preliminary to the presentation and discussion,
to be found in the next chapters, of BECKER’s in-
vestigations on LEWIS’s system S3, it is convenient
to review here the best known normal modal log-
ics, K, D, T, K4, B, S4, S5, as they are usually
axiomatically characterized as extensions of classi-
cal logic. More precisely, the axioms comprehend
all classical tautologies (or a “sufficient” selection
thereof) as well as one or more additional axioms (in
schematic form) that characterize the specific logic
in question; the inference rules are the modus ponens
of classical logic and one specifically modal rule, the
necessitation rule

A
OA

introduced, as we already said, by GODEL in his
1933 paper. It says that if a proposition A is prov-
able within the system in question, its necessitation
0OA is also provable.

Once an axiom system for the minimal normal
modal logic K is given, it is simple to give an ax-
iomatization for the other above mentioned modal
logics, for they amount to K with a few additional
axiom schemas.
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Thus, we will recall the standard axiomatization for
the logic K as well as the modal logical schemas T,
4, B, 5 or E, and then we will see which schemas
give which logic. Doing so turns out to be useful
to the aim of proving, later on, to which standard
modal systems BECKER’s systems S3’ and S3" are
equivalent.

The formal modal propositional language £ is de-
fined as usual. The alphabet contains:
- denumerably many propositional variables
(or ‘atoms’): pg, P1,P2 - - -
- the boolean connectives: =,V , A, —;
- one modal operator: O, for necessity;
- auxiliary symbols: parentheses.

The modal operator ¢ for possibiliry is conveniently
not taken as primitive, and ¢'A is instead introduced
as a metalinguistic abbreviation for —-(0-A.

The set of formulas of £& is inductively defined
as usual: atoms are formulas, if A4 and B are £U-
formulas then also (—A),(A V B),(AA B),(A —
B), (OA) are £LP-formulas, and nothing else is a for-
mula.

An axiomatic calculus for the basic axiom system K
is set up as indicated in Table 1.

A formal proof in K is a finite list Aq,..., A4, of
formulas such that for all i (1 <4 < n): A; is an (in-
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Table 1: The calculus K

Axioms and axiom schemas:

— all classical tautologies
—0O(A — B) —» (0DA — OB) (schema K)

Inference rules:

A A— B
——————"——w modus ponens
B
A necessitation rule
OA

stance of) an axiom (schema) of K, or A; follows by
the modus ponens rule from two previous formulas
Aj, A (J, k < 1) in the list, or A; follows by the ne-
cessitation rule from a previous formula A; (j < 1)
in the list. A is a theorem of K (in symbols Fk A)
iff there exists a formal proof 41, ..., 4, in K such
that A4,, is A.

A modal logic which extends K by one ore more
extra axiom schemas is called a normal modal logic.
K is thus the minimal normal modal logic.

Let us now recall the modal schemas D, T, 4, B, E
and their meaning:

T: OA— A
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D: 0OA—0A
B: A—-00A
4: 0OA-0O04

E . OA-00A

The schema T claims that if a proposition A is nec-
essary, then it is also true (“ab necesse ad esse valet
consequentia”, in the Scholastics’ reading). It is also
known as “epistemic schema”, since it is compati-
ble with an epistemic interpretation of the modal
operators. If we take “0J” to be a placeholder for
the operator “it is known that (...)” or “the agent
2 knows that (...)”, the schema turns out to be in
accordance with the Platonic conception of knowl-
edge displayed in Theaetetus 201d- 210a, namely:

x knows that p if and only if

1. it is true that p
2. x believes that p

3. x isjustified in believing that p

or, in other words, the schema T is consistent with
the platonic conception of knowledge as true belief
with an account (justified ).

The schema D claims that i a proposition A is neces-
sary, then it is also possible. It is known as “deontic
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schema”, since it is consistent with a deontic inter-
pretation of the modal operators. If we take “[J”
to be a placeholder for the operator “it is obliga-
tory that (...)” (and consequently “0” to be a place-
holder for the operator “it is permitted that (...)”
the schema says that whatever is obligatory is also
permitted.

The schema B is also known (after BECKER?®) as
Brouwer schema. It claims that if a proposition A is
true, then it is necessarily possible that it is true.

The schemas 4 and E are both consistent with an
epistemic interpretation of modalities and are also
known as “positive® and “negative” introspection
principle, respectively. Under an epistemic reading
the schema 4 says that “if the agent x knows that p,
he also knows that he knows that p”; while the schema
E, in the equivalent reformulation:

E' : -0A—-0O-0A4

says that if the agent x does not know that A, then he
knows that he does not know that A.

Let us now recall the most interesting axiomatic ex-
tensions of K which the above schemas give rise to:

-D:=K+D
-T:=K+T
-K4:=K+4

37



-B=K+T7T+8B
-S4:=K+T+4

-S5:=K+T+FE
All the systems K, D, T, K4, B, S4, S5 are there-

fore normal modal logics.

The “strength” relations between them can be sum-
marized in the following diagram, where:

- an arrow leading from a system L; to a sys-
tem Ly means that Ly C Ly (that is, any Ly-
theorem is also a La-theorem, but not con-
versely),

- the absence of any arrow between two systems
L; and L2 means that they are incompara-
ble, that is: there is at least one L;-theorem
which is not a La-theorem, and there is as
well at least one La-theorem which is not a
L;-theorem.

—— (1)
Pl o
= ®
(@—@) (®
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5 LEWIS’s S3 and BECKER’s
Extensions

As we already said, the formal language and the style
of axiomatization employed by LEWIS in his Survey
and by BECKER in his On the Logic of Modalities are
different from the now current ones.

As primitive logical operators, they take:

» »

o the unary operators “—” and “~”, respec-
tively for negation and impossibility,

e and the binary operators “x” and “=", respec-
tively for conjunction and (strict) equivalence.

Thus “—A”, “~ A”, “Ax B”, “A = B” correspond,
respectively, to “=A”, “~0A”, “A A B”, “0(A «+
B)” in our notation.

The other logical boolean and “strict” operators, in
particular “D” (material implication), “>” (strict im-
plication) and “+” (disjunction), corresponding re-
spectively to our “—”, “—:” and “V”, are instead de-
fined in the expected way: A D B =4 —(A x —B),
A>B =df ~ (A x —B) and AV B :dff(fA X
—B).

In turn, LEWIS’s (and BECKER’s) axiomatization of
the system S3 is not given as an extension of an ax-

iomatic calculus for classical logic by means of addi-
tional axioms and inference rules (as the axiomati-
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zations of the normal systems reviewed in the pre-
vious chapter are). Actually, it is not at all trivial to
prove that all classical tautologies are theorems of
the original axiomatization of S3.%

All in all, for a contemporary reader with a basic
knowledge of logic it would be cumbersome to deci-
pher and translate in the current formalism LEWIS’s
and BECKER’s formulas and investigations.

In this chapter, we therefore present first of all the
(emended) system S3 not in its original formula-
tion, but in the eguivalent standard formulation
now current in modal logic.

Next, we shall present — again not in the origi-
nal but in the now standard formulation — the ax-
iomatization of BECKER’s S3’ and S3”. BECKER’s
claims and accomplishments will be evaluated in the
next chapter.

All proofs of our assertions (e.g. as to the equiva-
lence or non-equivalence of the logics in question)
in this and the next chapter are omitted: we try to
explain what is going on in On the Logic of Modali-
ties in a way accessible to a wider audience.
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5.1 LEWIS’s Survey System S3

An axiomatic calculus for S3 in the style of the
most known modal logics, see Chapter 3 above, is

found in Table 2.

Table 2: The calculus S3

Axioms and axiom schemas:

— all classical tautologies

—0A— A (schema T')
—0O(A— B) - 0O(0OA —-0OB) (schema KT)

Inference rules:

A A— B

5 MP modus ponens

A

AN provided A is

a tautology or
an instance of
TorK™t

Thus, S3 contains the classical logic, the schema
T, the schema K, the modus ponens and only a re-
stricted version RN~ of the necessitation rule RIV.

The schema KT is, like the schema K, a distributiv-
ity law (of the operator [J on the connective —). At
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a a variance with K it contains a further O after the
principal connective —.%

The inference rule RN~ says that if a proposition
A is a classical tautology, or an instance of T or KT,
then its necessitation [JA is a S3-theorem. Thus, if
“T” denotes any tautology, say p — p, OT is prov-
able in S3. By contrast, JOT cannot be obtained
from OT by means of RN, since it is neither a clas-
sical tautology nor an instance of T or K. Indeed,
it is possible to prove that JOT is not a theorem of
S3, which implies that the unrestricted necessitation
rule RN is not admissible in LEWIS’s system: S3 is
not a normal modal system.

As we said in the Introduction, the original 1918
version of S3 contained an additional axiom, which
was responsible for the modal collapse (as POST
pointed out to LEWIS) and was therefore dropped
by LEWIS in his 1920 “Emendation”. In our nota-
tion, this axiom schema amounts to:**

(x) (0B —s —0A) =, (A = B)

It is interesting to notice here how BECKER ac-
counts for the implausibility of (x), by providing
the following informal, yet convincing and intrigu-

ing countermodel:*

Example: One may think of a sequence of
numbers, which is built up by drawing arbi-
trarily many times, one after another, num-
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bered balls from an urn, whereby each time
the drawn ball shall be put back in the urn
before drawing the next ball. It is unknown
how many balls are in the urn and how they
are numbered. [...]

[T]he converse

(~g<~p)<(p<q)

does not hold, as our example [...] does
show.

Namely, let now ¢ and p stand for:

q : “19 appears among the first 100 places.”
p : “19 appears among the first 200 places.”

Then

does hold.

Actually, the impossibility that 19 occurs in
the sequence (at a variance with its contin-
gent, i.e. incidental not-occurring) can be
due exclusively to the fact that no balls with
the number 19 are contained in the urn.
This impossibility holds for all places of the
sequence, if it holds for some.

However, from ~ ¢ <~ p it does in no way
follow p < g, i.e. the implication: “If 19 ap-
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pears among the first 200 places, then it nec-
essarily appears within the first 100 places”,
since this sentence is trivially false.

5.2 BECKER’s six modalities System S3'

Let us now consider BECKER’s system S3':%°

Before considering the real meaning of the
problem of reducing the infinitely many
nested modalities that arise from the itera-
tion and composition of the symbols “~”
and “—”, we shall present a purely formal
investigation by which LEWIS’s system be-
comes a closed one thanks to the addition
of one further axiom. This can be done
in several ways. [...] The assumptions
introduced by LEWIS are (apparently) not
sufficient to obtain a closed system of irre-
ducible modalities.

Therefore we add to LEWIS’s axioms the
new axiom 1.9:

—(~p) <~ (~p)

BECKER is saying that — as summarized in Ta-
ble 3 — this system (once formulated in our no-
tation) is obtained from S3 by adding one single
axiom schema, namely J(0A — OO0A), which is a
“boxed-version” of the schema F.
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Table 3: The calculus S3’

Axioms and axiom schemas:

— all classical tautologies

—OA— A (schema T))
—0(A— B) - O(UA—0OB) (schema KT)
—O(0A — O0A) (schema OE)

Inference rules:

A A— B

5 MP modus ponens

A

AN provided A is

a tautology or

an instance of
TorK™T

BECKER gives a detailed proof of the fact that this
system has 6 irreducible modalities:

- Positive modalities: A, O0A, A (“factual”
truth);

- Negative modalities: —JA, —0A, = A (“fac-
tual” falsity).
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and that they are linearly ordered, as to logical
strength, as follows

— Positive modalities: (JA —¢ A — OA

- Negative modalities: ~0A —¢ =4 —¢ —0A

5.3 BECKER’s ten modalities System S3"

In BROUWER’s and HEYTING’s*! Intuitionistic
logic the double negation principle, =—A <+ A, is
not valid. More precisely, the left-to-right direc-
tion of the biconditional, =——A — A, is not intu-
itionistically acceptable. The other direction of the
biconditional,

A— ——A (WDN)

is instead intuitionistically valid.

As we know, BECKER is also trying to explore
the connection between intuitionistic and modal
logic. He is thus naturally led, in particular, to in-
terpret the intuitionistic negation (“~”) — which 1s
stronger than classical negation — in modal terms,
as impossibility (“~7) or, as he uses to say, absurdity
(Absurditat). By replacing, in the intuitionistic law
(WDN), “=” with “~” and “—” with “>” one gets

A>~~ A
(that is (A — —=0—0A), in our notation)
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“Truth — as he puts it*> — implies the absurdity of
the absurdity (but not conversely!)”.

Such principle is easily seen to be equivalent to the
“boxed-version” of the schema B, A — OO A, con-
sidered in the previous chapter. It should be now
clear why BECKER called it “BROUWER’s Axiom”,
a name still current in the literature.

According to BECKER, this is a reasonable axiom to
consider in order to extend LEWIS’s S3:%

One can now add (this is the weakest addi-
tional postulation we propose) “BROUWER’s
Axiom” to this setting

p=——p<~~p (1.91)

[...] As an [additional] axiom we choose

~—p <~ (1.92)

[...] If one postulates (1.91) x (1.92) one
can thus set up a ten modalities calculus.

In the current standard form we adopted, BECKER’s
second extension of LEWIS’s S3 — summarized
in Table 4 — results from the latter by adding
two axiom schemas, namely O(A — O0A), the
“boxed-version” of the BROUWER’s schema B, and
O(0A — OOA) which is a “boxed-version” of the
schema 4.
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Table 4: The calculus S3”

Axioms and axiom schemas:

— all classical tautologies

—0A— A (schema T))
—0O(A— B) -»0O(0OA - 0OB) (schema KT)
—O(A = O0A) (schema OB)
—D(DA — 00A) (schema [14)

Inference rules:

A A— B
-5 " modus ponens
ﬁm* provided A is

a tautology or
an instance of
TorKT

BECKER’s claim, supported by a detailed (putative)
proof, is that this system has 10 irreducible modali-
ties:

- Positive modalities: (A, OLJA, OA, OOA, A
(“factual” truth);
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- Negative modalities: —-0OA, —=00A, —OA,
-00A, ~A (“factual” falsity).

and that they are linearly ordered, as to logical
strength, as follows

— Positive modalities: JA —; QLA —; A —
O0A — QA

- Negative modalities: =0A —, —0O0A —

5.4 BECKER: Further “experiments”

BECKER did also tentatively consider other two
possible ways to extend LEWIS’s S3 in order to get
a system with a finite number of irreducible modal-
ities or, at least, a system with a possibly infinite
number of irreducible modalities, yet all pairwise
comparable with respect to logical strength. Here is
a sketchy account of these two modal “experiments”
- as he calls them.**

A variant of S3’

This variant, let us call it S3’*, is proposed in a short
Observation® following the presentation and the in-
vestigation of the six modalities calculus S3'. It is ob-
tained by replacing the characteristic axiom schema
UE

O(0A — 00 A)
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of S3’ (see Table 2) with the axiom schema O E*

O(O0A — OA)

BECKER’s claim is that also this new system S3'*
has 6 irreducible modalities, exactly the same as S3’,
and that they are ordered with respect to logical
strength in the same way as they are ordered in S3'.
The only remarkable difference between the two
systems, according to BECKER, is that while in S3’
A is stronger than OOA (~~ A in his notation),
in S3’* the other way around is the case: O0OA is

stronger than A. His “formalist” conclusion is:*

Thus, ~~ p is stronger than p (in con-
trast with BROUWER’s conception). From
a purely formal point of view it seems that
also this approach can be carried through
without contradiction; although it has per-
haps no concrete meaning.

A more abstract approach

In §5 of Part I¥ entitled “On the Calculus of
Modalities with least Requirements, which still
yields a Linear Rank Order”, BECKER tentatively
develops a very interesting, more abstract approach
to the problem of “completing” LEWIS’s calculus
in such a way that in the resulting system, inde-
pendently from the number (finite or infinite) of
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irreducible modalities, any two modalities (combi-
nations of primitive modalities) be comparable with
respect to logical strength:*

One can try to free oneself from all require-
ments, which are imposed by special fac-
tual assumptions, and to seek to establish
only the most general formal conditions of
a calculus of modalities. Firstly, one can
drop the demand that a reduction to finitely
many fundamental modalities be possible.

[..]

On the other hand, one will have to keep
the demand of a linear rank order of the
modalities, whereby the implicational re-
lation of any two distinct modalities is
uniquely determined. Otherwise a modal-
ity cannot be uniquely determined by its
“rank of logical strength” anymore. This
claim should be in any case the upper
bound of our formal freedom.

Now, on one hand the question is whether
the LEWISIAN Calculus satisfies this de-
mand and, on the other hand, whether
the natural axioms of a theory of the
rank order of the modalities cannot be es-
tablished independently from the LEWIS-
IAN Calculus. The answer to the first ques-
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tion is negative, the answer to the second
question is affirmative.

BECKER conveniently uses here as basic, elemen-
tary positive modality the operator “O0” (“N” in
his symbolism, corresponding to LEWIS’s “~ —”).
He then fixes a number of “rules” to which com-
posed (“non-elementary”) modalities in the calculus
of modalities should obey.

By a composed modality he means a finite, possi-
bly empty string of O’s and —’s (e.g. OO, -0,
-0-0-0, ...). Composed modalities are denoted
by capital Greek letters A,II, . ... Given two com-
posed modalities A and II, the composed modality
arising from their juxtaposition (in the given order)
is denoted by AIL* A composed modality A is posi-
tive (negative) if and only if it contains an even (odd)
number of —’s. Thus e.g. 00 and —— (that is: )
are positive, while - (equivalent to ~, impossible)
is negative.

The rules are intended to impose a number of con-
ditions concerning the preservation within the calcu-
lus of relations of logical strength between modalities
under composition/juxtaposition,® and can be equiv-
alently rephrased as follows.

For any basic or composed modalities A, A" and II,
if
AA - N A
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is a theorem of the calculus of modalities for
every formula A

then also
- ATTA —¢ A'TIA [rule Rq]

- TAA — TIN'A, where II is positive
[rule R5]

- TIA'A — TTA A, 11 is negative [rule R3]

shall be theorems of the calculus of modalities
for every formula A.

In other words, these three rules say that if the
modality A turns out to be at least as strong as the
modality A’ in the calculus, then also AII shall be at
least as strong as A’Il (R1), and IIA shall be at least
as strong as I[IA” when II is positive (Rz), as well
as ITA' shall be at least as strong as ITA when II is

negative (R3).

Now, the point is that while LEWIS’s calculus is
closed under these three rules, it contains icompa-
rable modalities. So, this is BECKER’s very interest-
ing idea, one should try to devise the “weakest pos-
sible axiomatic conditions” one should add to the
above rules R; -Rs3, i1 order to obtain a calculus in
which all the modalities are linearly ordered, that is
are pairwise comparable in strength.
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At the end of a rather elaborate argument, he ar-
rives at the claim that a stepwise generalization of
BROUWER’s schema (in the form (1B, see above):

B; =0(A — 00A) (that 1s OB)
By =0(A — 0O00A)
Bs = 0(A — O0OO0A)

provides an infinite number of axiomatic condi-
tions which, added to LEWIS’s S3 together with
the above rules (R1)-(R3), produce a calculus —
let us call it SM, for further reference — whose
modalities, although infinite in number, are linearly
ordered. He leaves as an open problem the ques-
tion whether all these infinite modalities of SM are
irreducible.
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6 BECKER’s accomplishments:
An Assessment

The evaluation of BECKER’s formal investigations,
of the results and claims we illustrated in the pre-
vious chapter, may well start from the questions
raised by GODEL in his Review of On the Logic of
Modalities:>!

[Tlhe author proposes various additional
axioms and then seeks to specify a system,
with as few assumptions as possible, for
which a linear ordering [of modalities with
respect to logical strength] still exists. All
in all, three different kinds of the calculus
of modalities emerge [...]. As far as the
purely formal side is concerned, one can
hardly take exception to anything here, but
there remain essential gaps to be filled in,
some of which the author himself points
out. Above all, it is nowhere shown that
the three systems set up really differ from
one another and from Lewis’s system (in
other words, that the additional axioms are
not in fact equivalent and do not follow
from Lewis’s); nor, furthermore, that the
six, or ten, basic modalities obtained can-
not be still further reduced.
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As we have seen, BECKER actually proposed four
calculi altogether: S3’ (the six modalities calculus,
see 5.2), S3” (the ten modalities calculus, see 5.3), the
variant S3’* of S3’ (see 5.4) and SM (the calculus
with infinitely many linearly ordered modalities, see
5.4). It is likely that “the three different kinds of
the calculus of modalities” GODEL is hinting at are
the extensions S3’, S3” and SM of S3. Anyway,
including also S3'*, the questions are:

(i) Are S3’, S3”, S3"™ and SM pairwise non-
equivalent?

(i) Can the additional axioms of these systems be
derived from S3?

(i11) Are the claimed “irreducible” modalities of
these calculi really irreducible?

The deciding answers to these questions follow
from the following three results:

1. Both S3’ and S3” are equivalent to the system
S5. S3' is indeed one of the rwo equivalent axiomati-
zations of the normal modal system S5 (see Chapter
4), as it is explicitly introduced for the first time (and
thus named) in 1932 in the Appendix II of LEWIS
& LANGFORD Symbolic Logic.>* The other equiv-
alent axiomatization of S5 indicated there is exactly
BECKERs system S3"'! So, the six and the ten modal-
ities calculi proposed by BECKER are in fact dif-
ferent axiomatizations of one and the same modal
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system, and while the six “irreducible” modalities
of S3’ are really irreducible, the ten
modalities of S3” of course boil down to the six
of S3’, alias S5. This said, and given the fact that
BECKER’s axiom schemas (1B, (04 and (JE are in-
deed not derivable from S3,> we have a conclusive
answer to questions (1)-(iii) above as to S3" and S3”.

<

“irreducible”

2. S3* collapses. This was first observed by
PARRY in 1939, while one year earlier CHURCH-
MAN>* was still conjecturing that S3* had an in-
finite number of irreducible modalities. Indeed,
using the S3-theorem 0JO(A — JA), PARRY was
able to show that A —, A is a theorem of S3’*
and thus “reduces to the system of material impli-
cation”.>® Of course, this also shows (see questions
(i1) and (ii1) above) that the additional axiom OE*
of S3'* cannot be derived from S3, and that the six
“irreducible” (according to BECKER) modalities of
S3’™* boil down to two, that is (actual) truth and
falsity.

3. SM is equivalent to the system S5. Finally, as
far as the fourth “system of modalities”, SM, tenta-
tively proposed by BECKER, CHURCHMAN proved
in 1938°¢ that it is equivalent to S8’ — that is, by
what we said above, to S5. This claim is indeed cor-
rect, although CHURCHMAN’s proof thereof is not,
because he did not adequately formalize the system
SM as BECKER intended it.”’
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All in all, we can say that BECKER’s claims about
S3' were right — and so also that he was indeed the
first, two years before the official birthdate of the
system S5, to identify this modal system and to in-
vestigate some of its properties.

BECKER’s claims about S3”, S3’* and SM were in-
stead wrong. Yet, concerning S3” the proofs he gave
to support his claims were correct, except that he
did not notice that the characteristic schema OF of
S3’ can be (easily) derived from the two character-
istic schemas (0B and (04 of S3”, modulo LEWIS’s
system S3. Concerning SM, again, his proof that
the (supposedly infinite) modalities of this system
are linearly ordered is very clever, and correct. Un-
fortunately he did not notice that, on the basis of
S3, already the first two schemas, By and Bs, of
the infinite sequence of schemas {B,,},>0 he pos-
tulated, together with the rule Ry are sufficient to
prove the schema (04 — and so to make SM equiv-
alent to S3', alias S5. Whether the same does hap-
pen with a basis weaker than S3 is an interesting
question, open as far as we know and worth to be
investigated.

In the light of these results — of the four systems he
proposed, three are in fact equivalent while the re-
maining one collapses —, one might be tempted to
underrate BECKER’s formal contributions in On the
Logic of Modalities. On the contrary, and notwith-
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standing these shortcomings, BECKER’s pioneering
work, containing sophisticated insights and interest-
ing technical solutions, has played an extremely im-
portant role in the early development of modal logic
in the decade 1930-1940, as witnessed by the sci-
entific contributions of other scholars who, at that
time, referred to BECKER’s investigations and to the
problems raised by him, and took them as a basis for

further developments and investigations.*

Last but not least, BECKER was the first to ad-
vance the idea of a modal interpretation of intuition-
istic logic — the reader should keep in mind that
BECKER was writing in 1930, and that the birth-
date of intuitionistic logic as a formalized system is
1928, thanks to HEYTING’s axiomatization.””

The 1dea is exposed and elaborated in the Appendix
to the Part I®® of On the Logic of Modalities:®!

How is now the HEYTINGIAN calculus re-
lated to the uncompleted and the completed
LEWISIAN calculus?

Firstly, the question of an appropriate “trans-
lation” of the symbols emerges.

More precisely, his idea is to define a vocabulary
translation associating to each intuitionistic logical
operator (—, V, A, —) a corresponding logical op-
erator of LEWIS’s calculus S3, in such a way that
every theorem of the intuitionistic calculus H be-
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comes, once transformed according to the transla-
tion, a theorem of S3. BECKER tentatively consid-
ers three candidate translations:®?

(T1) H: =, V, A, =m = L:—,V,A, =

(T2) H: =, V, A\,= = L:—, Vs, A, =0 (where
AV, B =df D(A V B))

(T3) H: =, v, A, » = Li—,V,A, =0

As to (T1), he observes that the T1-translation
of every intuitionistic theorem is obviously a S3-
theorem, because intuitionistic logic is included in
classical non modal logic, and the latter in turn is
included in the LEWIS’s system. On the other side,
he rightly stresses that®

[...] this is a worthless triviality. Indeed,

the purpose of a comparison between in-

tuitionistic and modal logic can only be

to make the deficits of the former with

respect to the latter comprehensible by in-

terpreting the intuitionistic notions by the

specific modal-logical notions, that is the

LEWISIAN “strict” notions (strict implica-

tion, strict logical sum, impossibility).
Concerning the second translation, he again rightly
observes that the T2-translation AV, A <+, Aof AV
A < A, which is one of the axioms of HEYTING’s
calculus, s not a theorem of S3 — the latter would
collapse otherwise!

60



Finally, as far as the third of the proposed transla-
tions is concerned, BECKER claims (without giving
a detailed proof) that the T3-translation of the ax-
iom (A — B) A (A — —B) — —A, that is the
formula

(%) (A= B)AN(A— -0B) - ~0A

is not a theorem of S3, and thereby concludes his

“translation-experiments” as follows:**

At this point a further investigation must
begin, with the aim to assess whether and
which additions must be made to the extended
LEWISIAN System (Calculus of 10 Modal-
ities, Calculus of 6 Modalities) so that the
HEYTINGIAN Axiom (11) [i.e. (x) above]
holds. Further problems can nevertheless
arise because of the difference of the unde-
fined notions in the HEYTINGIAN and the
LEWISIAN System. The solution of these
tasks and the overcome of these difficulties
shall be left to future work.

Indeed, it is not difficult to prove that BECKER
was right in claiming that (x) is underivable in S3.
Actually, it is possible to prove even more: every
normal modal system containing the schema T and
(%) collapses. 'This implies that also with respect
to the extended LEWISIAN systems mentioned by
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BECKER the translation T3 would boil down to the
trivial translation T1.

To conclude, let us tell the end of the story: only
three years later someone else, namely KURT GO-
DEL, did the “future work” and “found the solution
of these tasks” as predicted by BECKER. In the al-
ready mentioned An interpretation of the intuitionis-
tic propositional calculus® GODEL, who is his 1931
Review of On the Logic of Modalities had hastily
mentioned and too roughly dismissed BECKER’s
idea of a modal interpretation of intuitionistic logic,
saying®®

[...] the author discusses, from a formal

as well as a phenomenological standpoint,

the connections that in his opinion obtain

between modal logic and the intuitionistic

logic of Brouwer and Heyting. It seems

doubtful, however, that the steps here taken

to deal with this problem on a formal plane

will lead to success,

provided the first sound and faithful translation of
propositional intuitionistic logic into a modal sys-
tem, namely S4.% In the paper, BECKER is men-
tioned for having introduced the axiom A —
O0OA (@4, see 5.3) but, quite unfairly, nor for hav-
ing anticipated the very idea of a modal translation of
intuitionistic logic. By the way, as was later proved
by HACKING, it is also possible to define a sound
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and faithful translation of intuitionistic logic even
in the LEWIS’s modal system S3 — as BECKER had
tried to do.
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Notes

1.BECKER 1930. The Yearbook for Philosophy and Phenomeno-
logical Research (Jahrbuch fiir Philosophie und phinomenologis-
che Forschung) was founded by EDMUND HUSSERL in 1912
and served the HUSSERL's circle as an important organ during
HUSSERL’s Freiburg period (1916-1938). The first issue of the
journal was published in 1913 and contains HUSSERL'’s Ideas for
a Pure Phenomenology and Phenomenological Philosoply. Volume
8 includes HEIDEGGER’s masterpiece Being and Time (1927) as
well as OSKAR BECKER’s famous investigation on the logic and
ontology of mathematical phenomena “Mathematical Existence
(Mathematische Existenz).”

2. BECKER 1914.
3. BECKER 1923.

4. BECKER 1927. Hereto see at least: GETHMANN 2003, PECK-
HAUS 2005, MITTELSTRASS & GETHMANN-SIEFERT 2002.

5.BECKER 1952; cp. MARTIN 1969. For a complete bibliogra-
phy of BECKER’s works see ZIMNY 1969.

6. MACCOLL 1906.
7.LEWIS 1918.

8. The name appears for the first time in Appendix II of LEWIS
& LANGFORD 1932.

9. LEWIS 1920.

10.Cp. CRESSWELL et al. 2016, 281 {.
11. BECKER 1930, 4.

12. GODEL 1931.

13. Hereto cp. GODEL 1931.

14. PARRY 1939.

15. GODEL 1933.
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16. GODEL 1933, 301.

17. BOCHENSKI 1956, 116.
18. Loc. cit., 117.

19. FREGE 1923, 46.
20.PEIRCE 1992, 125 f.

21.If we assume that “incompatibility” and “impossibility” mean
the same.

22.MACCOLL 1880, MACCOLL 1906.
23.LEWIS & LANGFORD 1932.
24, RUSSELL & WHITEHEAD 1910-13.

25.1In order to comply with the now current logical notation, we
prefer not to adopt LEWIS’s symbolic apparatus. In particular,

» «_» «
-

we use “—7, “—”, , “A”, “V”, “0” and “O” to denote, re-
spectively, material implication, strict implication, conjunction,
disjunction, necessity and possibility.

26. LEWIS & LANGFORD 1932, 124.

27.Loc. cit. 124, 136.

28. Loc. cit. 142.

29.Loc. cit. 174.

30.C. 1. LEwIs & C. H. LANGFORD 1932, 248 ff.
31. HILBERT & ACKERMANN 1928, 4; 7-9.

32. LEIBNIZ 1666.

33, LEIBNIZ 1688, 912-913.

34. A logic L has the finite model property if any non-theorem
of L is falsified by some finite model of L.

35. The reason why BECKER uses this name for the schema is
explained in the next chapter.

36.See LEWIS & LANGFORD 1932, 136 ff.
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37.Notice that K is provable in S3, by using K, T and the
transitivity of implication.

38.That is, (~ ¢ <~ p) < (p < ¢) in the LEWIS-BECKER
symbolism. Notice that the converse of (), (A —s B) —
(=0B —s —QA) is a theorem of S3 (actually an axiom, (p <
q) < (~ g <~ p), in LEWIS’s presentation).
39. BECKER 1930, 8-9.
40. BECKER 1930, 11-12. Recall that “—A” corresponds to our
“ A7
41. BECKER refers explicitly to HEYTING 1930, which contains
the first (complete) presentation of intuitionistic logic as a for-
malized calculus. The paper was published in the same year of
On the Logic of Modalities, but was circulating since 1928.
42. BECKER 1930, 17.
43. BECKER 1930, 17-18.
44. BECKER 1930, 2.
45. BECKER 1930, 15-16.
46. BECKER 1930, 16.
47. BECKER 1930, 25-30.
48. BECKER 1930, 25.
49.E.g., for A = 00 and IT = ==, we have AIIl = OO0-0-.
50. These rules have not been correctly interpreted and formal-
ized in CHURCHMAN 1938, the first (and unique, as far as we
know) paper where this experiment by BECKER is detailedly an-
alyzed. Incidentally, notice that the inference rules
A—¢ B d A —s B

0A—,0B ™ 0A—, 0B
known also in the current literature as BECKER’s rules, were
given this name in CHURCHMAN 1938 (cp. HUGHES & CRESS-

WELL 1996, 200, 207) because (uncorrectly) regarded as specific
instances of rule (Rz), see below, of BECKER.
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51. GODEL 1931, 6.
52. LEWIS & LANGFORD 1932, 501.

53. The irreducibility of the six modalities of S5, alias S3’, and
the other facts and claims we mentioned are proved in LEWIS &
LANGFORD 1932, 497 ff.

54. CHURCHMAN 1938, 78.

55.PARRY 1939, 153 f. The proof is easy, using our “standard”
formulation of 83*: 83 + O(O0(A — OA) — O(A —
[JA)) since this is an instance of BECKER’s schema CJE™*, hence
(by using the schema T') S3"* + O0(A — UA) — O(A —
OA) and so, by modus ponens with the S3-theorem OO(A —
OA), one has S8 + (A — OA), thatis A —s OA.

56. CHURCHMAN 1938, 78 ff.

57.As we explained in Chapter 5, fn. 50. One can prove that
SM (as an extension of LEWIS’s S3) boils down again to S5 as
follows. By OOJA —s A, which is S3-strictly equivalent to an
instance of the schema B1 of SM, we get by the rule Ry (OO
being positive) SM + OOOOA —s OOA. On the other side,
SM F OA — OOOOA because it is an instance of the axiom
schema Bs. Thus, by transitivity of —5, SM + A —¢ OOA,
that is: SM proves the schema [J4. But the latter, together with
B1 (OB), gives BECKER’s S8’ which in turn, as we have seen
above, is equivalent to S5.

58.In this regard, FEYS 1937 and 1938 should at least be added to
the already mentioned works GODEL 1931 and 1933, LEWIS &
LANGFORD 1932, CHURCHMAN 1938, PARRY 1939 referring
to, and discussing, BECKER’s work.

59. Published two years later in HEYTING 1930.
60. BECKER 1930, 30-35.
61. BECKER 1930, 31.

62.Here rephrased in the non-Lewisian symbolism so far em-
ployed.
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63. BECKER 1930, 31.
64. BECKER 1930, 33.
65. GODEL 1933.

66. GODEL 1931, 6.

67. GODEL’s translation 7 from the formulas of the language £
of intuitionistic propositional logic to the formulas of the modal
propositional language £5 of S4 (see Chapter 4) is such that,
for every L-formula A, the following does hold: () if Fpr A
then Fga 7(A) (soundness), and (i1) if Fgq 7(A) then by A
(faithfulness). Point (i) was only conjectured by GODEL, and
proved 15 years later in MCKINSEY & TARSKI 1948.

68. HACKING 1963.
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