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1 Introduction

Our world today is becoming more and more complex. Technical applications such
as mobile phones, computers, industrial machines, cars and even coffee machines and
watches are becoming more compact and more powerful. An essential aspect in the
development of new semiconductor devices including processors and memory chips
is the ongoing miniaturization of structures on the one hand and the continuous
increase of working frequencies on the other side. The high density of electronic
components together with high clock frequencies leads to unwanted side-effects like
crosstalk, delayed signals and substrate noise, which are no longer negligible in chip
design and can only insufficiently be represented by simple lumped circuits models.
As a result, different physical phenomena such as electromagnetic induction and
heat transfer have to be taken into consideration since they have an increasing
influence on the signal propagation in the circuits. Due to the extremely high costs
of prototype fabrication and testing newly developed electronic devices, methods of
computer-based simulation play a key role in the design and production process.

The modelling and analysis of complex multi-physics problems typically leads to
coupled systems of partial differential equations (PDEs) and differential-algebraic
equations (DAEs). DAE systems are used to model dynamic processes subject to cer-
tain constraints resulting from physical laws like conservation laws and Kirchhoff’s
network laws. PDEs are used to describe spatial or spatio-temporal phenomena in
different subcomponents. Application examples can be found in various fields, e.g.,
in the analysis of electronic and electromagnetic circuits, micro-electro-mechanical
systems and fluid-structure interactions. The high dimension of the spatially dis-
cretized PDEs and the heterogeneity of system components require the development
of new powerful algorithms which, on the one hand, allow a fast simulation under
consideration of the modular system structure and, on the other hand, enable higher
accuracy and robustness of the numerical results.

Co-simulation or the coupling of different simulation tools for the analysis of
coupled systems has already been used for simulation of flow-structure interactions
in the 1980s, see [LBH84], and has become a standard technique for the analysis
of complex multidisciplinary models in nonlinear system dynamics over the past
thirty years [FPF01, GTB+18, SLL15, WP99]. In co-simulation, the individual
subsystems are iteratively solved by adjusting the coupling conditions by means of
dynamic iteration. Thereby the combination of different integration methods (multi-
method approach) and the use of different time steps (multi-rate methods) for the
individual model components is possible. Stability and convergence of the dynamic
iteration depend on many parameters: type of used iteration method, number of
iterations, macro step size and formulation of the coupling conditions. Though for
special system structures, stability and convergence can often be ensured, this does
not apply to more general structures [AG01, Ebe08, PT18, SA12].
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1 Introduction

With the increasing complexity of multiphysics problems to be modelled, the
interest in model order reduction has grown rapidly in recent years [BHtM11, BMS05,
BOA+17, SvdVR08]. The aim of model reduction is to approximate high-dimensional
systems with models of lower dimension which capture the input-output behaviour
of the original system as accurately as possible, preserve important physical prop-
erties such as stability and passivity and require much less simulation time. For
linear (DAE) systems, various model reduction techniques have been developed and
successfully applied in numerous application areas such as modal approximation in
structural mechanics [Dav66, Mar66], Krylov subspace-based methods in electro-
magnetic and microsystem technology [Bai02, Fre04, OCP98] and balanced trunca-
tion in circuit simulation and fluid dynamics [RS10, RS11, HSS08]. Several model
reduction techniques have also been developed for nonlinear systems. These in-
clude the trajectory piecewise linear method [RW06], methods based on bilinear
and quadratic-linear approximations [BB12] and the proper orthogonal decompo-
sition (POD) approach [Vol99] combined with the discrete empirical interpolation
method (DEIM) [CS10]. Model reduction of linear coupled systems has been con-
sidered in [RS07], where error bounds for reduced coupled system were derived which
depend on the error bounds for the subsystems.

In this thesis, we first investigate the dynamic iteration using reduced-order mod-
els (DIRM) which was proposed in [RP02]. In numerical experiments, we observed
that this method depends on many parameters that strongly influence its conver-
gence. Our goal is to derive an error estimator which provides a reliable information
on accuracy of the computed solution at low cost. Such an error estimator could
further be used in the convergence analysis of the DIRM method which still remains
an open problem.

In the second part of this thesis, we study coupled field-circuit systems. Assuming
that the contribution of the displacement currents is negligible compared to the con-
ductive currents and that the conductivity vanishes on a non-conducting subdomain,
the magnetic field can be described by magneto-quasistatic (MQS) systems which
can be considered as an approximation to Maxwell’s equations. Such systems are
used for modeling of low-frequency electromagnetic devices. A spatial discretization
of coupled MQS-circuit systems leads to large-scale DAEs whose numerical solution
requires an enormous amount of storage and large computational time. To reduce
numerical effort, model order reduction can be used. Since model reduction of
circuit equations has already been well studied, see, e.g., [OCP98, Fre04, RS10,
RS11], we will focus here on MQS systems. Model reduction of electromagnetic
problems is currently a very active research area [HC13, HC14, KS15, MHCG16,
NST14, NT13] because faster simulations are essential in parameter study and
computational optimization of electromagnetic structures. For model reduction of
linear MQS systems, we employ the balanced truncation approach, whereas nonlin-
ear MQS systems are reduced using the POD-DEIM method. We will exploit the
special block structure of the underlying problem to improve the performance of the
model reduction algorithms.
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Outline of the thesis

This thesis is organized as follows. In Chapter 2, we present a basic concepts for
DAEs and linear control systems. We also introduce common model reduction meth-
ods for linear and nonlinear systems and discuss the numerical solution of PDEs
using the finite element method (FEM). In Chapter 3, we consider the numerical so-
lution of coupled systems. In Section 3.1, we first describe dynamic iteration scheme
which is based on splitting the time interval into macro time windows and solving
the subsystems iteratively on each time window. In Section 3.2, dynamic iteration
is combined with the POD model reduction approach providing the DIRM method.
The performance of this method for different choice of method parameters will then
be investigated by using a simple coupled system in Section 3.3. Finally, in Sec-
tion 3.4, we derive an a posteriori error estimator for the DIRM method and discuss
its computation. Numerical experiments demonstrate the accuracy properties of the
DIRM error estimator. The preliminary results of this section have been presented
in [KS14].

In Chapter 4, we consider model reduction of linear and nonlinear MQS systems.
In Section 4.1, we introduce general Maxwell’s equations describing the electric and
magnetic fields and derive a MQS approximation to these equations in Section 4.2.
In Section 4.3, we investigate first the 2D MQS system. Based on a weak for-
mulation, a spatial discretization of such a system using FEM is discussed. We
analyze the structural and physical properties of the resulting DAE. In particular,
we show that the semidiscretized MQS system is of tractability index one and pas-
sive. A transformation of this DAE system into the ordinary differential equation
(ODE) form is also presented. Furthermore, in Section 4.4, we develop a balanced
truncation model reduction method for 2D linear MQS systems. This method is
based on solving one Lyapunov matrix equation and preserves passivity. Section 4.5
deals with model reduction of 2D nonlinear MQS systems using the POD method
combined with DEIM for efficient evaluation of the nonlinearity. We prove that the
POD reduced model is passive and present a passivity enforcing method for the
POD-DEIM reduced model. Some parts of Sections 4.4 and 4.5 have been published
in [KBS17]. In Section 4.6, we report some results of numerical experiments for
a single-phase 2D transformer model. Additionally, we compare the numerical solu-
tions of a coupled MQS-circuit system obtained by four different numerical methods:
monolithic approach, dynamic iteration, monolithic approach combined with model
reduction of the MQS subsystem, and dynamic iteration combined with model re-
duction. Finally, in Section 4.7, we extend several results for 2D MQS systems to 3D
models. To overcome the difficulty caused by singularity of the 3D semidiscretized
MQS system, we present a regularization approach which is based on projecting out
the singular variables and ensures the unique solvability of the regularized system.
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2 Preliminaries

In this chapter, we briefly review differential-algebraic equations and linear control
systems and discuss their properties. We also introduce model reduction methods
for linear and nonlinear systems and outline the finite element method for solving
elliptic partial differential equations.

2.1 Differential-algebraic equations

First, we collect some facts on differential-algebraic equations (DAEs). More details
can be found in [HW96, KM06]. DAEs arise in different applications such as electri-
cal circuits, multi-body systems, computational fluid dynamics and electromagnetic
problems. Some of these applications will also be considered in Chapter 4.

Consider an implicit differential equation

0 = F (ẋ, x, t), (2.1.1)

where F : Rn × Rn × I → Rn, I = (t0, T ) ⊂ R, x : I → Rn is a continuously
differentiable function, and ẋ denotes the derivative of x with respect to t ∈ I.
Equation (2.1.1) together with an initial condition

x(t0) = x0 (2.1.2)

forms the initial value problem. A function x : I → Rn is called a solution of the
initial value problem (2.1.1), (2.1.2) if x is continuously differentiable and satisfies
(2.1.1) pointwise and also (2.1.2). If the initial value problem (2.1.1), (2.1.2) is
solvable, then the initial condition (2.1.2) is called consistent.
If ∂F

∂ẋ
exists and is invertible, then system (2.1.1) can be solved with respect to

ẋ. In this case, the implicit differential equation (2.1.1) is equivalent to a system
of ordinary differential equations (ODEs). Here, we consider (2.1.1), where ∂F

∂ẋ
is

singular. Such a system contains the differential and (possibly hidden) algebraic
equations and is called a system of DAEs. The most simple form of DAEs is the
linear time-invariant DAE system given by

Eẋ = Ax+ f(t), x(t0) = x0, (2.1.3)

where E,A ∈ Rn×n, f : R→ Rn and x0 ∈ Rn. For this system, we have

F (ẋ, x, t) = Eẋ− Ax− f(t)

and, therefore,
∂F

∂ẋ
(ẋ, x, t) = E.
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2 Preliminaries

Thus, for E invertible, (2.1.3) is an ODE, and for E singular, we have a DAE. The
existence and uniqueness of solution of such a system can be studied by considering
the eigenvalue structure of the matrix pencil λE − A.

Definition 2.1. For a pencil λE−A, λ ∈ C is called a finite eigenvalue and v ∈ Rn

is called an eigenvector if Av = λEv. The pencil λE−A has an eigenvalue at infinity
if µ = 0 is the eigenvalue of the pencil E − µA.

Assume that the pencil λE − A is regular, i.e., det(λE − A) 6= 0 for some λ ∈ C.
Then λE − A can be transformed into the Weierstraß canonical form

E = Tl

[
Inf 0
0 E∞

]
Tr, A = Tl

[
Af 0
0 In∞

]
Tr, (2.1.4)

where Tr and Tl are nonsingular transformation matrices, nf + n∞ = n, E∞ is
a nilpotent matrix with index of nilpotency k, and Af contains the finite eigenvalues
of the pencil. Let

Trx =

[
x1

x2

]
, T−1

l f =

[
f1

f2

]
, Trx0 =

[
x01

x02

]
(2.1.5)

be partitioned accordingly to E and A in (2.1.4). Then the DAE system (2.1.3) can
be written as

ẋ1 = Afx1 + f1, x1(t0) = x01, (2.1.6a)
E∞ẋ2 = x2 + f2, x2(t0) = x02. (2.1.6b)

Equation (2.1.6a) is a linear ODE. It is uniquely solvable for all initial vectors
x01 ∈ Rnf . Equation (2.1.6b) has also a unique solution given by

x2 = −
k−1∑
i=0

Ei
∞
dif2

dti

provided f2 is sufficiently smooth and the initial vector x02 ∈ Rn∞ satisfies the
consistency condition

x02 = −
k−1∑
i=0

Ei
∞
dif2

dti
(t0).

This shows that unlike ODEs, for the existence of the continuously differentiable
solution x of the DAE (2.1.3), it is necessary that the inhomogeneity f is k times
continuously differentiable and x0 belongs to the set of consistent initial conditions

X0 =

{
T−1
r

[
x01

x02

]
: x01 ∈ Rnf , x02 = −

k−1∑
i=0

Ei
∞
dif2

dti
(t0)

}
.

To classify how close a DAE (2.1.1) is being to an ODE, different index concepts
were introduced in the literature [HW96, KM06, LMT13]. An overview can be found
in [Meh15, Sch03b]. First, we define the differentiation index following [Cam87].
The main idea thereby is to find out how often one has to differentiate the DAE
system (2.1.1) in order to reformulate it as an ODE system.
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2.1 Differential-algebraic equations

Definition 2.2. Equation (2.1.1) with a sufficiently smooth F has a differentiation
index δ if δ is the minimal number of differentiations

0 = F (ẋ, x, t),

0 =
dF (ẋ, x, t)

d t
,

...

0 =
dδ F (ẋ, x, t)

d tδ

(2.1.7)

such that (2.1.7) allows to extract by algebraic manipulations an ODE system

ẋ = ϕ(x, t), (2.1.8)

which is called underlying ODE.

Note that the underlying ODE (2.1.8) has the same dimension as the DAE (2.1.1).
We now apply this definition to the linear DAE (2.1.3). This system has the differ-
entiation index δ = 1 if

Eẋ = Ax+ f(t),

Eẍ = Aẋ+ ḟ(t)
(2.1.9)

is solvable for ẋ such that ẋ depends only on x and t but not on ẍ. In order to
determine the underlying ODE, we consider two matrices Yl and Yr whose columns
form the bases of ker(E) and ker(ET ), respectively. Extend Yl and Yr with Zl
and Zr, respectively, such that the matrices

[
Zl, Yl

]
and

[
Zr, Yr

]
are invertible.

Multiplying both equations in (2.1.9) from the left with
[
Zl, Yl

]T and introducing
the new variables [

x1

x2

]
=
[
Zr Yr

]−1
x,

we obtain
ZT
l EZrẋ1 = ZT

l AZrx1 + ZT
l AYrx2 + ZT

l f(t),
0 = Y T

l AZrx1 + Y T
l AYrx2 + Y T

l f(t),

ZT
l EZrẍ1 = ZT

l AZrẋ1 + ZT
l AYrẋ2 + ZT

l ḟ(t),

0 = Y T
l AZrẋ1 + Y T

l AYrẋ2 + Y T
l ḟ(t).

(2.1.10)

We know that

rank(ZT
l EZr) = rank

([
ZT
l EZr 0

0 0

])
= rank

([
ZT
l

Y T
l

]
E
[
Zr Yr

])
= rank(E).

Therefore, the matrix ZT
l EZr ∈ Rrank(E)×rank(E) is invertible and we can solve the

first equation in (2.1.10) for ẋ1. If Y T
l AYr is invertible, we can solve the last equation

in (2.1.10) for ẋ2. Then the underlying ODE has the form

ẋ1 = (ZT
l EZr)

−1
(
ZT
l AZrx1 + ZT

l AYrx2 + ZT
l f(t)

)
,

ẋ2 = −
(
Y T
l AYr

)−1
Y T
l AZr(Z

T
l EZr)

−1
(
ZT
l AZrx1 + ZT

l AYrx2 + ZT
l f(t)

)
−
(
Y T
l AYr

)−1
Y T
l ḟ(t).

In this case, the DAE (2.1.3) has the differentiation index δ = 1. The invertibility of
Y T
l AYr is equivalent to the condition rank[E,AYr] = n. If Y T

l AYr is not invertible,
then system (2.1.3) has at least the differentiation index δ = 2.
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2 Preliminaries

Next, we introduce a tractability index from [LMT13]. The idea is now to avoid
the differentiation of the equations and work instead with projectors. For simplicity,
we restrict ourselves to a quasilinear DAE

F
d

dt
d(x, t) + b(x, t) = 0 (2.1.11)

where F ∈ Rn×l and d : Rn × I → Rl and b : Rn × I → Rn are sufficiently smooth
functions. We only consider DAEs, where D(x, t) := d

dx
d(x, t) has a constant rank.

In addition, we demand a properly stated leading term property

ker (F )⊕ im (D(x, t)) = Rn, x ∈ Rn, t ∈ I.

Definition 2.3 ([Tis03, Definition A.14]). A quasilinear DAE (2.1.11) with properly
stated leading term is said to be regular with tractability index τ if there exist two
sequences of continuous matrix-valued functions

G0(x, t) =FD(x, t),
Gi+1(xi, ..., x1, x, t) =Gi(xi−1, ..., x1, x, t)+Bi(xi, ..., x1, x, t)Qi(xi−1, ..., x1, x, t),

and

B0(x, t) =
∂b

∂x
(x, t),

Bi+1(xi+1, ..., x1, x, t) =Bi(xi, ..., x1, x, t)Pi(xi−1, ..., x1, x, t)
−(Gi+1D

−Diffi+1)(xi+1, ..., x1, x, t)(DP0 · · · Pi)(xi−1, ..., x1, x, t),
with

Diff1(x1, x, t) =
∂(DP0P1D

−)

∂x
(x, t)x1 +

∂(DP0P1D
−)

∂t
(x, t),

Diffi+1(xi+1, ..., x1, x, t) =
i∑

j=1

∂(DP0 · · · Pi+1D
−)(xi, ..., x1, x, t)

∂xj
xi+1

+
∂(DP0 · · · Pi+1D

−)(xi, ..., x1, x, t)

∂x
x1

+
∂(DP0 · · · Pi+1D

−)(xi, ..., x1, x, t)

∂t
,

where for all xi, . . . , x1, x ∈ Rn and t ∈ I,

1. Qi(xi−1, . . . , x1, x, t) is a continuous projector function onto the subspace
ker (Gi(xi−1, . . . , x1, x, t)),

2. Pi(xi−1, . . . , x1, x, t) = I −Qi(xi−1, . . . , x1, x, t),

3. Qi(xi−1, . . . , x1, x, t)Qj(xj−1, . . . , x1, x, t) = 0 for j = 0, . . . , i− 1, i > 0,

4. D− is a reflexive generalized inverse of D satisfying DD− = R, D−D = Q0

and DD− is a projector onto im(D(x, t)),

5. DP0 · · · ,PiD−(xi−1, . . . , x1, x, t) is continuously differentiable,

6. Gi(xi−1, . . . , x1, x, t) has constant rank ri > 0,

7. rτ−1 < rτ = n.
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2.2 Linear control systems

In order to demonstrate the application of this definition to the linear DAE
system (2.1.3), we transform first this system into a system with properly stated
leading term. Let the columns of Z form a basis of im(E). Then system (2.1.3)
can be written in the form of (2.1.11) with F = EZ(ZTZ)−1, d(x, t) = ZTx and
b(x, t) = −Ax− f(t). We have

G0 = EZ(ZTZ)−1ZT = E,
B0 = A,

as Z(ZTZ)−1ZT is a projector onto im(E). If G0 is invertible, system (2.1.3) is
equivalent to the ODE

ẋ = E−1Ax+ E−1f(t).

If G0 is singular, we find Q0 as a projector onto ker (G0) and P0 = I −Q0. Then we
have

G1 = G0 + B0Q0 = E + AQ0.

If G1 is invertible, then the DAE (2.1.3) has the tractability index τ = 1.
Note that for the linear DAE (2.1.3) with a regular pencil λE − A, the differ-

entiation and tractability indices coincide and are equal to the nilpotency index of
λE −A. However, for nonlinear DAEs different indices characterize various proper-
ties of the system. For other index concepts such as strangeness index, pertubation
index, geometric index, structural index and relation between them, we refer to
[HW96, KM06, Pan88, Rhe84] and [Meh15], respectively.

2.2 Linear control systems

In this section, we present some control-theoretic concepts for a linear time-invariant
control system

Eẋ = Ax+Bu,
y = Cx+Du,

(2.2.1)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rp is the output, E,A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. If E = I, system (2.2.1) is called standard
state space system. If E is nonsingular, system (2.2.1) can easily be transformed
into the standard state space form by multiplication from the left with E−1. In the
case when E is singular, system (2.2.1) is called descriptor system or generalized
state space system.

2.2.1 Standard state space systems

First, we consider a standard state space system

ẋ = Ax+Bu,
y = Cx+Du.

(2.2.2)

As we are often interested only in the input-output behavior, we introduce the
transfer function and list some of its properties.

9



2 Preliminaries

Definition 2.4. The matrix-valued function

G(s) = C(sI − A)−1B +D

is called the transfer function of system (2.2.2).

The transfer function G describes the input-output behavior of systen (2.2.2) in
the frequency domain. This follows from the relation y(s) = G(s)u(s) between
the Laplace transformed input u and the Laplace-transformed output y which is
obtained by applying the Laplace transformation to system (2.2.2).

Definition 2.5. A quadruple (A,B,C,D) is called a state space realization of
a transfer function G if

G(s) = C(sI − A)−1B +D.

For every invertible matrix T , the quadruple (TAT−1, TB,CT−1, D) gives another
realization of G(s) = C(sI − A)−1B +D.

Definition 2.6. The Hardy norm ‖F‖H∞ of a function F : C → Cq×r, which is
analytic in the right complex half-plane C+ = {z ∈ C : Re(z) > 0}, is defined by

‖F‖H∞ = sup
z∈C+

σmax(F (z)),

where σmax(F (z)) denotes the largest singular value of the matrix F (z).

One can show that if the transfer function G of system (2.2.2) is analytic in C+,
then

‖G‖H∞ = sup
u6=0

‖y‖L2(0,∞;Rp)

‖u‖L2(0,∞;Rm)

,

where ‖f‖L2(0,∞;Rm) denotes the L2-norm of a function f : (0,∞)→ Rm. Thus, the
H∞-norm is the induced norm to the L2-norm. This gives directly

‖y‖L2(0,∞;Rp) 6 ‖G‖H∞‖u‖L2(0,∞;Rm).

Note that G is analytic in C+ if all eigenvalues of A have negative real part. In
this case, any solution of the homogeneous equation ẋ = Ax satisfies lim

t→∞
x(t) = 0.

This property is known as asymptotic stability [HNW93, Chapter I.13].
Next, we introduce the concepts of controllability and observability for

system (2.2.2).

Definition 2.7. A control system (2.2.2) is called controllable, if for any initial
condition x(t0) = x0, t1 > t0 and a final state x1 ∈ Rn, there exists a control
u : [t0, t1] → Rm such that the solution of the state equation in (2.2.2) satisfies
x(t1) = x1.

Definition 2.8. A control system (2.2.2) is called observable if for any t1 > t0, the
initial state x(t0) = x0 can be determined from the time history of the input u(t)
and the output y(t) on the interval [t0, t1].
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The controllability and observability properties of (2.2.2) can be characterized by
the observability and controllability Gramians defined as follows.

Definition 2.9. Let system (2.2.2) be asymptotically stable, i.e., all eigenvalues of
A have negative real part. Then the controllability and observability Gramians of
(2.2.2) are defined by

Gc =

∫ ∞
0

eAτBBT eA
T τdτ,

Go =

∫ ∞
0

eA
T τCTCeAτdτ.

(2.2.3)

The following theorem shows that the Gramians can be determined by solving the
Lyapunov matrix equations.

Theorem 2.10. Let system (2.2.2) be asymptotically stable. Then the controllability
and observability Gramians satisfy the Lyapunov equations

AGc +GcA
T =−BBT ,

ATGo +GoA =− CTC.

Proof. See [Ant05, Proposition 4.27].

Note that for system (2.2.1) with nonsingular E, the controllability and observa-
bility Gramians solve the generalized Lyapunov equations

AGcE
T + EGcA

T =−BBT , (2.2.4)
ATGoE + ETGoA =− CTC. (2.2.5)

They exist if all eigenvalues of the pencil λE − A have negative real part.

2.2.2 Descriptor systems

We now consider a descriptor system given by

Eẋ = Ax+Bu,
y = Cx+Du,

(2.2.6)

where E ∈ Rn×n is singular. Similar to the standard state space case, we define the
transfer function for (2.2.6) as follows.

Definition 2.11. The matrix-valued function

G(s) = C(sE − A)−1B +D

is called the transfer function of the descriptor system (2.2.6).

Definition 2.12. A transfer function G of (2.2.6) is called proper if lim
s→∞

G(s) exists
and improper otherwise. If lim

s→∞
G(s) = 0, then G is called strictly proper.

11
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Consider the Weierstraß canonical form (2.1.4) for the pencil λE − A with the
transformation matrices Tl and Tr and introduce

Trx =

[
x1

x2

]
, T−1

l B =

[
B1

B2

]
, CT−1

r =
[
C1 C2

]
.

Then the descriptor system (2.2.6) can be decoupled into a slow subsystem

ẋ1 = Afx1 +B1u,
y1 = C1x1,

(2.2.7)

and a fast subsystem
E∞ẋ2 = x2 +B2u,

y2 = C2x2 +Du
(2.2.8)

with y = y1 + y2. Analogously, we can split the transfer function

G(s) = Gsp(s) + Gp(s) (2.2.9)

into a strictly proper part

Gsp(s) = C1(sI − A−1
f )B1

and a polynomial part

Gp(s) = C2(sE∞ − I)−1B2 +D =
k−1∑
j=0

Mjs
j

with

M0 = −C2B2 +D,

Mj = −C2E
j
∞B2, j = 1, . . . , k − 1.

In order to extend the controllability and observability Gramians to descriptor sys-
tems, we need the spectral projectors

Pl = Tl

[
Inf 0
0 0

]
T−1
l , Pr = T−1

r

[
Inf 0
0 0

]
Tr

onto the left and right deflating subspaces of the pencil λE − A corresponding to
the finite eigenvalues and the complementary projectors

Ql = I − Pl, Qr = I − Pr,

which are the spectral projectors onto the left and right deflating subspaces cor-
responding to the eigenvalue at infinity. These projectors allow us to define the
controllability and observability Gramians for the slow and fast subsystems sepa-
rately.
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2.3 Passivity

We first define the proper controllability and observability Gramians Gpc and Gpo

of system (2.2.6) as unique symmetric positive semidefinite solutions of the projected
continuous-time Lyapunov equations

EGpcA
T + AGpcE

T = −PlBBTP T
l , Gpc = PrGpcP

T
r

ETGpoA+ ATGpoE = −P T
r C

TCPr, Gpo = P T
l GpoPl.

Such Gramians exist if system (2.2.6) is asymptotically stable meaning that all
finite eigenvalues of the pencil λE − A have negative real part. Furthermore, the
improper controllability and observability GramiansGic andGio are defined as unique
symmetric positive semidefinite solutions of the projected discrete-time Lyapunov
equations

AGicA
T − EGicE

T = QlBB
TQT

l , Gic = QrGicQ
T
r ,

ATGioA− ETGioE = QT
r C

TCQr, Gio = QT
l GioQl.

Finally, the controllability and observability Gramians of the descriptor system
(2.2.6) are defined as Gc = Gpc + Gic and Go = Gpo + Gio, respectively. Unlike
standard state space systems, there exist different types of controllability and ob-
servability for descriptor systems [BRT17]. These system properties can be charac-
terized by special rank conditions for the proper and improper Gramians, see [Sty04,
Corollary 2.5] for details.

2.3 Passivity

In this section, we introduce passivity. Passive systems form a special class of dis-
sipative dynamical systems which have extensively been studied in [HM80, vdS00,
Wil72]. They are of particular interest in circuit simulation [AV73] and controller
design [BLME07, CS05]. Roughly speaking, a system is passive if it does not gen-
erate energy or, equivalently, the energy dissipates. Mathematically, passivity can
be defined in terms of a storage function or an available storage characterizing the
maximum energy that can be extracted from the system. An important property
of passive systems is that an interconnection of passive subsystems often provides
a new passive system [Wil72].
For our later purposes, we define passivity for a semilinear autonomous descriptor

system
Eẋ = f(x, u), x(0) = x0,
y = g(x, u)

(2.3.1)

where E ∈ Rn×n, f : Rn × Rm → Rn, h : Rn × Rm → Rm and x0 ∈ Rn. We know
that if E is singular, the initial vector x0 should satisfy the consistency condition
depending on u. On the other side, for given initial condition x(0) = x0, we can
consider only those inputs which are admissible with this condition meaning that
the initial value problem (2.3.1) is solvable.

Definition 2.13. A descriptor system (2.3.1) is called input-output passive
(io-passive) if for all T > 0 and all squared integrable inputs u : [0, T ]→ Rm admis-
sible with the initial condition x(0) = 0, the corresponding output y : [0, T ]→ Rm
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satisfies ∫ T

0

yT (τ)u(τ)dτ > 0.

For a linear descriptor system (2.2.6), io-passive can be characterized in terms of
positive realness of the transfer function G(s) = C(sE − A)−1B +D. The transfer
function G is called positive real if G is analytic in the right complex half-plane C+

and G(s) + G∗(s) > 0 for all s ∈ C+. The following theorem shows an equivalence
between io-passivity and positive realness of G.

Theorem 2.14. A linear descriptor system (2.2.6) is io-passive if and only if its
transfer function G(s) = C(sE − A)−1B +D is positive real.

Proof. See [AV73].

The next theorem provides sufficient conditions for the linear descriptor system
(2.2.6) to be io-passive.

Theorem 2.15. A descriptor system (2.2.6) with ker(E) ∩ ker(A) = ∅ and

E = ET > 0, A+ AT 6 0, B = CT , D = 0 (2.3.2)

is io-passive.

Proof. First, we show that all finite eigenvalues of the pencil λE − A lie in the
closed left half-plane. This implies that G is analytic in C+, since the poles of G
are the eigenvalues of λE − A. Let λ0 be a finite eigenvalue of λE − A and let v
be the corresponding eigenvector. Then Ev 6= 0, λ0Ev = Av and λ0v

∗ET = v∗AT .
Moreover, we have

0 > v∗(A+ AT )v = λ0v
∗Ev + λ0v

∗ETv = 2Re(λ0)v∗Ev.

Since v∗Ev > 0, we obtain Re(λ0) 6 0. Using (2.3.2), we obtain that

G(s) + G∗(s) = C(sE − A)−1B +BT (sET − AT )−1CT

= C(sE − A)−1(2Re(s)E − (A+ AT ))−1(sET − AT )−1CT > 0

for all s ∈ C+. Hence, by Theorem 2.14 system (2.2.6) is io-passive.

There is another definition of passivity which we also introduce here.

Definition 2.16. A descriptor system (2.3.1) is said to be passive if there exists a
nonnegative function S : Rn → R+

0 , such that S(0) = 0 and for all T > 0 and all
quadratically integrable inputs u admissible with an initial condition x(0) = x0 ∈ Rn,
the passivation inequality

S(x(T ))− S(x0) 6
∫ T

0

yT (τ)u(τ) dτ (2.3.3)

holds, where x solves the initial value problem (2.3.1) on the time interval [0, T ].
The function S is called the storage function.
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2.4 Model order reduction

Remark 2.17. Note that passivity of (2.3.1) immediately implies io-passivity. In-
deed, assume that system (2.3.1) is passive. Then for all T > 0 and all inputs u
admissible with the initial condition x(0) = 0, it follows from Definition 2.13 that

∫ T

0

yT (t)u(t) dt > S(x(T ))− S(x(0)) = S(x(T )) > 0.

Thus, (2.3.1) is io-passive. For standard state space nonlinear systems, it has been
shown in [HM80, Pol98] that under an additional assumption of reachability, Defi-
nitions 2.13 and 2.16 are equivalent. This result was extended to linear descriptor
systems in [Brü10]. Passivity of infinite-dimensional descriptor systems was studied
in [JR08].

2.4 Model order reduction

In this section, we outline model order reduction (MOR) of linear and nonlinear
systems using balanced truncation and proper orthogonal decomposition, respec-
tively. In case of nonlinear systems, we also present a discrete empirical interpola-
tion method for fast evaluation of nonlinear function. Consider a nonlinear control
system

Eẋ = f(x, u),
y = g(x, u).

(2.4.1)

where E ∈ Rn×n, f : Rn × Rm → Rn and g : Rn × Rm → Rp. We assume that the
dimension n of the state x is very large, while the dimensions m and p of the input
u and the output y, respectively, are small compared to n. The goal of MOR is to
compute a reduced model

Ẽ ˙̃x = f̃(x̃, u),
ỹ = g̃(x̃, u),

which has a reduced state space dimension η � n and the approximation error
‖y − ỹ‖ is small in some appropriate function norm. A common model reduction
approach is reduction by projection. Here, we are searching for two projection
matrices V ∈ Rn×η and W ∈ Rn×η. Substituting an approximation x ≈ V x̃ into
(2.4.1), we get the residual r = EV ˙̃x−f(V x̃, u). If W is chosen such that W T r = 0,
we obtain the reduced-oder model

W TEV ˙̃x = W Tf(V x̃, u),
ỹ = g(V x̃, u).

To gain a speed up in the construction of the reduced-order models and their sim-
ulation, we split the computations in a computationally expensive offline stage and
a cheap online stage.
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2.4.1 Balanced truncation for linear systems

For linear systems, there are different methods to generate the projection matricesW
and V , see [ASG01, BBF14] for an overview. In this section, we present a balanced
truncation (BT) model reduction approach introduced first in [Moo81] and further
studied in [Enn84, LHPW87, TP87]. This model reduction technique strongly relies
on the control-theoretic concepts such as controllability and observability Gramians
introduced in Section 2.2. A main idea of BT is to transform the system into
a balanced form and then truncate the states that are difficult to control and to
observe.

Balanced truncation for standard state space systems

First, we present the BT method for the linear standard state space system (2.2.2).
For such a system, the reduced-order model has the form

˙̃x = Ãx̃+ B̃u,

ỹ = C̃x̃+ D̃u,
(2.4.2)

where
Ã = W TAV, B̃ = W TB, C̃ = CV, D̃ = D (2.4.3)

with appropriately chosen projection matrices W and V . For linear systems, the
reduced-order matrices (2.4.3) can be precomputed in the offline stage and only
a linear system of dimension η has to be solved in the online stage.
In oder to be able to measure the importance of states, we introduce two energy

functions

Eu = ‖u‖2
L2(−∞,0;Rm) =

∫ 0

−∞
uT (t)u(t)dt,

Ey = ‖y‖2
L2(0,∞;Rp) =

∫ ∞
0

yT (t)y(t)dt.

The input energy Eu is the square of L2-norm of the input signal on the time interval
(−∞, 0), whereas the output energy Ey is the square of the L2-norm of the output
signal on the time interval (0,∞).
The following theorem shows a connection between the energy functions and the

controllability and observability Gramians.

Theorem 2.18. Assume that system (2.2.2) is asymptotically stable. Let Gc and
Go be the controllability and observability Gramians as defined in (2.2.3).

1. If system (2.2.2) is controllable, then Gc is nonsingular and

min
u∈L2(−∞,0;Rm),

x(−∞)=0,
x(0)=x0

Eu = xT0G
−1
c x0

is the minimal energy required to steer the state x(−∞) = 0 to x(0) = x0.
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2.4 Model order reduction

2. The output energy produced by system (2.2.2) with an initial condition x(0) = x0

and u(t) = 0 for t > 0 is given by

Ey = xT0Gox0.

Proof. See [Ant05, Lemma 4.29].

The importance of the state variables is measured using the Hankel singular values
defined as

�j =
√
λj(GcGo),

where λj(GcGo) denote the eigenvalues of GcGo. They are assumed to be ordered
decreasingly. One can show, see [Ant05, Lemma 5.8], that the Hankel singular values
�j are the singular values of the Hankel operator

H : L2(−∞, 0;Rm)→ L2(0,∞;Rp),

u(t) 7→ y(t)

defined by

y(t) = (Hu) (t) =

∫ 0

−∞
CeA(t−τ)Bu(τ)dτ, t > 0.

Let Gc = ZcZ
T
c and Go = ZoZ

T
o be the Cholesky factorizations of the Gramians.

Then the Hankel singular values can be determined as the singular values of the
matrix ZT

o Zc. This follows from the relation

�2
j = λj(GcGo) = λj(ZcZ

T
c ZoZ

T
o ) = λj(Z

T
c ZoZ

T
o Zc) = σ2

j (Z
T
o Zc),

where λj(·) and σj(·) denote the j-th eigenvalue and singular value, respectively.
System (2.2.2) is called balanced if the controllability and observability Grami-

ans are equal and diagonal with the Hankel singular values on the diagonal, i.e.,
Gc = Go = diag(�1, . . . , �n). Consider the singular value decomposition (SVD)
ZT
o Zc = UΣQT , where U und Q are orthogonal and Σ = diag(�1, . . . , �n). If sys-

tem (2.2.2) is controllable and observable, then (2.2.2) can be transformed into the
balanced form

(
TbAT

−1
b , TbB,CT

−1
b , D

)
with the balancing transformation

Tb = Σ−
1
2UTZT

o and T−1
b = ZcQΣ−

1
2 .

We now take a look at the energy functions for the balanced system. Since
Gc = Go = Σ, the energy functions read as

min
u∈L2(−∞,0;Rm),

x(−∞)=0,
x(0)=ej

Eu = eTj G
−1
c ej =

1

�j
,

and

Ey = eTj Goej = �j,

where ej denotes the j-th column of the identity matrix. This means that for large �j,
the states are easy to control and observe. The truncation is performed by splitting
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2 Preliminaries

Algorithm 2.1: Balanced truncation for standard state space systems
Input : an asymptotically stable system (A,B,C,D)
Output: a reduced-order asymptotically stable system (Ã, B̃, C̃, D̃)

1 Solve the Lyapunov equations

AGc +GcA
T =−BBT ,

ATGo +GoA =− CTC,

for the Cholesky factorizations Gc = ZcZ
T
c and Go = ZoZ

T
o .

2 Compute the SVD

ZT
o Zc =

[
U1 U0

] [Σ1

Σ0

] [
Q1 Q0

]T
,

where
[
U1, U0

]
and

[
Q1, Q0

]
are orthogonal, Σ1 = diag(�1, . . . , �η) and

Σ0 = diag(�η+1, . . . , �n).

3 Compute the projection matrices W = ZoU1Σ
− 1

2
1 and V = ZcQ1Σ

− 1
2

1 .
4 Compute the reduced matrices Ã = W TAV , B̃ = W TB, C̃ = CV and D̃ = D.

U = [U1, U0], Q = [Q1, Q0] and Σ = diag(Σ1,Σ0) and taking the projection matrices
W = ZoU1Σ

− 1
2

1 and V = ZcQ1Σ
− 1

2
1 . We summarize the BT method in Algorithm 2.1.

In the following theorem, we collect the properties of the reduced-order model.

Theorem 2.19. Let system (2.2.2) be asymptotically stable and let

G(s) = C(sI − A)−1B +D

be its transfer function. Furthermore, let (2.4.2) be a reduced-order model computed
by Algorithm 2.1. Then

1. the reduced system (2.4.2) is asymptotically stable and balanced,

2. for the transfer function G̃(s) = C̃(sI − Ã)−1B̃ + D̃ of (2.4.2), we have the
error bound

‖G̃−G‖H∞ 6 2(�η+1 + . . .+ �n).

Proof. The asymptotic stability of the reduced-order system has been proven in
[PS82]. The error bound has been derived in [Enn84, Glo84].

Remark 2.20. The BT method can also be rewritten for system (2.2.1) with a
nonsingular matrix E. To this end, in Algorithm 2.1, the Lyapunov equations in
Step 1 should be replaced by the generalized Lyapunov equations (2.2.4) and (2.2.5)
and the SVD of ZT

o Zc in Step 2 by the SVD of ZT
o EZc. The computation of the

reduced matrices Ã, B̃, C̃ and D̃ remain the same and for Ẽ, it applies that

Ẽ = W TEV = Σ
− 1

2
1 UT

1 Z
T
o EZcQ1Σ

− 1
2

1

= Σ
− 1

2
1 UT

1

[
U1 U0

] [Σ1

Σ0

] [
Q1 Q0

]T
Q1Σ

− 1
2

1 = I.
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2.4 Model order reduction

Low-rank alternating direction implicit method for Lyapunov equations

We now briefly discuss the numerical solution of the generalized Lyapunov equations
(2.2.4) and (2.2.5). For this purpose, we use the low-rank alternating direction
implicit (LR-ADI) method. It was first introduced in [LW02, Pen00] and enhanced
in [BKS13a, BKS13b]. In many applications, it was observed that the solution of
the Lyapunov equations (2.2.4) and (2.2.5) with a low-rank right-hand side has a
low numerical rank and, hence, it can be well approximated by a low-rank matrix
Gc ≈ Z̃Z̃

T
, where Z̃ ∈ Rn×r, r � n, is called low-rank Cholesky factor of Gc. Such

a factor can be computed by the LR-ADI iteration given by

Fk = (τkE + A)−1Yk−1,

Yk = Yk−1 − 2Re(τk)EFk, (2.4.4)

Zk =
[
Zk−1

√
−2Re(τk)Fk

]
with initial matrices

F1 = (τ1E + A)−1B,

Y1 = B − 2Re(τ1)EF1,

Z1 =
√
−2Re(τ1)F1

and shift parameters τk ∈ C−. As a stopping criterion, we use

‖R‖F 6 tol‖BTB‖F

with the residual

R = AZkZ
T
k E

T + EZkZ
T
k A

T +BBT = YkY
T
k

and a given tolerance tol > 0. The shift parameters τk are chosen in conjugated
pairs to keep Yk and Zk real, see [BKS14] for more details. They strongly influence
the convergence of the LR-ADI iteration. In [Pen00], it was proposed to use the
smallest and largest Ritz values of the pencil λE − A which can be computed by
an Arnoldi algorithm [Arn51]. Other strategies for computing the LR-ADI shifts
have been considered in [BKS14, GSA03, Wac13].

Balanced truncation for descriptor systems

We now present an extension of the BT model reduction approach to the descriptor
system (2.2.6) proposed first in [LS01, Sty04]. Our goal is to find a reduced-order
system

Ẽ ˙̃x = Ãx̃+ B̃u,

ỹ = C̃x̃+ D̃u,
(2.4.5)

where Ẽ = W TEV , Ã = W TAV , B̃ = W TB, C̃ = CV and D̃ = D.
The main idea is to split system (2.2.6) into the slow subsystem (2.2.7) and the

fast subsystem (2.2.8) as discussed in Section 2.2.2 and reduce them separately.
Considering the additive decomposition (2.2.9) of the transfer function G of (2.2.6),
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2 Preliminaries

this is equivalent to a separate approximation of the strictly proper part Gsp and
the polynomial part Gp by G̃sp and G̃p, respectively. The resulting approximation
is then given by

G̃ = G̃sp + G̃p.

Using the proper and improper Gramians, we now introduce the proper and im-
proper Hankel singular values. Let nf and n∞ are the dimensions of the deflating
subspaces of the pencil λE−A corresponding to the finite eigenvalues and the eigen-
value at infinity. Then the proper Hankel singular values �j are the square roots of
the nf largest eigenvalues of GpcE

TGpoE, i.e.,

�j =
√
λj(GpcETGpoE).

The improper Hankel singular values θj are the square roots of the n∞ largest eigen-
values of GicA

TGioA, i.e.,

θj =
√
λj(GicATGioA).

Note that if E = I, then the proper Hankel singular values are just Hankel singular
values.

System (2.2.6) is called balanced if

Gpc = Gpo =

[
Σ 0
0 0

]
and Gic = Gio =

[
0 0
0 Θ

]
with Σ = diag(�1, . . . , �nf ) and Θ = diag(θ1, . . . , θn∞). As in BT for standard state
space systems, we transform (2.2.6) into a balanced form and truncate those states
which correspond to small proper Hankel values. This implies the reduction of the
slow subsystem. Unfortunately, the reduction of the fast subsystem by truncation
of the states corresponding to small nonzero improper Hankel singular values may
lead to large errors. In the time domain, this corresponds to an approximation of
the (hidden) constraints and may result in physically meaningless system. Examples
can be found in [LS01, Sty11]. This difficulty can be overcame by finding a minimal
realization of Gp as suggested in [Sty04].

The BT method for descriptor systems is summarized in Algorithm 2.2.
Similarly to the standard state space case, we can prove the following properties

for the resulting reduced-order descriptor system.

Theorem 2.21. Let a descriptor system (2.2.6) be asymptotically stable and let
G(s) = C(sE − A)−1B +D be its transfer function. Furthermore, let a reduced-
order model (2.4.5) be computed by Algorithm 2.2. Then

1. the reduced system (2.4.5) is asymptotically stable and balanced;

2. for the transfer function G̃(s) = C̃(sẼ − Ã)−1B̃ + D̃ of (2.4.5), we have the
error bound

‖G− G̃‖H∞ 6 2(�η+1 + . . .+ �nf );

3. the index of the reduced system (2.4.5) does not exceed the index of the original
system (2.2.6).

Proof. See [Sty04].
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2.4 Model order reduction

Algorithm 2.2: Balanced truncation for descriptor systems
Input : a asymptotically stable system (E,A,B,C,D)
Output: a reduced-order asymptotically stable system (Ẽ, Ã, B̃, C̃, D̃)

1 Solve the projected continuous-time Lyapunov equations

EGpcA
T + AGpcE

T = −PlBBTP T
l , Gpc = PrGpcP

T
r , (2.4.6)

ETGpoA+ ATGpoE = −P T
r C

TCPr, Gpo = P T
l GpoPl, (2.4.7)

for the Cholesky factorizations Gpo = ZpoZ
T
po and Gpc = ZpcZ

T
pc.

2 Solve the projected discrete-time Lyapunov equations

AGicA
T − EGicE

T = QlBB
TQT

l , Gic = QrGicQ
T
r ,

ATGioA− ETGioE = QT
r C

TCQr, Gio = QT
l GioQl,

for the Cholesky factorizations Gio = ZioZ
T
io and Gic = ZicZ

T
ic.

3 Compute the SVD

ZT
poEZpc =

[
U1 U0

] [Σ1

Σ0

] [
V1 V0

]T
,

where
[
U1, U0

]
and

[
V1, V0

]
are orthogonal, Σ1 = diag(�1, . . . , �ηf ),

Σ0 = diag(�ηf , . . . , �nf ).
4 Compute the SVD

ZT
ioAZic = U3ΘV T

3 ,

where U3 and V3 have orthogonal columns and Θ = diag(θ1, . . . , θη∞) is
nonsingular.

5 Compute the projection matrices

W =
[
ZpoU1Σ

− 1
2

1 ZioU3Θ−
1
2

]
, V =

[
ZpcV1Σ

− 1
2

1 ZicV3Θ−
1
2

]
.

6 Compute the reduced matrices Ẽ = W TEV , Ã = W TAV , B̃ = W TB, C̃ = CV

and D̃ = D.
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2 Preliminaries

The most computationally expensive part in Algorithm 2.2 is the numerical so-
lution of the projected Lyapunov equations. These equations can be solved using
the generalized LR-ADI method and the generalized Smith method as presented
in [Sty08]. For solving the projected continuous-time Lyapunov equations (2.4.6)
and (2.4.7), one can also use rational Krylov subspace methods [SS12]. In all these
methods, the projectors Pl, Pr and Ql, Qr are required in explicite form that re-
stricts the application of balanced truncation to general descriptor systems. For
specially structured problems, some modifications have been presented to overcome
this difficulty in [BS16, FRM08, HSS08, SV18, USKB12]. They are all based on
an implicit index reduction and on an equivalence between the Schur complement
linear systems and the original system matrices.

2.4.2 Proper orthogonal decomposition

The most popular model reduction method for nonlinear systems is proper orthogo-
nal decomposition (POD). This method was first introduced in [Sir87] and then used
in many different application fields such as signal analysis and pattern recognition
[Fuk90], optimal control [AH00, KV02, LT01, SK98], fluid dynamics and coherent
structures [AHLS88, IR98, RF94] and inverse problems [BJWW00].

We consider a nonlinear system

ẋ = Ax+ f(x), x(t0) = x0 (2.4.8)

with given A ∈ Rn×n, nonlinear function f :Rn → Rn and an initial state x0 ∈ Rn.
The main idea of POD is to generate samples of the trajectory {x(t1), . . . , x(tns)},
called snapshots, and find a best approximation to the solution in a η-dimensional
subspace of the space span{x(t1), . . . , x(tns)} ⊂ Rn. In other words, we are searching
for an orthonormal basis {ψi}ηi=1 that solves the minimization problem

min
{ψk}ηi=1

ns∑
j=1

∥∥∥∥∥x(tj)−
η∑
i=1

(xT (tj)ψi)ψi

∥∥∥∥∥
2

. (2.4.9)

This problem can be solved by computing the SVD of the snapshot matrix
X =

[
x(t1), . . . , x(tns)

]
, see, e.g. [Vol13]. Let

X =
[
U1 U0

] [Σ1

Σ0

] [
V1 V0

]T
be the SVD with Σ1 = diag(σ1, . . . , ση), Σ0 = diag(ση+1, . . . , σns) and

σ1 > . . . > ση > ση+1 > . . . > σns .

Then the columns of U1 ∈ Rn×η provide the solution to the minimization prob-
lem (2.4.9).

Assume that the solution x of system (2.4.8) lies approximately in the span of the
snapshots. Then we approximate x ≈ U1x̃ and project the nonlinear system (2.4.8)
with U1. The resulting reduced system of dimension η takes the form

˙̃x = UT
1 AU1x̃+ UT

1 f(U1x̃). (2.4.10)
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2.4 Model order reduction

The reduced dimension η can be selected using a tolerance tol by taking the smallest
number η that satisfies

ση
σ1

< tol. (2.4.11)

For a detailed description of how POD is applied to finite-dimensional dynamic
systems and partial differential equations, we refer to [Vol13]. A modified POD with
a weighted inner product and an error analysis are also presented here. Furthermore,
a brief explanation of POD and its application to optimal control problems can be
found in [KV02].

2.4.3 Discrete empirical interpolation method

It should be noted that while the reduced matrix UT
1 AU1 in (2.4.10) can be pre-

computed and stored, the computation of the reduced nonlinear function UT
1 f(U1x̃)

requires the evaluation of f for large dimensional vectors U1x̃ and projection after-
ward at every time step. This is very inefficient and we do not gain a speedup as
it was for linear time-invariant systems. In order to speed up the simulation of the
reduced-order nonlinear system (2.4.10), we employ the discrete empirical interpo-
lation method (DEIM) proposed first in [CS10]. This method allows us to compute
the approximation to the function UT

1 f by only evaluating some entities of f .
Our goal is now to approximate the nonlinearity

f(U1x̃) ≈ Ufc(U1x̃)

in a low-dimensional subspace spanned by the columns of Uf ∈ Rn×κ. The basis
matrix Uf is constructed by applying POD to the snapshots {f(x(t1), . . . , f(x(tns)}
of the function f . Let Xf = [f(x(t1)), . . . , f(x(tns)] be the snapshot matrix. Then
the basis matrix Uf can be determined from the SVD

Xf =
[
Uf Û f

] [Σf 0

0 Σ̂f

] [
Vf V̂ f

]T
,

where Σf contains κ dominant singular values of Xf . In order to determine the
coefficient vector c(U1x̃), we define a selector matrix

SK =
[
ep1 , . . . , epκ

]
,

where ei is the i-th column of the identity matrix and K = {p1, . . . , pκ} is a selected
index set with pairwise different 1 6 pi 6 n. With this matrix we can find c(U1x̃)
such that

STKf(U1x̃) = (STKUf )c(U1x̃)

holds. This implies that the selected components of the approximation Ufc(U1x̃)
coincide with those of the function f(U1x̃).
There are different ways to compute the selector matrix SK or, respectively, the

selected index set K. We use the greedy procedure as presented in Algorithm 2.3.
An alternative approach for computing the selector matrix SK was introduced in

[DG16]. It is based on a QR decomposition of UT
f with column pivoting

UT
f

[
SK Π

]
= QR,
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Algorithm 2.3: DEIM greedy procedure
Input : {uk}κk=1 ⊂ Rn linear independent
Output: an index set K and a selector matrix SK

1 Find p1 = arg max
16i6n

|(u1)i|.

2 Set Uf =
[
u1

]
, K = {p1} and SK = ep1 .

3 for k = 2 to κ do
4 Solve (STKUf )c = STKuk for c.
5 Compute r = uk − Ufc.
6 Find pk = arg max

16i6n
{|ri|}.

7 Uf ←
[
Uf , uk

]
, K ← K ∪ {pk}, SK ←

[
SK, epk

]
.

8 end

where
[
SK,Π

]
is a permutation matrix, Q is orthogonal and R is an upper triangular

matrix.
Replacing f in (2.4.10) with its DEIM approximation Uf (STKUf )−1STKf , we obtain

the reduced-order system
˙̂x = UT

1 AU1x̂+Wf̂(x̂), x̂(t0) = UT
1 x0, (2.4.12)

where
W = UT

1 Uf (STKUf )−1, f̂(x̂) = STKf(U1x̂).

Note that the time-independent matrices UT
1 AU1 ∈ Rη×η and W ∈ Rη×κ can be

precomputed and stored in the offline stage. Then in the online stage, we have to
evaluate only κ components of the function f(U1x̂). If f depends only on a few
components of U1x̂, then the computation cost for (2.4.12) is independent of the
original dimension n. For integrating the nonlinear system (2.4.12) in time, we use
a one-step or multistep method [HNW93] which involves the solution of a sequence
of systems of nonlinear equations. For this purpose, we employ the Newton iteration
which requires the Jacobi matrix Jf̂ (x̂) of the nonlinear function f̂ at x̂. This matrix
has the form

Jf̂ (x̂) = STKJf (U1x̂)U1,

where Jf (U1x̂) is the Jacobi matrix of f at U1x̂. For efficient evaluation of Jf̂ (x̂), we
can use the matrix discrete empirical interpolation method (MDEIM) as presented
in [SW13, Wil16]. Let STKJf : Rn → Rκ×n be a nonlinear matrix-valued function.
The goal is to find an approximation

STKJf (U1x̂) ≈
ρ∑

k=1

Vkgk(x̂),

where Vk ∈ Rκ×n are constant matrices, gk : Rη → R continuous functions and ρ
is small compared to n. Such an approximation can be determined by DEIM us-
ing the vectorization operator [WSH14]. Here, we use an efficient formulation of
MDEIM from [Wil16]. The main advantage of this approach is that it avoids the
vectorization. First, we collect the snapshots

J1 = STKJf (x(t1)), . . . , Jns = STKJf (x(tns))
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and, following [Vol99], construct the matrix

XJ =

 〈J1, J1〉F . . . 〈J1, Jns〉F
... . . . ...

〈Jns , J1〉F . . . 〈Jns , Jns〉F

 ,
where 〈Ji, Jj〉F = trace(JTi Jj) denotes the Frobenius inner product of the matrices
Ji and Jj. One can show that this matrix XJ is symmetric and positive semidefinite.
Computing the eigenvalue decomposition (EVD)

XJ =
[
UJ ÛJ

] [Λ1

Λ0

] [
UJ ÛJ

]T
, (2.4.13)

where Λ1 ∈ Rρ×ρ contains ρ dominant eigenvalues of XJ , the POD basis can then
be determined by

Vj =
ns∑
i=1

Jiui,j, j = 1, . . . , ρ, (2.4.14)

where ui,j are the entries of UJΛ
− 1

2
1 ∈ Rns×ρ. By definition, the basis matrices Vj

have the same sparsity pattern as STKJf . The following lemma shows that V1, . . . , Vρ
form an orthonormal system.

Lemma 2.22. The matrices Vj in (2.4.14) fulfill 〈Vl, Vj〉F = δl,j, where δl,j is the
Kronecker delta.

Proof. Computing 〈Vl, Vj〉F by using (2.4.14) and the definition of the Frobenius
scalar product, we obtain

〈Vl, Vj〉F = trace

( ns∑
i=1

Jiui,l

)T ( ns∑
k=1

Jkuk,j

)
=

ns∑
i=1

ns∑
k=1

ui,ltrace
(
JTi Jk

)
uk,j

=
ns∑
i=1

ns∑
k=1

ui,l〈Ji, Jk〉Fuk,j

=
(

Λ
− 1

2
1 UT

J XJUJΛ
− 1

2
1

)
l,j

= δl,j.

Imposing the condition that the entries of the approximation coincide with those
of STKJf for a selected set of pairwise different indices

J = {(il, jl) : 1 6 il 6 κ, 1 6 jl 6 n for l = 1, . . . , ρ},

we get the equations

(
STKJf (U1x̂)

)
il,jl

=

ρ∑
k=1

(Vk)il,jlgk(x̂), (il, jl) ∈ J .
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Algorithm 2.4: MDEIM greedy procedure
Input : {Vk}ρk=1 ⊂ Rκ×n linear independent
Output: an index set J = {(i1, j1), . . . , (iρ, jρ)}, Gρ ∈ Rρ×ρ

1 Find (i1, j1) = arg max
16i6κ,16j6n

|(V1)i,j|.

2 Set J = {(i1, j1)}, G1 = (V1)i1,j1 .
3 for k = 2 to ρ do
4 Set b =

[
(Vk)i1,j1 , . . . , (Vk)ik−1,jk−1

]T .
5 Solve Gk−1c = b for c =

[
c1, . . . , ck−1

]T .
6 Compute Rk = Vk −

k−1∑
l=1

Vlcl.

7 Find (ik, jk) = arg max
16i6κ,16j6n

|(Rk)i,j|.

8 Set J ← J ∪ {(ik, jk)}.

9 Set Gk =

[
Gk−1 b
v (Vk)ik,jk

]
with v =

[
(V1)ik,jk , . . . , (Vk−1)ik,jk

]
.

10 end

These equations can shortly be written as a linear system

Gρ

g1(x̂)
...

gρ(x̂)

 =


(
STKJf (U1x̂)

)
i1,j1

...(
STKJf (U1x̂)

)
iρ,jρ


with

Gρ =

(V1)i1,j1 · · · (Vρ)i1,j1
... . . . ...

(V1)iρ,jρ · · · (Vρ)iρ,jρ

 .
If Gρ is nonsingular, then the functions gk(x̂) can be calculated asg1(x̂)

...
gρ(x̂)

 = G−1
ρ


(
STKJf (U1x̂)

)
i1,j1

...(
STKJf (U1x̂)

)
iρ,jρ

 .
The index set J is determined using the greedy procedure as presented in Algo-

rithm 2.4 which is a generalization of Algorithm 2.3 to the matrix case.
The following lemma establishes that the matrices Gk in Algorithm 2.4 are non-

singular implying that Step 5 is well defined.

Lemma 2.23. The matrices Gk, k = 1, . . . , ρ, determined in Algorithm 2.4 are
nonsingular.

Proof. The result can be proven by induction. The matrix G1 = (V1)i1,j1 is nonsin-
gular, since V1 6= 0. Assume that Gk−1 is nonsingular for k > 1. Then Gk−1c = b
gives

Gk

[
I −c
0 1

]
=

[
Gk−1 0
v (Vk)ik,jk − vc

]
. (2.4.15)
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By Lemma 2.22 we have that

Rk = Vk −
k−1∑
l=1

Vlcl 6= 0

and, therefore, (Rk)ik,jk = (Vk)ik,jk − vc 6= 0. The matrix on the right-hand side of
equation (2.4.15) is a lower triangular matrix with invertible diagonal matrices and,
therefore, nonsingular. This means that Gk is nonsingular.

Next, we present error estimates for the DEIM approximation and for the POD-
DEIM reduced model (2.4.12).

Theorem 2.24. Let f : D → Rn be a nonlinear vector-valued function with a do-
main D ⊂ Rn and let Uf (STKUf )−1STKf be a DEIM approximation of f , where
Uf :=

[
u1, . . . , uκ

]
is a DEIM basis with κ ∈ {1, . . . , ns} and SK is a selector ma-

trix as in Algorithm 2.3. Additionally, let x ∈ D be arbitrary such that f(x) is
in the space spanned by the columns of Uf . Then an error bound for the DEIM
approximation is given by

‖f(x)− Uf (STKUf )−1STKf(x)‖ 6 ‖(STKUf )−1‖2E∗(f(x))

with E∗(f(x)) = ‖(I − UfUT
f )f(x)‖2.

Proof. See [CS10, Lemma 3.2].

Since E∗(f(x)) depends on x ∈ D, it is hard to compute. Therefore, it was
proposed in [CS10] to approximate

E∗ = E∗(f(x)) .
ns∑

i=κ+1

σi(Xf ),

where σi(Xf ) are the truncated singular values of the snapshot matrix Xf . This
approximation is reasonable as long as f(x) is nearly in the range of Xf .

In order to estimate the error x−x̂, where x and x̂ are the solutions of the nonlinear
system (2.4.8) and the POD-DEIM reduced system (2.4.12), respectively, we need
a concept of logarithmic Lipschitz constants for linear and nonlinear functions. Let
G ∈ Rn×n be a symmetric and positive definite matrix. Then 〈x, z〉G = zTGx defines
a scalar product on Rn. The corresponding vector norm is given by ‖x‖G =

√
xTGx

for x ∈ Rn and the induced matrix norm ‖A‖G = sup‖x‖G=1 ‖Ax‖G for A ∈ Rn×n.
For a Lipschitz continuous function f : Rn × Rn, the logarithmic Lipschitz constant
with respect to G is defined as

LG[f ] = sup
x,z∈Rn
x 6=z

〈x− z, f(x)− f(z)〉G
‖x− z‖2

G

.

Furthermore, the local logarithmic Lipschitz constant for f at z ∈ Rn with respect
to G is given by

LG[f ](z) = sup
x∈Rn\{z}

〈x− z, f(x)− f(z)〉G
‖x− z‖2

G

. (2.4.16)
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For G = I, LI [f ] is also denoted by L2[f ]. For a linear function fA(x) = Ax with
A ∈ Rn×n, the logarithmic Lipschitz constant takes the form

LG[A] = sup
x,z∈Rn
x 6=z

〈x− z, A(x− z)〉G
‖x− z‖2

G

= sup
x∈Rn\{0}

〈x,Ax〉G
‖x‖2

G

.

For G = I, we obtain

LI [A] = sup
x∈Rn\{0}

〈x,Ax〉
‖x‖2

= λmax

(
A+ AT

2

)
=: L2[A], (2.4.17)

where λmax(·) denotes the largest eigenvalue of the corresponding matrix. The value
L2[A] is known in the literature as logarithmic norm [Dah59, Söd06]. It is not a
norm in the usual sense, since, for example, L2[A] < 0 for a symmetric negative
definite matrix A.

The following theorem gives an a priori error estimate for x− x̂.

Theorem 2.25. Let x be the solution of the full-order ODE system (2.4.8) and x̂ be
the solution of the POD-DEIM reduced system (2.4.12) on the time interval [0, T ].
Let U1 be a POD basis and W = UT

1 Uf (STKUf )−1, where Uf and SK are the DEIM
basis and selector matrices. Assume that the logarithmic norm of A defined as in
(2.4.17) satisfies L2[A] < 0 and that f is Lipschitz continuous with Lipschitz constant
Lf . Then ∫ T

0

‖x(t)− U1x̂(t)‖2 dt 6 max{1 + cα2T, cβ2T}(Ex + Ef ),

where

α = ‖UT
1 A‖2 + Lf‖WSTK‖2,

β = ‖UT
1 −WSTK‖2,

γ = Lf‖WSTK‖2,

c =
e2γ(eL2[A]−1)/L2[A]

|L2[A]|
,

Ex =

∫ T

0

‖x(t)− U1U
T
1 x(t)‖2 dt =

ns∑
i=η+1

σi(X ),

Ef =

∫ T

0

‖f(x(t))− UfUT
f f(x(t))‖2 dt =

ns∑
i=κ+1

σi(Xf ),

with σi(X ) and σi(Xf ) denoting the truncated singular values of the snapshot matri-
ces X and Xf , respectively.

Proof. See [CS12, Theorem 3.1].

Instead of an a priori error estimate, as in Theorem 2.25, an a posteriori error
estimate may be used as presented in the following theorem.
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Theorem 2.26. Let a DEIM basis {u1, . . . , um} and a DEIM index set {p1, . . . , pm}
be given. Assume that the m-order DEIM approximation of f is exact. For κ 6 m−1
and κ̂ = m− κ, set

SK = [ep1 , . . . , epκ ], ŜK = [epκ+1 , . . . , epκ+κ̂ ],

Uf = [u1, . . . , uκ], Û f = [uκ+1, . . . , uκ+κ̂].

Let x be the solution of the full-order ODE system (2.4.8) and let x̂ be the solution
of the POD-DEIM reduced system (2.4.12) with a POD basis U1 and the DEIM
basis and selector matrices Uf and SK, respectively. Then the state error x−U1x̂ is
bounded as

‖x(t)− U1x̂(t)‖G 6
∫ t

0

β(τ)e
∫ t
τ α(σ) dσ dτ + e

∫ t
0 α(σ) dσ‖x(0)− U1U

T
1 x(0)‖G

for t ∈ [0, T ], where

α(t) = LG[F ](U1x̂(t)), F (x) = Ax+ f(x),

β(t) = ‖M1STKf(U1x̂(t))−M2Ŝ
T

Kf(U1x̂(t)) + (I − U1U
T
1 )AU1x̂‖G,

M2 = (Uf
(
STKUf

)−1 STKÛ f − Û f )
(
Ŝ
T

KÛ f − Ŝ
T

KUf
(
STKUf

)−1 STKÛ f

)−1

,

M1 = M2Ŝ
T

KUf
(
STKUf

)−1
+ (I − U1U

T
1 )Uf

(
STKUf

)−1
.

Proof. See [WSH14].

The computation of the local logarithmic Lipschitz constant LG[F ](U1x̂) and the
error estimator in Theorem 2.26 has been discussed in [WSH14]. It relies on an
approximation of LG[F ](U1x̂(t)) with a logarithmic norm LG[JF (U1x̂(t))] of the
Jacobi matrix of F evaluated at U1x̂(t) which can be calculated in an efficient way
using the offline/online decomposition.

2.5 Finite element method

The finite element method (FEM) is a numerical technique for solving boundary
value problems for partial differential equations (PDEs). In this section, we give
an outline of this method using Poisson’s equation as an example. For detailed
description as well as convergence and error analysis for different types of PDEs, we
refer to [Cia02, Eva98, QV94, Zei90a, Zei90b, Zul08].

First, we define some functional spaces and weak derivatives that will be used in
the following.
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Definition 2.27. Let Ω ∈ Rd be a bounded open domain and 1 6 p < ∞. The
functional space defined by

Lp(Ω) =

{
w : Ω→ Rm measurable :

∫
Ω

‖w(ξ)‖p dξ <∞
}

with the norm

‖w‖Lp(Ω) =

(∫
Ω

‖w(ξ)‖p dξ
) 1

p

is called Lebesgue space.

Definition 2.28. Let

L1
loc(Ω) =

{
w : Ω→ Rm

∣∣w ∈ L1(K) for all compact subsets K ⊂ Ω
}

be a space of locally integrable functions and let α = (α1, . . . , αl) ∈ Nl
0 be a multi-

index with |α| = α1 + . . . + αl. A function v ∈ L1
loc(Ω) is called the α-th weak

derivative of w ∈ L1
loc(Ω) if∫

Ω

wDαψ dξ = (−1)|α|
∫

Ω

vψ dξ

for all test functions ψ ∈ C∞c (Ω), where C∞c (Ω) is the space of infinitely often differ-
entiable functions with compact support in Ω.

We now define the Sobolev spaces which play a fundamental role in FEM.

Definition 2.29. Let 1 6 p <∞ and k ∈ N. The Sobolev space Wk,p is given by

Wk,p(Ω) =
{
w ∈ Lp(Ω) : Dαw ∈ Lp(Ω) for all α ∈ Nk

0

}
with the norm

‖w‖Wk,p(Ω) =

∑
|α|6k
‖Dαw‖pLp(Ω)

 1
p

.

For p = 2, we use the notation

Hk(Ω) =Wk,2(Ω).

Note that Hk(Ω) is a Hilbert space with respect to the scalar product

〈w, v〉Hk(Ω) =

∫
Ω

∑
|α|6k
DαwDαv dx,

see [QV94, Section 1]. As the boundary ∂Ω of Ω is a null set, v ∈ Wk,p(Ω) may be
undefined or not uniquely determined on ∂Ω. Therefore, we need a trace operator
which makes it possible to define a unique restriction of v to the boundary.
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2.5 Finite element method

Theorem 2.30 (Trace theorem). Let Ω be a bounded open domain with
C1-boundary ∂Ω. Then there exists a bounded linear operator

τ :W1,p(Ω)→ Lp(∂Ω)

such that

1. τw = w|∂Ω if w ∈ W1,p(Ω) ∩ C1(Ω̄),

2. ‖τw‖Lp(Ω) 6 C‖w‖W1,p(Ω) for all w ∈ W1,p(Ω) with a constant C > 0 depending
on p and Ω.

Proof. See [Eva98, Chapter 5.5].

The operator τ in Theorem 2.30 is called the trace operator. Using this operator,
we define the Sobolev spaces

Wk,p
0 (Ω) = {w ∈ Wk,p(Ω) : τw = 0 on ∂Ω}

and H1
0 (Ω) =W1,2

0 (Ω).

2.5.1 Poisson’s equation

Consider now Poisson’s equation

−4z = f in Ω, (2.5.1a)

with homogeneous Dirichlet and Neumann boundary conditions

z = 0 on Γ1, (2.5.1b)
∂z

∂n0

= 0 on Γ2, (2.5.1c)

where Ω ⊂ Rd is a bounded connected open domain with a boundary ∂Ω = Γ1 ∪ Γ2,
Γ1 ∩ Γ2 = ∅, and n0 is an outer normal to Γ2. Often, a strong formulation as in
(2.5.1) leads to unnecessarily strong conditions on the smoothness of the solution,
which may not exist. To overcome this difficulty, a weak formulation of (2.5.1) is
used. In order to derive the weak formulation, for the Poisson problem (2.5.1), we
define the trial space

V = {ψ ∈ H1(Ω) : τψ = 0 on Γ1} (2.5.2)

and the test space D(Ω) = V .
Multiplying equation (2.5.1a) with ψ ∈ D(Ω) and integrating over the domain Ω

results in ∫
Ω

−4z ψ dξ =

∫
Ω

fψ dξ.

Then using Green’s formula (see [Eva98, Section C2]) this equation can be rewritten
as ∫

Ω

∇z · ∇ψ dξ −
∫
∂Ω

∂z

∂n0

ψ ds =

∫
Ω

fψ dξ. (2.5.3)
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Taking into account that ∫
Γ2

∂z

∂n0

ψ ds = 0

due to the Neumann boundary condition (2.5.1c) and∫
Γ1

∂z

∂n0

ψ ds = 0

for ψ ∈ V , equation (2.5.3) is simplified to∫
Ω

∇z · ∇ψdξ =

∫
Ω

fψ dξ. (2.5.4)

This equation is the weak formulation of (2.5.1). A function z ∈ V is called a weak
solution of (2.5.4), if z satisfies (2.5.4) for all ψ ∈ D(Ω). Introducing a bilinear form

b(z, ψ) =

∫
Ω

∇z · ∇ψ dξ (2.5.5)

and a linear functional

l(ψ) =

∫
Ω

fψ dξ,

equation (2.5.4) can shortly be written as

b(z, ψ) = l(ψ), ψ ∈ D(Ω). (2.5.6)

Definition 2.31. Let H be a Hilbert space. A bilinear form

b : H×H → R

is called

1. bounded if there exists a constant L > 0 such that

|b(v, w)| 6 L‖v‖H‖w‖H

for all v, w ∈ H,

2. coercive if there exists a constant m > 0 such that

b(v, v) > m‖v‖2
H,

for all v ∈ H.

The existence and uniqueness of the solution of equation (2.5.6) can be established
using the Lax-Milgram lemma.
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2.5 Finite element method

Theorem 2.32 (Lax-Milgram Lemma). Let H be a (real) Hilbert space and let H′
be its dual space. Consider a bilinear form b : H×H → R and a linear continuous
functional l : H → R. Assume that b is bounded and coercive. Then there exists
an unique solution v ∈ H of

b(v, ψ) = l(ψ) for all ψ ∈ D(Ω),

with

‖v‖H 6
1

m
‖l‖H′

where m is the coercivity constant.

Proof. See [QV94, Theorem 5.1.1].

To show the coercivity of the bilinear form b in (2.5.5), we need the following
theorem.

Theorem 2.33 (Poincaré’s inequality). Let Ω ⊂ Rd be a bounded, connected, open
domain with a non-empty subset Γ1 of the C1-boundary ∂Ω and let 1 6 p 6 ∞.
Then there exists a constant C > 0 depending only on d, p and Ω such that

‖w‖Lp(Ω) 6 C‖∇w‖Lp(Ω)

for all w ∈ W1,p(Ω) with τw = 0 on Γ1.

Proof. [QV94, Theorem 1.3.3]

It follows from Theorem 2.33 that ‖w‖V 6 C̃‖∇w‖L2(Ω) for a constant
C̃ =

√
1 + C2 > 0. Then the bilinear form b fulfills

b(w,w) = 〈∇w,∇w〉L2(Ω) = ‖∇w‖2
L2(Ω) > C̃−2‖w‖2

V for all w ∈ V .

and, therefore, it is coercive. Moreover, using the Hölder inequality (see [QV94,
Chapter 1]), we obtain

|b(v, w)| 6 〈∇v,∇w〉L2(Ω) 6 ‖v‖V‖w‖V for all w ∈ V .

This means that b is bounded. Thus, Theorem 2.33 implies the existence and unique-
ness of the solution of Poisson’s problem (2.5.1).

2.5.2 Discretization

As we cannot solve the problem (2.5.6) in the infinite-dimensional case numerically,
our goal is now to find a finite-dimensional approximation to the test and trial
spaces and to discretize equation (2.5.6). For this purpose, we first introduce a
regular triangulation of the domain Ω.
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Definition 2.34. Let Ω ⊂ Rd be a bounded open domain with a polygonal bound-
ary. A set T = {K1, . . . , KnT } is called regular triangulation of Ω, if all elements
Ki ∈ T are closed simplicies in Rd with

int
(
Ki

)
∩ int

(
Kj

)
= ∅, i 6= j,

nT⋃
i=1

Ki = Ω̄,

Ki ∩Kj =


∅ or
a common full edge or
a common vertex.

Here int
(
Ki

)
denotes the interior of Ki.

In a second step, we define a finite element (K,P,Σ).

Definition 2.35. A finite element is defined by a triple (K,P,Σ), where

• K is a bounded, closed subset of Rd with nonempty interior and piecewise
smooth boundary;

• P = P (K) is a finite-dimensional function space on K of dimension nP ,

• Σ = {ς1, . . . , ςnP } is a basis for the dual space P ′.

To obtain a finite-dimensional space Vh ⊂ V from the set of finite elements
{(K,P,Σ)}K∈T , we introduce a reference finite element (K̂, P̂ , Σ̂) and a set of affine
mappings FK : K̂ → K given by FK(ξ̂) = BK ξ̂ + bK with an invertible matrix
BK ∈ Rd×d and bK ∈ Rd. These mappings map the reference cell K̂ to the cells K,
i.e., K = FK(K̂) for allK ∈ T . From the conditions ς̂k(ϕ̂l) = δk,l for k, l = 1, . . . , nP ,
the nodal basis functions ϕ̂l, l = 1, . . . , nP , on K̂ can be determined. Using these
functions and the reference mapping FK , we can then generate the nodal basis func-
tions

ϕj = ϕ̂j ◦ F−1
K , j = 1, . . . , nP ,

defined on K and, finally, the global basis functions {φj}nj=1 for the discrete func-
tion space Vh = Vh(T ) of dimension n. In order to discretize the variational prob-
lem (2.5.6) for Poisson’s equation, we consider the Lagrange finite elements. The
Lagrange reference finite element is given by a triple (K̂, P̂ , Σ̂), where K̂ is a refer-
ence simplex in Rd with the vertices v1, . . . , vd+1 ∈ Rd, P̂ = Pq(K̂) is the space of
polynomials of degree q on K̂ and

Σ̂ = {ς̂k : Pq → R : ς̂k(v) = v(ζk), k = 1, . . . , nP , for all v ∈ P̂}

where

ζk ∈

{
ζ =

d+1∑
i=1

µivi ∈ Rd :
d+1∑
i=1

µi = 1, µi ∈
{

0,
1

q
, . . . ,

q − 1

q
, 1

}}
.
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ξ1

ξ2

(a) Reference triangle in
2D

ξ1

ξ2

ξ3

(b) Reference tetrahedron in 3D

Figure 2.1: Reference domain K

The reference simplex K̂ is a triangle in R2 and a tetrahedron in R3 as shown in
Figure 2.1(a) and 2.1(b), respectively. For q = 1 the points ζk are the vertices of
K̂ (they are marked by dot’s in Figure 2.1) and for q = 2, these points are the
vertices and edge midpoints of K̂. Note that conditions ς̂k(ϕ̂l) = ϕ̂l(ζ

k) = δk,l define
the nodal basis {ϕ̂l}

nP
l=1 of P̂ uniquely. It is given by {1 − ζ1,−ζ2, ζ1, ζ2} in 2D

and{1− ζ1,−ζ2 − ζ3, ζ1, ζ2, ζ3} in 3D.
Let

Vh = {v ∈ C(Ω̄) : v|K ∈ P1(K) for all K ⊂ T } ⊂ H1(Ω)

be a discrete function space defined by linear Lagrange finite elements on a regular
triangulation T of Ω and let {φi}ni=1 be a basis of Vh. Then inserting an approxi-
mation

z ≈
n∑
i=1

αiφi ∈ Vh,

into the weak formulation (2.5.6) with the test functions ψ = φj, j = 1, . . . , n,
results in a linear system of equations

Azh = l,

where zh = [α1, . . . , αn]T and the entries of the matrix A and the vector l are given
by

Ai,j = b(φi, φj) =

∫
Ω

∇φi · ∇φj dξ, i, j = 1, . . . , n, (2.5.7)

lj = l(φ) =

∫
Ω

fφjdξ, j = 1, . . . , n. (2.5.8)

Remark 2.36. Since the bilinear form b in (2.5.5) is symmetric, i.e., b(v, w) = b(w, v)
for all v, w ∈ V , and coercive, the matrix A is symmetric and positive definite. The
latter immediately follows from

zTAz =
n∑
i=1

zi

n∑
j=1

zjb(φi, φj) = b

(
n∑
i=1

ziφi,

n∑
j=1

zjφj

)
> m‖

n∑
i=1

ziφi‖2 > 0
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which holds for all vectors z 6= 0.

2.5.3 Nonlinear problems

The FEM can also be extended to nonlinear problems. As an example, we consider
a nonlinear Poisson’s equation

∇ · (a(∇z)∇z) = f in Ω,

z = 0 on Γ1,

∂z

∂n0

= 0 on Γ2,

where a is a positive, differentiable function and a(v)v is Lipschitz continuous and
strongly monotone, i.e., there exist L,m > 0 such that

‖a(v)v − a(w)w‖L2(Ω) 6 L‖v − w‖L2(Ω),

〈a(v)v − a(w)w, v − w〉 > m‖v − w‖2
L2(Ω)

for all v, w ∈ L2(Ω). The variational formulation is determined in the same way as
in the linear case and is given by∫

Ω

a(∇z)∇z · ∇ψ dξ =

∫
Ω

fψ dξ, ψ ∈ D(Ω). (2.5.10)

We are searching for a weak solution z ∈ V satisfying this equation for all ψ ∈ D(Ω),
where D(Ω) = V is as in (2.5.2). Introducing

b(z, ψ) =

∫
Ω

a(∇z)∇z · ∇ψ dξ, (2.5.11)

l(ψ) =

∫
Ω

fψ dξ, (2.5.12)

equation (2.5.10) can be written as

b(z, ψ) = l(ψ) for all ψ ∈ D(Ω). (2.5.13)

Since b is not bilinear any more, Theorem 2.32 can not be applied here. This result
can, fortunately, be extended to nonlinear problems.

Definition 2.37. Let H be a Hilbert space. A mapping

b : H×H → R

is called

1. linear in the second argument if

b(v, αw1 + βw2) = αb(v, w1) + βb(v, w2)

for all α, β ∈ R and all v, w1, w2 ∈ H,
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2. Lipschitz continuous in the first argument if there exists L > 0 such that

|b(u,w)− b(v, w)| 6 L‖u− v‖H‖w‖H

for all u,w, v ∈ H,

3. strongly monotone in the first argument if there exists m > 0 such that

b(u, u− v)− b(v, u− v) > m‖u− v‖2
H

for all u, v, w ∈ H.

Theorem 2.38 (Zarantonello Theorem). Let H be a Hilbert space and H′ be its
dual space. Consider a linear continuous functional l : H → R and a mapping
b : H×H → R which is Lipschitz continuous and strongly monotone in the first ar-
gument and linear in the second argument. Then there exists a unique weak solution
v ∈ H of

b(v, ψ) = l(ψ) for all ψ ∈ D(Ω).

Proof. See [Zei90b, Theorem 25B].

In order to be able to apply Theorem 2.38 to the nonlinear Poisson problem (2.5.13),
we have to verify that b and l in (2.5.11) and (2.5.12) satisfy the assumptions of
this theorem. Definitions (2.5.12) and (2.5.11) directly show that l is linear and b
is linear in the second argument. Furthermore, using the Hölder inequality and the
Lipschitz continuity of a(v)v, we have

|b(u,w)− b(v, w)| =
∣∣∣∣∫

Ω

a(∇u)∇u∇w − a(∇v)∇v∇w dξ
∣∣∣∣

6 ‖a(∇u)∇u− a(∇v)∇v‖L2(Ω)‖∇w‖L2(Ω)

6 L‖∇u−∇v‖L2(Ω)‖∇w‖L2(Ω)

6 L‖u− v‖V‖w‖V

for all u, v, w ∈ V . This means that b is Lipschitz continuous in the first argument.
The strong monotonicity of b in the first argument follows from the strong mono-
tonicity of a(u)u and Theorem 2.33. Thus, Theorem 2.38 implies the existence and
uniqueness of the solution of problem (2.5.13).

Applying the FEM discretization as in Section 2.5.2 to (2.5.13), we obtain a
nonlinear system of equations

F(zh) = 0, (2.5.14)

with a nonlinear function F(zh) = A(zh)zh − l, where the entries of the matrix
A(zh) and the vector l are given by

(
A(zh)

)
i,j

=

∫
Ω

a
( n∑
k=1

αkφk
)
∇φi · ∇φj dξ, i, j = 1, . . . , n, (2.5.15a)

lj = l(φj) =

∫
Ω

fφj dξ, j = 1, . . . , n. (2.5.15b)
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Unlike the linear case, we cannot compute the integrals in (2.5.15a) exactly, be-
cause of the presence of the nonlinear function a. The entries of A are determined
using numerical integration schemes. The nonlinear equation (2.5.14) is solved by
employing the Newton’s method, see, for example, [Atk89], which requires the Ja-
cobi matrix of the nonlinear function F. It can be determined using numerical or
automatic differentiation [Ral81, WR00].

2.5.4 Time-dependent problems

We now briefly discuss the discretization of time-dependent PDEs. For this purpose,
we use the method of lines based on a spatial discretization using FEM followed by
time integration of n generated ODEs. For more details on this method and also
other techniques for solving time-dependent PDEs, we refer to [Zul11] and [QV94,
Chapter 11].

As an example, we consider here a linear heat equation

∂z

∂t
− a4z = f in [0, T ]× Ω, (2.5.16a)

z = 0 on [0, T ]× Γ1, (2.5.16b)
∂z

∂n0

= 0 on [0, T ]× Γ2, (2.5.16c)

z(·, 0) = z0 on Ω. (2.5.16d)

A weak formulation can be obtained similarly to Poisson’s equation in Section 2.5.1.
Let the trial space V be defined as in (2.5.2) and let the test space be given by
D(Ω) = V . Additionally, we define the spaces

L2(0, T ;V) =

{
v : (0, T )→ V : ‖v‖2

L2(0,T ;V) :=

∫ T

0

‖v(t)‖2
V dt <∞

}
and

H1(0, T ;V) =

{
v ∈ L2(0, T ;V) :

∂v

∂t
∈ L2(0, T ;V)

}
.

Then the weak formulation for (2.5.16) has the form∫
Ω

∂z

∂t
ψ dξ +

∫
Ω

a∇z · ∇ψ dξ =

∫
Ω

f ψ dξ (2.5.17)

with z ∈ H1(0, T ;V) and ψ ∈ D(Ω). Approximating the infinite-dimensional test
and trial spaces V and D(Ω) = V with the finite-dimensional space with the basis
{φj}nj=1, we insert an approximation

z(t, ξ) ≈
n∑
i=1

αj(t)φj(ξ)

into equation (2.5.17) and test it with the basis functions φj. As a result, we obtain
an ODE system

Eżh −Azh = l, zh(0) = zh0, (2.5.18)
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where the entries of the mass matrix E have the form

Ei,j =

∫
Ω

φiφjdξ

and A and l are as in (2.5.7) and (2.5.8), respectively. Due to the Piccard-Lindelöff
theorem [HNW93, Section I.8], this equation has a unique solution zh. For numer-
ical solution of (2.5.18), we can use the explicit or implicit one-step or multi-step
methods [HNW93, HW96]. As an example, we consider a θ-method. For the linear
ODE (2.5.18), this method is given by

Ezh,k+1 = Ezh,k + τ(A(θzh,k+1 + (1− θ)zh,k) + θl((k + 1)τ) + (1− θ)l(kτ)),

where τ is a fixed step size in time, zh,k approximates zh(kτ) and θ ∈ [0, 1]. Three
methods can be obtained using certain parameters θ: the explicit Euler method for
θ = 0, the implicit Euler method for θ = 1 and the midpoint rule for θ = 1

2
.
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3 Numerical solution of coupled
systems

In this chapter, we consider the numerical solution of coupled systems of ODEs
and DAEs. Such systems arise in many different application areas including micro-
electro-mechanical systems and integrated circuit simulation, where different phys-
ical effects have to be modeled. Applying spatial discretization of PD(A)Es on
complex geometries may also lead to coupled systems, where subsystems are ob-
tained by discretization on subdomains and coupling via boundary conditions. The
dynamical behaviour of such systems is characterized by different properties of the
interacting subsystems. While powerful methods are available for the different struc-
tured subsystems, it is often inefficient to apply these methods to the overall sys-
tem. A natural approach is to use most suitable simulation algorithms for each
subsystem exploiting its structure and properties and couple them in an appro-
priate way. This approach is known as co-simulation and has been considered in
[LBH84, WP99]. For time integration of coupled systems with subsystems hav-
ing slow and fast dynamic behaviour, multirate methods have been developed in
[BG02, CC94, GW84]. Here, we describe the dynamic iteration method, also called
waveform relaxation, first used for coupled ODEs in [MN92] and then extended to
coupled DAEs in [AG01, Ebe08, JK96, PT18].

3.1 Dynamic iteration method

Consider a coupled system of nonlinear DAEs

f1(ẋ1, x1, x2, . . . , xN) = 0, x1(t0) = x10,
...

fN(ẋN , x1, x2, . . . , xN) = 0, xN(t0) = xN0,

(3.1.1)

where fj : Rnj ×Rn1 × . . .×RnN → Rnj are sufficiently smooth functions, xj0 ∈ Rnj

are initial vectors and xj : [t0, T ] → Rnj are unknown functions. We assume that
the initial conditions are consistent and system (3.1.1) is solvable. Every subsys-
tem fj(ẋj, x1, . . . , xN) = 0 can be viewed as a control DAE system with the state
vector xj, the inputs x1, . . . , xj−1, xj+1, . . . , xN and the output yj = xj. This al-
lows us to solve the subsystems separately once good approximations to inputs are
available. Such approximations can be obtained iteratively using the dynamic it-
eration method. For this purpose, we split the time interval [t0, T ] into nT macro
time windows [Tm, Tm+1] with a time grid t0 = T0 < T1 < . . . < TnT = T . Then
the subsystems are solved iteratively on every time window using the data from
the previous iteration steps and, if necessary, from the previous time windows. A
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3 Numerical solution of coupled systems

dynamic iteration step on the time window [Tm, Tm+1] is given by

Σm,k :


f1(ẋ

[k]
1 , X

[k]
1,1, X

[k]
1,2, . . . , X

[k]
1,N) = 0, x

[k]
1 (Tm) = x̂

[Km−1]
1 (Tm),

...
fN(ẋ

[k]
N , X

[k]
N,1, X

[k]
N,2, . . . , X

[k]
N,N) = 0, x

[k]
N (Tm) = x̂

[Km−1]
N (Tm),

(3.1.2)

for k = 1, . . . , Km with

X
[k]
i,j =

∑̀
l=0

W
[l]
i,jx

[k−l]
j , i, j = 1, . . . , N,

whereW [l]
i,j ∈ C0(I,Rnj×nj) are appropriately chosen weights, x[k]

j is the k-th iterate of
the j-th subsystem and x̂[Km−1]

i (Tm) is the last iterate on the time window [Tm−1, Tm]

evaluated at Tm or, if m = 0, the initial value xj0. In most cases, the weights W [l]
i,j

are time-independent. The value ` is called the depth of the method. For reasons of
simplicity, we do not mark the macro time step on the variable x[k]

j and only consider
it on the appropriate time interval or extrapolate it to the next macro time step.

Figure 3.1 shows the data flow for the dynamic iteration method. The macro time
windows [Tm, Tm+1] are given on the horizontal axis, whereas the vertical axis indi-
cates the iteration steps. On every macro time interval [Tm, Tm+1], we use the data
x

[Km−1]
1 , . . . , x

[Km−1]
N from the last iteration Km−1 on the previous macro time step to

define the initial values and the first approximation to the inputs, this is marked as
“initialize” in Figure 3.1. For DAEs, we have also to ensure the consistency of the
initial values. Then we iterate by integrating the subsystems until the approximated
solutions satisfy a given tolerance and go on to the next macro window. At the end
of the dynamic iteration, we have at any time Tm data for all subsystems. Within
the macro time steps, we solve the subsystems on separate fine time grids using
appropriate integration methods.
Depending on the choice of W [k]

i,j , the dynamic iteration has different properties.
Next, we consider the Jacobi- and Gauß-Seidel-type iterations.

Definition 3.1. The dynamic iteration method is of Jacobi-type if the depth ` = 1
and

W
[0]
i,j =

{
I, i = j

0, i 6= j
, W

[1]
i,j =

{
0, i = j

I, i 6= j
.

The dynamic iteration method is of Gauß-Seidel-type if the depth ` = 1 and

W
[0]
i,j =

{
0, j > i

I, j 6 i
, W

[1]
i,j =

{
I, j > i

0, j 6 i
.
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3.1 Dynamic iteration method
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3 Numerical solution of coupled systems

x
[k−1]
1 system 1 x

[k]
1

x
[k−1]
2 system 2 x

[k]
2

(a) Jacobi

x
[k−1]
1 system 1 x

[k]
1

x
[k−1]
2 system 2 x

[k]
2

(b) Gauß-Seidel

Figure 3.2: The data flow diagram for the Jacobi-type and Gauß-Seidel-type dy-
namic iteration step

input system 1 system 2 . . . system N output

Figure 3.3: Sequential coupled system

Figure 3.2(a) shows the data flow in the Jacobi-type dynamic iteration step for two
subsystems. This approach has the advantage that it can easily be parallelized, since
all subsystems can be solved simultaneously. Figure 3.2(b) presents the Gauß-Seidel-
type dynamic iteration step for two subsystems. This method is sequential that can
be a disadvantage for some special systems. Which of these methods should be used,
depends on the coupling structure of the coupled system. For example, solving a
coupled system indicated in Figure 3.3 with the Jacobi-type method requires N
iterations of every subsystem on the time window [Tm, Tm+1], whereas in the Gauß-
Seidel-type method, every subsystem is solved only once.

In the following, we present some theoretical results on the convergence of the
dynamic iteration method. First, we consider only ODEs.

Theorem 3.2. Suppose that the coupled ODE system

ẋ1 = f1(x1, . . . , xN), x1(t0) = x10,
...

ẋN = fN(x1, . . . , xN), xN(t0) = xN0,

(3.1.3)

is uniquely solvable on [t0, T ]. The dynamic iteration method

ẋ
[k]
1 = f1(X

[k]
1,1, X

[k]
1,2, . . . , X

[k]
1,N), x

[k]
1 (t0) = x10,

...
ẋ

[k]
N = fN(X

[k]
N,1, X

[k]
N,2, . . . , X

[k]
N,N), x

[k]
N (t0) = xN0,

converges for k → ∞ to the solution of (3.1.3) if the starting iterates x[0]
1 , . . . , x

[0]
N

are continuous and ∑̀
l=0

W
[l]
i,j = I, i, j = 1, . . . , N. (3.1.4)

Proof. See [Ebe08, Theorem 3.1.3].
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3.2 Dynamic iteration using reduced-order models

Note that both the Jacobi-type and the Gauß-Seidel-type dynamic iterations sat-
isfy the condition (3.1.4). Unfortunately, Theorem 3.2 does not hold in general
for DAEs. For simplicity, we restrict ourselves to the coupled DAE system (3.1.1)
of differentiation index at most 1. We also assume that all subsystems fulfill this
index condition. Moreover, we consider the dynamic iteration method (3.1.2) of
depth l = 1. In this case, (3.1.2) can be written as F (ẋ[k], x[k], x[k−1]) = 0 with

x[k] =
[(
x

[k]
1

)T
, . . . ,

(
x

[k]
N

)T]T
∈ Rn, n = n1 + . . . + nN . Assume that this DAE

system has differentiation index 1 with respect to x[k]. Then differentiating it, we
can extract the underlying ODE

ẋ[k] = ϕ(x[k], x[k−1], ẋ[k−1]), (3.1.5)

The following theorem is an extension of Theorem 3.2 to the coupled DAE system
(3.1.1) satisfying the above conditions.

Theorem 3.3. Consider a coupled DAE system (3.1.1) such that the differentiation
index of each subsystem, the coupled system itself and the corresponding dynamic
iteration system (3.1.2) is at most 1. Let (3.1.5) be the underlying ODE of sys-
tem (3.1.2) with ϕ ∈ C2(Rn × Rn × Rn,Rn) and let x[k] ∈ C1([t0, T ],Rn) be the
solution of (3.1.2) with an initial condition x[k](t0) = x0 and a starting iterate
x[0] ∈ C1([t0, T ],Rn). If a constant L < 1 exists such that∥∥∥∥ ∂ϕ

∂ẋ[k−1]
(ζ [k], ζ [k−1], ξ[k−1])

∥∥∥∥
∞

6 L

for arbitrary ζ [k], ζ [k−1], ξ[k−1] ∈ Rn, then x[k] converges for k →∞ to a solution of
the coupled system.

Proof. See [Ebe08, Theorem 3.2.6].

3.2 Dynamic iteration using reduced-order models

A combination of dynamic iteration and model order reduction called dynamic it-
eration using reduced-order models (DIRM) was introduced in [RP02]. The main
idea of this approach is to use MOR to generate the input variables for the subsys-
tems that are otherwise determined by interpolation or extrapolation. This has the
advantage that the inputs become dependent on the current solution. In nonlin-
ear case, the reduced-order models are computed by POD or POD-DEIM based on
snapshots as discussed in Sections 2.4.2 and 2.4.3. Since the generation of snapshots
is usually expensive, one uses the previous iterates x[l]

j , l 6 k, to generate the POD
and POD-DEIM basis matrices at the k-th iteration step.
Consider again the coupled ODE system (3.1.3). Let

Tm 6 tm,1 < . . . < tm,sm 6 Tm+1

be time instances on the time window [Tm, Tm+1] and let

X [k] = {x[l]
j (tm,1), . . . , x

[l]
j (tm,sm), j = 1, . . . , N, l = 0, . . . , k}
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3 Numerical solution of coupled systems

and

X [k]
f =

{
fj
(
x

[l]
1 (tm,1), . . . , x

[l]
N(tm,1)

)
, . . . ,

fj
(
x

[l]
1 (tm,ms), . . . , x

[l]
N(tm,ms)

)
, j = 1, . . . , N, l = 0, . . . , k

}
be the set of snapshots for x = [xT1 , . . . , x

T
N ]T and f = [fT1 , . . . , f

T
N ]T . We are

using the selectors Ξ
[k]
i,j and Θ

[k]
i,j , where i = 1, . . . , N is the index of the subsystem,

j = 1, . . . , N, j 6= i, is the index of the variable to be reduced, and k = 1, . . . , Km

is the iteration index. We determine from Ξ
[k]
i,jX [k] the POD basis matrices V [k]

i,j and
from Θ

[k]
i,jX

[k]
f the DEIM basis and selector matrices U [k]

i,j and S [k]
i,j , respectively. Then

the k-th iteration step of the DIRM on the time window [Tm, Tm+1] is given by N
coupled systems

˙̂x
[k]
i,1 = f̂

[k]
i,1 (X̂

[k]
i,1 , . . . , X̂

[k]
i,i−1, x

[k]
i , X̂

[k]
i,i+1, . . . , X̂

[k]
i,N),

...
˙̂x
[k]
i,i−1 = f̂

[k]
i,i−1(X̂

[k]
i,1 , . . . , X̂

[k]
i,i−1, x

[k]
i , X̂

[k]
i,i+1, . . . , X̂

[k]
i,N),

ẋ
[k]
i = fi(X̂

[k]
i,1 , . . . , X̂

[k]
i,i−1, x

[k]
i , X̂

[k]
i,i+1, . . . , X̂

[k]
i,N),

˙̂x
[k]
i,i+1 = f̂

[k]
i,i+1(X̂

[k]
i,1 , . . . , X̂

[k]
i,i−1, x

[k]
i , X̂

[k]
i,i+1, . . . , X̂

[k]
i,N),

...
˙̂x
[k]
i,N = f̂

[k]
i,N(X̂

[k]
i,1 , . . . , X̂

[k]
i,i−1, x

[k]
i , X̂

[k]
i,i+1, . . . , X̂

[k]
i,N),

(3.2.1)

with

f̂
[k]
i,j (X̂

[k]
i,1 , . . . , X̂

[k]
i,i−1, x

[k]
i , X̂

[k]
i,i+1, . . . , X̂

[k]
i,N)

= Z
[k]
i,j fj(X̂

[k]
i,1 , . . . , X̂

[k]
i,i−1, x

[k]
i , X̂

[k]
i,i+1, . . . , X̂

[k]
i,N)

and

X̂
[k]
i,j = V

[k]
i,j x̂

[k]
i,j , j = 1, . . . , N, j 6= i,

Z
[k]
i,j =

(
V

[k]
i,j

)T
U

[k]
i,j

((
S [k]
i,j

)T
U

[k]
i,j

)−1 (
S [k]
i,j

)T
, j = 1, . . . , N, j 6= i

for i = 1, . . . , N . Here x̂[k]
j,i ∈ Rηi,j are the reduced variables and x

[k]
i the DIRM

iterate. One can see that the DIRM has the same work flow as the dynamic iteration
presented in Figure 3.1. The only difference is that instead of solving N subsystems
of dimension ni each, in the DIRM, we solveN systems of dimension ni+

∑N
j=1,j 6=i ηi,j

each, where ηi,j is the dimension of the POD basis V [k]
i,j for every subsystem. The

additional computation effort will, hopefully, be compensated by speeding up the
convergence, since using the reduced models provides more accurate approximations
to the input variables for the subsystems. In Figure 3.4, we collect the variables and
functions for the dynamic iteration and DIRM and explain different indices.
The different selectors Ξ

[k]
i,j and Θ

[k]
i,j lead to different reduced-order models. Here,

we present two possible choices:

• Jacobi-type selector

Ξ
[k]
i,jX [k] = {x[k−1]

j (tm,1), . . . , x
[k−1]
j (tm,sm)}
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fi

subsystem

(a) Functions

f̂
[k]

i,j

subsystem subequation

iterationreduced
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[k]
i
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iteration

(c) Iterates

x̂
[k]
i,j

variablesubsystem

iterationreduced

(d) Reduced iterates

Figure 3.4: Functions and iterate variables for the dynamic iteration and DIRM

• Gauß-Seidel-type selector

Ξ
[k]
i,jX [k] =

{
{x[k−1]

j (tm,1), . . . , x
[k−1]
j (tm,sm)}, for i < j,

{x[k]
j (tm,1), . . . , x

[k]
j (tm,sm)}, for i > j,

for every DIRM subsystem i and every iteration k. Note that for the Jacobi-type
selector, the variables from the previous iteration step are taken as snapshots for
all subsystems. In this case, Ξ

[k]
i,j does not actually depend on i. In contrast to

this, for the Gauß-Seidel-type selector Ξ
[k]
i,j the POD basis V [k]

i,1 , . . . , V
[k]
i,i−1 for the i-th

DIRM system (3.2.1) are determined from the actual snapshots of the subsystems
1, . . . , i− 1, whereas the POD basis V [k]

i,i+1, . . . , V
[k]
i,N are obtained from the snapshots

from the previous iteration. The selectors Θ
[k]
i,j for the functions fj can be chosen

in a similar way. Note that starting from the second iteration, we can extend the
snapshot set X [k]

f by additional information

fj

(
X̂

[l]
1,j(tm,1), . . . , X̂

[l]
j−1,j(tm,1), x

[l]
j (tm,1), X̂

[l]
j,j+1(tm,1), . . . , X̂

[l]
N,j(tm,1)

)
,

...
fj

(
X̂

[l]
1,j(tm,sm), . . . , X̂

[l]
j−1,j(tm,sm), x

[l]
j (tm,sm), X̂

[l]
j,j+1(tm,sm), . . . , X̂

[l]
N,j(tm,sm)

)
available from the previous steps. We have to make an initial step to get first
snapshots. We decided here to perform one step of Jacobi-type dynamic iteration.
Extrapolation gives only linear dependent vectors and does not extend the snaphot
matrix.
In contrast to the dynamic iteration method, the DIRM is not well studied yet.

In [RP02], the convergence of the DIRM is investigated for linear systems only.
Here, we briefly overview these results. Consider a coupled linear system with two
subsystems

ẋ1 = A11x1 + A12x2, x1(t0) = x10,
ẋ2 = A21x1 + A22x2, x2(t0) = x20,

(3.2.2)

47



3 Numerical solution of coupled systems

where Aij ∈ Rni×nj for i, j = 1, 2. Then the Jacobi-type DIRM subsystems take the
form

ẋ
[k]
1 = A11x

[k]
1 + A12V

[k]
1,2 x̂

[k]
1,2,

˙̂x
[k]
1,2 =

(
V

[k]
1,2

)T
A21x

[k]
1 +

(
V

[k]
1,2

)T
A22V

[k]
1,2 x̂

[k]
1,2

and

˙̂x
[k]
2,1 =

(
V

[k]
2,1

)T
A11V

[k]
2,1 x̂

[k]
2,1 +

(
V

[k]
2,1

)T
A12x

[k]
2 ,

ẋ
[k]
2 = A21V

[k]
2,1 x̂

[k]
2,1 + A22x

[k]
2

with the projection matrices V [k]
1,2 ∈ Rn1×η2 and V [k]

2,1 ∈ Rn2×η1 such that(
V

[k]
2,1

)T
V

[k]
2,1 = Iη2 and

(
V

[k]
1,2

)T
V

[k]
1,2 = Iη1 . Introducing the orthogonal projectors

P
[k]
1 = V

[k]
2,1

(
V

[k]
2,1

)T
and P [k]

2 = V
[k]

1,2

(
V

[k]
1,2

)T
, these subsystems can be written as

ẋ
[k]
1 = A11x

[k]
1 + A12z

[k]
2 ,

ż
[k]
2 = P

[k]
2 A21x

[k]
1 + P

[k]
2 A22z

[k]
2

(3.2.3)

and
ż

[k]
1 = P

[k]
1 A11z

[k]
1 + P

[k]
1 A12x

[k]
2 ,

ẋ
[k]
2 = A21z

[k]
1 + A22x

[k]
2 ,

(3.2.4)

where z[k]
1 = V

[k]
2,1 x̂

[k]
2,1 and z

[k]
2 = V

[k]
1,2 x̂

[k]
1,2 are approximations to x1 and x2, respectively.

To specify the dynamic iteration operator, we introduce

P [k] =

[
P

[k]
1 0

0 P
[k]
2

]
, Ad =

[
A11 0
0 A22

]
, A0 =

[
0 A12

A21 0

]
and write (3.2.3) and (3.2.4) together as

ẋ[k] = Adx
[k] + A0z

[k],
ż[k] = P [k]Adx

[k] + P [k]A0z
[k]

with

x[k] =

[
x

[k]
1

x
[k]
2

]
, z[k] =

[
z

[k]
1

z
[k]
2

]
.

Define the iteration operator I : L2(0, T ; Rn1+n2) → L2(0, T ; Rn1+n2) which maps
the iterate x[k] to x[k+1]. Note that the operator I is nonlinear because POD reduc-
tion is a nonlinear mapping. This can be demonstrated by the following example.

Example 3.4. Computing the SVD[
1 0
0 0

]
=

[
1 0
0 1

] [
1 0
0 0

] [
1 0
0 1

]
,
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3.3 Numerical experiments for a nonlinear coupled system

we obtain the POD basis
[
1 0

]T with reduced dimension 1. Analogously, the SVD[
0 0
0 1

]
=

[
0 1
1 0

] [
1 0
0 0

] [
0 1
1 0

]
provides the POD basis

[
0 1

]T of dimension 1. However, if we apply POD to

a

[
1 0
0 0

]
+ b

[
0 0
0 1

]
=

[
1 0
0 1

] [
a 0
0 b

] [
1 0
0 1

]
with a > b > 0, we get

[
1 0

]T . A linear operator should result in
[
a b

]T .
The following results on the convergence of the DIRM-method were presented in

[RP02]:

• The nonlinear operator I has a fixed point x∗ if ‖A0‖2 is sufficiently small.
Unfortunately, no quantitative bound on ‖A0‖2 is given and the proof does
not suggest any. This result holds for arbitrary (finite) number of linear sub-
systems.

• An upper bound on the error of the fixed point trajectory x∗ and the through
solution x =

[
xT1 , x

T
2

]T of (3.2.2) is presented.

• Assuming that the initial iterate x[0] is sufficiently close to the fixed point x∗
of I and ‖DI(x∗)‖2 < 1, where DI(x∗) denotes a linearization of the iteration
operator I at x∗, the convergence of the DIRM iteration to x∗ is proven.

• Finally, for a coupled linear system, for which the operator I has a fixed point
x∗, the convergence of DIRM is established on a sufficiently small time interval
[t0, t0 + τ ] under assumption that the initial iterate x[0] is close enough to x∗.

These convergence results cannot be used in practice, since the conditions guarantee-
ing the convergence are very difficult to verify even for linear systems. An extension
to nonlinear coupled systems remains still open.

3.3 Numerical experiments for a nonlinear coupled
system

The DIRM method depends on many parameters that strongly influence the con-
vergence of this method. These are, for example, the number of macro steps nT
and the number of iterations Km on the macro time window [Tm, Tm+1]. Applying
model reduction, we have to choose the reduced dimensions ηi,j and κi,j for POD
and DEIM, respectively, or tolerances as described in (2.4.11). Furthermore, we
have to select snapshots required for the construction of the reduced bases, which
can be selected by Ξ

[k]
i,j and Θ

[k]
i,j . In this section, we present some results of numerical

experiments for a simple nonlinear coupled system to demonstrate the difficulties in
choosing all these method parameters.
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3 Numerical solution of coupled systems

We consider a nonlinear PDE

∂u

∂t
= ν

∂2u

∂ξ2
+ a

∂u

∂x
u

with the boundary conditions

u(t, 0) = u(t, 6) = 0

and the initial conditions

u(0, x) = exp

(
−
(x

3
− 1
)2
)

sin
(π

2
x
)
.

for ξ ∈ [0, 6] and t ∈ [0, T ]. For simplicity, we take ν = 1 and a = 1. In order
to obtain a coupled dynamical system as in (3.2.1), we divide the spatial interval
[0, 6] into four equidistant subintervals and discretize (3.3) on each subinterval using
a finite difference method [Smi85] with 250 equidistant discretization points. This
leads to a nonlinear coupled system with four subsystems of dimension nj = 250,
j = 1, . . . , 4, connected sequentially. In the first experiment, we set T = 1 and vary
only the number K1 of dynamic iterations on one macro time window [0, 1] and the
POD reduced dimension η, which is the same for all iterations and all subsystems.
Other parameters collected in Figure 3.5(a) remain fixed.

Note that we do not apply DEIM for the reduction of nonlinearity, since in this
small example, the simulation time is so short, that the advantage of DEIM does
not come to bear. As a reference solution xref ∈ R1000, we use the solution obtained
by discretizing (3.3) on the whole interval [0, 6] using the finite difference method
and solving the resulting ODE employing the MATLAB function ode15s with step
size control.

In Figure 3.5(b), we present the relative error

∆r(T ) :=
‖xref(T )− x(T )‖
‖xref(T )‖

in the DIRM solution after the first two iterations for different POD reduced di-
mensions. Note that the relative error can only be computed for the time instants
Tj for j = 1, . . . , nT . Since we use nT = 1, we can compare the solutions at time
T only. One can see that for increasing dimension η, the relative error decreases.
This is a typical behavior of the POD method. It should, however, be noted that
the error also depend on the snapshots that are different in each iteration. More-
over, Figure 3.5(b) shows that the second iteration leads to the significantly smaller
relative error ∆r(T ) than the first iteration. For dynamic iteration, this is a basic
property, but it is not guaranteed for DIRM.

In Figure 3.5(c), we present the simulation time. Here, DIRM behaves again as
expected, the larger the reduced dimension, the longer the simulation time. It is
striking to note that the second iteration is significantly more expensive than the first
one. We suspect that this is because a POD approximation creates an inappropriate
reduced-order subsystem. This leads to long simulation time. Since we want to
compute a solution with a small error in a short time, we look at Figure 3.5(d)
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3.3 Numerical experiments for a nonlinear coupled system

showing the relative error versus the computation time and search for a point near
the origin. Depending on the desired accuracy, a suitable POD dimension η and
a number of iterations K1 can be read out from Figure 3.5(b). From the outset,
however, it is nontrivial to select these parameters. The same dimension η can
lead to large errors in the first iteration and to long simulation time in the second
iteration.

Method parameters:
nT = 1
Jacobi-type dynamic iteration
DEIM off
η the same for all iterations
and subsystems

(a)

0 50 100 150 200
POD reduced dimension

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

R
el

at
iv

e 
er

ro
r

K1 = 1
K1 = 2

(b)

0 50 100 150 200
POD reduced dimension

10 1

10 2

10 3

10 4

R
un

 ti
m

e

K1 = 1
K1 = 2

(c)

10 1 10 2 10 3 10 4

Run time

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

R
el

at
iv

e 
er

ro
r

K1 = 1
K1 = 2

(d)

Figure 3.5: Influence of POD dimensions and number of dynamic iterations on the
relative error and run time for the Jacobi-type DIRM method
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3 Numerical solution of coupled systems

Instead of setting the reduced dimension for POD, one can also select a toler-
ance tol for the POD singular values. We now look at how DIRM reacts to the
reduced systems determined by different tolerances. This time, we use the same
tolerance tol = 2−i for all subsystems and iteration steps. The resulting POD di-
mensions for four subsystems are presented in Figure 3.7 for the first and second
iterations. It can be seen that in the second iteration, the differences between the
subsystems are larger than in the first iteration, which is due to different snapshots
for each subsystem. All in all, the reduced dimension increases with decreasing toler-
ance. In Figures 3.6(b) and 3.6(c), we present the relative errors and simulation time
for different tolerances and different number of dynamic iterations. Figure 3.6(d)
shows the relative error versus the simulation time. One can see that DIRM with
varying tolerances provides about the same results as with varying POD reduced
dimensions.

Method parameters:
nT = 1
Jacobi-type dynamic iteration
DEIM off
tol the same for all iterations
and subsystems
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Figure 3.6: Influence of POD tolerance and number of iterations on the relative error
and run time for the Jacobi-type DIRM method
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Figure 3.7: POD reduced dimensions for four subsystems generated with toler-
ance tol = 2−i in the Jacobi-type DIRM method
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Figure 3.8: POD reduced dimensions for four subsystems generated with toler-
ance tol = 2−i in the Gauß-Seidel-type DIRM method

In the next set of experiments, we employ the Gauß-Seidel-type dynamic itera-
tion and repeat above computations. While in the Jacobi-type DIRM method, all
subsystems are reduced at the beginning of each iteration and then all N coupled
systems (3.2.1) are solved in parallel, the Gauß-Seidel-type DIRM iteration is se-
rially in nature. This means that after solving the (i − 1)-st system (3.2.1), its
solution is used to determine the POD basis V [k]

i,i−1 required in the i-th system. This
results in the different choice of dimensions, compare Figures 3.7 and 3.8. If we
compare the error plots in Figures 3.6(b) and 3.9(b), we see that the error in the
Gauß-Seidel-type DIRM behaves similar to that in the first Jacobi-type iteration.
However, comparing the run time in Figures 3.6(c) and 3.9(c), one can see that
the simulation time for the Gauß-Seidel-type DIRM is about the same as that for
two Jacobi-type iterations. Overall, the Jacobi-type DIRM in this example is more
efficient than the Gauß-Seidel-type DIRM.
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3.3 Numerical experiments for a nonlinear coupled system

Method parameters:
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Figure 3.9: Influence of POD tolerance on the relative error and run time for the
Gauß-Seidel-type DIRM method
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Method parameters:
Jacobi-type dynamic iteration
DEIM off
tol is the same for all iterations
and subsystems
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Figure 3.10: Influence of POD tolerance and number of macro steps on the relative
error and run time for the Jacobi-type DIRM method

Next, we vary the number of macro steps nT on the time interval [0, 2]. In dynamic
iteration, increasing number of macro steps leads to smaller errors. Figure 3.10(b)
basically shows this behaviour for tolerance 2−13 only, whereas for tolerances 2−20

and 2−27, the relative error for nT = 4 macro steps is clearly the smallest. We
suspect that too small macro steps lead to bad snapshots and, therefore, to large
errors. Looking at the run time in Figure 3.10(c), it increases slightly with increasing
number of macro steps. This is to be expected because of the overhead computations.
Only for tolerance 2−27 with one, two and three macro steps, the simulation is
significantly longer. Finally, Figure 3.10(d) gives the correlation between the run
time and the relative error. From the tested variants, four macro time steps and the
POD tolerance tol = 2−27 provides the best result.

Summarizing, we conclude that the DIRM method is very sensitive to method
parameters. It is not applicable without a well-founded strategy for parameter
selection. An inappropriate choice of parameters may lead to a failure of the method.
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3.4 A posteriori error estimator

3.4 A posteriori error estimator

In this section, we present an a posteriori error estimator for the DIRM method
applied to coupled ODEs. It is based on an a posteriori error estimator for DEIM
derived in [WSH14].

Theorem 3.5. Let

x =

x1
...
xN

 and x[k] =

x
[k]
1
...
x

[k]
N


be the solutions of a coupled system (3.1.3) and the k-th iterate of the DIRM, respec-
tively. Then the DIRM error e(t) = x(t) − x[k](t) is bounded on very time window
[Tm, Tm+1] as

‖e(t)‖ 6
∫ t

Tm

β(s)e
∫ t
s α(τ) dτds+ ‖e(Tm)‖e

∫ t
Tm

α(τ)dτ , t ∈ [Tm, Tm+1], (3.4.1)

where ‖e(T0)‖ = 0, α(t) = L2[f ](x[k](t)) is the local logarithmic Lipschitz constant
of f =

[
fT1 . . . fTN

]T defined in (2.4.16), and

β(t) =

∥∥∥∥∥∥∥
 f1(x[k](t))− f1(x̂

[k]
1 (t))

...
fN(x[k](t))− fN(x̂

[k]
N (t))


∥∥∥∥∥∥∥

with x̂
[k]
i =

[(
X̂

[k]
i,1

)T
, . . . ,

(
X̂

[k]
i,i−1

)T
,
(
x

[k]
i

)T
,
(
X̂

[k]
i,i+1

)T
, . . . ,

(
X̂

[k]
i,N

)T]T for
i = 1, . . . , N .

Proof. For the sake of simplicity, we skip the time dependence in the following
notation. The time derivative of the error ‖e‖ = ‖x− x[k]‖ can be calculated as

d‖e‖
dt

=
d〈e, e〉 12
dt

=
〈ė, e〉+ 〈e, ė〉

2‖e‖
=
〈ė, e〉
‖e‖

.

Collecting the i-th equations from the i-th DIRM system (3.2.1), we get the system

ẋ
[k]
1 = f1(x̂

[k]
1 ),

...
ẋ

[k]
N = fN(x̂

[k]
N ).

In order to determine the inner product 〈ė, e〉, we subtract this system from the
coupled ODE system (3.1.3). Then we obtain

〈ė, e〉 =

〈f1(x)
...

fN(x)

−
f1(x̂

[k]
1 )
...

fN(x̂
[k]
N )

 , e〉
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3 Numerical solution of coupled systems

Next, we add and substract
[
f1(x[k])T , . . . , fN(x[k])T

]T and use the Cauchy-Schwarz
inequality. This leads to

〈ė, e〉 =

〈f1(x)
...

fN(x)

−
f1(x[k])

...
fN(x[k])

 , e〉+

〈f1(x[k])
...

fN(x[k])

−
f1(x̂

[k]
1 )
...

fN(x̂
[k]
N )

 , e〉

6

〈f1(x)
...

fN(x)

−
f1(x[k])

...
fN(x[k])

 , e〉+

∥∥∥∥∥∥∥
f1(x[k])

...
fN(x[k])

−
f1(x̂

[k]
1 )
...

fN(x̂
[k]
N )


∥∥∥∥∥∥∥ ‖e‖.

Using the local logarithmic Lipschitz constant L2[f ](x[k]) to estimate the first inner
product, we have

d‖e(t)‖
dt

=
〈ė(t), e(t)〉
‖e(t)‖

6 L2[f ](x[k](t))‖e(t)‖+

∥∥∥∥∥∥∥
f1(x[k](t))

...
fN(x[k](t))

−
f1(x̂

[k]
1 (t))
...

fN(x̂
[k]
N (t))


∥∥∥∥∥∥∥

= α(t)‖e(t)‖+ β(t).

Using the comparison lemma [WSH14], we obtain estimate (3.4.1). Finally, obvi-
ously ‖e(T0)‖ = ‖x(t0)− x[k](t0)‖ = 0.

Since the local logarithmic Lipschitz constant L2[f ](x[k](t)) is expensive to calcu-
late, we suggest similarly to [WSH14] to approximate it with the logarithmic norm
L2[Jf (x

[k](t))] of the Jacobi matrix Jf (x[k](t)) of f evaluated at x[k](t). In order to
compute the logarithmic norm L2[Jf (x

[k](t))] = 1
2
λmax

(
Jf (x

[k](t)) + JTf (x[k](t))
)
we

first determine a MDEIM approximation to the Jacobi matrix

Jf (x
[k](t)) ≈

Q∑
q=1

Wqθq(x
[k](t))

as described in Section 2.4.3 and then calculate the largest eigenvalue of the symmet-
ric matrixM(t) =

∑Q
q=1 θq(x

[k](t))Mq withMq = Wq+W T
q using the successive con-

straint method [HRSP07]. This method will be presented in the next section. The
computation of β(t) requires the evaluation of fi at x[k](t) and x̂[k]

i (t) for i = 1, . . . , N .
This data can be collected through DIRM. Note that exploiting the structure of the
problem can reduce the computation time for the error estimates significantly.

3.4.1 Successive constraint method

In this section, we briefly describe the successive constraint method (SCM) for com-
puting an upper bound on

λ(µ) = max
v∈Rn\{0}

vTM(µ)v

vTv
, µ ∈ D ⊂ Rn (3.4.2)

for a parameter dependent matrix M(µ) =
∑Q

q=1 θq(µ)Mq with Mq ∈ Rn×n and
nonlinear functions θq : D → R. This method was first proposed in [HRSP07] for

58



3.4 A posteriori error estimator

the construction of lower bounds for the coercivity and inf-sub stability constraints
requested in an a posteriori error analysis of parametrized PDEs. Here, we adapt the
SCM to our setting by considering a finite dimensional space Rn and searching for
an upper bound on a discrete parameter set. Note that if M(µ) is symmetric, then
by the Courant-Fischer theorem [HJ85], λ(µ) in (3.4.2) gives the largest eigenvalue
of M(µ). We first define a set

Y =

{
y = [y1, . . . , yQ]T ∈ RQ : ∃ v ∈ Rn \ {0} s.t. yq =

vTMqv

vTv
, q = 1, . . . , Q

}
and as objective the function J (µ, y) =

∑Q
q=1 θq(µ)yq. Then (3.4.2) can be written

as λ(µ) = maxy∈Y J (µ, y). Furthermore, we introduce a bounded set

BQ =

[
min

v∈Rn\{0}

vTM1v

vTv
, max
v∈Rn\{0}

vTM1v

vTv

]
× · · ·

×
[

min
v∈Rn\{0}

vTMQv

vTv
, max
v∈Rn\{0}

vTMQv

vTv

]
⊂ RQ.

For a parameter set CK = {µ1, . . . , µK} ⊂ D we define further the sets

YUB(CK) = {y ∈ BQ : J (µk, y) 6 λ(µk) for all µk ∈ CK},
YLB(CK) = {arg max

y∈Y
J (µk, y) for all µk ∈ CK}

and bounds λUB(µ,CK) = max
y∈YUB(CK)

J (µ, y) and λLB(µ,CK) = max
y∈YLB(CK)

J (µ, y).

Lemma 3.6. For a parameter set CK, it holds

λLB(µ,CK) 6 λ(µ) 6 λUB(µ,CK) for all µ ∈ D. (3.4.3)

Proof. We first observe that YLB(CK) ⊂ Y by definition of YLB(CK). Secondly we
show that Y ⊂ YUB(CK). For y = [y1, . . . , yQ]T ∈ Y , we have yq = vTMqv

vT v
for some

v 6= 0 and q = 1, . . . , Q and, therefore,

min
v∈Rn\{0}

vTMqv

vTv
6 yq 6 max

v∈Rn\{0}

vTMqv

vTv
, q = 1, . . . , Q.

Thus, y ∈ BQ. Furthermore, by the definition of λ(µ), we have J (µ, y) 6 λ(µ) for
all y ∈ Y and, therefore, Y ⊂ YUB(CK). Then (3.4.3) immediately follows from the
definition of λUB, λ and λLB.

The key idea of the SCM is to determine a parameter set CK such that the
corresponding lower and upper bounds λLB(µ,CK) and λUB(µ,CK) are sufficiently
close to λ(µ). Such a set can be computed iteratively using the greedy procedure.
Once the parameter set CK is constructed, we choose the next parameter µK+1

such that the error εK(µ,CK) = 1− λLB(µ,CK)
λUB(µ,CK)

is the largest in a training set Dtrain

which is a discrete subset of D. Updating CK+1 = CK ∪ {µK+1}, we continue the
iteration until εK(µ) < tol with a tolerance tol ∈ (0, 1). The SCM is summarized
in Algorithm 3.1. For arbitrary parameter µ ∈ D, the upper bound λUB(µ,CK)
on λ(µ) can be determined by solving the linear program (3.4.4) with µj replaced
by µ, which has Q variables and 2Q + K constraints. Thus, the complexity of this
program is independent of the problem dimension n.
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3 Numerical solution of coupled systems

Algorithm 3.1: Successive constraints method
Input : M1, . . . ,MQ ∈ Rn×n, θ(µ) =

[
θ1(µ), . . . , θQ(µ)

]
nonlinear function,

training set Dtrain = {µ1, . . . , µg}, maximal number of iterations
maxiter < g , tolerance tol, number of an initial starting parameter
µi1 ∈ Dtrain

Output: a parameter set Ck
1 Set C1 = {µ1}, AUB = [ ], bUB = [ ].

2 Compute BQ =
∏Q

q=1

[
min

v∈Rn\{0}

vTMqv

vTv
, max
v∈Rn\{0}

vTMqv

vTv

]
.

3 for k = 1 to maxiter do

4 Compute λik = max
v∈Rn\{0}

θ(µik)
[
vTM1v
vT v

, . . . ,
vTMQv

vT v

]T
and

vik = arg max
v∈Rn\{0}

θ(µik)
[
vTM1v
vT v

, . . . ,
vTMQv

vT v

]T
.

5 Set AUB ← [AUB, θ
T (µik)], bUB ← [bUB, λik ].

6 for j = 1 to g do
7 Solve the linear program

max θ(µj)y s.t. ATUBy 6 bTUB, y ∈ BQ (3.4.4)

for y.
8 Set λUB(µj, Ck) = θ(µj)y.

9 Compute λLB(µj, Ck) = max
16l6k

θ(µj)

[
vTil
M1vil
vTil
vil

, . . . ,
vTil
MQvil
vTil
vil

]T
.

10 Compute ε(µj, Ck) =
λUB(µj ,Ck)−λLB(µj ,Ck)

λUB(µj ,Ck)
.

11 end
12 Find µik+1

= arg max
µj∈Dtrain

ε(µj, Ck).

13 Set Ck+1 = Ck ∪ {µik+1
}.

14 if ε(µik+1
, Ck) < tol then

15 break
16 end
17 end
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3.4 A posteriori error estimator

3.4.2 Numerical example

Here, we present some results of numerical experiments to demonstrate the effec-
tiveness of the a posteriori DIRM error estimator (3.4.1) for the coupled system de-
scribed in Section 3.3. To solve this system, we use the Jacobi-type DIRM method
with nT = 4 macro time steps on the time interval [0, 2] and Km = 2. The dimension
of the reduced variables was determined using the POD tolerance tol = 2−27. As in
Section 3.3, a reference solution xref was computed by solving the semidiscretized
equation (3.3) using the MATLAB function ode15s with stepsize control. To be
able to calculate the absolute DIRM error ‖xref (t)− x[k](t)‖ not only at the macro
time steps, all systems of the DIRM iteration were calculated on the time grid of
the reference solution xref . In Figure 3.11(a), we present the absolute DIRM error
‖xref (t)− x[k](t)‖ and the error estimator (3.4.1) with L2[f ](x[2](t)) replaced by the
logarithmic norm L2

[
Jf (x

[2](t))
]
computed without and with MDEIM and SCM.

One can see that the error estimator overestimates the true error by three orders
of magnitude, but it depicts the behavior of the error very well. Even small peaks
when changing from one macro time step to the other are reflected. The relative
error caused by MDEIM and SCM in the error estimator is shown in Figure 3.11(b).
This one is so small that it does not matter here. In this small example, the time
saved by MDEIM and SCM can hardly be shown. Table 3.1 shows that a speedup
can be achieved with MDEIM and SCM if the generated MDEIM basis can be used
long enough. In our experiments, the reduced basis was only created in the first
macro time step and then reused in other macro time steps. Accordingly, the run
time in the first time window [T0, T1] is significantly longer than in the other macro
time steps.
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Figure 3.11: Error estimation without and with using MDEIM and SCM

without MDEIM and SCM with MDEIM and SCM
1. macro time step 4.68 7.12
2. macro time step 4.65 3.45
3. macro time step 4.83 3.46
4. macro time step 4.71 1.93

Table 3.1: Run time in seconds for the error estimator without and with MDEIM
and SCM
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4 Model reduction for
magneto-quasistatic problems

Nowadays, integrated circuits play an increasingly important role. Modelling of
electromagnetic effects in high-frequency and high-speed electronic systems leads
to coupled electromagnetic-circuit models of high complexity. The development of
efficient, fast and accurate simulation tools for such models is of great importance in
the computer-aided design of electromagnetic structures offering significant savings
in production cost and time. In this chapter, we consider model order reduction of
magneto-quasistatic (MQS) models obtained from Maxwell’s equations by assuming
that the contribution of displacement current is negligible compared to the conduc-
tive currents. MQS equations are used for modeling of low-frequency electromagnetic
devices like transformers, induction sensors and generators. Due to the presence
of non-conducting subdomains such equations form a system of partial differential-
algebraic equations (PDAEs), whose dynamics are restricted to a manifold described
by algebraic constraints. A spatial discretization of MQS problems using the finite
integration technique (FIT) [Wei77] or the FEM [Néd80, Bos98, Mon03] leads to
DAE systems which are singular in the 3D case. Here, we consider only the FEM
discretization. The algebraic constraints should be treated carefully when approxi-
mating the system. A naive application of the existing model reduction methods to
DAEs may lead to an inaccurate approximation and physically meaningless results
[GSW13, KS15, Sty11]. We will exploit the special block structure of the semidis-
cretized MQS system to transform it into a system of ODEs. Unfortunately, the
transformation to the ODE form requires the computation of an orthonormal basis
of a certain subspace and destroys the sparsity of the system matrices. To overcome
these computational difficulties and to construct efficient model reduction methods
for linear and nonlinear MQS systems, we will again use the underlying structure of
the problem.

4.1 Maxwell’s equations

First, we introduce a physical model. The dynamical behavior of the electromagnetic
field is described by Maxwell’s equations in a differential form

∇×H = Jc + Js +
∂D

∂t
, (4.1.1a)

∇× E = −∂B
∂t
, (4.1.1b)

∇ ·B = 0, (4.1.1c)
∇ ·D = ρ, (4.1.1d)
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4 Model reduction for magneto-quasistatic problems

with the physical quantities:

• the magnetic field intensity H,

• the magnetic flux density B,

• the electric field intensity E,

• the electric flux density D,

• the conduction current density Jc,

• the external source current density Js,

• the electric charge density ρ,

which depend on the spatial variable ξ ∈ R3 and time t ∈ [0, T ] ⊂ R, see [Max65].
The first six quantities are R3-valued functions, whereas ρ is a scalar function.
Additionally, there are the material equations

B = µH, (4.1.2a)
D = εE, (4.1.2b)
Jc = σE (4.1.2c)

with the material parameters:

• the magnetic permeability µ,

• the electric permitivity ε,

• the electric conductivity σ.

We consider only isotropic materials without hysteresis effects. In this case, the
material quantities are scalar functions, where ε and σ depend only on the space
variable, and the permeability can be represented as a function of the magnetic field
H such that

B = µ(·, ‖H‖)H. (4.1.3)

Furthermore, we introduce the magnetic reluctivity ν satisfying ν(·, ‖B‖) = 1
µ(·,‖H‖)

which lead to the relation
H = ν(·, ‖B‖)B. (4.1.4)

For derivation of Maxwell’s equations and detailed description of materials, we refer
to [Gri13, Jac99, Pec04].

Due to the divergence-free property for the magnetic flux density B, one can find
a magnetic vector potential A and an electric scalar potential ϕ satisfying

B = ∇×A, (4.1.5)

E = −∂A
∂t
−∇ϕ. (4.1.6)
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4.2 Magneto-quasistatic model

Note that the potentials A and ϕ are not unique, whereas B and E are uniquely
defined. Consider the gauge transformation

Ã = A +∇ψ, ϕ̃ = ϕ− ∂ψ

∂t
(4.1.7)

with an arbitrary scalar function ψ. One can show that B and E are gauge invariant
in the sense that they remain unchanged under the gauge transformation [Bos98,
Jac02]. A uniqueness of A and ϕ up to a constant scalar field can be archived by
the Coulomb gauge

∇ ·A = 0 (4.1.8)

or the Lorenz gauge

εµ
∂ϕ

∂t
+∇ ·A = 0.

For further discussions on gauge, we refer to [Bau12, Bos98, Jac02, Sch11].

4.2 Magneto-quasistatic model

MQS equations can be considered as an approximation of Maxwell’s equations
(4.1.1), (4.1.3) for low-frequency problems [Dir96, HM89]. We assume that the
displacement currents are negligible in comparison to the conductive currents, i.e.,

∂D

∂t
= 0. (4.2.1)

Inserting the material equations (4.1.2c) and (4.1.4) into equation (4.1.1a) and using
the condition (4.2.1) and the potential equations (4.1.5) and (4.1.6), we obtain the
magnetic vector potential formulation

σ
∂A

∂t
+∇× (ν(·, ‖∇ ×A‖)∇×A) = −σ∇ϕ+ Js. (4.2.2)

Boundary and initial conditions Maxwell’s equations are, in general, defined on
an infinite domain. We cannot numerically capture this and, therefore, consider the
equations on a bounded simply connected polyhedral region Ω ⊂ R3. There is three
types of boundary conditions:

1. Dirichlet boundary condition

A× n0 = AD on ∂Ω× (0, T )

with an outer unit normal n0 to the boundary ∂Ω and a given function AD,

2. Neumann boundary condition

ν(∇×A)× n0 = HN on ∂Ω× (0, T )

with an outer unit normal n0 to the boundary ∂Ω and a given function HN ,
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4 Model reduction for magneto-quasistatic problems

3. anti-periodic boundary condition(
∇×A(ξ, t)

)
· n+

0 = −
(
∇×A(s(ξ), t)

)
· n−0 for (ξ, t) ∈ Γ+ × (0, T )

with two parts of the boundary Γ+ and Γ− such that ∂Ω = Γ+ ∪ Γ−, the
corresponding outer unit normals n+

0 and n−0 and a mapping s : Γ+ → Γ−.

For the unique solvability of the problem, at least a part of the boundary must be
provided with a boundary condition of the Dirichlet type, see [QV94]. A description
of the effects of different boundary conditions can be found in [Sch11]. We use
a homogeneous Dirichlet boundary condition

A× n0 = 0 on ∂Ω× (0, T ).

In addition, we specify the initial condition

A(·, 0) = A0 in Ω.

Material parameters Let Ω ⊂ R3 be a bounded domain, with a conducting subdo-
main Ω1 and a non-conducting subdomain Ω2 such that Ω1∩Ω2 = ∅ and Ω1∪Ω2 = Ω.
We assume that the material parameters σ and ν are different in the conducting
and non-conducting subdomains. We consider

• the electric conductivity

σ(ξ) =

{
σ1 in Ω1,

0 in Ω2,

with a constant σ1 > 0 and

• the magnetic reluctivity

ν(ξ, %) =

{
ν1(%) in Ω1,

ν2 in Ω2,
(4.2.3)

with a constant ν2 > 0 and a function ν1 : R+
0 → R+

0 satisfying the following
conditions:

1. ν1 is continuously differentiable;

2. ν1(·)· is strongly monotone with monotonicity constant mν,1 > 0, i.e.,

(ν1(%)%− ν1(%̂)%̂)(%− %̂) > mν,1(%− %̂)2 for all %, %̂ > 0; (4.2.4)

3. ν1(·)· is Lipschitz continuous with Lipschitz constant Lν,1 > 0, i.e.,

|ν1(%)%− ν1(%̂)%̂| 6 Lν,1|%− %̂| for all %, %̂ > 0. (4.2.5)
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4.2 Magneto-quasistatic model

Obviously, the function ν inherits the properties of ν1. Conditions 2 and 3 im-
ply that for all ξ ∈ Ω, ν(ξ, ·)· is strongly monotone with monotonicity constant
mν = min(mν,1,ν2), and it is Lipschitz continuous with Lipschitz constant
Lν = max(Lν,1,ν2). Moreover, it follows from conditions 1 and 2 that

ν(ξ, %) > mν for all (ξ, %) ∈ Ω× R+
0 . (4.2.6)

Indeed, taking %̂ = 0 in (4.2.4), we obtain ν1(%)%2 > mν,1%
2 and, therefore,

ν1(%) > mν,1 for all % ∈ R+. This inequality is also valid for % = 0, because of
the continuity of ν1. Thus, (4.2.6) is fulfilled.
Note that due to (4.1.7), we can choose A such that σ∇ϕ = 0. Then (4.2.2)

simplifies to the equation

σ
∂A

∂t
+∇× (ν(·, ‖∇ ×A‖)∇×A) = Js (4.2.7)

guaranteeing , A is uniquely determined on Ω1. To get the uniqueness of Ω1 on Ω2,
we use the Coulomb gauge (4.1.8) on Ω2, see [Sch11].

Stranded conductors The coupling of electromagnetic devices to a circuit is es-
tablished by the voltage drop v and the electric current ι through the electromagnetic
conductive contacts. This can be realized as a solid conductor model, where solid
conductors behave as voltage-driven circuit elements, or as a stranded conductor
model, where stranded conductors behave as current-driven circuit elements, see
[Ben07, SGW13]. Since both conductor models are equivalent in the sense that
the solid conductor can be written as a stranded conductor with a particular con-
ductivity matrix [Sch11], we restrict ourselves to the stranded conductor model.
A stranded conductor consists of several thin wires (strands) of small cross-sectional
area forming a coil. For such a conductor, it is assumed that the current density is
homogeneously distributed. For a stranded conductor model with m terminals, the
source current density is given by

Js = χstrι, (4.2.8)

where a winding function χstr : Ω→ R3×m satisfies the following conditions:

χstr is divergence-free, i.e., ∇ · χstr = 0 in Ω, (4.2.9a)
supp((χstr)i) ∩ Ω2 6= ∅ for i = 1, . . . ,m, (4.2.9b)
supp((χstr)i) ∩ supp((χstr)j) = ∅ for i, j = 1, . . . ,m, i 6= j, (4.2.9c)

where (χstr)i denotes the i-th column of χstr. Condition (4.2.9b) means that the
coupling is not only on the conductive part, whereas condition (4.2.9c) implies that
the terminals do not overlap. Using Ohm’s law for the resistive voltage drop and
Faraday’s law for the induced voltage drop, one can compute the complete voltage
drop as

v = R ι+
∂

∂t

∫
Ω

χTstrA dξ,
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4 Model reduction for magneto-quasistatic problems

where R describes the resistance of the winding. It is given by

R =

∫
Ω

χTstrχstr

σcoilγ
dξ,

where σcoil is a electric conductivity of the coil and γ ∈ (0, 1] is a filling factor.
Summarizing, we obtain the MQS model

σ
∂A

∂t
+∇× (ν(·, ‖∇ ×A‖)∇×A) = χstrι in Ω× (0, T ), (4.2.10a)

∂

∂t

∫
Ω

χTstrA dξ + R ι = v in (0, T ), (4.2.10b)

A× n0 = 0 on ∂Ω× (0, T ), (4.2.10c)
A(·, 0) = A0 in Ω. (4.2.10d)

This model can be considered as a control system of partial-integro-differential-
algebraic equations with the input v, the state [AT , ιT ]T and the output ι. Such
a system has been studied in [Alt13, MHCG17, Sch11] in the context of coupled
field-circuit problems. Our goal is now to develop efficient model reduction methods
for (4.2.10) which exploit the underlying structure of the problem.

4.3 2D Magneto-quasistatic problems

First, we consider 2D MQS systems in more details. We discuss a spatial discretiza-
tion of such systems using FEM which leads to DAEs and also study the index
and passivity of the semi-discretized system. In Sections 4.4 and 4.5, we present
passivity-preserving model reduction methods for linear and nonlinear 2D MQS
equations.

Let Ω ⊂ R2 be a bounded connected domain with a Lipschitz continuous boundary
∂Ω. For the MQS problem on such a domain Ω, we assume that the magnetic field
H lies in the (ξ1, ξ2)-plane meaning that it is a three-dimensional vector field which
does not depend on the ξ3-variable, i.e.,

H =

H1(ξ1, ξ2)
H2(ξ1, ξ2)

0

 .
Since H and B are related via the magnetic permeability as in (4.1.3), B has a
similar form

B =

B1(ξ1, ξ2)
B2(ξ1, ξ2)

0

 .
Furthermore, equations (4.2.7) and (4.2.8) give directly that

Js =

 0
0

Js3(ξ1, ξ2)

 , χstr =

 0
0

χstr,3(ξ1, ξ2)

 .
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4.3 2D Magneto-quasistatic problems

It follows from the equation B = ∇×A that

A =

 0
0

A3(ξ1, ξ2)

 . (4.3.1)

This implies

‖∇ ×A‖ =

√(
∂A3

∂ξ1

)2

+

(
∂A3

∂ξ2

)2

= ‖∇A3‖

and

∇× (ν(·, ‖∇ ×A‖)∇×A) =

 0
0

−∇ ·
(
ν(·, ‖∇A3‖)∇A3

)
 .

Thus, equation (4.2.10a) can be simplified to

σ
∂

∂t
A3 −∇ ·

(
ν (·, ‖∇A3‖)∇A3

)
= χstr,3ι

and equation (4.2.10b) to

∂

∂t

∫
Ω

χTstr,3A3 dξ + R ι = v.

The boundary condition (4.2.10c) with A as in (4.3.1) and the normal vector
n0 =

[
n01, n02, 0

]T takes the form

0 =

 0
0
A3

×
n01

n02

0

 =

−A3n02

A3n01

0

 .
Since the outer normal n0 is not equal to zero, this condition is equivalent to A3 = 0
on ∂Ω× (0, T ). Introducing a new variable φ = A3, we get the 2D MQS system

σ
∂φ

∂t
−∇ · (ν(·, ‖∇φ‖)∇φ) = χstr,3ι in Ω× (0, T ), (4.3.2a)

∂

∂t

∫
Ω

χTstr,3φ dξ + R ι = v in (0, T ), (4.3.2b)

φ = 0 on ∂Ω× (0, T ), (4.3.2c)
φ(·, 0) = φ0 in Ω. (4.3.2d)

4.3.1 Weak formulation

We now derive a weak formulation for the 2D MQS system (4.3.2). For this purpose,
we multiply equation (4.3.2a) with a test function ψ ∈ H1

0 (Ω) and integrate the
resulting equation over the domain Ω. Using Green’s formula and the boundary
condition (4.3.2c), we obtain the variational equation∫

Ω

σ
∂φ

∂t
ψ dξ +

∫
Ω

ν(·, ‖∇φ‖)∇φ · ∇ψ dξ =

∫
Ω

ψχstr,3ι dξ. (4.3.3)
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4 Model reduction for magneto-quasistatic problems

We are searching for a weak solution φ ∈ L2(0, T ;H1
0 (Ω)) satisfying (4.3.3),

(4.3.2b) and (4.3.2d) for all test functions ψ ∈ H1
0 (Ω), where φ0 ∈ L2(Ω). The

existence and uniqueness of the solution for such a problem has been investigated
in [JRS14]. If there is no conductive material present or temporal changes are very
slow, then one gets the magnetostatic system studied in [Pec04]. The MQS problem
with piece-wise constant reluctivity on the domain Ω has been considered in [NT13].

We present now some useful results for the MQS system in the weak formulation.
To this end, we introduce the functional b : H1

0 (Ω)×H1
0 (Ω)→ R as

b(ϕ, ψ) =

∫
Ω

ν(·, ‖∇ϕ‖)∇ϕ · ∇ψ dξ. (4.3.4)

Clearly, b is a semilinear form, i.e., it is linear in the second argument. In the
following theorems, the Lipschitz continuity and strongly monotonicity of this form
are shown.

Theorem 4.1. Consider a semilinear form b : H1
0 (Ω)×H1

0 (Ω)→ R given in (4.3.4),
where ν(ξ, ·)· is Lipschitz continuous for all ξ ∈ Ω with Lipschitz constant Lν. Then
b is Lipschitz continuous in the first argument with Lipschitz constant 3Lν, i.e., it
holds

|b(ϕ1, ψ)− b(ϕ2, ψ)| 6 3Lν‖ϕ1 − ϕ2‖H1
0 (Ω)‖ψ‖H1

0 (Ω)

for all ϕ1, ϕ2, ψ ∈ H1
0 (Ω).

Proof. The proof can be found in [Pec04, Lemma 2.9].

Theorem 4.2. Consider a semilinear form b : H1
0 (Ω)×H1

0 (Ω)→ R given in (4.3.4),
where ν(·)· is strongly monoton for all ξ ∈ Ω with monotonicity constant mν. Then
b satisfies

b(ϕ, ϕ− ψ)− b(ψ, ϕ− ψ) > mν‖∇ϕ−∇ψ‖2
L2(Ω)

for all ϕ, ψ ∈ H1
0 (Ω).

Proof. See [Pec04, Lemma 2.8].

4.3.2 Discretization

For a spatial discretization of the MQS problem (4.3.2), we use the Lagrange FEM
introduced in Section 2.5.2. Let {ψi}nai=1 be a basis of the finite-dimensional trial
space Vh ⊂ H1

0 (Ω) and let the finite-dimensional test space be chosen to be equal to
Vh. Substituting an approximation

φ(ξ, t) ≈
na∑
i=1

αi(t)ψi(ξ)

into (4.3.3) and taking the basis functions ψj as the test functions, we obtain a non-
linear DAE control system

E ẋ = A(x)x+ Bu, (4.3.5a)
y = Cx (4.3.5b)
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4.3 2D Magneto-quasistatic problems

with the state vector x =
[
aT , ιT

]T , the control u = v, the output y = ι, and

E =

[
M 0
X T 0

]
, A(x) =

[
−K (a) X

0 −R

]
, B = C T =

[
0
Im

]
. (4.3.6)

Here, a = [α1, . . . , αna ]
T is a semidiscretized vector of magnetic potentials. Further-

more, M is a conductivity matrix, K (a) is a discrete curl-curl matrix, and X is
a coupling matrix with the entries

Mi,j =

∫
Ω

σψjψi dξ, i, j = 1, . . . , na, (4.3.7)

K i,j(a) =

∫
Ω

ν(·, ‖
na∑
k=1

αk∇ψk‖)∇ψj · ∇ψi dξ, i, j = 1, . . . , na, (4.3.8)

Xi,j =

∫
Ω

χstr,3,jψi dξ, i = 1, . . . , na, j = 1, . . . ,m, (4.3.9)

respectively, where χstr,3,j denotes the j-th column of χstr,3. Clearly, M and K (a)
are both symmetric.
We now show that the matrix K (a) is positive definite for all a and the nonlinear

function K (a)a is strongly monotone. For this purpose, we define a symmetric
matrix K1 with the components(

K1

)
ij

=

∫
Ω

∇ψj · ∇ψi dξ, i, j = 1, . . . , na, (4.3.10)

and transfer the statement of Theorem 4.2 in the infinite-dimensional case to the
finite-dimensional function K (a)a.
Theorem 4.3. Consider a nonlinear function g : Rna → Rna given by g(a) = K (a)a
for all a ∈ Rna, where K (a) is as in (4.3.8). If ν(ξ, ·)· is strongly monotone for all
ξ ∈ Ω with monotonicity constant mν, then g is strongly monotone with monotonici-
ty constant mg = mνλmin(K1) > 0, where λmin(K1) denotes the smallest eigenvalue
of the matrix K1.

Proof. First, observe that by Theorem 2.33 the matrix K1 is positive definite. For
all a = [α1, . . . , αna ]

T and w = [w1, . . . , wna ]
T , we obtain using Theorem 4.2 that

〈g(a)− g(w), a − w〉 = 〈K (a)a −K (w)w, a − w〉

= b(
na∑
j=1

αjψj,

na∑
j=1

αjψj −
na∑
j=1

wjψj)

− b(
na∑
j=1

wjψj,
na∑
j=1

αjψj −
na∑
j=1

wjψj)

> mν

∥∥ na∑
j=1

(αj − wj)∇ψj
∥∥2
L2(Ω)

= mν(a − w)TK1(a − w)

> mνλmin(K1)‖a − w‖2.

The last inequality follows from the Courant-Fischer theorem [HJ85, Theorem 4.2.6].
Thus, g is strongly monotone with the monotonicity constantmg = mνλmin(K1).

71



4 Model reduction for magneto-quasistatic problems

The following theorem shows additionally that the matrix K (a) is positive definite
for all a.

Theorem 4.4. Let K (a) be as in (4.3.8) and let ν be as in (4.2.3), where ν1 is
continuous and ν1(·)· is strongly monotone. Then K (a) is positive definite for all
a ∈ Rna.

Proof. For all w ∈ Rna \ {0} and all a ∈ Rna , we have using (4.2.6) that

wTK (a)w =

∫
Ω

ν(·, ‖
na∑
k=1

αk∇ψk‖)
na∑
j=1

wj∇ψj ·
na∑
i=1

wi∇ψi dξ

> mν

∫
Ω

na∑
j=1

wj∇ψj ·
na∑
i=1

wi∇ψi dξ

= mν‖
na∑
i=1

wi∇ψi‖2
L2(Ω)

> mνλmin(K1)‖w‖2 > 0.

Thus, K (a) is positive definite.

Reordering the state variables accordingly to the conducting and non-conducting
subdomains Ω1 and Ω2, we can partition the vector a and the matrices M , K (a)
and X as

a =

[
a1

a2

]
, M =

[
M11 0

0 0

]
, K (a) =

[
K 11(a1) K 12

K 21 K 22

]
, X =

[
X1

X2

]
, (4.3.11)

where a1 ∈ Rn1 , a2 ∈ Rn2 , M11 ∈ Rn1×n1 is symmetric and positive definite, the
matrices K 11 ∈ Rn1×n1 , K 21 = K T

12 ∈ Rn2×n1 and K 22 ∈ Rn2×n2 are constant,
X1 ∈ Rn1×m, and X2 ∈ Rn2×m. Note that nonlinearity in K (a) occurs only in the
block K 11 since the magnetic reluctivity ν is constant on the subdomain Ω2. The
conditions (4.2.9b) and (4.2.9c) on the winding function χstr imply that the coupling
matrix X and the block X2 have both full column rank. Taking into account the
definition of the magnetic reluctivity ν in (4.2.3), the matrix K (a) in (4.3.11) can
be decomposed into the nonlinear and linear parts as

K (a) =

[
K 11,n(a1) 0

0 0

]
+

[
K 11,l K 12

K 21 K 22

]
, (4.3.12)

where the entries of K 11,n(a1) are given by

(K 11,n(a1))i,j =

∫
Ω1

ν1(‖
n1∑
k=1

αk∇ψk‖)∇ψj · ∇ψi dξ, i, j = 1, . . . , n1, (4.3.13)

and the entries of

K l =

[
K 11,l K 12

K 21 K 22

]
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4.3 2D Magneto-quasistatic problems

have the form

(K l)i,j =

∫
Ω2

ν2∇ψi · ∇ψj dξ, i, j = 1, . . . , na.

Here, the basis functions ψi are sorted as the state components, i.e.,

supp(ψi) ∩ Ω1 6= ∅, i = 1, . . . , n1,

supp(ψi) ∩ Ω1 = ∅, i = n1 + 1, . . . , n1 + n2 = na.

Since K (a) is symmetric and positive definite, the block K 22 is symmetric and
positive definite too.

4.3.3 Index analysis and index reduction

Here, we investigate the tractability index of the semidiscretized 2D MQS
system (4.3.5) and present a transformation of this DAE system into the ODE form.
The following theorem establishes that the MQS system has tractability index one.
A similar result for the FIT discretized MQS model was obtained in [BBS11].

Theorem 4.5. Consider a DAE (4.3.5), (4.3.6), (4.3.12), where M 11 and K 22

being symmetric, positive definite and X 2 having full column rank. This system has
tractability index one.

Proof. Let the columns of Y form an orthonormal basis of ker(X T
2 ). Then the

projector Q0 onto ker(G0) with G0 = E can be defined as

Q0 =

0 0 0
0 Y Y T 0
0 0 Im

 .
For B0(x) = − ∂

∂x
(A(x)x), we have

G1 = G0 + B0(x)Q0

=

M11 K 12Y Y T −X1

0 K 22Y Y T −X2

X T
1 X T

2 R

 .
To show that G1 is invertible, we consider the equation G1[v1, v2, v3]T = 0, which is
equivalent to

M11v1 + K 12Y Y Tv2 − X1v3 = 0, (4.3.14a)
K 22Y Y Tv2 − X2v3 = 0, (4.3.14b)

X T
1 v1 + X T

2 v2 + R v3 = 0. (4.3.14c)

Multiplying equation (4.3.14b) from the left with Y T and using that Y TX2 = 0,
we obtain Y TK 22Y Y Tv2 = 0. Since K 22 is symmetric, positive definite and Y has
full column rank, Y Tv2 = 0. Equation (4.3.14b), therefore, gives X2v3 = 0. From
the full column rank condition for X2 follows v3 = 0. We now insert v3 = 0 and
Y Tv2 = 0 in equation (4.3.14a). Then the invertibility of M11 gives v1 = 0. The last
equation (4.3.14c) reads then X T

2 v2 = 0. This means that v2 belongs to the image of
Y and the kernel of Y T and, therefore, v2 = 0. Thus, [vT1 , v

T
2 , v

T
3 ]T = 0 and, hence,

G1 is invertible. This implies that (4.3.5) has tractability index one.
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4 Model reduction for magneto-quasistatic problems

In the following, we perform an index reduction to the DAE system (4.3.5) by
finding an ODE formulation

E1ẋ1 = A1(x1)x1 + B1u, (4.3.15a)
y = C1x1 (4.3.15b)

with a new state x1 and system matrices E1, A1(x1), B1 and C1, where E1 is nonsin-
gular. For this purpose, we consider the matrix Y as in the proof above and define
Z = X2(X T

2 X2)−
1
2 whose columns span im(X2). Then it follows from ZTZ = I and

ZTY = 0 that the matrix

T =


In1 0 0
0 ZT 0
0 Y T 0
0 0 Im

 (4.3.16)

is nonsingular and T −1 = T T . We now introduce a new state vector
a1

a21

a22

ι

 = T
[

a
ι

]
, (4.3.17)

insert it in equation (4.3.5) and multiply this equation from left with T . Then the
transformed DAE can be written as

M11ȧ1 = −K 11(a1)a1 −K 12Za21 −K 12Y a22 +X1ι,
0 = −ZTK 21a1 −ZTK 22Za21 −ZTK 22Y a22 +ZTX2ι,
0 = −Y TK 21a1 −Y TK 22Za21 −Y TK 22Y a22,

X T
1 ȧ1 + X T

2 Z ˙a21 = −R ι +u.
(4.3.18)

Since Y TK 22Y and R are both nonsingular, we can solve the third and forth equa-
tions for a22 and ι and get

a22 = −(Y TK 22Y )−1Y TK 21a1 − (Y TK 22Y )−1Y TK 22Za21, (4.3.19a)
ι = −R −1X T

1 ȧ1 − R −1X T
2 Z ˙a21 + R −1u. (4.3.19b)

Substituting these vectors into the first and second equations in (4.3.18) leads to
the state equation (4.3.15) with matrices

E1 =

[
M11 + X1R −1X T

1 X1R −1X T
2 Z

ZTX2R −1X T
1 ZTX2R −1X T

2 Z

]
, (4.3.20a)

A1(x1) =−
[

K 11(a1) K 12Z
ZTK 21 ZTK 22Z

]
+

[
K 12

ZTK 22

]
Y (Y TK 22Y )−1Y T

[
K 21 K 22Z

]
, (4.3.20b)

B1 =

[
X1

ZTX2

]
R −1 (4.3.20c)
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4.3 2D Magneto-quasistatic problems

and the state x1 =
[
aT1 , aT21

]T .
To calculate the output equation, we need the time derivative of the solution. The

derivative can be determined from the state equation provided E1 is nonsingular.
This property is established in the following theorem.

Theorem 4.6. Let M11 and R be nonsingular and let X2 have full column rank.
Then the matrix E1 in (4.3.20a) is nonsingular and its inverse is given by

E−1
1 =

[
M −1

11 −M −1
11 X1(X T

2 X2)−
1
2

−(X T
2 X2)−

1
2 X T

1 M −1
11 (X T

2 X2)−
1
2 (R + X T

1 M −1
11 X1)(X T

2 X2)−
1
2

]
.

Proof. Using X T
2 Z = (X T

2 X2)
1
2 , the matrix E1 can be factorized as

E1 =

[
M11 X1R −1(X T

2 X2)
1
2

0 (X T
2 X2)

1
2 R −1(X T

2 X2)
1
2

] [
I 0

(X T
2 X2)−

1
2 X T

1 I

]
.

Since M11 and (X T
2 X2)

1
2 R −1(X T

2 X2)
1
2 are both nonsingular, the matrix E1 is nonsin-

gular too. Its inverse is given by

E−1
1 =

[
I 0

−(X T
2 X2)−

1
2 X T

1 I

] [
M −1

11 −M −1
11 X1(X T

2 X2)−
1
2

0 (X T
2 X2)−

1
2 R (X T

2 X2)−
1
2

]
=

[
M −1

11 −M −1
11 X1(X T

2 X2)−
1
2

−(X T
2 X2)−

1
2 X T

1 M −1
11 (X T

2 X2)−
1
2 (R + X T

1 M −1
11 X1)(X T

2 X2)−
1
2

]
.

We now compute the output function. Using equations (4.3.19b) and (4.3.20c),
the state equation (4.3.15a) and the inverse of E1, we obtain

y = ι = −R −1
[
X T

1 X T
2 Z
] [ ȧ1

˙a21

]
+ R −1u

= −R −1
[
X T

1 X T
2 Z
]

E−1
1 (A1(x1)x1 + B1u) + R −1u

= −BT
1 E−1

1 A1(x1)x1 − (BT
1 E−1

1 B1 − R −1)u

= C1x1

with

C1 =− BT
1 E−1

1 A1(x1)

=
[
0 −(X T

2 X2)−
1
2

]
A1(x1)

=
[
(X T

2 X2)−1X T
2 K 21 (X T

2 X2)−1X T
2 K 22Z

]
− (X T

2 X2)−1X T
2 K 22Y (Y TK 22Y )−1Y T

[
K 21 K 22Z

]
=(X T

2 X2)−1X T
2 (I −K 22Y (Y TK 22Y )−1Y T )

[
K 21 K 22ZT

]
. (4.3.21)

Here, we used the equation

BT
1 E−1

1 B1 − R −1 =
[
0 (X T

2 X2)−
1
2

]
B1 − R −1 = R −1 − R −1 = 0.
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4 Model reduction for magneto-quasistatic problems

Remark 4.7. In [BCS12], the MQS system (4.3.5) was transformed into an ODE

Ĕ1
˙̆x = Ă1(x̆)x̆+ B̆1u,

y = C̆1x̆
(4.3.22)

with x̆ =
[
aT1 , ιT

]T and

Ĕ1 =

[
M11 0

X T
1 − X T

2 K −1
22 K T

21 X T
2 K −1

22 X2

]
,

Ă1 =

[
−K 11(a1) + K 12K −1

22 K 21 X T
1 −K 12K −1

22 X2

0 −R

]
,

B̆1 =

[
0
I

]
= C̆ T

1

which, unlike the ODE (4.3.15), involves the derivative of the current vector ι.
System (4.3.22) together with the equation

a2 = −K −1
22 K 21a1 + K −1

22 X2ι (4.3.23)

is equivalent to the DAE (4.3.5). Note that differentiating (4.3.23) and using the
state equation in (4.3.22), we obtain the underlying ODE for system (4.3.5). This
shows that (4.3.22) has also differentiation index one.

4.3.4 Passivity

In this section, we investigate passivity of the variational MQS system (4.3.3),
(4.3.2b), (4.3.2d) with the output y = ι, the semidiscretized system (4.3.5), (4.3.6)
and the ODE system (4.3.15), (4.3.20), (4.3.21). Passivity for the variational prob-
lem (4.3.3) can be defined analogously to the finite-dimensional case, see Defini-
tion 2.13.

Definition 4.8. The variational MQS problem (4.3.3), (4.3.2b), (4.3.2d) with the
output y = ι is called passive if there exists a nonnegative function S : H1

0 (Ω)→ R+
0

such that S(0) = 0 and for all T > 0 and all quadratically integrable inputs v
admissible with the initial condition φ(·, 0) = φ0(·) the passivation inequality

S(φ(·, T ))− S(φ0(·)) 6
∫ T

0

yT (τ)v(τ) dτ (4.3.24)

is satisfied, where φ is the weak solution of (4.3.3), (4.3.2b), (4.3.2d). The function
S is called storage function.

The following theorem shows that the variational MQS problem is passive.

Theorem 4.9. The variational MQS system (4.3.3), (4.3.2b), (4.3.2d) with the
output y = ι is passive.
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4.3 2D Magneto-quasistatic problems

Proof. Consider a function ϑ : Ω× R+
0 → R+

0 given by

ϑ(ξ, %) =
1

2

∫ %

0

ν(ξ,
√
σ) dσ =

∫ √%
0

ν(ξ, σ)σ dσ (4.3.25)

and define a storage function as

S(φ(·, t)) =

∫
Ω

ϑ(ξ, ‖∇φ(ξ, t)‖2) dξ.

This function is nonnegative, since ν is positive. Furthermore, we have S(0) = 0.
The continuous differentiability follows from the differentiability of ϑ in the second
argument and the differentiability of the norm. We now show that

d

dt
S(φ(·, t)) 6 y(t)Tv(t)

for all v and suitable φ, y = ι that satisfy (4.3.3). We calculate

d

dt
S(φ(·, t)) =

d

dt

∫
Ω

ϑ(ξ, ‖∇φ(ξ, t)‖2) dξ

=

∫
Ω

∂

∂%
ϑ(ξ, ‖∇φ(ξ, t)‖2)

∂

∂t
‖∇φ(ξ, t)‖2 dξ

=

∫
Ω

ν(ξ, ‖∇φ(ξ, t)‖)∇φ(ξ, t) · ∂
∂t
∇φ(ξ, t) dξ.

Taking φ as a test function and ∂
∂t
φ as a trial function, we obtain using equations

(4.3.3) and (4.3.2b) that

d

dt
S(φ(·, t)) = −

∫
Ω

σ
∂

∂t
φ(ξ, t)

∂

∂t
φ(ξ, t) dξ +

∫
Ω

∂

∂t
φ(ξ, t)χstr,3 dξι

= −
∫

Ω

σ
∂

∂t
φ(ξ, t)

∂

∂t
φ(ξ, t) dξ − ιT (t)R ι(t) + vT (t)ι(t)

6 yT (t)v(t).

Here, we used the property that the first two summands are negative, since σ is
positive on Ω and R is positive definite. Integrating this inequality on [0, T ], we get
the passivation inequality (4.3.24) and, hence, (4.3.3), (4.3.2b) is passive.

The following theorem establishes that the spatial discretization of the variational
MQS problem (4.3.3), (4.3.2b), (4.3.2d) as described in the previous section preserves
passivity.

Theorem 4.10. The semidiscretized MQS system (4.3.5), (4.3.6) is passive.

77



4 Model reduction for magneto-quasistatic problems

Proof. Similar to the variational problem, we define a storage function

Sd(a(t)) :=

∫
Ω

ϑ(ξ, ‖∇
na∑
i=1

αi(t)ψi(ξ)‖2) dξ,

where ϑ is given in (4.3.25) and a =
[
α1, . . . , αna

]T . This function is nonnegative,
since ν is positive and Sd(0) = 0 due to the definition of ϑ. The calculation of the
time derivative of Sd results in

d

dt
Sd(a(t)) =

d

dt

∫
Ω

ϑ(ξ, ‖∇
na∑
i=1

αi(t)ψi(ξ)‖2) dξ

=

∫
Ω

∂

∂%
ϑ(ξ, ‖∇

na∑
i=1

αi(t)ψi(ξ)‖2)
∂

∂t
‖∇

na∑
i=1

αi(t)ψi(ξ)‖2 dξ

=

∫
Ω

ν(ξ, ‖∇
na∑
i=1

αi(t)ψi(ξ)‖)

(
∇

na∑
j=1

αj(t)ψj(ξ)

)
·

(
∇

na∑
k=1

α̇k(t)ψk(ξ)

)
dξ

=
na∑
j=1

αj(t)
na∑
k=1

α̇k(t)

∫
Ω

ν(ξ, ‖∇
na∑
i=1

αi(t)ψi(ξ)‖)∇ψj(ξ) · ∇ψk(ξ) dξ

= ȧT (t)K (a(t))a(t).

It follows from (4.3.5) that

d

dt
Sd(a(t)) = −ȧT (t)M ȧ(t) + ȧT (t)X ι(t)

= −ȧT (t)M ȧ(t)− ιT (t)R ι(t) + uT (t)ι(t)

6 yT (t)u(t).

Then integrating this inequality in [0, T ], we obtain

Sd(a(T ))− Sd(a(0)) 6
∫ T

0

yT (t)u(t) dt.

Thus, system (4.3.5) is passive.

Finally, we show that the ODE system (4.3.15) inherit passivity of the DAE
system (4.3.5).

Theorem 4.11. The ODE system (4.3.15), (4.3.20), (4.3.21) is passive.

Proof. The result can be proved analogously to Theorem 4.10. Using (4.3.16),
(4.3.17) and the third equation in (4.3.18), we find

a =

[
a1

a2

]
=

[
a1

Za21 + Y a22

]
=

[
a1

Za21 − Y (Y TK 22Y )−1Y T (K 21a1 + K 22Za21)

]
= R

[
a1

a21

]
, (4.3.26)
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where

R =

[
In1 0

−Y (Y TK 22Y )−1Y TK 21 (In2 − Y (Y TK 22Y )−1Y TK 22)Z

]
.

Introducing new basis functions

[φ1(ξ), . . . , φn1+m(ξ)] = [ψ1(ξ), . . . , ψna(ξ)]R,

we obtain
na∑
i=1

αi(t)ψi(ξ) =

n1+m∑
i=1

βi(t)φi(ξ),

where
[β1(t), . . . , βn1(t)]

T = a1(t) = [α1(t), . . . , αn1(t)]
T

and
[βn1+1(t), . . . , βn1+m(t)]T = a21(t).

For x1(t) = [β1(t), . . . , βn1+m(t)]T , we define a storage function

S1(x1(t)) =

∫
Ω

ϑ(ξ, ‖∇
n1+m∑
i=1

βi(t)φi(ξ)‖2) dξ,

with ϑ as in (4.3.25). This function is nonnegative, since ν is positive and S1(0) = 0
due to the definition of ϑ. We calculate

d

dt
S1(x1(t)) =

d

dt

∫
Ω

ϑ(ξ, ‖∇
n1+m∑
i=1

βi(t)φi(ξ)‖2) dξ

=

∫
Ω

∂

∂%
ϑ(ξ, ‖∇

n1+m∑
i=1

βi(t)φi(ξ)‖2)
∂

∂t
‖∇

n1+m∑
i=1

βi(t)φi(ξ)‖2 dξ

=

∫
Ω

ν(ξ, ‖∇
n1+m∑
i=1

βi(t)φi(ξ)‖)

(
∇

n1+m∑
i=1

βi(t)φi(ξ)

)
·

(
∇

n1+m∑
i=1

β̇i(t)φi(ξ)

)
dξ

=

∫
Ω

ν(ξ, ‖∇
na∑
i=1

αi(t)ψi(ξ)‖)

(
∇

na∑
i=1

αi(t)ψi(ξ)

)
·

(
∇

na∑
i=1

α̇i(t)ψi(ξ)

)
dξ

= ȧT (t)K (a(t))a(t).

Using the relations

A1(x1) = −RTK (Rx1)R,

E1 = RT (M + X R −1X )R

=

[
M11 0

0 0

]
+ B1R BT

1 ,

79



4 Model reduction for magneto-quasistatic problems

and equation (4.3.15), we can continue

d

dt
S1(x1(t)) = −ẋT1 (t)A1(x1(t))x1(t)

= −ẋT1 (t)E1ẋ1(t) + ẋT1 (t)B1u(t)

= −ȧT1 (t)M11ȧ1(t)− ẋT1 (t)B1R BT
1 ẋ1(t) + ẋT1 (t)B1u(t)

= −ȧT1 (t)M11ȧ1(t) + ẋT1 (t)B1(u(t)− R BT
1 ẋ1(t)).

Since the matrix M11 is positive definite, the first summand is negative. Further-
more, we use the output equation y = −BT

1 ẋ1 + R −1u twice and obtain

d

dt
S1(x1(t)) 6 (R −1u(t)− y(t))TR (R −1u(t) + y(t)− R −1u(t))

= −yT (t)R y(t) + yT (t)u(t)

6 yT (t)u(t).

Integrating this inequality on [0, T ], we get the passivation inequality

S1(x1(T ))− S1(x1(0)) 6
∫ T

0

yT (t)u(t) dt

which implies the passivity of the ODE system (4.3.15).

It follows from Remark 2.17 and Theorems 4.10 and 4.11 that the MQS sys-
tem (4.3.5) and its ODE form (4.3.15) are io-passive. For linear systems, this prop-
erty can equivalently be characterized by positive realness of the transfer function.
Assume that ν is constant on Ω1. Then the matrix K in (4.3.6) does not depend on
the semidiscretized potential a, and system (4.3.5) can be transformed to the ODE
system (4.3.15) with constant matrices. First, we show that the matrices E1 and
−A1 are positive definite.

Theorem 4.12. If M11, K and R are symmetric and positive definite, then E1 and
−A1 in (4.3.20a) and (4.3.20b), respectively, are symmetric and positive definite.

Proof. The matrix E1 can be decomposed as

E1 = T T
1

[
M11 0

0 (X T
2 X2)

1
2 R −1(X T

2 X2)
1
2

]
T1

with the nonsingular matrix

T1 =

[
I 0

(X T
2 X2)−

1
2 X T

1 I

]
.

Since M11 and R are both symmetric and positive definite, E1 is symmetric and
positive definite too.

The matrix A1 is the Schur complement of the symmetric, negative definite matrix

− T T
2

[
K 11 K 12

K 21 K 22

]
T2 = −

 K 11 K 12Z K 12Y
ZTK 21 ZTK 22Z ZTK 22Y
Y TK 21 Y TK 22Z Y TK 22Y

 (4.3.27)
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with the orthogonal matrix

T2 =

[
I 0 0
0 Z Y

]
. (4.3.28)

Therefore, −A1 is symmetric and positive definite, see [HZ05].

Unfortunately, the ODE system (4.3.15) does not satisfy Theorem 2.15 providing
sufficient conditions for io-passivity. Nevertheless, we can show that its transfer
function is positive real implying due to Theorem 2.15 that system (4.3.15) is io-
passive.

Theorem 4.13. If M11, K and R are symmetric and positive definite, then system
(4.3.15) with constant matrices is positive real.

Proof. It follows from Theorem 4.12 that E1 and −A1 are symmetric, positive defi-
nite. Then the pencil λE1 − A1 is stable, and, hence, G(s) = C1(sE1 − A1)−1B1 is
analytic in C+. Using C1 = −BT

1 E−1
1 A1, we can compute

G(s) + G∗(s) = C1(sE1 − A1)−1B1 + BT
1 (s̄ET

1 − AT
1 )−1C T

1

= −BT
1 E−1

1 A1(sE1 − A1)−1B1 − BT
1 (s̄E1 − A1)−1A1E−1

1 B1

= F ∗(s)(−E1A−1
1 (s̄E1 − A1)− (sE1 − A1)A−1

1 E1)F (s)

= 2F ∗(s)(Re(s)E1(−A1)−1E1 + E1)F (s)

with F (s) = E−1
1 A1(sE1 − A1)−1B1. Since the matrix Re(s)E1(−A1)−1E1 + E1 is

positive definite for all s ∈ C+, we have G(s) +G(s)∗ > 0 for all s ∈ C+. Therefore,
the transfer function G is positive real.

4.4 Model reduction for 2D linear MQS systems

Our model order reduction approach for the linear MQS system is based on the
transformation into the ODE form and applying BT to the transformed system.
We will show how the special structure of the system matrices can be exploited
for the construction of efficient model reduction algorithms avoiding the explicit
computation of the ODE system.

Consider the ODE system (4.3.15) with the constant matrices

E1 =

[
M11 + X1R −1X T

1 X1R −1X T
2 Z

ZTX2R −1X T
1 ZTX2R −1X T

2 Z

]
,

A1 = −
[

K 11 K 12Z
ZTK 21 ZTK 22Z

]
+

[
K 12

ZTK 22

]
Y (Y TK 22Y )−1Y T

[
K 21 K 22Z

]
,

B1 =

[
X1

ZTX2

]
R −1,

C1 = (X T
2 X2)−1X T

2 (I −K 22Y (Y TK 22Y )−1Y T )
[
K 21 K 22ZT

]
.

(4.4.1)

Our goal is to compute a reduced order model

Ẽ1
˙̃x1 = Ã1x̃1 + B̃1u,

ỹ = C̃1x̃1,
(4.4.2)
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4 Model reduction for magneto-quasistatic problems

where Ẽ1, Ã1 ∈ Rη×η, B̃1 ∈ Rη×m and C̃1 ∈ Rm×η with η � n1 + m. Before we
go into detail, we first show a relationship between the Gramians Gc and Go of
system (4.3.15), (4.4.1) which satisfy the generalized Lyapunov equations

A1GcET
1 + E1GcAT

1 =− B1BT
1 , (4.4.3)

AT
1 GoE1 + ET

1 GoA1 =− C T
1 C1. (4.4.4)

The idea behind this is that the Lyapunov equations are equal for symmetric systems
and the ODE system (4.3.15) can be transformed into a symmetric one.

Theorem 4.14. Let Gc and Go be the solutions of the Lyapunov equations (4.4.3)
and (4.4.4), respectively. If M11, K and R are symmetric and positiv definite, then

E1GoE1 = A1GcA1. (4.4.5)

Proof. The left and right multiplication of the Lyapunov equations (4.4.3) and
(4.4.4) by E−1

1 and A−1
1 , respectively, leads to

E−1
1 A1Gc +GcA1E−1

1 = −E−1
1 B1BT

1 E−1
1 ,

GoE1A−1
1 + A−1

1 E1Go = −A−1
1 C T

1 C1A−1
1 .

Using C1 = −BT
1 E−1

1 A1 and introducing Gcs = A1GcA1 and Gos = E1GoE1, these
equations can be written as

E−1
1 GcsA−1

1 + A−1
1 GcsE−1

1 = −E−1
1 B1BT

1 E−1
1 , (4.4.6)

E−1
1 GosA−1

1 + A−1
1 GosE−1

1 = −E−1
1 B1BT

1 E−1
1 . (4.4.7)

The pencil λE−1
1 − A−1

1 is stable, because E−1
1 and −A−1

1 are positive definite,
and hence, the Lyapunov equations (4.4.6) and (4.4.7) are uniquely solvable. This
implies that Gcs = Gos, i.e., (4.4.5) holds.

Similarly to the standard state space case, see Algorithm 2.1, in the first step of
the balanced truncation method, we need to compute the Cholesky factors of the
Gramians Gc and Go. Theorem 4.14 implies that the Cholesky factor Zo of the
observability Gramian Go = ZoZ

T
o can be computed from the Cholesky factor Zc of

the controllability Gramian Gc = ZcZ
T
c as Zo = −E−1

1 A1Zc. This relation follows
from

Go = E−1
1 A1ZcZ

T
c A1E−1

1 = ZoZ
T
o .

For solving the generalized Lyapunov equation (4.4.3), we use the LR-ADI method
given in (2.4.4). In this method, we need to compute (τE1 + A1)−1v for different
vectors v depending on the iteration. The matrices E1 and A1 are, in general, dense.
Therefore, we do not want to calculate E1 and A1 explicitly and use the following
lemma instead.

Lemma 4.15. Let E1 and A1 be as in (4.4.1), Z = X2(X T
2 X2)−

1
2 , τ ∈ C−, and

[vT1 , v
T
2 ]T ∈ Rn1+m. Then the vector

z = (τE1 + A1)−1v (4.4.8)
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4.4 Model reduction for 2D linear MQS systems

Algorithm 4.1: Computation of (τE1 + A1)−1v

Input : M11,K 11 ∈ Rn1×n1 , K 12 ∈ Rn1×n2 , K 21 ∈ Rn2×n1 , K 22 ∈ Rn2×n2 ,
X1 ∈ Rn1×m, X2 ∈ Rn2×m, R ∈ Rm×m, v = [vT1 , v

T
2 ]T ∈ Rn1+m, τ ∈ C−.

Output: z = (τE1 + A1)−1v with E1 and A1 as given in (4.4.1)
1 Solve the linear systemτM11 −K 11 −K 12 X1

−K 21 −K 22 X2

τX T
1 τX T

2 −R

z1

z2

z3

 =

 v1

X2(X T
2 X2)−

1
2v2

0

 .

2 Compute

z =

[
z1

(X T
2 X2)−

1
2 X T

2 z2

]
.

can be determined as z = [zT1 , (ZT z2)T ]T , where z1 and z2 satisfy the sparse linear
system

(τE + A)

z1

z2

z3

 =

 v1

Zv2

0

 (4.4.9)

with E and A given in (4.3.6).

Proof. Using T as in (4.3.16), we transform equation (4.4.9) to

(τM11 −K 11)z1 − K 12Z(ZT z2) − K 12Y (Y T z2) + X1z3 = v1,
−ZTK 21z1 − ZTK 22Z(ZT z2) − ZTK 22Y (Y T z2) + ZTX2z3 = ZTZv2,
−Y TK 21z1 − Y TK 22Z(ZT z2) − Y TK 22Y (Y T z2) = 0,

τX T
1 z1 + τX T

2 Z(ZT z2) − R z3 = 0.

Solving the last two equations for Y T z2 and z3, we get

Y T z2 = −(Y TK 22Y )−1
[
Y TK 21 Y TK 22Z

] [ z1

ZT z2

]
,

z3 = τR −1
[
X T

1 X T
2 Z
] [ z1

ZT z2

]
.

Substituting these vectors into the first two equations gives finally equation (4.4.8).

We summarize the computation of (τE1 + A1)−1v in Algorithm 4.1.
In the LR-ADI method, we also need the shift parameters that can be computed

using the Arnoldi algorithm [Arn51] applied to E−1
1 A1 and A−1

1 E1. Therefore, we
have to compute the products E−1

1 A1v and A−1
1 E1v for different vectors v. In the

following, we present an efficient way to do this without computing the matrices E1

and A1 explicitly and without finding the matrix Y .
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4 Model reduction for magneto-quasistatic problems

Algorithm 4.2: Computation of E−1
1 A1v

Input : M11,K 11 ∈ Rn1×n1 , K 12 ∈ Rn1×n2 , K 21 ∈ Rn2×n1 , K 22 ∈ Rn2×n2 ,
X1 ∈ Rn1×m, X2 ∈ Rn2×m, R ∈ Rm×m, v = [vT1 , v

T
2 ]T ∈ Rn1+m

Output: z = E−1
1 A1v with E1 and A1 as in (4.4.1)

1 Compute v̂2 = X2(X T
2 X2)−

1
2v2.

2 Solve the linear system[
K 22 X2

X T
2 0

] [
z1

z2

]
=

[
K 21v1 + K 22v̂2

0

]
.

/* z1 = Y (Y TK 22Y )−1Y T
[
K 21 K 22Z

]
v */

3 Compute [
ẑ1

ẑ2

]
= −

[
K 11 K 12

K 21 K 22

] [
v1

v̂2

]
+

[
K 12

K 22

]
z1.

4 Compute w2 = (X T
2 X2)−1X T

2 ẑ2.
5 Solve the linear system M11w1 = ẑ1 − X1w2.

/* See the inverse of E1 in Theorem 4.6 */
6 Compute

z =

[
w1

−(X T
2 X2)−

1
2 (X T

1 w1 − R w2)

]
.

Lemma 4.16. Let K 22 ∈ Rn2×n2, w ∈ Rn2 and let X2 ∈ Rn2×m be of full column
rank. Let the columns of Y form a basis of ker(X T

2 ). If
[
zT1 , z

T
2

]T solves[
K 22 X2

X T
2 0

] [
z1

z2

]
=

[
w
0

]
, (4.4.10)

then z1 = Y (Y TK 22Y )−1Y Tw.

Proof. The second equation in (4.4.10) implies that z1 lies in ker(X T
2 ) = im(Y ),

i.e., there exists ẑ1 ∈ Rn2−m such that z1 = Y ẑ1. Substituting this vector into the
first equation in (4.4.10) and multiplying it from the left with Y T gives the term
ẑ1 = (Y TK 22Y )−1Y Tw. Then z1 = Y ẑ1 = Y (Y TK 22Y )−1Y Tw.

Taking into account the definition of A1 in (4.4.1), the inverse of E1 in Theorem 4.6
and Lemma 4.16, we can compute E−1

1 A1v using Algorithm 4.2.
Next, we consider the computation of z = A−1

1 E1v. Since computing z = A−1
1 E1v

is equivalent to solving the linear system A1z = E1v, where A1 is the Schur comple-
ment of the matrix given in (4.3.27), z =

[
zT1 , z

T
2

]T can be computed by solving the
linear system

−T T
2

[
K 11 K 12

K 21 K 22

]
T2

z1

z2

z3

 =

[
E1v

0

]
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Algorithm 4.3: Computation of A−1
1 E1v

Input : M11,K 11 ∈ Rn1×n1 , K 12 ∈ Rn1×n2 , K 21 ∈ Rn2×n1 , K 22 ∈ Rn2×n2 ,
X1 ∈ Rn1×m, X2 ∈ Rn2×m, R ∈ Rm×m, v = [vT1 v

T
2 ]T ∈ Rn1+m

Output: z = A−1
1 E1v with E1 and A1 as in (4.4.1)

1 Compute w = R −1(X T
1 v + (X T

2 X2)
1
2v2).

2 Solve the linear system

−
[

K 11 K 12

K 21 K 22

] [
ẑ1

ẑ2

]
=

[
M11v1 + X1w

X2w

]
.

3 Compute

z =

[
ẑ1

(X T
2 X2)−

1
2 X T

2 ẑ2

]
.

with the orthogonal matrix T2 given in (4.3.28). Multiplying this equation from the
left with the matrix T2 and introducing

[
ẑ1

ẑ2

]
= T2

z1

z2

z3

 , (4.4.11)

f = T2

[
E1v

0

]
=

[
I 0
0 Z

]
E1v =

[
M11v1 + X1R −1(X T

1 v1 + (X T
2 X2)

1
2v2)

X2R −1(X T
1 v1 + (X T

2 X2)
1
2v2)

]
,

we get the linear system

−
[

K 11 K 12

K 21 K 22

] [
ẑ1

ẑ2

]
= f.

Using the orthogonality of T2, we obtain from (4.4.11) that[
z1

z2

]
=

[
ẑ1

ZT ẑ2

]
.

The computation of A−1
1 E1v is summarized in Algorithm 4.3.

Finally, we present in Algorithm 4.4 the computation of the reduced-order model
using BT. In the first step, we only solve the Lyapunov equation (4.4.3) for the low-
rank Cholesky factor Z̃c of the controllability GramianGc using the LR-ADI method.
It gives us the low-rank factor Z̃o = −E−1

1 A1Z̃c of the controllability Gramian Go.
Then the matrix Z̃T

o E1Z̃c = −Z̃T
c A1Z̃c is symmetric and positive definite. Therefore,

we compute the EVD

−Z̃T
c A1Z̃c =

[
U1 U2

] [Λ1

Λ2

] [
U1 U2

]T
instead of the more expensive SVD. Note that the product A1Z̃c can be calculated
analogously to the first four steps of Algorithm 4.2. One can find this in Steps 2 - 4
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Algorithm 4.4: Balanced truncation for the 2D linear MQS system
Input : M11,K 11 ∈ Rn1×n1 , K 12 ∈ Rn1×n2 , K 21 ∈ Rn2×n1 , K 22 ∈ Rn2×n2 ,

X1 ∈ Rn1×m, X2 ∈ Rn2×m, R ∈ Rm×m.
Output: a reduced-order asymptotically stable system (Ã1, B̃1, C̃1).

1 Solve the generalized Lyapunov equation

A1GcET
1 + E1GcAT

1 =− B1BT
1

for the low-rank Cholesky factor Z̃c =
[
ZT
c1, Z

T
c2

]T of Gc ≈ Z̃cZ̃
T
c using the

LR-ADI method.
2 Compute Ẑc2 = X2(X T

2 X2)−
1
2Zc2.

3 Solve the linear system[
K 22 X2

X T
2 0

] [
Z1

Z2

]
=

[
K 21Zc1 + K 22Ẑc2

0

]
.

4 Compute [
Ẑ1

Ẑ2

]
= −

[
K 11 K 12

K 21 K 22

] [
Zc1
Ẑc2

]
+

[
K 12

K 22

]
Z1.

5 Compute the EVD

−ZT
c1Ẑ1 − ẐT

c2Ẑ2 =
[
U1 U2

] [Λ1 0
0 Λ2

] [
U1 U2

]T
,

where Λ1 ∈ Rη×η contains the dominant eigenvalues.

6 Compute C̃1 = −(X T
2 X2)−1X T

2 Ẑ2U1Λ
− 1

2
1 and B̃1 = C̃ T

1 .

7 Compute Ã1 = −(Ẑ1U1Λ
− 1

2
1 + X1C̃1)TM −1

11 (Ẑ1U1Λ
− 1

2
1 + X1C̃1)− C̃ T

1 R C̃1.
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followed by the computation of the EVD in Step 5 of Algorithm 4.4. In the last two
steps, we calculate the reduced matrices. Applying the Petrov-Galerkin projection
with the projection matrices

V = Z̃cU1Λ
− 1

2
1 ,

W = Z̃T
o U1Λ

− 1
2

1 = −E−1
1 A1Z̃cU1Λ

− 1
2

1 = −E−1
1 A1V,

we obtain the reduced-order system (4.4.2) with the system matrices

Ẽ1 = W TE1V = −V TA1E−1
1 E1V = I,

Ã1 = W TA1V = −Λ
− 1

2
1 UT

1 Z̃
T
c A1E−1

1 A1Z̃cU1Λ
− 1

2
1 ,

B̃1 = W TB1 = −Λ
− 1

2
1 UT

1 Z̃
T
c A1E−1

1 B1,

C̃1 = C1V = −BT
1 E−1

1 A1Z̃cU1Λ
− 1

2
1 = BT

1 W = B̃T
1 .

We now use the matrices Ẑ1 and Ẑ2 from Step 4 of Algorithm 4.4 and the low-rank
Cholesky factor Z̃c to calculate

A1Z̃c =

[
Ẑ1

(X T
2 X2)−

1
2 X T

2 Ẑ2

]
,

E−1
1 A1Z̃c =

[
W1

−(X T
2 X2)−

1
2 (X T

1 W1 − R W2)

]
,

where W2 = (X T
2 X2)−1X T

2 Ẑ2 and W1 solves M11W1 = Ẑ1 − X1W2. Then using the
block structure of A1 and B1, we obtain

Ã1 = −Λ
− 1

2
1 UT

1

[
W1

−(X T
2 X2)−

1
2 (X T

1 W1 − R W2)

]T [
Ẑ1

(X T
2 X2)−

1
2 X T

2 Ẑ2

]
U1Λ

− 1
2

1

= −Λ
− 1

2
1 UT

1 (W T
1 Ẑ1 − (X T

1 W1 − R W2)T (X T
2 X2)−1X T

2 Ẑ2)U1Λ
− 1

2
1

= Λ
− 1

2
1 UT

1 (−W T
1 Ẑ1 +W T

1 X1(X T
2 X2)−1X T

2 Ẑ2 −W T
2 R (X T

2 X2)−1X T
2 Ẑ2)U1Λ

− 1
2

1

= Λ
− 1

2
1 UT

1 (−W T
1 (Ẑ1 − X1W2)−W T

2 R W2)U1Λ
− 1

2
1

= −Λ
− 1

2
1 UT

1 ((Ẑ1 − X1W2)TM −1
11 (Ẑ1 − X1W2) +W T

2 R W2)U1Λ
− 1

2
1 ,

and

C̃1 = −BT
1 E−1

1 A1Z̃cU1Λ
− 1

2
1

= −R −1

[
X1

ZTX2

]T [
W1

−(X T
2 X2)−

1
2 (X T

1 W1 − R W2)

]
U1Λ

− 1
2

1

= −R −1(X T
1 W1 − X T

1 W1 + R W2)U1Λ
− 1

2
1 = −W2U1Λ

− 1
2

1 .

Inserting the definition ofW2 and using C̃1 in Ã1 gives Steps 6 and 7 in Algorithm 4.4.
It should be noted that Lyapunov-based BT preserves stability, but it, in general,

does not guarantee the preservation of passivity in the reduced-order model. Fortu-
nately, due to the special structure of the system matrices in (4.4.1), we can show
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that the reduced-order model (4.4.2) is passive. Indeed, the reduced-order matrices
satisfy

Ẽ1 = ẼT
1 > 0, Ã1 = ÃT

1 < 0, B̃1 = C̃ T
1 .

Then by Theorem 2.15, system (4.4.2) is io-passive. Furthermore, the controllability
Gramian of (4.4.2) is given by Λ1 > 0 implying that system (4.4.2) is controllable.
Therefore, by Remark 2.17 system (4.4.2) is passive.

4.5 Model reduction for 2D nonlinear MQS
systems

For model reduction of the nonlinear MQS system (4.3.5), we apply POD as intro-
duced in Section 2.4.2. To this end, we construct a snapshot matrix

X =
[
x(t1), . . . , x(tns)

]
and compute the SVD

X =
[
U1 U0

] [Σ1

Σ0

] [
V1 V2

]T
,

where Σ1 ∈ Rη×η contains the dominant singular values of X . The reduced-order
model can then be determined by projecting

Ẽ ˙̃x = Ã(x̃)x̃+ B̃u,
ỹ = C̃ x̃

(4.5.1)

with x̃ ∈ Rη, Ẽ = UT
1 EU1, Ã(x̃) = UT

1 A(U1x̃)U1, B̃ = U1B and C̃ = CU1. This
naive approach has several disadvantages. First note that the algebraic and dif-
ferential components of the state are mixed in the reduced order model (4.5.1).
Secondly, as it has already been mentioned in Section 2.4.1 the reduction of the
algebraic equations and states can lead to physically meaningless results.

The idea for our model reduction approach is to use the ODE formulation (4.3.15)
introduced in Section 4.3.3 and reduce only the first component a1 of the state
x1 =

[
aT1 aT21

]T , since a21 ∈ Rm and m is assumed to be small. The snapshot
matrix Xa1 can be extracted from X using the transformation matrix T given in
(4.3.16) by

T X =


Xa1
Xa21
Xa22
Xι

 . (4.5.2)

Compute now the SVD

Xa1 =
[
Ua1 Û a1

] [Σa1
Σ̂a1

] [
Va1 V̂ a1

]T
. (4.5.3)

88



4.5 Model reduction for 2D nonlinear MQS systems

Then the reduced-order model is given by

Ẽ1
˙̃x1 = Ã1(x̃1)x̃1 + B̃1u,

ỹ = C̃1x̃1,
(4.5.4)

with the reduced matrices

Ẽ1 = UTE1U, Ã1(x̃1) = UTA1(Ux̃1)U, B̃1 = UTB1, C̃1 = C1U, (4.5.5)

and the projection matrix

U =

[
Ua1 0
0 Im

]
. (4.5.6)

This model can be computed as in the linear case without calculating the matrices
E1, A1, B1 and C1 explicitly.
In principle, there are several approaches for computing the reduced-order model

for the DAE system (4.3.5). Above, we transformed first (4.3.5) into the ODE
(4.3.15) and then applied MOR to (4.3.15). This approach is referred to as first-
transform-then-reduce. The transformation of (4.3.5) into the ODE (4.3.15) with
the system matrices as in (4.3.20) and (4.3.21) can also be obtained by projection

E1 = Tl,n1ETr,n1 , A1(x1) = Tl,n1A(Tr,n1x1)Tr,n1 , B1 = Tl,n1B , C1 = C Tr,n1

with the left and right projection matrices given by

Tl,n1 =

[
In1 −K 12Y (Y TK 22Y )−1Y T X1R −1

0 ZT − ZTK 22Y (Y TK 22Y )−1Y T ZTX2R −1

]
, (4.5.7)

Tr,n1 =

In1 0 0
0 In2 0
0 0 (X T

2 X2)−1X T
2 (I −K 22Y (Y TK 22Y )−1Y T )

 In1 0
0 Z

K 21 K 22Z

 ,
(4.5.8)

respectively. Then the reduced-order model (4.5.4) is determined by projection
(4.5.5) with the projection matrix U as in (4.5.6).

Alternatively, we can first compute the reduced-order DAE system (4.5.1) by
projection

Ẽ = Ũ
TE Ũ , Ã(x̃) = Ũ

TA(Ũ x̃)Ũ , B̃ = Ũ
TB , C̃ = C Ũ , (4.5.9)

with the projection matrix

Ũ =

Ua1
In2

Im


and then transform the resulting DAE into the ODE system (4.3.15) with the system
matrices

Ẽ1 = Tl,ηẼTr,η, Ã1(x̃1) = Tl,ηÃ(Tr,ηx̃1)Tr,η, B̃1 = Tl,ηB̃ , C̃1 = C̃ Tl,η, (4.5.10)
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with

Tl,η =

[
Iη −UT

a1K 12Y (Y TK 22Y )−1Y T UT
a1X1R −1

0 ZT − ZTK 22Y (Y TK 22Y )−1Y T ZTX2R −1

]
, (4.5.11)

Tr,η =

Iη 0 0
0 In2 0
0 0 (X T

2 X2)−1X T
2 (I −K 22Y (Y TK 22Y )−1Y )

 Iη 0
0 Z

K 21Ua1 K 22Z

 .
(4.5.12)

This approach is referred as first-reduce-then-transform. Since UTTl,n1 = Tl,ηŨ
T
,

Tr,n1U = ŨTr,η and A(x) resp. A1(x1) depend only on the first n1 components of x
resp. x1, which are equal, both MOR approaches are equivalent in the sense that
they provide the same reduced-order model. It should be noted that this equivalence
holds due to the special structure of the semidiscretized MQS system (4.3.5), (4.3.6).
For general DAEs, however, the index reduction and MOR may not commute.

4.5.1 DEIM

In order to speed up the simulation of the reduced-order system (4.5.4), we employ
further the DEIM for efficient evaluation of the nonlinearity

Ã1(x̃1)x̃1 = UTA1(Ux̃1)Ux̃1. (4.5.13)

Using the structure of A1(x1) and K (a) in (4.3.20b) and (4.3.12), respectively, we
separate the nonlinear function A1(x1)x1 into linear and nonlinear parts

A1(x1)x1 = A1lx1 +

[
f1(a1)

0

]
,

with a constant matrix

A1l = −
[

K 11,l K 12Z
ZTK 21 ZTK 22Z

]
+

[
K 12

ZTK 22

]
Y (Y TK 22Y )−1Y T

[
K 21 K 22Z

]
and the nonlinear function f1(a1) = K 11,n(a1)a1. Collecting the snapshots of the
nonlinearity

Xf = [f1(a1(t1)), . . . , f1(a1(tns)], (4.5.14)

we compute the SVD

Xf =
[
Uf Û f

] [Σf

Σ̂f

] [
Vf V̂ f

]T
, (4.5.15)

where
[
Uf Û f

]
and

[
Vf V̂ f

]
have orthogonal columns and Σf ∈ Rκ×κ contains the

dominant singular values of Xf . Then the nonlinearity (4.5.13) can be approximated
as

Ã1(x̃1)x̃1 ≈ UTA1lUx̃1 +

[
WSTKf1(Ua1 ã1)

0

]
,

where W = UT
a1Uf (S

T
KUf )

−1 and K = {k1, . . . , kκ} are obtained by the greedy proce-
dure presented in Algorithm 2.3 or from the QR decomposition of UT

f as described
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in [DG16]. The constant matrices UTA1lU and W can be precomputed and stored
in the offline stage, whereas in the online stage, we only evaluate κ components of
the function f1(Ua1 ã1) which are given by

(
f1(Ua1 ã1)

)
k

=

∫
Ω1

ν(·, ‖∇
n1∑
i=1

α̃iψi‖)∇
n1∑
i=1

α̃iψi · ∇ψk dξ, (4.5.16)

for k ∈ K and Ua1 ã1 = [α̃1, . . . , α̃n1 ]
T . We now show how to make this evaluation

independent of the dimension n1. First of all, we note that the integrals in (4.5.16)
have only to be computed on supp(ψk), k ∈ K, which are small subdomains of Ω1.
This means that also

∑n1

i=1 α̃i∇ψi has only to be evaluated on supp(ψk). Therefore,
we introduce an extended index set

Kext,k = {i ∈ {1, . . . , n1} : int
(
supp(ψi)

)
∩ int

(
supp(ψk)

)
6= ∅}, (4.5.17)

where int
(
supp(ψk)

)
denotes the interior of supp(ψk). For such an index set, we

have
n1∑
i=1

α̃iψi =
∑

i∈Kext,k
α̃iψi on supp(ψk).

Then the integral (4.5.16) can be simplified to(
f1(Ua1 ã1)

)
k

=

∫
supp(ψk)

ν(·, ‖∇
∑

i∈Kext,k
α̃iψi‖)∇

∑
i∈Kext,k

α̃iψi · ∇ψk dξ, k ∈ K.

One can see that to evaluate the function STKf1(U1a1), we do not need all components
of U1a1 ∈ Rn1 , but rather only those from the index set

Kext =
⋃
k∈K
Kext,k, (4.5.18)

whose number of elements, denoted by |Kext|, is much smaller than n1. A simple
example for construction of the sets K and Kext is presented in Figure 4.2(a). We
introduce now the function ˆ̂

f1 : R|Kext| → Rκ as

ˆ̂
f1(STKextUa1 ã1) = STKf1(Ua1 ã1), (4.5.19)

where SKext is the selector matrix associated with Kext. This function coincides with
STKf1 but unlike STKf1, it depends only on the selected components of Ua1 ã1. This
means that the DEIM approximation

f̂1(ã1) = W
ˆ̂
f1(STKextUa1 ã1)

can be calculated independently of the original size n1.
As a result, we obtain the POD-DEIM reduced model

Ê1
˙̂x1 = Â1(x̂1)x̂1 + B̂1u,

ŷ = Ĉ1x̂1,
(4.5.20)
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where x̂1 =
[
âT1 , âT21

]T ∈ Rη+m, and

Ê1 = Ẽ1, B̂1 = B̃1, Ĉ1 = C̃1,

Â1(x̂1)x̂1 = UTA1lUx̂1 +

[
f̂1(â1)

0

]
.

(4.5.21)

In Figure 4.1, we present a workflow diagram which contains all systems we are
working with starting from the weak formulation and ending with the POD-DEIM
reduced model.

4.5.2 Computing the Jacobi matrix

Integrating this system in time using an one-step or multistep method [HNW93],
we face with the problem of solving a sequence of systems of nonlinear equations.
For this purpose, we employ the Newton iteration which requires the computation
of the Jacobi matrix Jf̂1(â1) of the nonlinear function f̂1 at â1 given by

Jf̂1(â1) = WSTKJf1(Ua1 â1)Ua1 , (4.5.22)

where Jf1(Ua1 â1) is the Jacobi matrix of f1 at Ua1 â1. In this section, we present two
different approaches for efficient computation of this matrix.

The first approach for the efficient computation of Jf̂1 is based on the assumption
that the matrix STKJf1(Ua1 â1) is sparse. In this case, we introduce an index set

J = {(i, j) :
(
STKJf1(Ua1 â1)

)
i,j
6= 0} (4.5.23)

of non-zero entries of this matrix. Let the matrices Θ(i,j) ∈ Rκ×n1 have all zero entries
except for the (i, j)-th entry being 1. Then Jf̂1(â1) admits an affine representation

Jf̂1(â1) =
∑

(i,j)∈J
WΘ(i,j)Ua1

(
STKJf1(Ua1 â1)

)
i,j
, (4.5.24)

where the time-independent matrices WΘ(i,j)Ua1 ∈ Rη×η can be precomputed and
stored in the offline phase and only a small number of the time-dependent functions(
STKJf1(Ua1 â1)

)
(i,j)

, (i, j) ∈ J , have to be evaluated in the online phase.
An alternative approach is based on MDEIM as discussed in Section 2.4.3. In this

method, we first compute the basis matrices V1, . . . , Vρ as in (2.4.14) form the EVD
of the snapshot matrix

XJ =

 〈J1, J1〉F . . . 〈J1, Jns〉F
... . . . ...

〈Jns , J1〉F . . . 〈Jns , Jns〉F

 (4.5.25)

with Ji = STKJf1(a1(ti)), i = 1, . . . , ns. Then we determine the MDEIM index
set J and the matrix Gρ using the MDEIM greedy procedure as presented in Al-
gorithm 2.4. Finally, using (4.5.22) we obtain the MDEIM approximation of the
Jacobi matrix

Jf̂1(â1) ≈
ρ∑
l=1

WVlUa1gl(â1) (4.5.26)
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Weak formulation

〈σ∂φ
∂t
, ψ〉L2(Ω) + b(φ, ψ) = 〈χstr,3ι, ψ〉L2(Ω),∫

Ω

χTstr,3
∂

∂t
φ dξ + R ι = v,

with φ ∈ L2(0, T ;H1
0 (Ω)), ψ ∈ H1

0 (Ω) and ι ∈ Rm

FEM model

E ẋ = A(x)x+ Bu,
y = Cx,

with x ∈ Rn1+n2+m and
matrices as in (4.3.6)

ODE system

E1ẋ1 = A1(x1)x1 + B1u,

y = C1x1,

with x1 ∈ Rn1+m and matrices
as in (4.3.20), (4.3.21)

POD reduced DAE system

Ẽ ˙̃x = Ã(x̃)x̃+ B̃u,
y = C̃ x̃,

with x̃ ∈ Rη+n2+m and matri-
ces as in (4.5.9)

POD reduced ODE system

Ẽ1
˙̃x1 = Ã1(x̃1)x̃1 + B̃1u,

ỹ = C̃1x̃1

with x̃1 ∈ Rη+m and matrices as in
(4.5.5)

POD-DEIM reduced ODE model

Ê1
˙̂x1 = Â1(x̂1)x̂1 + B̂1u,

ŷ = Ĉ1x̂1,

with x̂1 ∈ Rη+m and matrices as in
(4.5.21)

discretize

transform to ODE with
Tl,n1 in (4.5.7), Tr,n1 in (4.5.8)

apply POD with
Ũ = diag(Ua1 , In2 , Im)

apply POD with
U = diag(Ua1 , Im)

transform to ODE with
Tl,η in (4.5.11), Tr,η in (4.5.12)

apply DEIM

project
w
ith

U
TT

l,n
1

=

T
l,η Ũ

T
and

T
r,n

1 U
=
Ũ

T
r,η

Figure 4.1: Workflow diagram for discretization and model reduction of the 2D non-
linear MQS system
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1

2

3

4

5

6

(a) K = {6} and Kext = {1, 2, 3, 4, 5, 6}
for a vector-valued function

1

2

3

4

6

5

(b) J = {(6, 3)} and Jext = {2, 3, 4, 6}
for a matrix-valued function

Figure 4.2: An example for the (extended) index sets and the integrated domains

with g1(â1)
...

gρ(â1)

 = G−1
ρ θ(Ua1 â1), θ(Ua1 â1) =

(STKJf1(Ua1 â1))i1,j1
...

(STKJf1(Ua1 â1))iρ,jρ


and (il, jl) ∈ J , l = 1, . . . , ρ. In both approaches, we have to evaluate only selected
components (STKJf1(Ua1 â1))il,jl for (il, jl) ∈ J , where J is either defined in (4.5.23) or
determined by MDEIM. Analogously to the evaluation of STKf1 in (4.5.19), thus the
components depend only on a few components of Ua1 â1 determined by an extended
index set

Jext =
⋃

(i,j)∈J
{l ∈ {1, . . . , n1} : int(supp(φl)) ∩ int(supp(φi)) ∩ int(supp(φj)) 6= ∅}.

(4.5.27)
An exemplary construction of such a set on the integration domain is presented in
Figure 4.2(b). To emphasize the dependency on the selected components of Ua1 â1

we rewrite the sparse representation (4.5.24) as

Jf̂1(â1) =
∑

(i,j)∈J
WΘ(i,j)Ua1

(
STKJf1(STJ extUa1 â1)

)
i,j
,

where SJext denotes the selector matrix associated with Jext. In the MDEIM ap-
proach, the approximated Jacobi matrix is obtained as in (4.5.26), whereg1(â1)

...
gρ(â1)

 = G−1
ρ θ̂(STJextUa1 â1) (4.5.28)

with a new function θ̂(STJextUa1 â1) = θ(Ua1 â1). Thus, in both cases, the approximated
Jacobi matrix can be computed independently of the original size n1.
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1. Compute the snapshot matrices Xa1 =
[
a1(t1), . . . , a1(tns)

]
and Xf as

in (4.5.14).

2. Construct POD projection matrices Ua1 ∈ Rn1×η and Uf ∈ Rn1×κ from the
SVDs (4.5.3) and (4.5.15), respectively.

3. Select the index set K = {k1, . . . , kκ} using the DEIM greedy procedure in
Algorithm 2.3 applied to Uf and construct Kext,k as in (4.5.17) and Kext
as in (4.5.18).

4. Compute the snapshot matrix XJ as in (4.5.25) and construct the basis
matrices V1, . . . , Vρ ∈ Rκ×n1 as in (2.4.14) using the EVD (2.4.13).

5. Select the index set J and the matrix Gρ using MDEIM Algorithm 2.4
applied to the matrices V1, . . . , Vρ and construct Jext as in (4.5.27).

6. Compute and store the time-independent matrices
Ẽ1 = UTE1U ∈ R(η+m)×(η+m),
B̃1 = UTB1 ∈ R(η+m)×m,
C̃1 = C1U ∈ Rm×(η+m),
Ã1l = UTA1lU ∈ R(η+m)×(η+m) with U as in (4.5.6),
W = UT

a1Uf (S
T
KUf )

−1 ∈ Rη×κ with SK =
[
ek1 . . . ekκ

]
,

UKext = STKextUa1 ∈ R|Kext|×η with the selector SKext associated with Kext,
Ṽl = WVlUa1 ∈ Rη×η for l = 1, . . . , ρ,
UJext = STJextUa1 ∈ R|Jext|×η with the selector SJext associated with Jext.

Figure 4.3: Offline stage of the POD-DEIM-MDEIM reduction

4.5.3 Online/offline decomposition

As it was mentioned above, the model reduction procedure and simulation of the
resulting reduced-order model admit the decomposition into a computationally ex-
pensive offline stage and a rapid online stage. The offline stage is presented in
Figure 4.3. In order to reduce computational complexity, the snapshot matrices Xa1
and Xf are generated by solving the DAE (4.3.5). The reduced-order matrices Ẽ1,
B̃1, C̃1 and Ã1l are computed as in the linear case without forming the matrices E1,
B1, C1 and A1l explicitly by using Lemma 4.16 and the structure of these matrices.
In the online stage, we solve the POD-DEIM reduced-order model (4.5.20). The
approximate Jacobi matrix of f̂(x̂1) = Â1(x̂1)x̂1 at x̂1 is given by

Jf̂ (x̂1) = Ã1l +

[∑ρ
l=1 Ṽlgl(â1)

0

]
with gl given in (4.5.28). If we exploit the sparsity of the Jacobi matrix of f1 instead
of using MDEIM, then Steps 4 and 5 in the offline stage should be replaced by

4’. Construct the index set J as in (4.5.23) and Jext as in (4.5.27).
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5’. For (il, jl) ∈ J , set Ṽl = Θ(il,jl) ∈ Rκ×n1 , l = 1, . . . , ρ, where Θ(il,jl) has all zero
entries except for the (il, jl)-th entry being 1.

Furthermore, in Step 6, we replace the computation of Ṽl with

Ṽl = WΘ(il,jl)Ua1 ∈ Rη×η for l = 1, . . . , ρ.

Then in the online phase, for solving system (4.5.20), we use the Jacobi matrix given
by

Jf̂ (x̂1) = Ã1l +

[∑ρ
l=1 Ṽlgl(â1)

0

]
(4.5.29)

with gl given in (4.5.28). One can see that in both variants, the online stage com-
putations are independent of the original dimension na +m of the problem.

4.5.4 Passivity of the POD reduced system

We now show that passivity is preserved in the POD reduced system (4.5.4), (4.5.5).

Theorem 4.17. The POD reduced system (4.5.4), (4.5.5) is passive.

Proof. The result can be proved analogously to Theorem 4.11. Using (4.3.26) and
the approximation [

a1

a21

]
≈
[
Ua1 0
0 Im

] [
ã1

ã21

]
,

we find [
a1

a2

]
= R

[
a1

a21

]
≈ R̃

[
ã1

ã21

]
,

where

R̃ =

[
Ua1 0

−Y (Y TK 22Y )−1Y TK 21Ua1 (In2 − Y (Y TK 22Y )−1Y TK 22)Z

]
. (4.5.30)

Introducing new basis functions

[φ̃1(ξ), . . . , φ̃η+m(ξ)] = [ψ1(ξ), . . . , ψna(ξ)]R̃,

we obtain
na∑
i=1

αi(t)ψi(ξ) ≈
η+m∑
i=1

α̃i(t)φ̃i(ξ),

where
[α̃1(t), . . . , α̃η(t)]

T = ã1(t)

and
[α̃η+1(t), . . . , α̃η+m(t)]T = ã21(t).

For x̃1(t) = [α̃1(t), . . . , α̃η+m(t)]T , we define a storage function

S̃(x̃1(t)) =

∫
Ω

ϑ(ξ, ‖∇
η+m∑
i=1

α̃i(t)φ̃i(ξ)‖2) dξ,
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with ϑ as in (4.3.25). This function is nonnegative, since ν is positive and S̃(0) = 0
due to the definition of ϑ. We calculate

d

dt
S̃(x̃1(t)) =

d

dt

∫
Ω

ϑ(ξ, ‖∇
η+m∑
i=1

α̃i(t)φ̃i(ξ)‖2) dξ

=

∫
Ω

∂

∂%
ϑ(ξ, ‖∇

η+m∑
i=1

α̃i(t)φ̃i(ξ)‖2)
∂

∂t
‖∇

η+m∑
i=1

α̃i(t)φ̃i(ξ)‖2 dξ

=

∫
Ω

ν(ξ, ‖∇
η+m∑
i=1

α̃i(t)φ̃i(ξ)‖) ·

(
∇

η+m∑
i=1

α̃i(t)φ̃i(ξ)

)
·

(
∇

η+m∑
i=1

˙̃αi(t)φ̃i(ξ)

)
dξ

=

η+m∑
j=1

α̃j(t)

η+m∑
k=1

˙̃αk(t)

∫
Ω

ν(ξ, ‖∇
η+m∑
i=1

α̃i(t)φ̃i(ξ)‖)
(
∇φ̃j(ξ)

)
·
(
∇φ̃k(ξ)

)
dξ

= ˙̃xT1 (t)R̃TK (R̃x̃1(t))R̃x̃1(t).

Using the relations

Ã1(x̃1) = −R̃TK (R̃x̃1)R̃,

Ẽ1 = R̃T (M + X R −1X T )R̃ =

[
UT

a1M11Ua1 0
0 0

]
+ B̃1R B̃T

1 ,

and the state equation (4.5.4), we can continue

d

dt
S̃(x̃1(t)) = − ˙̃xT1 (t)Ã1(x̃1(t))x̃1(t)

= − ˙̃xT1 (t)Ẽ1
˙̃x1(t) + ˙̃xT1 (t)B̃1u(t)

= − ˙̃aT1 (t)UT
a1M11Ua1

˙̃a1(t)− ˙̃xT1 (t)B̃1R B̃T
1

˙̃x1(t) + ˙̃xT1 (t)B̃1u(t)

= − ˙̃aT1 (t)UT
a1M11Ua1

˙̃a1(t) + ˙̃xT1 (t)B̃1(u(t)− R B̃T
1

˙̃x1(t)).

Since the matrix M11 is positive definite, the first summand is negative. Further-
more, we use the output equation ỹ = −B̃T

1
˙̃x1 + R −1u twice and obtain

d

dt
S̃(x̃1(t)) 6 (R −1u(t)− ỹ(t))TR (R −1u(t) + ỹ(t)− R −1u(t))

= −ỹT (t)R ỹ(t) + ỹT (t)u(t)

6 ỹT (t)u(t).

Integrating this inequality on [0, T ], we get the passivation inequality

S̃(x̃1(T ))− S̃(x̃1(0)) 6
∫ T

0

ỹT (t)u(t) dt

which implies the passivity of the reduced-order model (4.5.4).

Overall, we have shown that the variational MQS problem (4.3.3), (4.3.2b), (4.3.2d),
the semidiscretized MQS equation (4.3.5), (4.3.6) and the POD-reduced model
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(4.5.4), (4.5.5) are passive. The next step is to verify the passivity of the POD-
DEIM reduced model (4.5.20). In [AH17, PM16], a symplectic DEIM was developed
for Hamiltonian systems which preserves passivity. Since system (4.3.5) does not
have the Hamiltonian form, we cannot use this method here. In the next section,
we present a perturbation-based method to enforce passivity for the POD-DEIM
reduced model (4.5.20).

4.5.5 Enforcing passivity for the POD-DEIM reduced model

Since DEIM does not preserve the symmetric structure that was used for the con-
struction of the storage functions above, we cannot use our approach. This makes
it difficult to verify passivity of the POD-DEIM reduced model (4.5.20). Therefore,
we try to ensure the io-passivity for a slightly modified system. Our goal is now to
find a scalar function δ such that the perturbed system

Ê1
˙̂x1 = Â1(x̂1)x̂1 + B̂1u,

yδ = Ĉ1x̂1 + δu
(4.5.31)

is io-passive and the output error ‖ŷ−yδ‖ is small. For this purpose, we consider the
POD reduced system (4.5.4) with the state x̃1 and the POD-DEIM reduced system
(4.5.20) with the state x̂1. Then for the state error ε1 = x̃1 − x̂1 and Ĉ1 = C̃1, we
have∫ T

0

yTδ (t)u(t) dt =

∫ T

0

(
Ĉ1x̂1(t) + δ(t)u(t)

)T
u(t) dt

=

∫ T

0

(
C̃1x̃1(t)− C̃1ε1(t) + δ(t)u(t)

)T
u(t) dt

>
∫ T

0

ỹT (t)u(t) dt+

∫ T

0

δ(t)‖u(t)‖2 dt−
∫ T

0

‖C̃1‖2‖ε1(t)‖‖u(t)‖dt.

(4.5.32)

Since the POD reduced system (4.5.4) is io-passive, the first integral in (4.5.32) is
nonnegative. Furthermore, by choosing

δ(t) >

{
‖C̃1‖2‖ε1(t)‖
‖u(t)‖ , if ‖u(t)‖ 6= 0,

0, if ‖u(t)‖ = 0,

we get δ(t)‖u(t)‖2−‖C̃1‖2‖ε1(t)‖‖u(t)‖ > 0 for all t ∈ [0, T ]. In this case, we obtain∫ T

0

yTδ (t)u(t) dt > 0

and hence, the perturbed system (4.5.31) is io-passive.
The computation of δ(t) relies on the DEIM error ε1(t) which is not readily avail-

able. Therefore, we aim to get a computable bound ‖ε1(t)‖ ≤ ε(t) which would
allow us to easy determine δ(t) as

δ(t) =

{
‖C̃1‖2ε(t)
‖u(t)‖ , if ‖u(t)‖ 6= 0,

0, if ‖u(t)‖ = 0,
(4.5.33)
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and, as a consequence, also the output errors

‖ỹ(t)− ŷ(t)‖ = ‖C̃1x̃1(t)− C̃1x̂1(t)‖ 6 ‖C̃1‖2‖ε1(t)‖ 6 ‖C̃1‖2ε(t), (4.5.34)

‖ŷ(t)− yδ(t)‖ = ‖δ(t)u(t)‖ = ‖C̃1‖2ε(t).

Note that δ(t) in (4.5.33) is unbounded if u(t) takes zero values. Nevertheless,
the perturbation δ(t)u(t) remains bounded provided ε(t) is bounded. In order to
derive a bound on ‖ε1(t)‖, we make use of a logarithmic Lipschitz constant L2[f̃ ]

for a nonlinear function f̃(x̃1) = Ã1(x̃1)x̃1. The following theorem provides a bound
on the DEIM state error ε1.

Theorem 4.18. Consider the POD reduced system (4.5.4) with the state x̃1 and the
POD-DEIM reduced system (4.5.20) with the state x̂1. Then the error ε1 = x̃1 − x̂1

can be estimated as
‖ε1(t)‖ 6 β

L2[f̃ ]

(
e

L2[f̃ ]

λmin(Ê1)
t − 1

)
,

where β = ‖(STKUf )−1‖2

∑ns

i=η+1 σi(Xf ) with the singular values σi(Xf ) of the DEIM
snapshot matrix Xf , and L2[f̃ ] is the logarithmic Lipschitz constant of
f̃(x̃1) = Ã(x̃1)x̃1.

Proof. Subtracting the POD-DEIM system (4.5.20) from the POD system (4.5.4)
and taking into account that Ê1 = Ẽ1 and B̂1 = B̃1, we obtain the following system
for the error

Ẽ1ε̇1 = Ã1lε1 +

[
UT

a1f1(Ua1 ã1)− f̂1(â1)
0

]
. (4.5.35)

We consider now a weighted vector norm ‖w‖Ẽ1
=
√
wT Ẽ1w for w ∈ Rη+m. It is

well defined since Ẽ1 is symmetric and positive definite. This norm is equivalent to
the Euclidean norm ‖w‖ due to the inequalities√

λmin(Ẽ1)‖w‖ 6 ‖w‖Ẽ1
6
√
λmax(Ẽ1)‖w‖, (4.5.36)

where λmin(Ẽ1) and λmax(Ẽ1) denote the smallest and largest eigenvalues of Ẽ1,
respectively. Using (4.5.35) and the definition of L2[f̃ ], we can estimate

‖ε1(t)‖Ẽ1

d

dt
‖ε1(t)‖Ẽ1

= 〈ε1(t), ε̇1(t)〉Ẽ1
= 〈ε1(t), Ẽ1ε̇1(t)〉

=

〈
ε1(t), Ã1lε1(t) +

[
UT

a1f1(Ua1 ã1(t))− f̂1(â1(t))
0

]〉
=

〈
ε1(t), Ã1lε1(t) +

[
UT

a1f1(Ua1 ã1(t))− UT
a1f1(Ua1 â1(t))

0

]〉
+

〈
ε1(t),

[
UT

a1f1(Ua1 â1(t))− f̂1(â1(t))
0

]〉
= 〈x̃1(t)− x̂1(t), Ã1(x̃1(t))x̃1(t)− Ã1(x̂1(t))x̂1(t)〉

+
〈

ã1(t)− â1(t), UT
a1f1(Ua1 â1(t))− f̂1(â1(t))

〉
6 L2[f̃ ]‖ε1(t)‖2 + β‖ε1(t)‖.
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4 Model reduction for magneto-quasistatic problems

In the last inequality, we used the estimate for the DEIM error as presented in
Theorem 2.24 and define

β = ‖(STKUf )−1‖2

ns∑
i=κ+1

σi(Xf ).

Furthermore, taking into account (4.5.36), we obtain

d

dt
‖ε1(t)‖Ẽ1

6 L2[f̃ ]
‖ε1(t)‖2

‖ε1(t)‖Ẽ1

+ β
‖ε1(t)‖
‖ε1(t)‖Ẽ1

6
L2[f̃ ]

λmin(Ẽ1)
‖ε1(t)‖Ẽ1

+
β√

λmin(Ẽ1)
. (4.5.38)

Using the comparison lemma [WSH14], we have

‖ε1(t)‖Ẽ1
6
∫ t

0

β√
λmin(Ẽ1)

e

∫ t
s

L2[f̃ ]

λmin(Ẽ1)
dτ
ds

=
β√

λmin(Ẽ1)

∫ t

0

e
L2[f̃ ]

λmin(Ẽ1)
(t− s)

ds

=
β

√
λmin(Ẽ1)

L2[f̃ ]

(
e

L2[f̃ ]

λmin(Ẽ1)
t
− 1
)
.

Finally, we use the norm equivalence (4.5.36) and obtain

‖ε1(t)‖ 6 1√
λmin(Ẽ1)

‖ε1(t)‖Ẽ1
6

β

L2[f̃ ]

(
e

L2[f̃ ]

λmin(Ẽ1)
t
− 1
)
.

Next, we present computable estimates on the logarithmic Lipschitz constant
L2[f̃ ].

Theorem 4.19. The logarithmic Lipschitz constant L2[f̃ ] can be estimated as

1. L2[f̃ ] 6 −mνλmax(R̃TK1R̃) =: µ1 with R̃ given in (4.5.30) and K1 in (4.3.10),

2. L2[f̃ ] 6 λmax(Ã1l)−mν,1λmax(UT
a1K1,nUa1) =: µ2 where the entries of K1,n are

given by (K1,n)i,j =
∫

Ω1
∇ψi · ∇ψj dξ, i, j = 1, . . . , n1.

Proof. Similarly to the proof of Theorem 4.3, we can show for the function

g̃(x̃1) = R̃TK (R̃x̃1)R̃x̃1

that

〈g̃(x̃1)− g̃(w̃), x̃1 − w̃〉 = 〈K (R̃x̃1)R̃x̃1 −K (R̃w̃)R̃w̃, R̃(x̃1 − w̃)〉
> mν(x̃1 − w̃)T R̃TK1R̃(x̃1 − w̃)
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4.5 Model reduction for 2D nonlinear MQS systems

for all x̃1, w̃ ∈ Rη+m. Then using the relation f̃(x̃1) = Ã1(x̃1)x̃1 = −R̃TK (R̃x̃1)R̃x̃1,
we obtain

L2[f̃ ] = sup
x̃1,w̃∈Rη+m

x̃1 6=w̃

〈x̃1 − w̃, f̃(x̃1)− f̃(w̃)〉
‖x̃1 − w̃‖2

6−mν sup
x̃1,w̃∈Rη+m

x̃1 6=w̃

〈R̃(x̃1 − w̃), K1R̃(x̃1 − w̃)〉
‖x̃1 − w̃‖2

=−mνλmax(R̃TK1R̃).

2. We first split f̃(x̃1) = Ã1lx̃1 +

[
UT

a1f1(Ua1 ã1)
0

]
. Then using the definition of the

logarithmic Lipschitz constant for f̃ , we get

L2[f̃ ] = sup
x̃1,w̃∈Rη+m

x̃1 6=w̃

〈x̃1 − w̃, Ã1l(x̃1 − w̃) +

[
UT

a1 (f1(Ua1 ã1)− f1(Ua1w̃1))
0

]
〉

‖x̃1 − w̃‖2

6 L2

[
Ã1l

]
+ sup

x̃1,w̃∈Rη+m
x̃1 6=w̃

〈x̃1 − w̃,
[
UT

a1 (f1(Ua1 ã1)− f1(Ua1w̃1))
0

]
〉

‖x̃1 − w̃‖2
.

Since Ã1l is symmetric, it holds for the logarithmic Lipschitz constant
L2[Ã1l] = λmax(Ã1l). Furthermore, it follows from g1(Ua1a1) = K 11,n(Ua1a1)Ua1a1

with K 11,n as in (4.3.13) and

(ν1(‖ϕ‖)ϕ− ν1(‖ϕ̃‖)ϕ̃) · (ϕ− ϕ̃) > mν,1‖ϕ− ϕ̃‖2,

see [Pec04, proof of Lemma 2.8] that

〈
[
Ua1
0

]
(x̃1 − w̃),

[
g1(Ua1 ã1)− g1(Ua1w̃1)

0

]
〉

=

∫
Ω1

(
ν1(‖∇

η∑
i=1

α̃iψ̃i(ξ)‖)∇
η∑
i=1

α̃iψ̃i(ξ)− ν1(‖∇
η∑
i=1

ω̃iψ̃i(ξ)‖)∇
η∑
i=1

ω̃iψ̃i(ξ)

)

· ∇
η∑
i=1

(α̃i − ω̃i)ψ̃i(ξ) dξ

> mν,1

∫
Ω1

∇
η∑
i=1

(α̃i − ω̃i)ψ̃i(ξ) · ∇
η∑
i=1

(α̃i − ω̃i)ψ̃i(ξ) dξ

= mν,1(ã1 − w̃1)TUT
a1K1,nUa1(ã1 − w̃1)
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4 Model reduction for magneto-quasistatic problems

with w̃1 = [ω̃1, . . . , ω̃η]
T and [ψ̃1, . . . , ψ̃η] = [ψ1, . . . , ψn1 ]Ua1 . Using the relation

f1(a1) = −K 11,n(a1)a1, this results in

L2[f̃ ] 6 λmax(Ã1l) + sup
ã1,w̃1∈Rη+m

ã1 6=w̃1

〈ã1 − w̃1, U
T
a1 (f1(Ua1 ã1)− f1(Ua1w̃1))〉
‖ã1 − w̃1‖2

6 λmax(Ã1l)−mν,1 sup
ã1,w̃1∈Rη+m

ã1 6=w̃1

〈Ua1(ã1 − w̃1), K1,nUa1(ã1 − w̃1)〉
‖ã1 − w̃1‖2

= λmax(Ã1l)−mν,1λmax(UT
a1K1,nUa1).

It follows from Theorem 4.19 that

L2[f ] 6 min(µ1, µ2) := µ.

Using this bound we obtain from (4.5.38) that

d

dt
‖ε1(t)‖Ẽ1

6
µ

λmin(Ẽ1)
‖ε1(t)‖+

β√
λmin(Ẽ1)

.

Similarly to the proof of Theorem 4.18, we estimate

‖ε1(t)‖ 6 β

µ

(
e

µt

λmin(Ẽ1) − 1
)

=: ε(t). (4.5.39)

4.6 Numerical example

In this section, we present some results of numerical experiments for model or-
der reduction of linear and nonlinear MQS for a single-phase 2D transformer. For
the mesh generation and the FEM discretization, we used the software package
FEniCS1 of version 1.4. The time integration of the full models is done by the
sparse DAE solver PyDaeSI provided by Caren Tischendorf, whereas the reduced-
order dense systems are solved by the implicit differential-algebraic (IDA) solver
from the simulation package Assimulo2. Both solvers are based on the backward
differentiation formula methods. We use them according to the dense or sparse
structure of the problem. The computations were performed on a computer with an
Intel(R) Core(TM) i7-3720QM processor with 2.60GHz.

1http://fenicsproject.org
2http://www.jmodelica.org/assimulo
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f
Ω1,l

fs
Ω1,r

f
Ω2,l

fs
Ω2,r

Ωiron

Ωair

(a) Geometry

Subdomains
Ω1 = Ωiron, Ω2 = Ω1,l ∪ Ω1,r ∪ Ω2,l ∪ Ω2,r ∪ Ωair

Dimensions
na = 51543, n1 = 19688, n2 = 31855, m = 2

Model parameters
σ1 = 5 · 105 Ω−1m−1

ν2 = 1 AmV−1s−1

N1 = 358, N2 = 206
S1 = S2 = 1.12 · 10−2 m2

R = diag(ρ1, ρ2), ρj = 1.73 · 10−8Nj
Sj , j = 1, 2

(b) Dimensions and parameters

Figure 4.4: Single-phase 2D transformer

4.6.1 2D transformer model

We consider a single-phase 2D transformer with an iron core and two coils of wire
in an air domain as shown in Figure 4.4(a), see [Sch11] for detailed description and
geometry data. The winding function has two components given by

χstr,3,j(ξ) =


−Nj
Sj for ξ ∈ Ωj,l,
Nj
Sj for ξ ∈ Ωj,r,

0 for ξ ∈ Ω \ (Ωj,l ∪ Ωj,r),

where Nj are the number of coil turns and Sj is the cross section area for j = 1, 2.
We insert a thin layer of air between the coils and the iron core to avoid unphysical
effects caused by the FEM discretization. Using the linear Lagrange elements on
a uniform triangular mesh, we obtain a semidiscretized MQS system (4.3.5) with
X1 = 0. It should, however, be noted that our model reduction method works
also without the air gap. The model parameters and dimensions are presented in
Figure 4.4(b).

4.6.2 Balanced truncation

First, we apply BT to the linear transformer model obtained for the constant mag-
netic reluctivity ν1 = 14872 AmV−1s−1. The controllability Gramian Gc is approxi-
mated by a low-rank matrix Gc ≈ Z̃cZ̃c

T
with Z̃c ∈ R(n1+m)×k, where n1+m = 19670

and k = 56. The Hankel singular values are presented in Figure 4.5. One can see
that they decay very rapidly implying that the system can be well approximated by
a reduced model of small dimension. We choose the reduced dimension η = 3 and
get an error bound

‖G− G̃‖H∞ 6 2(�η+1 + . . .+ �n1+m)

6 2(�η+1 + . . .+ �k−1 + (n1 +m− k + 1)�k) =: γ

with
γ = 2.3993 · 10−4. (4.6.1)
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Figure 4.5: Hankel singular values

10 -10 10 -5 10 0 10 5 10 10

Frequency (rad/s)

10 -20

10 -10

10 0

10 10

F
re

qu
en

cy
 r

es
po

ns
es

original
reduced

Figure 4.6: Linear MQS model: frequency responses of the original and the reduced
systems
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Figure 4.7: Linear MQS model: absolute error in the frequency domain and error
bound γ
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Figure 4.8: Linear MQS model: output components of the original and the reduced
systems
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Figure 4.9: Linear MQS model: relative error in the output components

Figure 4.6 shows the spectral norms of the frequency responses ‖G(iω)‖2 and
‖G̃(iω)‖2 of the full and the reduced models for the frequency range ω ∈ [10−10, 1010].
In Figure 4.7, the error bound γ and the absolute error ‖G(iω) − G̃(iω)‖2 are
presented. For the input

u(t) =

[
80 · sin(50πt)
20 · sin(50πt)

]
and a zero initial condition, we have computed the outputs y(t) = [y1(t), y2(t)]T and
ỹ(t) = [ỹ1(t), ỹ2(t)]T of the full and reduced systems, respectively, on the time inter-
val [0, 1]s. Figure 4.8 shows the components of these outputs. The relative errors
|yj(t)− ỹj(t)|/maxτ∈[0,1] |yj(τ)|, j = 1, 2, in the output components are presented in
Figure 4.9.

One can see that the errors in time and frequency domains are small, while the
reduced system can be computed 1500 times faster than the original system. Taking
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4 Model reduction for magneto-quasistatic problems

into account the reduction time, we get a speedup of 46 for a single simulation of
the reduced-order model.

4.6.3 POD and DEIM

Next, we examine model reduction of the 2D nonlinear transformer model as in
Section 4.6.1, where the magnetic reluctivity of the iron core is given by

ν1(%) = 3.8 exp(2.14%2) + 396.2 AmV−1s−1.

The snapshots were collected with the training input u(t) and the reduced models
were tested with the input utest(t) given by

u(t) =

[
45.5 · 103 sin(900πt)
77 · 103 sin(1700πt)

]
, utest(t) =

[
46.5 · 103 sin(1010πt)
78 · 103 sin(1900πt)

]
. (4.6.2)

Figures 4.10 and 4.11 shows the singular values σPODj and σDEIMj of the snapshot
matrices Xa1 and Xf of POD and DEIM, respectively, and the eigenvalues λMDEIM

j

of the snapshot matrix XJ of MDEIM are presented in Figure 4.12. The reduced
dimensions were chosen as

POD: η = 35, DEIM: κ = 9, MDEIM: ρ = 3,

with the relations

σPOD36

σPOD1

= 1.14 · 10−7,
σDEIM10

σDEIM1

= 1.40 · 10−3,
λMDEIM

4

λMDEIM
1

= 1.07 · 10−5.

The reduced model has dimension r = 37. The Jacobi matrix Jf1 ∈ Rn1×n1 has 97464
nonzero entries, whereas STKJf1 ∈ R9×n1 has 58 nonzero entries. Using MDEIM the
evaluation of only 3 entries of STKJf1 are used. The extended index sets Kext and
Jext have |Kext| = 47 and |Jext| = 18 entries, respectively.

Figure 4.13 shows the output components of the original and POD-DEIM-MDEIM
reduced systems. The relative errors

∆(y, ỹ) =

√√√√√ 2∑
i=1

 yi(t)− ỹi(t)
max

τ∈[0,0.01]
|yi(τ)|

2

(4.6.3)

of the POD, POD-DEIM and POD-DEIM-MDEIM reduced systems can be seen in
Figure 4.14. Note that for the POD-DEIM variant, we use the affine representation
of the Jacobi matrix Jf̂1 given in (4.5.24). The errors introduced by DEIM and
MDEIM can be neglected in comparison to the POD error. In Table 4.1, we present
the computation time required to construct the snapshot matrices Xa1 , Xf and XJ ,
the reduction time which includes the computation of the projection matrices and
the time-independent matrices as in Step 6 of Figure 4.3, as well as the simulation
time for the reduced-order models determined by the POD, POD-DEIM and POD-
DEIM-MDEIM methods. Comparing the simulation time 3269s for the original
system to that for the reduced-order models, we achieve a speed up of about 20 for
the POD model, 277 for the POD-DEIM model and 314 for the POD-DEIM-MDEIM
model.
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Figure 4.10: Nonlinear MQS model: POD singular values
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Figure 4.11: Nonlinear MQS model: DEIM singular values
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Figure 4.12: Nonlinear MQS model: MDEIM eigenvalues
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Figure 4.13: Nonlinear MQS model: output components of the original and reduced
models
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Figure 4.14: Nonlinear MQS model: relative errors in the output

POD POD-DEIM POD-DEIM-MDEIM
Computation time for the snapshots
Xa1 2870.7 2870.7 2870.7
Xf 37.5 37.5
XJ 366.5

Reduction time
(projection matrices Ua1 and Uf ,
basis matrices V1, . . . , Vp,
time-independent matrices) 54.8 197.4 357.1
Simulation time for the
reduced-oder model 162.8 11.8 10.4

Table 4.1: Computation time (in seconds) for the POD, POD-DEIM and POD-
DEIM-MDEIM methods
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4.6.4 Passivity enforcing

We now verify the DEIM error bound ε from Section 4.5.5 required for the passivi-
ty enforcement of the POD-DEIM reduced system. In Table 4.2, we collect the
constants involved in (4.5.34) and (4.5.39). Figure 4.15 shows the absolute error
‖ε1(t)‖ = ‖x̃1(t)− x̂1(t)‖ and the error bounds εi(t) as in (4.5.39) computed with
µ = µi for i = 1, 2. One can see that the error bound ε1(t) overestimates the true
error by about two orders of magnitude, while the error bound ε2(t) is quite sharp.
In Figure 4.16, we present the output error ‖ỹ(t) − ŷ(t)‖ and the error bounds
εyi (t) = ‖C̃1‖2εi(t) for i = 1, 2.
To enforce passivity, the output of the POD-DEIM reduced model (4.5.20) with

u = utest as in (4.6.2) is perturbed by δutest, where δ is given in (4.5.33). Figure 4.17
shows the components of the perturbation δ(t)utest(t). Finally, Figure 4.18 shows
the relative errors ∆(y, ŷ) and ∆(y, yδ) defined in (4.6.3). We see that the error of
the perturbed POD-DEIM system (4.5.31) is only slightly larger than that of the
POD-DEIM system (4.5.20).

β = 4.1467

λmin(Ẽ1) = 0.1969

µ1 = −7.7916, mν = min(396, 1) = 1, λmax(R̃TK1R̃) = 7.7916

µ2 = −2755, mν,1 = 396, λmax(Ã1l) = −1.4307 · 10−4, λmax(UT
a1K1,nUa1) = 6.9569

‖C̃1‖2 = 1.591 · 10−4

Table 4.2: Constants for the error bound
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Figure 4.15: Absolute error in the state and the error estimators
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0
y
1(t)

0
y
2(t)

Figure 4.16: Absolute error in the output and the error estimators
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Figure 4.17: Perturbation δ(t)utest(t)
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Figure 4.18: Relative errors in the output
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Figure 4.19: Coupled MQS-circuit system

4.6.5 Dynamic iteration for the coupled MQS-circuit system

Finally, we consider a transformer coupled to a simple electrical circuit as shown
in Figure 4.19 and compute the solutions of the resulting coupled MQS-circuit sys-
tem using a monolithic approach and dynamic iteration presented in Section 3.1.
Furthermore, we approximate the linear MQS subsystem by a reduced-order model
determined by BT and repeat the simulation using again the monolithic approach
and dynamic iteration. Note that a similar coupled MQS-circuit system has been
solved using a multirate time integration scheme in [HKBB+18].
First, we briefly introduce circuit equations in the modified nodal analysis (MNA)

formulation, see [HRB75, Rei14, Ria08, VS94] for further information. An electri-
cal circuit is modelled as a directed graph whose vertices correspond to the nodes
and whose branches correspond to the circuit elements like resistors, inductors and
capacitors. Let nn + 1 and nb be the numbers of nodes and branches, respectively.
Then the network topology is described by an incidence matrix A0 ∈ Rnn×nb with
entries

(A0)i,j =


1, if branch j leaves node i,
−1, if branch j enters node i,

0, otherwise.

By removing a row from A0 corresponding to a ground node and reordering the
branches accordingly to the type of circuit components, one gets a reduced incidence
matrix

A =
[
AR AL AC AV AI AM

]
of full rank, where the subscripts R,L,C, V, I and M stand for resistors, induc-
tors, capacitors, voltage sources, current sources and electromagnetic devices, re-
spectively. Using Kirchhoff’s current and voltage laws and constitutive relations
characterizing the circuit components, the dynamics of the lumped element circuit
can be described based on MNA by a DAE system

AC
d
dt
qC(ATCρ) + ARgR(ATRρ) + ALiL + AV iV + AIiI + AM iM = 0,

d
dt
ϕL(iL)− ATLρ = 0,

ATV ρ− vV = 0,

where ρ is the vector of node potentials, iL, iV , iI and iM are the vectors of currents
through inductors, voltage sources, current sources and electromagnetic devices,
respectively, and vV is the voltage vector for voltage sources. The functions gR,
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vV

R

C iM vM

Figure 4.20: Decoupled System
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Figure 4.21: The coupled RC-MQS system

ϕL and qC describe voltage-current characteristics of resistors, magnetic fluxes in
inductors and capacitor charges, respectively.
We consider now the coupled MQS-circuit in Figure 4.19. In order to decouple

this system into two subsystems, we insert controlled current and voltage sources
with current iM and voltage vM , respectively. The resulted decoupled system is
presented in Figure 4.20. The MNA equation for the RC circuit is given by

ACCA
T
Cρ+ ARR

−1ATRρ+ AV iV + AM iM = 0,
ATV ρ− vV = 0,

with
AC =

[
0
1

]
, AR =

[
−1
1

]
, AV =

[
1
0

]
, AM =

[
0
1

]
,

the resistance R = 103, the capacitance C = 1, and the voltage vV (t) = 50 sin(50t)
at the voltage source. For the transformer, we use the MQS model (4.2.10) with
piecewise constant magnetic reluctivity. The geometry and material parameters are
as in Section 4.6.1. The block schema for the coupled MQS-circuit system is given
in Figure 4.21. The internal inputs of the MQS system and the circuit system are
given by v = [vM , 0]T and iM = [1, 0]ι, respectively, whereas the internal outputs
have the form ι and −vM , respectively. The external input and output of the coupled
system are given by vV and −iV , respectively. The semidiscretized MQS system was
approximated by a reduced-order model as described in Section 4.6.2. Note that the
error bound γ in (4.6.1) for the reduced MQS subsystem can be used to estimate
the error in the coupled system, see [RS07] for details.
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4.6 Numerical example

In Table 4.3, we present the computation time for four different simulation ap-
proaches: monolithic, dynamic iteration, monolithic combined with model reduction
and dynamic iteration combined with model reduction. We include there also the
time for computing the reduced-order MQS model. We used the Jacobi-type dy-
namic iteration method with nT = 10 macro time steps and Km = 2 iterations on
each time window. One can see that the dynamic iteration without model reduction
is about twice faster than the monolithic approach. Using model reduction reduces
the simulation time significantly even if we take into account the reduction time.
Comparing the simulation time for the reduced-order coupled model, we observe
that the dynamic iteration is only slightly faster than the monolithic method. This
can be explained by the fact that the both circuit and reduced MQS subsystems
have very small dimensions.

In Figure 4.22, we present the internal outputs iM and −vM of the MQS and
circuit subsystems, respectively, as well as the external output −iV of the coupled
system for all four simulation approaches. Taking the solution obtained by the
monolithic approach without model reduction as the reference solution, we computed
the relative errors in the outputs for remaining three simulation approaches. They
are presented in Figure 4.23. One can see in Figure 4.23(a) that the MOR error for
the MQS system is smaller than that obtained by dynamic iteration, and the errors
accumulate in dynamic iteration combined with model reduction. Furthermore,
the dynamic iteration error in the internal output of the circuit system appears to
dominate the MOR error, see Figure 4.23(b). Finally, Figure 4.23(c) shows that the
MOR, dynamic iteration and combined errors in the external output of the coupled
system are about the same.

The dynamic iteration error can be reduced by taking smaller macro step sizes
or by performing more iterates, whereas the MOR error can be reduced by taking
larger reduced dimensions. However, this increases the simulation time.

Simulation time Model reduction time
in s in s

monolithic 2.6427e+03
dynamic iteration 1.1327e+03
monolithic + model reduction 0.2702 40.0414
dynamic iteration + model reduction 0.2173 40.0414

Table 4.3: Computation time for the coupled MQS-circuit system
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Figure 4.22: Outputs of the coupled MQS-circuit system
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Figure 4.23: Relative errors in the outputs for the coupled MQS-circuit system
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4.7 3D Magneto-quasistatic problems

In this section, we study the MQS system (4.2.10) on a 3D domain Ω. First, we
consider the FEM discretization of such a system using H(curl,Ω)- conforming finite
elements. Then we investigate the DAE structure of the resulting semidiscretized
system and present an extension of some results for 2D MQS systems to the 3D
case.

We start with introducing appropriate function spaces and deriving a weak formu-
lation for the 3D MQS system (4.2.10). Let Ω ⊂ R3 be a bounded connected domain
with a Lipschitz continuous boundary ∂Ω and let n0 denote the outer normal of ∂Ω.
We define the Sobolev spaces for R3-valued functions

H(div,Ω) = {ϕ ∈ L2(Ω) : ∇ · ϕ ∈ L2(Ω)},
H(curl,Ω) = {ϕ ∈ L2(Ω) : ∇× ϕ ∈ L2(Ω)},
H0(curl,Ω) = {ϕ ∈ H(curl,Ω) : ϕ× n0 = 0 on ∂Ω},

G(Ω) = {ψ = ∇φ : φ ∈ H(div,Ω), φ = c on ∂Ω},
L2(Ω)/G(Ω) ' {ϕ ∈ L2(Ω) : 〈ϕ, ψ〉L2(Ω) = 0 for all ψ ∈ G(Ω)}.

On the spaces H(div,Ω) and H(curl,Ω), we define the inner products

〈ϕ, ψ〉H(div,Ω) = 〈∇ · ϕ,∇ · ψ〉L2(Ω) + 〈ϕ, ψ〉L2(Ω),

〈ϕ, ψ〉H(curl,Ω) = 〈∇ × ϕ,∇× ψ〉L2(Ω) + 〈ϕ, ψ〉L2(Ω),

respectively, which induce the norms

‖ϕ‖H(div,Ω) =
(
‖ϕ‖2

L2(Ω) + ‖∇ · ϕ‖2
L2(Ω)

) 1
2
,

‖ϕ‖H(curl,Ω) =
(
‖ϕ‖2

L2(Ω) + ‖∇ × ϕ‖2
L2(Ω)

) 1
2
.

Furthermore, using the definition of L2(0, T ;V) in Section 2.5.4, we define the space

W 1,2(0, T ;H(curl,Ω)) = {ϕ ∈ L2(0, T ;H(curl,Ω)) :
∂

∂t
ϕ ∈ L2(0, T ; (H(curl,Ω))′)}

with the norm

‖ϕ‖W 1,2(0,T ;H(curl,Ω)) =

(
‖ϕ‖2

L2(0,T ;H(curl,Ω)) + ‖ ∂
∂t
ϕ‖2
L2(0,T ;H(curl,Ω))

) 1
2

.

We present now a weak formulation for the MQS system (4.2.10). Multiplying the
equations with a test function ψ ∈ H(curl,Ω) and integrating over Ω, we obtain by
using Green’s formula the weak formulation

∂

∂t

∫
Ω

σA · ψ dξ +

∫
Ω

ν(·, ‖∇ ×A‖)(∇×A) · (∇× ψ) dξ =

∫
Ω

ψTχstrι dξ,

∂

∂t

∫
Ω

χTstrA dξ + R ι = v,

A(·, 0) = A0,

(4.7.1)

with an initial vector A0 ∈ L2(Ω) \G(Ω).
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ξ2

ξ3

ξ1

Figure 4.24: Reference configuration K̂e and degrees of freedom for linear Nédélec
elements of first type

4.7.1 Discretization

Let Th(Ω) be a regular simplicial triangulation of Ω, and let nn, ne and nf denote
the number of nodes, edges and facets, respectively. For a spatial discretization, we
use Nédélec elements of first type as defined in [Néd80]. In the literature, they are
also called Whitney elements of first type or edge elements, see [Bos98, Section 5] or
[Sch03a]. The reference linear Nédélec element (K̂e, P̂ e, Σ̂e) of first type is defined
by the reference tetrahedron K̂e with edges v̂1, . . . , v̂6 as shown in Figure 4.24, the
function space

P̂ e =

〈1
0
0

 ,
0

1
0

 ,
0

0
1

 ,
 0

ξ̂3

ξ̂2

 ,
ξ̂3

0

ξ̂1

 ,
ξ̂2

ξ̂1

0

〉

and the six degrees of freedom for ϕ ∈ P̂ e related to every edge v̂i given by

Σ̂e =

{
ςk(ϕ) =

∫
v̂k

t̂k · ϕdŝ, k = 1, 2, ..., 6

}
,

where t̂k denotes the tangential unit vector to the edge v̂k. The reference basis
functions for the linear Nédélec element given by

φ̂
e

1(ξ̂) =

1− ξ̂3 − ξ̂2

ξ̂1

ξ̂1

 , φ̂
e

2(ξ̂) =

 ξ̂2

1− ξ̂3 − ξ̂1

ξ̂2

 , φ̂
e

3(ξ̂) =

 ξ̂3

ξ̂3

1− ξ̂2 − ξ̂1

 ,
φ̂
e

4(ξ̂) =

−ξ̂2

ξ̂1

0

 , φ̂
e

5(ξ̂) =

 0

−ξ̂3

ξ̂2

 , φ̂
e

6(ξ̂) =

 ξ̂3

0

−ξ̂1


are determined by the conditions ςk(φ̂

e

l ) = δk,l with the Kronecker delta δk,l.
To define the global functions, we use a linear affine mapping

FK(ξ) : K̂e → K

given by FK(ξ) = BKξ + bK with a nonsingular matrix BK ∈ R3×3 and a vector
bK ∈ R3. To ensure the tangential continuity of the basis functions, we use the Piola
transformation defined by

φe(ξ) = B−TK φ̂
e
(F−1

K (ξ)), ξ ∈ K, (4.7.2)
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for φ̂
e
∈ P̂ e. The following lemma shows how to determine ∇× φe by applying the

curl operator to φ̂
e
.

Lemma 4.20 ([Sch03a]). Let K̂e be the reference tetrahedron and K = FK(K̂e).
For a function φe defined by the Piola transformation (4.7.2) of a reference function
φ̂
e
∈ P̂ e, we have

∇× φe(ξ) =
1

detBK

(∇× φ̂
e
(F−1

K (ξ))), ξ ∈ K.

The global basic functions {φej}nej=1 of the finite dimensional space Vh ⊂ H(curl,Ω)
are defined via the Piola transformation (4.7.2) such that the local orientation of
the degrees of freedom on two adjacent tetrahedrons matches. In [AV15], the global
basis functions are defined as follows

φej(ξ) =

{[
signkKn

]
BT
Kn
φ̂
e

k(F
−1
Kn

(ξ)), ξ ∈ Kn,[
signlKm

]
BT
Km
φ̂
e

l (F
−1
Km

(ξ)), ξ ∈ Km,

for Kn, Km ∈ T , where k and l are the indices of the edges F−1
Kn

(vj) and F−1
Km

(vj),
respectively, in K̂e, and[

signkKn
]

= +1,
[
signlKm

]
= +1 if detBKn > 0, detBKm < 0,[

signkKn
]

= +1,
[
signlKm

]
= −1 if detBKn > 0, detBKm > 0,[

signkKn
]

= −1,
[
signlKm

]
= +1 if detBKn < 0, detBKm < 0,[

signkKn
]

= −1,
[
signlKm

]
= −1 if detBKn < 0, detBKm > 0.

(4.7.3)

This definition applies to all tetrahedra containing the edge vj. The global function
φej is zero everywhere else.

We take the test space D(Ω) to be equal to the trial space Vh and approximate

A(ξ, t) ≈
ne∑
j=1

αj(t)φ
e
j(ξ).

As in the 2D case, we get the nonlinear DAE[
M 0
X T 0

]
d

dt

[
a
ι

]
=

[
−K (a) X

0 −R

] [
a
ι

]
+

[
0
I

]
u (4.7.4)

with a =
[
α1, . . . , αne

]T and

Mi,j =
∫

Ω
σφej · φei dξ, i, j = 1, . . . , ne,

K i,j(a) =
∫

Ω
ν(·, ‖∇ ×

∑ne
k=1 αkφ

e
k‖)
(
∇× φej

)
· (∇× φei ) dξ, i, j = 1, . . . , ne,

Xi,j =
∫

Ω
(χstr)j · φei dξ, i = 1, . . . , ne, j = 1, . . . ,m.

(4.7.5)
Here (χstr)j denotes the j-th column of χstr. Note that the matrices M and K (a)
are symmetric, and, unlike the 2D case, K (a) is only positive semidefinite. Our
goal is now to determine the kernel of K (a). We introduce Nédélec elements of
second type to obtain an alternative representation for K (a) which allows us to easy
determine the kernel of K (a). These elements are also called face elements, Whitney
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ξ2

ξ3

ξ1

Figure 4.25: Reference configuration K̂f and degrees of freedom for linear Nédélec
elements of second type

elements of second type [Bos98, Section 5] or Raviart-Thomas elements [AV15]. The
reference linear Nédélec element of second type is given by (K̂f , P̂ f , Σ̂f ), where K̂f

is the reference thetrahedron with the faces f̂ 1, . . . , f̂ 4 and degrees of freedom as
shown in Figure 4.25. The function space P̂ f is given by

P̂ f =

〈1
0
0

 ,
0

1
0

 ,
0

0
1

 ,
ξ̂1

ξ̂1

ξ̂1

〉 ,
and degrees of freedom are defined as

Σ̂f =

{
ς̂k(û) =

∫
f̂k

η̂k · û ds, k = 1, 2, 3, 4

}
,

where η̂k denotes the outer normal unit vector to the face f̂k. For the function space
P̂ f , we can use the conditions ς̂k(φ̂

f

l ) = δk,l to specify the reference basis functions

φ̂
f

1(ξ̂) =

 ξ̂1

ξ̂2

ξ̂3 − 1

 , φ̂
f

2(ξ̂) =

 ξ̂1

ξ̂2 − 1

ξ̂3

 , φ̂
f

3(ξ̂) =

ξ̂1 − 1

ξ̂2

1− ξ̂3

 , φ̂
f

4(ξ̂) =

ξ̂1

ξ̂2

ξ̂3

 .
To ensure the normal continuity of the global basis functions, we again use the

affine linear mapping FK : K̂f → K given by FK(ξ̂) = BK ξ̂ + bK and define the
Piola transformation for Nédélec elements of second type as

φf (ξ) =
1

detBK

BK φ̂
f
(F−1

K (ξ)), ξ ∈ K,

for φ̂
f
∈ P̂ f . As for Nédélec elements of first type, we also have to ensure the

orientation of two adjacent tetrahedra Kn and Km. Therefore, we define the basis
functions φfj as

φfj (ξ) =


[
signkKn

]
1

detBKn
BKnφ̂

f

k(F
−1
Kn

(ξ)), ξ ∈ Kn,[
signlKm

]
1

detBKm
BKmφ̂

f

l (F
−1
Km

(ξ)), ξ ∈ Km,
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where
[
signkKn

]
and

[
signlKm

]
are given in (4.7.3) and k and l are the indices of the

faces F−1
Kn

(fj) and F−1
Km

(fj), respectively, on the reference tetraheadron K̂f . This
definition is applied to all tetrahedra containing the face fj. For the Nédélec elements
of first type Φe = [φe1, . . . , φ

e
ne ] and second type Φf = [φf1 , . . . , φ

f
nf

], we have the
following relation

∇× Φe = ΦfC,

where C ∈ Rnf×ne is the discrete curl matrix with the entries

Cij =


1, if edge j belongs to face i and their orientations match,
−1, if edge j belongs to face i and their orientations do not match,

0, if edge j does not belong to face i,

see [Bos98, Section 5]. Using this relation, we can rewrite the matrix K (a) as

K (a) =

∫
Ω

ν(·, ‖∇ × Φea‖) (∇× Φe)T (∇× Φe) dξ

=

∫
Ω

ν(·, ‖ΦfCa‖)CT (Φf )TΦfC dξ

= CT

∫
Ω

ν(·, ‖ΦfCa‖)(Φf )TΦf dξC

= CTMν (Ca)C,

where the mass matrix Mν(Ca) is given by

(Mν(Ca))ij =

∫
Ω

ν(·, ‖ΦfCa‖)φfj · φ
f
i dξ, i, j = 1, . . . , nf .

With this representation, we can now characterize the kernel of K (a). First, we
note that Mν(a) is symmetric, positive definite and

rank(C) = ne − nn + 1,

see [Bos98]. We can specify the kernel of matrix C using the discrete gradient matrix
G0 ∈ Rne×nn defined as

(G0)ij =


1, if edge i leaves node j,
−1, if edge i enters node j,

0, else.

It holds CG0 = 0 and rank(G0) = nn − 1. Then by removing one column of G0 we
get the reduced discrete gradient matrix G, whose columns form a basis of ker(C)
and also of ker(K (a)).
The coupling matrix X can also be represented in a factorized form using the

discrete curl matrix C. This can be achieved by taking into account the divergence
free property of the winding function χstr, which implies χstr = ∇× γ for a certain
matrix-valued function γ : Ω→ R3×m. In this case, the coupling matrix X takes the
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form

X =

∫
Ω

(Φe)Tχstr dξ

=

∫
Ω

(Φe)T∇× γ dξ

=

∫
Ω

(∇× Φe)Tγ dξ

= CT

∫
Ω

(Φf )Tγ dξ

= CTΥ,

where the entries of Υ ∈ Rnf×m are given by

Υij =

∫
Ω

γj · φfi dξ, i = 1, . . . , nf , j = 1, . . . ,m,

and γj denotes the j-th column of γ. Note that the matrix X has, as in the 2D case,
full column rank because of conditions (4.2.4) and (4.2.5). This implies that Υ has
also full column rank.

4.7.2 Regularization of the FEM model

In this section, we study the FEM model (4.7.4). First of all, note that this model
is singular since the underlying matrix pencil

λ

[
M 0
X T 0

]
−
[
−K (a) X

0 −R

]
= λ

[
M 0

ΥTC 0

]
−
[
−CTMν(Ca)C CTΥ

0 −R

]
is singular. It can be regularized by determining a common kernel of the matrices[

M 0
X T 0

]
,

[
−K (a) X

0 −R

]
.

The DAE system (4.7.4) can be written as

M ȧ = −K (a)a +X ι,
X T ȧ = −R ι +u,

where a, M , K (a) and X are partitioned into blocks as in (4.3.11) according to the
conducting and nonconducting subdomains. Solving the second equation for ι, we
obtain

ι = −R −1X T ȧ + R −1u.

Inserting this vector into the first equation leads to the DAE system

E1ȧ = −K (a)a + B1u (4.7.6)
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with the matrices

E1 =

[
M11 + X1R −1X T

1 X1R −1X T
2

X2R −1X T
1 X2R −1X T

2

]
,

K (a) =

[
K 11(a1) K 12

K 21 K 22

]
=

[
CT

1 Mν(Ca)C1 CT
1 Mν(Ca)C2

CT
2 Mν(Ca)C1 CT

2 Mν(Ca)C2

]
,

B1 =

[
X1

X2

]
R −1 =

[
CT

1 Υ
CT

2 Υ

]
R −1,

(4.7.7)

and C =
[
C1, C2

]
. The output y is given by

y = ι = −R −1
[
X T

1 X T
2

]
ȧ + R −1u = −BT

1 ȧ + R −1u.

The matrix pencil λE1 − K (a) is singular in the sense that det(λE1 − K (a)) = 0
for all λ ∈ C. This follows from the fact that the matrices E1 und K (a) have a
common kernel. We, therefore, determine ker(E1) ∩ ker(K (a)).

Lemma 4.21. Assume that M11, R and Mν(Ca) are positive definite. Let the
columns of YC2 ∈ Rn2×k2 form a basis of ker(C2). Then ker(E1) ∩ ker(K (a)) is
spanned by columns of the matrix

[
0, Y T

C2

]T .
Proof. Using X = CTΥ and (4.7.7), we rewrite the matrices E1 and K (a) as

E1 =

[
I CT

1 Υ
0 CT

2 Υ

] [
M11 0

0 R −1

] [
I 0

ΥTC1 ΥTC2

]
,

K (a) =

[
CT

1

CT
2

]
Mν(Ca)

[
C1 C2

]
.

Assume w =
[
wT1 , w

T
2

]T ∈ ker(E1)∩ker(K (a)). Then due to the positive definiteness
of M11 and R , it follows from wTE1w = 0 that

w1 = 0,

ΥT (C1w1 + C2w2) = 0. (4.7.8)

Furthermore, from wTK (a)w = 0 with w1 = 0 and the positive definiteness of
Mν(Ca), we get C2w2 = 0. This means that w2 ∈ ker(C2) and hence, w2 = YC2z
for some vector z. Note that the vector w2 also fulfills equation (4.7.8).
Assume now that w =

[
0 Y T

C2

]T
z for some vector z. Then

E1w =

[
I CT

1 Υ
0 CT

2 Υ

] [
M11 0

0 R −1

] [
I 0

ΥTC1 ΥTC2

] [
0
YC2

]
z = 0

and

K (a)w =

[
CT

1

CT
2

]
Mν(Ca)

[
C1 C2

] [ 0
YC2

]
z = 0

since im(YC2) = ker(C2). Therefore, w ∈ ker(E) ∩ ker(K (a).
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4.7 3D Magneto-quasistatic problems

Let the columns of ŶC2 ∈ Rn2×(n2−k2) form a basis of im(CT
2 ). Then the matrix

T3 =

[
I 0 0

0 ŶC2 YC2

]
is nonsingular. Multiplying system (4.7.6) from the left with T T

3 and introducing
the new state vector  a1

a21

a22

 = T −1
3 a,

the system matrices of the transformed system take the form

T T
3 E1T3 =

M11 + X1R −1X T
1 X1R −1X T

2 ŶC2 0

Ŷ T
C2

X2R −1X T
1 Ŷ T

C2
X2R −1X T

2 ŶC2 0
0 0 0

 ,
T T

3 K (a)T3 =

K 11(a1) K 12ŶC2 0

Ŷ T
C2

K 21 Ŷ T
C2

K 22ŶC2 0
0 0 0

 ,
T T

3 B1 =

 X1R −1

Ŷ T
C2

X2R −1

0

 .
This implies that the components of a22 are actually not involved in the transformed
system. As a consequence, they may be chosen freely. Removing the trivial equation
0 = 0, we obtain a regular system

Erẋ = Ar(x)x+ Bru, (4.7.9a)
y = −BT

r ẋ+ R −1u, (4.7.9b)

where x =
[
aT1 , aT21

]T and

Er =

[
M11 + X1R −1X T

1 X1R −1X T
2 ŶC2

Ŷ T
C2

X2R −1X T
1 Ŷ T

C2
X2R −1X T

2 ŶC2

]
∈ Rnr×nr ,

Ar(x) =

[
−K 11(a1) −K 12ŶC2

−Ŷ T
C2

K 21 −Ŷ T
C2

K 22ŶC2

]
∈ Rnr×nr ,

Br =

[
X1R −1

Ŷ T
C2

X2R −1

]
∈ Rnr×m

(4.7.10)

with nr = n1 + n2 − k2. Note that the regularity of λEr − Ar(x) follows from the
symmetry of Er and Ar(x) and the fact that ker(Er) ∩ ker(Ar(x)) = ∅.

Remark 4.22. In order to determine the regularized system (4.7.9), we need the
basis matrix ŶC2 with im(ŶC2) = im(CT

2 ). Such a matrix can be computed us-
ing the graph-theoretical algorithm as presented in [Ipa13]. First of all, note that
the matrices C and GT

0 can be considered as the loop and incidence matrices, re-
spectively, of a directed graph whose nodes and branches correspond to the nodes

123



4 Model reduction for magneto-quasistatic problems

and edges of the triangulation Th(Ω), see [Deo74]. Let the reduced gradient matrix
G =

[
GT

1 GT
2

]T be partitioned into blocks according to C =
[
C1 C2

]
. It follows

from [Ipa13, Theorem 9] that

ker(C2) = im(G2Z1),

where the columns of Z1 form a basis of ker(G1). Then ŶC2 can be determined
as a basis of ker(ZT

1 G
T
2 ). The basis Z1 can be computed by using the function

kernelAT from [Ipa13, Section 3] and applying it to GT
1 . The basis ŶC2 can be

determined as ŶC2 = kernelAk(ZT
1 G

T
2 ) with the function kernelAk from [Ipa13,

Section 4.2].

Next, we investigate the tractability index of the regularized 3D MQS system
(4.7.9a), (4.7.10).

Theorem 4.23. Consider a DAE (4.7.9a), where M11 and Mν(Ca) are symmetric,
positive definite, X2 has full column rank, and ŶC2 is a basis of im(CT

2 ). This system
has tractability index one.

Proof. Let the columns of Y form an orthonormal basis of ker(X T
2 ŶC2). Then a pro-

jector Q0 onto ker(G0) with G0 = Er can be defined as

Q0 =

[
0 0
0 Y Y T

]
.

In this case, for B0(x) = − ∂
∂x

(Ar(x)x), the matrix

G1 = G0 + B0(x)Q0

=

[
M11 + X1R −1X T

1 X1R −1X T
2 ŶC2 + K 12ŶC2Y Y T

Ŷ T
C2

X2R −1X T
1 Ŷ T

C2
X2R −1X T

2 ŶC2 + Ŷ T
C2

K 22ŶC2Y Y T

]
is independent of x. To show that G1 is invertible, we consider the equation

G1[v1, v2]T = 0,

which is equivalent to

(M11 + X1R −1X T
1 )v1 + (X1R −1X T

2 ŶC2 + K 12ŶC2Y Y T )v2 = 0, (4.7.11)

Ŷ T
C2

X2R −1X T
1 v1 + (Ŷ T

C2
X2R −1X T

2 ŶC2 + Ŷ T
C2

K 22ŶC2Y Y T )v2 = 0. (4.7.12)

Multiplying equation (4.7.12) from the left with Y T and using Y T Ŷ T
C2

X2 = 0, we
obtain Y T Ŷ T

C2
K 22ŶC2Y Y Tv2 = 0. Since Mν(Ca) is positive definite and ŶC2 is

a basis of im(CT
2 ), Ŷ T

C2
K 22ŶC2 = Ŷ T

C2
CT

2 Mν(Ca)C2ŶC2 is symmetric, positive defi-
nite, and, hence, Y Y Tv2 = 0. Using the fact that Y has full column rank, we obtain
Y Tv2 = 0.
Next, we show that Ŷ T

C2
X2 has full column rank, and, hence the matrix

X T
2 ŶC2Ŷ

T
C2

X2 is invertible. Indeed, let Ŷ T
C2

X2w = 0. Then X2w ∈ ker(Ŷ T
C2

). On
the other side, X2w = CT

2 Υw ∈ im(CT
2 ) = im(ŶC2). Therefore, X2w = 0. Since X2

has full column rank, we get w = 0.
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4.7 3D Magneto-quasistatic problems

Multiplying (4.7.12) from the left with X1(X T
2 ŶC2Ŷ

T
C2

X2)−1X T
2 ŶC2 and inserting

Y Tv2 = 0 yields
X1R −1X T

1 v1 + X1R −1X T
2 ŶC2v2 = 0. (4.7.13)

Subtracting equation (4.7.13) from (4.7.11) and inserting Y Tv2 = 0 implies

M11v1 = 0.

Since M11 is invertible, we obtain v1 = 0. Furthermore, multiplying (4.7.12) from left
with vT2 and using Y Tv2 = 0 and v1 = 0 leads to vT2 Ŷ T

C2
X2R −1X T

2 ŶC2v2 = 0. Since
R is positive definite, v2 is in ker(X T

2 ŶC2) = im(Y ). This means that v2 belongs to
the image of Y and to the kernel of Y T . Therefore, v2 = 0. Thus, G1 is invertible,
and, hence, by Definition 2.3, system (4.7.9a) is of tractability index 1.

We consider now the output equation (4.7.9b). Our goal is to transform this
equation to the standard form y = Crx with an output matrix Cr ∈ Rm×nr . For this
purpose, we rewrite the system matrices in (4.7.10) in the short form

Er = FσMσF T
σ , Ar(x) = −FνMν(F T

ν x)F T
ν , (4.7.14)

Br = FνΥR −1 = FσMσ

[
0
I

]
, (4.7.15)

where

Fσ =

[
I X1

0 Ŷ T
C2

X2

]
=

[
I CT

1 Υ

0 Ŷ T
C2
CT

2 Υ

]
, Mσ =

[
M11 0

0 R −1

]
, Fν =

[
CT

1

Ŷ T
C2
CT

2

]
.

This shows once again that Er is positive semidefinite and Ar(x) is negative semidef-
inite, since M11, R and Mν(F T

ν x) are positive definite.
The following theorem provides a condensed form for the pencil λEr − Ar(x)

which allows us to extract the algebraic constraints in (4.7.9a) and derive the output
matrix Cr.

Theorem 4.24. Let the matrices Er and Ar(x) be as in (4.7.14). Then there exists
a nonsingular matrix W such that

W TErW =

E11 0 0
0 I 0
0 0 0

 , W TAr(x)W =

A11(x) 0 0
0 0 0
0 0 I

 , (4.7.16)

where E11 and −A11(x) are both symmetric and positive definite.

Proof. Let the columns of Yσ and Yν form the basis of ker(F T
σ ) and ker(F T

ν ), re-
spectively, i.e.,

im(Yσ) = ker(F T
σ ), im(Yν) = ker(F T

ν ). (4.7.17)

First, note that Y T
σ Ar(x) is independent of x. This follows from the fact that the

basis matrix Yσ has the form
[
0, Y T

2

]T , where the columns of Y2 form the basis of
ker(X T

2 ŶC2). In this case, we have

Y T
σ Ar(x) =

[
0 Y T

2

] [−K 11(a1) −K 12ŶC2

−Ŷ T
C2

K 21 −Ŷ T
C2

K 22ŶC2

]
= −Y T

2

[
Ŷ T
C2

K 21 Ŷ T
C2

K 22ŶC2

]
,
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which is independent of x. Therefore, in the following, we will just write Y T
σ Ar.

Due to ker(Er) ∩ ker(Ar(x)) = ∅, the matrices Y T
ν ErYν and Y T

σ ArYσ are both
nonsingular and Y T

σ Yν = 0. Furthermore, let the matrix W1 be chosen such that
the matrix

Ŵ =
[
W1 Yν(Y T

ν ErYν)−
1
2 Yσ(Y T

σ ArYσ)−
1
2

]
is nonsingular. Taking into account (4.7.17), we have

Ŵ
T

ErŴ =

 W T
1 ErW1 W T

1 ErYν(Y T
ν ErYν)−

1
2 0

(Y T
ν ErYν)−

1
2 Y T

ν ErW1 Inν 0
0 0 0

 =: Êr,

Ŵ
T

Ar(x)Ŵ =

 W T
1 Ar(x)W1 0 W T

1 ArYσ(Y T
σ ArYσ)−

1
2

0 0 0

(Y T
σ ArYσ)−

1
2 Y T

σ ArW1 0 Inσ

 =: Âr(x),

where nν = dim(ker(F T
ν )) = dim(ker(Ar(x))), nσ = dim(ker(F T

σ )) = dim(ker(Er)).
The off-diagonal blocks in Êr and Âr(x) can be eliminated by the transformation
matrix

W̃ =

 Inr−nν−nσ 0 0

−(Y T
ν ErYν)−

1
2 Y T

ν ErW1 Inν 0

−(Y T
σ ArYσ)−

1
2 Y T

σ ArW1 0 Inσ


which is independent of x. Thus, for

W = Ŵ W̃ =
[
ΠW1 Yν(Y T

ν ErYν)−
1
2 Yσ(Y T

σ ArYσ)−
1
2

]
(4.7.18)

with the projector

Π = I − Yν(Y T
ν ErYν)−1Y T

ν Er − Yσ(Y T
σ ArYσ)−1Y T

σ Ar, (4.7.19)

we obtain (4.7.16), where

E11 = W T
1 ΠTErΠW1, A11(x) = W T

1 ΠTAr(x)ΠW1

are symmetric and E11 and −A11(x) are positive definite. The last observation
immediately follows from the positive semidefiniteness of Er and −Ar(x) and the
relations

rank(W TErW ) = rank(Er) = nr − nσ,

rank(W TAr(x)W ) = rank(Ar(x)) = nr − nν .

This completes the proof.

For the transformation matrix W as in (4.7.18), we calculate the inverse

W −1 =
[
Ŵ T

1 Ŵ T
2 Ŵ T

3

]T
which satisfies

I = W −1W =

Ŵ1ΠW1 Ŵ1Yν(Y T
ν ErYν)−

1
2 Ŵ1Yσ(Y T

σ ArYσ)−
1
2

Ŵ2ΠW1 Ŵ2Yν(Y T
ν ErYν)−

1
2 Ŵ2Yσ(Y T

σ ArYσ)−
1
2

Ŵ3ΠW1 Ŵ3Yν(Y T
ν ErYν)−

1
2 Ŵ3Yσ(Y T

σ ArYσ)−
1
2

 .
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This equation gives
Ŵ2 = (Y T

ν ErYν)−
1
2 Y T

ν Er,

Ŵ3 = (Y T
σ ArYσ)−

1
2 Y T

σ Ar

and the conditions Ŵ1ΠW1 = I, Ŵ1Yν = 0, and Ŵ1Yσ = 0 for Ŵ1.
We can define now the projectors

Π0 = W

0
I

0

W −1 = Yν(Y T
ν ErYν)−1Y T

ν Er,

Π∞ = W

0
0

I

W −1 = Yσ(Y T
σ ArYσ)−1Y T

σ Ar

onto the right deflating subspaces of λEr − Ar(x) corresponding to the zero and
infinite eigenvalues. Note that these projectors and the projector Π in (4.7.19)
satisfy the relation Π + Π0 + Π∞ = I. Furthermore, we introduce the pseudoinverse
of Er given by

E−r = W

E−1
11

I
0

W T . (4.7.20)

Simple calculations show that this matrix satisfies

(E−r )T = E−r , (4.7.21)
ErE−r Er = Er, (4.7.22)

E−r ErE−r = E−r , (4.7.23)
E−r Er = I − Π∞, (4.7.24)
ErE−r = I − ΠT

∞, (4.7.25)
ErE−r Ar(x) = Ar(x)E−r Er = ErE−r Ar(x)E−r Er. (4.7.26)

Equations (4.7.21), (4.7.22) and (4.7.23) imply that E−r is the symmetric reflexive
inverse of Er. Note that the input matrix Br in (4.7.15) can also be presented as

Br = FσMσ

[
0
I

]
= FσMσ

[
I 0

X T
1 X T

2 ŶC2

] [
0

Ŷ T
C2

X2(X T
2 ŶC2Ŷ

T
C2

X2)−1

]
= FσMσF T

σ

[
0
Z

]
= Er

[
0
Z

]
(4.7.27)

with Z = Ŷ T
C2

X2(X T
2 ŶC2Ŷ

T
C2

X2)−1. Then using (4.7.22) and the state equation
(4.7.9a), the output in (4.7.9b) can be written as

y = −BT
r ẋ+ R −1u

= −
[
0 ZT

]
Erẋ+ R −1u

= −
[
0 ZT

]
ErE−r Erẋ+ R −1u

= −BT
r E−r (Ar(x)x+ Bru) + R −1u

= −BT
r E−r Ar(x)x+ (R −1 − BT

r E−r Br)u.
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Taking into account the special block structure of Ar(x) in (4.7.10) and using equa-
tions (4.7.25) and (4.7.26), we obtain that the matrix

Cr := −BT
r E−r Ar(x) = −

[
0 ZT

]
(I − ΠT

∞)Ar(x) = −
[
0 ZT

]
Ar(x)(I − Π∞)

= (X T
2 ŶC2Ŷ

T
C2

X2)−1X T
2 ŶC2Ŷ

T
C2

[
K 21 K 22ŶC2

]
(I − Π∞) (4.7.28)

is independent of x. Moreover, it follows from (4.7.22) and (4.7.27) that

BT
r E−r Br =

[
0 ZT

]
ErE−r Er

[
0
Z

]
=
[
0 ZT

]
FσMσF T

σ

[
0
Z

]
=
[
0 I

]
Mσ

[
0
I

]
= R −1,

and, hence, the output takes the form y = Crx with Cr as in (4.7.28). Thus, the
regularized DAE system is given by

Erẋ = Ar(x)x+ Bru,

y = Crx.
(4.7.29)

For the transformation matrix W as in (4.7.18), we obtain using (4.7.15) that

W TBr =

 W T
1 ΠTBr

(Y T
ν ErYν)−

1
2 Y T

ν FνΥR −1

(Y T
σ ArYσ)−

1
2 Y T

σ FσMσ

[
0 I

]T
 =

B11

0
0

 (4.7.30)

with B11 = W T
1 ΠTBr. Furthermore, using (4.7.28) and the relations Ar(x)Yν = 0

and

(I − Π∞)Yσ(Y T
σ ArYσ)−

1
2 = (I − Yσ(Y T

σ ArYσ)−1Y T
σ Ar)Yσ(Y T

σ ArYσ)−
1
2 = 0,

we get

CrW = −
[
0 ZT

]  W T
1 ΠT (I − ΠT

∞)Ar(x)

(Y T
ν ErYν)−

1
2 Y T

ν Ar(x)(I − Π∞)

(Y T
σ ArYσ)−

1
2 Y T

σ (I − ΠT
∞)Ar(x)

T

=
[
C11 0 0

]
(4.7.31)

with

C11 = −
[
0 ZT

]
Ar(x)(I − Π∞)ΠW1 = −

[
0 ZT

]
Ar(I − Π∞)W1,

which is independent of the variable x. Introducing a new variablex1

x2

x3

 = W −1x, (4.7.32)
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we can rewrite (4.7.29) using (4.7.16), (4.7.30) and (4.7.31) as

E11ẋ1 = Â11(x1)x1 + B11u, (4.7.33a)
ẋ2 = 0, (4.7.33b)
0 = x3, (4.7.33c)
y = C11x1, (4.7.33d)

with Â11(x1) = A11(ΠW1x1 + Yν(Y T
ν ErYν)−

1
2x2 + Yσ(Y T

σ ArYσ)−
1
2x3). Note that

x3 = 0 and x2 is constant depending on the initial value. Therefore, Â11 dependents
only on x1. Since x2 and x3 do not contribute to the output, it is sufficient to
consider equations (4.7.33a) and (4.7.33d), where the matrices E11 and −Â11(x1)
are symmetric and positive definite. Thus, we have transformed the regular DAE
system (4.7.9) into the ODE (4.7.33a), (4.7.33d).

In the context of the FIT discretization, the grad-div regularization of MQS sys-
tems has been considered in [Bos01, CSGB11, CW02] which is based on a spacial
discretization of the Coulomb gauge (4.1.8). For other regularization techniques for
MQS systems, we refer to [CM95, Hip00, Mun02].

4.7.3 Passivity

In this section, we examine the passivity of the weak formulation (4.7.1), the semidis-
cretized system (4.7.4), (4.7.5) and the regularized system (4.7.9), (4.7.10).

Theorem 4.25. The variational MQS system (4.7.1) with the output y = ι is pas-
sive.

Proof. The result can be proven analogously to Theorem 4.9. Consider a function
ϑ : Ω× R+

0 → R+
0 given by

ϑ(ξ, %) =
1

2

∫ %

0

ν(ξ,
√
σ) dσ =

∫ √%
0

ν(ξ, σ)σ dσ (4.7.34)

and define a storage function as

S(A(·, t)) =

∫
Ω

ϑ(ξ, ‖∇ ×A(ξ, t)‖2) dξ.

This function is nonnegative, since ν is positive. Furthermore, we have S(0) = 0.
We now show d

dt
S(A(·, t)) 6 y(t)Tv(t) for all v and suitable A, y = ι that satisfy

(4.7.1). We calculate

d

dt
S(A(·, t)) =

d

dt

∫
Ω

ϑ(ξ, ‖∇ ×A(ξ, t)‖2) dξ

=

∫
Ω

∂

∂%
ϑ(ξ, ‖∇ ×A(ξ, t)‖2)

∂

∂t
‖∇ ×A(ξ, t)‖2 dξ

=

∫
Ω

ν(ξ, ‖∇ ×A(ξ, t)‖)
(
∇×A(ξ, t)

)
·
(
∂

∂t
∇×A(ξ, t)

)
dξ.
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Taking A as a test function and ∂
∂t
A as a trial function, we obtain using equations

(4.7.1) that

d

dt
S(A(·, t)) = −

∫
Ω

σ
∂

∂t
A(ξ, t) · ∂

∂t
A(ξ, t) dξ +

∫
Ω

(
∂

∂t
A(ξ, t)

)T
χstr dξι

= −
∫

Ω

σ
∂

∂t
A(ξ, t) · ∂

∂t
A(ξ, t) dξ − ιT (t)R ι(t) + vT (t)ι(t)

6 yT (t)v(t).

Here, we used the property that the first two summands are nonpositive, since σ is
nonnegative on Ω and R is positive definite. Integrating this inequality on [0, T ],
we get the passivation inequality (2.3.3) and, hence, (4.7.1) is passive.

The following theorem establishes that the spatial discretization of the variational
MQS problem (4.7.1) preserves passivity.

Theorem 4.26. The semidiscretized 3D MQS system (4.7.4), (4.7.5) is passive.

Proof. The passivity of (4.7.4), (4.7.5) can be shown analogously to the proof of
Theorem 4.10 by taking the storage function

Sd(a(t)) :=

∫
Ω

ϑ(ξ, ‖∇ ×
ne∑
i=1

αi(t)ψ
e
i (ξ)‖2) dξ

with ϑ as in (4.7.34).

Finally, we show that the regularization of the semidiscretized system (4.7.4)
preserves passivity.

Theorem 4.27. The regularized 3D MQS system (4.7.9), (4.7.10) is passive.

Proof. The result can be proved analogously to Theorem 4.10. Since a22 can be
freely chosen and has no influence on the output, we take a22 = 0. Then it yields[

a1

a2

]
= T4

[
a1

a21

]
,

where

T4 =

[
I 0

0 ŶC2

]
.

Introducing new basis functions

[φ1(ξ), . . . , φnr(ξ)] = [ψe1(ξ), . . . , ψene(ξ)]T4,

we obtain
ne∑
i=1

αi(t)ψ
e
i (ξ) =

nr∑
i=1

βi(t)φi(ξ),

where
[β1(t), . . . , βn1(t)]

T = a1(t) = [α1(t), . . . , αn1(t)]
T
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and
[βn1+1(t), . . . , βnr(t)]

T = a21(t).

For x(t) = [β1(t), . . . , βnr(t)]
T , we define a storage function

Sr(x(t)) =

∫
Ω

ϑ(ξ, ‖∇ ×
nr∑
i=1

βi(t)φi(ξ)‖2) dξ

with ϑ as in (4.7.34). This function is nonnegative, since ν is positive and S1(0) = 0
due to the definition of ϑ. We calculate

d

dt
Sr(x(t)) =

d

dt

∫
Ω

ϑ(ξ, ‖∇ ×
nr∑
i=1

βi(t)φi(ξ)‖2) dξ

=

∫
Ω

∂

∂%
ϑ(ξ, ‖∇ ×

nr∑
i=1

βi(t)φi(ξ)‖2)
∂

∂t
‖∇ ×

nr∑
i=1

βi(t)φi(ξ)‖2 dξ

=

∫
Ω

ν(ξ, ‖∇ ×
nr∑
i=1

βi(t)φi(ξ)‖)

(
∇×

nr∑
i=1

βi(t)φi(ξ)

)
·

(
∇×

nr∑
i=1

β̇i(t)φi(ξ)

)
dξ

=

∫
Ω

ν(ξ, ‖∇ ×
ne∑
i=1

αi(t)ψ
e
i (ξ)‖)

(
∇×

ne∑
i=1

αi(t)ψ
e
i (ξ)

)
·

(
∇×

ne∑
i=1

α̇i(t)ψ
e
i (ξ)

)
dξ

= ȧT (t)K (a(t))a(t).

Using the relations

Ar(x) = −T T
4 K (T4x)T4,

Er = T T
4 (M + X R −1X T )T4 =

[
M11 0

0 0

]
+ BrR BT

r ,

and the equation (4.7.9a), we can continue

d

dt
Sr(x(t)) = −ẋT (t)Ar(x(t))x(t)

= −ẋT (t)Erẋ(t) + ẋT (t)Bru(t)

= −ȧT1 (t)M11ȧ1(t)− ẋT (t)BrR BT
r ẋ(t) + ẋT (t)Bru(t)

= −ȧT1 (t)M11ȧ1(t) + ẋT (t)Br(u(t)− R BT
r ẋ(t)).

Since the matrix M11 is positive definite, the first summand is negative. Further-
more, we use the output equation (4.7.9b) twice and obtain

d

dt
Sr(x(t)) 6 (R −1u(t)− y(t))TR (R −1u(t) + y(t)− R −1u(t))

= −yT (t)R y(t) + yT (t)u(t)

6 yT (t)u(t).

Integrating this inequality on [0, T ], we get the passivation inequality

Sr(x(T ))− Sr(x(0)) 6
∫ T

0

yT (t)u(t) dt

which implies the passivity of the regularized system (4.7.9).
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4 Model reduction for magneto-quasistatic problems

It follows from Remark 2.17 and Theorems 4.26 and 4.27 that the semidiscretized
MQS system (4.7.4) and its regularized form (4.7.9) are io-passive.

4.8 Model reduction for 3D linear MQS systems

Our goal is now to employ BT for model order reduction of the linear DAE system

Erẋ = Arx+ Bru
y = Crx

(4.8.1)

with the system matrices

Er = FσMσF T
σ , Ar = −FνMνF T

ν

Br = FνΥR −1, Cr = −BrE−r Ar.
(4.8.2)

Unfortunately, we cannot use Algorithm 2.2 directly, because this system is stable
but not asymptotically stable due to the fact that the pencil λEr − Ar has zero
eigenvalues. To overcome this difficulty, we proceed with the BT method developed
in [RS11, Section 4].

First of all, note that system (4.8.1) is io-passive since its transfer function is posi-
tive real. The latter can be shown analogously to the 2D case. Using Cr = −BT

r E−r Ar

and the properties of the pseudoinverse matrix E−r in (4.7.26), we can compute

G(s) + G∗(s) = Cr(sEr − Ar)
−1Br + BT

r (sEr − Ar)
−1C T

r

= −BT
r E−r Ar(sEr − Ar)

−1Br − BT
r (sEr − Ar)

−1ArE−r Br

= F ∗(s)(−(sEr − Ar)E−r Ar − ArE−r (sEr − Ar))F (s)
= F ∗(s)(−sErE−r Ar + ArE−r Ar − sArE−r Er + ArE−r Ar)F (s)
= F ∗(s)(2ArE−r Ar + 2Re(s)ErE−r (−Ar)E−r Er)F (s)
> 0

for all s ∈ C+. Here, F (s) = (sEr − Ar)
−1Br, and the matrices ArE−r Ar and

ErE−r (−Ar)E−r Er are both positive semidefinite. To apply BT, we first calculate
the transfer functionG(s) using the condensed form (4.7.16), which is the Weierstraß
canonical form for the pencil λEr − Ar. Using (4.7.16), (4.7.30) and (4.7.31), we
obtain

G(s) = Cr(sEr − Ar)
−1Br

= Cr

sW −T

E11

I
0

W −1 −W −T

A11

0
I

W −1

−1

Br

= CrW

sE11 − A11

sI
−I

−1

W TBr

= C11(sE11 − A11)−1B11.

This means that we need to reduce only the stable part

E11ẋ1 = A11x1 + B11u,
y = C11x1,

(4.8.3)
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4.8 Model reduction for 3D linear MQS systems

where E11 and −A11 are both symmetric and positive definite. The other parts
can be removed from the system since they are uncontrollable and unobservable.
System (4.8.3) is now asymptotically stable, and, hence, it can be reduced by the BT
method as described in Section 2.4.1. Note, however, that the transformation matrix
W is difficult to determine and the sparsity in E11 and A11 can not be expected
anymore. Therefore, we never calculate the stable system (4.8.3) explicitly. Instead,
we introduce the controllability and observability Gramians Gc and Go for (4.8.1)
as solutions of the projected continuous-time Lyapunov equations

ErGcAr + ArGcEr = −ΠTBrBT
r Π, Gc = ΠGcΠ

T , (4.8.4)
ErGoAr + ArGoEr = −ΠTC T

r CrΠ, Go = ΠGoΠ
T , (4.8.5)

where Π is the spectral projector onto the right deflating subspace of λEr −Ar cor-
responding to the finite eigenvalues in the left complex half-plane. This projector is
given in (4.7.19). Similarly to the 2D case, see Theorem 4.14, a relation between the
controllability and the observability Gramians of system (4.8.1) can be established.

Theorem 4.28. Consider the DAE system (4.8.1), (4.8.2). Let Gc and Go be
the controllability and observability Gramians of (4.8.1) which solve the projected
continuous-time Lyapunov equations (4.8.4) and (4.8.5). Then

ErGoEr = ArGcAr.

Proof. Consider the reflexive inverse E−r of Er given in (4.7.20) and the reflexive
inverse of Ar given by

A−r = W

A−1
11

0
I

W T .

Then multiplying the Lyapunov equation (4.8.4) (resp. (4.8.5)) from the left and
right with E−r (resp. with A−r ) and using the relations (4.7.24), (4.7.25) and

(I − Π∞)Π = Π, A−r Ar = I − Π0, (I − Π0)Π = Π,
ΠE−r = E−r ΠT , ΠA−r = A−r ΠT ,

we obtain

A−r (ArGcAr)E−r + E−r (ArGcAr)A−r = −ΠE−r BrBT
r E−r ΠT , Gc = ΠGcΠ

T , (4.8.6)
A−r (ErGoEr)E−r + E−r (ErGoEr)A−r = −A−r ΠTC T

r CrΠA−r , Go = ΠGoΠ
T . (4.8.7)

Furthermore, it follows from (4.7.28) and ΠE−r Ar = E−r ArΠ that

CrΠA−r = −BT
r E−r ArΠA−r = −BT

r ΠE−r ArA−r
= −BT

r ΠE−r (I − ΠT
0 ) = −BT

r ΠE−r = −BT
r E−r ΠT .

Then equation (4.8.7) can be written as

A−r (ErGoEr)E−r + E−r (ErGoEr)A−r = −ΠE−r BrBT
r E−r ΠT , Go = ΠGoΠ

T .
(4.8.8)

Since E−r and −A−r are symmetric and positive definite and ΠT is the spectral
projector onto the right deflating subspace of λE−r −A−r corresponding to the eigen-
values in the left half-plane, the Lyapunov equations (4.8.6) and (4.8.8) are uniquely
solvable, and, hence, ErGoEr = ArGcAr.
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4 Model reduction for magneto-quasistatic problems

Theorem 4.28 implies that we need to solve only the projected Lyapunov equa-
tion (4.8.4) for the Cholesky factor of Gc = ZcZ

T
c . Then it follows from the relation

Go = E−r ArGcArE−r = (−E−r ArZc)(−ZT
c ArE−r )

that the Cholesky factor Zo of the observability Gramian Go can be calculated as
Zo = −E−r ArZc. For the Cholesky factor Zc it holds that

E−r ErZc = (I − Π∞)Zc = (I − Π∞)ΠZc = ΠZc = Zc.

Therefore, the Hankel singular values can be computed from the EVD

ZT
o ErZc = (−ZT

c ArE−r )ErZc = −ZT
c ArZc =

[
U1 U2

] [Λ1

Λ2

] [
U1 U2

]T
.

Then, similarly to the 2D case, the reduced-order model

Ẽr
˙̃x = Ãrx̃+ B̃ru,

ỹ = C̃rx̃,
(4.8.9)

can be computed by projection

Ẽr = W TErV, Ãr = W TArV, B̃r = W TBr, C̃r = CrV

with the projection matrices V = ZcU1Λ
− 1

2
1 and W = ZoU1Λ

− 1
2

1 = −E−r ArV . The
reduced matrices have the form

Ẽr =− V TArE−r ErV = −Λ
− 1

2
1 UT

1 Z
T
c ArZcU1Λ

− 1
2

1 = I,

Ãr =− V TArE−r ArV,

B̃r =− V TArE−r Br = V TC T
r = C̃ T

r .

Since Er and −Ar are symmetric and positive definite, the matrices Ẽr and −Ãr are
symmetric and positive definite too. Then it follows from Theorem 2.15 that the
reduced system (4.8.9) is io-passive. The BT method for the DAE system (4.8.1)
is presented in Algorithm 4.5. Note that in the LR-ADI method used in Step 3 for
solving the projected Lyapunov equation (4.8.4), we need to compute the projector-
vector products with Π0 and Π∞. We will first discuss the computation of the
product Yσ(Y T

σ ArYσ)−1Y T
σ w for a vector w.

Lemma 4.29. Let Ar be given as in (4.7.10) with a constant matrix K 11, Yσ a basis
of ker(F T

σ ) and w =
[
wT1 , w

T
2

]T ∈ Rnr . Then the vector ẑ = Yσ(Y T
σ ArYσ)−1Y T

σ w

can be determined as ẑ =
[
0, zT1

]T , where [zT1 , zT2 ]T satisfies the linear system[
−Ŷ T

C2
K 22ŶC2 Ŷ T

C2
X2

X T
2 ŶC2 0

] [
z1

z2

]
=

[
w2

0

]
. (4.8.10)
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4.8 Model reduction for 3D linear MQS systems

Algorithm 4.5: Balanced truncation for the 3D linear MQS system
Input : M11,K 11 ∈ Rn1×n1 , K 12 ∈ Rn1×n2 , K 21 ∈ Rn2×n1 ,K 22 ∈ Rn2×n2 ,

X1 ∈ Rn1×m, X2 ∈ Rn2×m, R ∈ Rm×m.
Output: a reduced-order asymptotically stable system (Ẽr, Ãr, B̃r, C̃r).

1 Compute a basis matrix ŶC2 as discussed in Remark 4.22
2 Compute Er, Ar, Br given in (4.7.10).
3 Solve the projected Lyapunov equation (4.8.4) for the Cholesky factor Z̃c of
Gc ≈ Z̃cZ̃

T
c using the LR-ADI method as described in [Sty08].

4 Compute the EVD

−Z̃T
c ArZ̃c =

[
U1 U2

] [Λ1 0
0 Λ2

] [
U1 U2

]T
.

5 Compute the projection matrix V = Z̃cU1Λ
− 1

2
1 .

6 Compute the reduced matrices Ẽr = I, Ãr = −V TArE−r ArV ,
B̃r = −V TArE−r Br and C̃r = B̃T

r .

Proof. We first show that ẑ = Yσ(Y T
σ ArYσ)−1Y T

σ w if and only if[
Ar Ŷσ

Ŷ T
σ 0

][
ẑ
ẑ2

]
=

[
w
0

]
, (4.8.11)

where the columns of Ŷσ form a basis of im(Fσ). Assume that
[
ẑT ẑT2

]T solves
(4.8.11). Then Ŷ T

σ ẑ = 0 and, therefore, ẑ ∈ ker(Ŷ T
σ ) = im(Yσ). This means that

there exists z̃ such that ẑ = Yσz̃. Inserting this vector into the first equation in
(4.8.11), we obtain

ArYσz̃ + Ŷσẑ2 = w.

Multiplying this equation from the left with Y T
σ , we find

z̃ = (Y T
σ ArYσ)−1Y T

σ w

and, therefore, ẑ = Yσz̃ = Yσ(Y T
σ ArYσ)−1Y T

σ w.
We now show the opposite direction. For ẑ = Yσ(Y T

σ ArYσ)−1Y T
σ w and

ẑ2 = (Ŷ T
σ Ŷσ)−1Ŷ T

σ (w − Arẑ),

we have Ŷσẑ = Ŷ T
σ Yσ(Y T

σ ArYσ)−1Y T
σ w = 0 since Ŷ T

σ Yσ = 0 and

Arẑ + Ŷ T
σ ẑ2 = Arẑ + Ŷ T

σ (Ŷ T
σ Ŷσ)−1Ŷ T

σ (w − Arẑ)

= (I − Ŷσ(Ŷ T
σ Ŷσ)−1Ŷ T

σ )Arẑ + Ŷσ(Ŷ T
σ Ŷσ)−1Ŷ T

σ w.

Using Ŷσ(Ŷ T
σ Ŷσ)−1Ŷ T

σ + Yσ(Y T
σ Yσ)−1Y T

σ = I, we obtain

Arẑ + Ŷσẑ2 = Yσ(Y T
σ Yσ)−1Y T

σ Arẑ + Ŷσ(Ŷ T
σ Ŷσ)−1Ŷ T

σ w

= Yσ(Y T
σ Yσ)−1Y T

σ ArYσ(Y T
σ ArYσ)−1Y T

σ w + Ŷσ(Ŷ T
σ Ŷσ)−1Ŷ T

σ w

= w
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and, therefore,
[
ẑT , ẑT2

]T solves equation (4.8.11).
As it has already been shown in the proof of Theorem 4.23, the matrix Ŷ T

C2
X2 has

full column rank. Then it follows from

Fσ =

[
I 0

0 Ŷ T
C2

X2

] [
I X1

0 I

]

that the columns of Ŷσ =

[
I 0

0 Ŷ T
C2

X2

]
form a basis of im(Fσ). With this structure,

equation (4.8.11) yields
−K 11 −K 12ŶC2 I 0

−Ŷ T
C2

K 21 −Ŷ T
C2

K 22ŶC2 0 Ŷ T
C2

X2

I 0 0 0

0 X T
2 ŶC2 0 0



z̄1

z1

z̄2

z2

 =


w1

w2

0
0

 , (4.8.12)

with ẑ =
[
z̄T1 , z

T
1

]T , ẑ2 =
[
z̄T2 , z

T
2

]T and w =
[
wT1 , w

T
2

]T . Therefore, z̄1 = 0 is
valid, and we only have to determine z1. Thus, equation (4.8.12) can be reduced
to equation (4.8.10) whose solution gives ẑ =

[
0, zT1

]T . Note that this equation is
uniquely solvable, since (4.8.11) is uniquely solvable.

The product Π∞w1 = Yσ(Y T
σ ArYσ)−1Y T

σ Arw1 can be determined by applying
Lemma 4.29 with w = Arw1, and ΠT

∞w can be computed as ΠT
∞w = Ar

[
0, zT1

]T ,
where z1 is defined as in Lemma 4.29.
Similarly to the proof of Lemma 4.29, one can show that the vector

ẑ = Yν(Y T
ν ErYν)−1Y T

ν w can be determined by solving the linear system[
Er Ŷν

Ŷ T
ν 0

] [
ẑ
ẑ2

]
=

[
w
0

]
, (4.8.13)

where the columns of Ŷν form a basis of im(Fν). This basis matrix can be com-
puted from a sparse LU decomposition of Fν as proposed in [Kow06]. Then the
product Π0w1 = Yν(Y T

ν ErYν)−1Y T
ν Erw1 can be calculated by solving (4.8.13) with

w = Erw1. To determine ΠT
0w, we have to solve (4.8.13) for ẑ and compute

ΠT
0w = Erẑ.
In Step 4 of Algorithm 4.5, we also need to compute the product E−r Arw. The

following lemma presents how to calculate such a product in an efficient way.

Lemma 4.30. Let Er and Ar be given as in (4.7.10), Z = Ŷ T
C2

X2(X T
2 ŶC2Ŷ

T
C2

X2)−1

and w =
[
wT1 , w

T
2

]T ∈ Rnr . Then the vector z =
[
zT1 , z

T
2

]T
= E−r w can be deter-

mined by solving the linear systemM11 + X1R −1X T
1 X1R −1X T

2 ŶC2 0

R −1X T
1 R −1X T

2 ŶC2 0

Ŷ T
C2

K 21 Ŷ T
C2

K 22ŶC2 Ŷ T
C2

X2

z1

z2

z3

 =

 w1 −K 12ŶC2ŵ1

ZTw2 − ZT Ŷ T
C2

K 22ŶC2ŵ1

0


(4.8.14)
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with ŵ =
[
ŵT1 ŵT2

]T satisfying[
−Ŷ T

C2
K 22ŶC2 Ŷ T

C2
X2

X T
2 ŶC2 0

] [
ŵ1

ŵ2

]
=

[
w2

0

]
. (4.8.15)

Proof. Let
[
zT1 , z

T
2 , z

T
3

]T and
[
ŵT1 , ŵ

T
2

]T be given such that equations (4.8.14) and
(4.8.15) are fulfilled. Applying Lemma 4.29 to equation (4.8.15), we obtain

Yσ(Y T
σ ArYσ)−1Y T

σ w =

[
0
ŵ1

]
.

Therefore, the first two lines of (4.8.14) are equivalent to[
I 0
0 ZT

]
Erz =

[
I 0
0 ZT

]
(I − ΠT

∞)w.

Furthermore, it holds that Y T
σ Erz = 0 = Y T

σ (I − ΠT
∞)w and with the columns of

Yσ forming a basis of ker(Fσ) we have
[[
I 0
0 Z

]
Yσ

]
invertible as

[
I 0
0 Z

]
is a basis

of im(Fσ). To sum up, we have Erz = (I − ΠT
∞)w. Multiplying this equation from

left with E−r and using equations (4.7.25), (4.7.24) and (4.7.23) we get

(I − Π∞)z = E−r Erz = E−r (I − ΠT
∞)w = E−r ErE−r v = E−r w. (4.8.16)

Therefore, it remains to show that (I−Π∞)z = z. Applying Lemma 4.29 to compute
Π∞z, we have Π∞z =

[
0, zT4

]T with
[
zT4 , z

T
3

]T solving[
−Ŷ T

C2
K 22ŶC2 Ŷ T

C2
X2

X T
2 ŶC2 0

] [
z4

z3

]
=

[
−Ŷ T

C2
K 21z1 − Ŷ T

C2
K 22ŶC2z2

0

]
.

As the third line of (4.8.14) holds, we have z4 = 0 since

Ŷ T
C2

K 22ŶC2 = Ŷ T
C2
CT

2 MνC2ŶC2

is nonsingular. Therefore, (I − Π∞)z = z. Thus, from (4.8.16) it follows that
z = E−r w.

Finally, we discuss the computation of z = (τEr+Ar)
−1w required in the LR-ADI

method in Step 3 of Algorithm 4.5. If τEr + Ar remains sparse, we just solve the
linear system (τEr + Ar)z = w. If τEr + Ar gets fill-in due to the multiplication
with ŶC2 , then we can use the following lemma to compute z = (τEr + Ar)

−1w.

Lemma 4.31. Let Er and Ar be as in (4.7.7) with a constant matrix K 11 and
τ ∈ C−. Then the vector z = (τEr + Ar)

−1
[
wT1 , w

T
2

]
can be determined as

z =
[
zT1 ,
(

(Ŷ T
C2
ŶC2)

−1Ŷ T
C2
z2

)T]T
,

where z1 and z2 satisfy the linear system
τM11 −K 11 −K 12 X1 0
−K 21 −K 22 X2 YC2

τX T
1 τX T

2 −R 0
0 Y T

C2
0 0



z1

z2

z3

z4

 =


w1

ŶC2(Ŷ
T
C2
ŶC2)

−1w2

0
0

 (4.8.17)

with the basis matrices YC2 and ŶC2 of ker(C2) and im(CT
2 ), respectively.
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Proof. First, note that due to the choice of YC2 the coefficient matrix in sys-
tem (4.8.17) is nonsingular. This system can be written as

(τM11 −K 11)z1−K 12z2+X1z3 = w1, (4.8.18a)

−K 21z1−K 22z2+X2z3+YC2z4 = ŶC2(Ŷ
T
C2
ŶC2)

−1w2, (4.8.18b)
τX T

1 z1+τX T
2 z2−R z3 = 0, (4.8.18c)

Y T
C2
z2 = 0. (4.8.18d)

It follows from (4.8.18d) that z2 ∈ ker(Y T
C2

) = im(ŶC2). Then there exists ẑ2 such
that z2 = ŶC2 ẑ2. This relation implies

ẑ2 = (Ŷ T
C2
ŶC2)

−1Ŷ T
C2
z2. (4.8.19)

Further, from equation (4.8.18c) we have z3 = τR −1X T
1 z1+τR −1X T

2 z2. Substituting
z2 and z3 into (4.8.18a) and (4.8.18b) and multiplying equation (4.8.18b) from the
left with Ŷ T

C2
, we obtain

(τEr + Ar)

[
z1

ẑ2

]
=

[
w1

w2

]
.

This equation together with (4.8.19) implies that[
z1

(Ŷ T
C2
ŶC2)

−1Ŷ T
C2
z2

]
= (τEr + Ar)

−1

[
w1

w2

]
.

Remark 4.32. We have seen that BT for the 3D linear MQS problem (4.7.4) is
applicable analogously to BT for the 2D linear MQS problem (4.3.5). Model order
reduction using POD and DEIM for the nonlinear MQS systems can also be easily
transferred from the 2D system (4.3.5) to the regularized 3D system (4.7.9).

138



5 Summary and outlook

The simulation of modern electronic devices is becoming increasingly important in
their development. At the same time, models are becoming more accurate and com-
plex. They are often available as coupled systems of partial differential-algebraic
equations. Model order reduction and dynamic iteration are two tools for the
efficient numerical solution of such systems. In the first part of this thesis, we
studied the DIRM method for coupled systems of nonlinear ordinary differential
equations (ODEs), which is based on a combination of the dynamic iteration and
model reduction methods. It was shown that the DIRM procedure heavily relies on
an appropriate strategy for the choice of method parameters. An a posteriori error
estimator for the DIRM method, which is based on a logarithmic Lipschitz constant
for the nonlinearity, was also derived. This error estimator provides reliable infor-
mation on the quality of the solution of the coupled system computed by the DIRM
method. It can be efficiently calculated by determining the logarithmic norm of
the Jacobi matrix of the nonlinearity using the successive constraint method. The
presented numerical experiments demonstrate the usability of the proposed error
estimator.

In the second part, a special partial integro-differential-algebraic equation was
considered, which arises in simulation of electromagnetic devices coupled to elec-
trical circuits. The distributed electromagnetic devices were modeled by Maxwell’s
equations in a magnetic vector potential formulation. First, we analysed magneto-
quasistatic (MQS) field problems on a 2D domain. A spatial discretization by using
the finite element method leads to a system of differential-algebraic equations (DAE).
We studied the structural properties of the resulting system. In particular, we
showed that this system has tractability index one. Furthermore, we investigated
the passivity of the variational MQS problem and semidiscretized system by defining
a storage function which describes the magnetic energy of the system. In the linear
case, passivity was examined by means of positive realness of a transfer function.
Based on this result, we developed a passivity-preserving balanced truncation model
reduction method for linear MQS system. This method involves the solution of only
one Lyapunov equation and provides a computable error bound. For model reduc-
tion of the nonlinear MQS system, we used proper orthogonal decomposition (POD)
combined with the (matrix) discrete empirical interpolation method ((M)DEIM) for
fast evaluation of the nonlinearity. Our model reduction approach is based on trans-
forming the DAE system into an ODE form by exploiting a special block structure
of the MQS model and applying standard model reduction methods to the result-
ing ODE system. It should be noted that the transformation to the ODE system
requires the computation of an orthonormal basis of a certain subspace and, in gen-
eral, destroys the sparsity of the system matrices. To overcome these computational
difficulties, we used the underlying structure of the transformed system and per-
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formed all computations in terms of the original sparse data. For the POD reduced
model, we proved the preservation of passivity, while for the POD-DEIM reduced
model, we presented a passivity enforcement method based on perturbation of the
output which depends on the errors introduced by DEIM. Numerical experiments
for a single-phase 2D transformer demonstrate the performance of the presented
model reduction methods.

Finally, MQS field problems on 3D domains were discussed. Here, a main difficulty
is that the spatial discretization results in a singular DAE system. We presented
a regularization method based on projecting out singular state components. For
that purpose, we derived a condensed form for the system pencil which allows to
decouple the nonlinear MQS system into the regular and singular part and to deter-
mine the subspaces corresponding to the infinite and zero generalized eigenvalues.
This makes it possible to extend the balanced truncation and POD-DEIM model
reduction methods to 3D linear and nonlinear MQS systems. We also studied the
passivity of 3D MQS problems.

Future work will focus on improvements of model reduction algorithms for 3D lin-
ear and nonlinear MQS systems which can, for example, be achieved by using graph-
theoretical algorithms for computing certain subspaces of involved incidence and
loop matrices. Furthermore, the development of structure-preserving and energy-
preserving model reduction methods for electromagnetic problems would be of great
interest.
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Our world today is becoming increasingly complex, and

technical devices are getting ever smaller and more pow-

erful. The high density of electronic components together

with high clock frequencies leads to unwanted side-effects

like crosstalk, delayed signals and substrate noise, which

are no longer negligible in chip design and can only insuffi-

ciently be represented by simple lumped circuit models. As

a result, different physical phenomena have to be taken into

consideration since they have an increasing influence on the

signal propagation in integrated circuits. Computer-based

simulation methods play thereby a key role.

The modelling and analysis of complex multi-physics prob-

lems typically leads to coupled systems of partial differential

equations and differential-algebraic equations (DAEs). Dy-

namic iteration and model order reduction are two numerical

tools for efficient and fast simulation of coupled systems.

For modelling of low frequency electromagnetic field, we use

magneto-quasistatic (MQS) systems which can be consid-

ered as an approximation to Maxwells equations. A spa-

tial discretization by using the finite element method leads

to a DAE system. We analyze the structural and physical

properties of this system and develop passivity-preserving

model reduction methods. A special block structure of the

MQS model is exploited to to improve the performance of

the model reduction algorithms.
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