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PREFACE

There are two major trends in the history of the logical analysis of (natural) language
(‘LANL’). The first one can be traced to Bolzano, Frege, Carnap (in his semantic period), and
Wittgenstein (in his tractarian period); the main representatives of the second are the later
Wittgenstein, Quine, his numerous followers, Brandom, etc. The former tendency is older,
which may give the impression (which seems to have actually happened) that it is outdated.
The latter is younger and gives the impression that it is a fundamental correction of the errors
made by the former. Among those errors are: realism, atomism (‘myth of museum’), and, of

course, the ‘two dogmas’, which have been so resolutely criticised by Quine.

As a result of this criticism we have inherited anti-realism: a widespread misuse of
Occam’s razor, i.e., cutting out even such abstract entities which make it possible to explain
linguistic phenomena from the vantage point of LANL; replacing any use of ‘objective’ by

the coy term ‘intersubjective’; selling pragmatic definitions as semantic analyses.

We have also inherited holism: the view (first clearly formulated by Quine in his Two
dogmas) that asking for meanings of particular expressions is futile since only knowledge
systems as a whole can be semantically evaluated. (No positive results of such a holistic
evaluation have been offered—unless the numerous scattered aphorisms in the later

Wittgenstein’s works can be taken to be such results.)

Since it is claimed that ‘atomistic’, ‘informational’ semantics has been shown to be
mistaken, inferential semantics has come into being: in full harmony with anti-realism, for if
we refuse the ‘vertical’ linkages between expressions and extra-linguistic world what remains
are ‘horizontal’ linkages connecting expressions inter se: the ‘so-called’ meanings are the
ways we use expressions according to some rules of our ‘language games’. (But “...it doesn’t
seem that languages are a lot like games after all: queens and pawns don’t mean anything,

whereas ‘dog’ means dog.”, see Fodor, p.36.)

One of the consequences of the ‘new’ (or rather ‘post-") tendency is that various kinds
of relativism have become most popular. (More about this can be found in Tichy’s book,
Preface and Epilogue.) Allegedly it follows that the distinction between analytic and
empirical expressions is doubtful (the boundary between them is made fuzzy) and radical

contextualism should prove that isolated expressions do not possess an identifiable meaning.

There is a natural (albeit unwilling) ally of the post-trends: formalism. Even
philosophical logic can be hospitable to it: starting our analyses with formal axioms may
support the illusion that some good formal properties of the respective system (like
completeness or decidability) are the main goal of the analysis. Incomplete systems are

something like exiles from the logical paradise and—as we are told by some logicians—logic



should not be concerned with such systems (as if logic came into existence till with the idea

of formal axiomatics). See Bealer’s 1982 book for a criticism of this approach to logic.

We must admit, however, that the post-analytic tendency, as characterised above, has
influenced mainly the philosophy of language; the LANL proper proved more immune
(Montague, for example.) What is important for understanding the present book is that the
author has decided not to systematically criticise theories based on post-analytic assumptions:
instead, he intends to show that a positive theory based on rejecting these assumptions is
possible. Not only that, the author admits that the change of the ‘classical semantic
paradigms’ has been made possible by some shortfalls in their application. Something was
missing, so the classics remained defenceless when the Quinean attack started: Quine surely

put his finger on the weaknesses of Carnap et alii.

The ‘missing link’, the absence of which led to the easy success of the post-wave, was
detected by Pavel Tichy (see the References), who has not hesitated to “go back to where
Frege and Russell left off and go on from there”; he was able to do it because he enriched the
classics with fundamentally new principles of logical analysis. These new principles could
have been formulated (in his transparent intensional logic, TIL) since Tichy was not shy
about his realism, and therefore did not see any reason not to introduce abstract entities (in
harmony with the counterpart of Occam’s razor, i.e., ‘Menger’s comb’, which says that
entities should not be omitted unless necessary). Thus one of the leading principles of TIL
(quoted also in the main text of the present book) is that language is a code, and therefore

meanings are not created but detected by language:

The notion of a code presupposes that prior to, and independently of, the code
itself there is a range of items to be encoded in it. Hence...meanings cannot be
conceived of as products of the language itself. They must be seen as logical
rather than linguistic structures, amenable to investigation quite apart from their
verbal embodiments in any particular language. To investigate logical
constructions in this way is the task of logic. The linguist's brief is to investigate

how logical constructions are encoded in various vernaculars.

Needless to say, this principle is radically anti-Quinean and hence outside the
mainstream of contemporary semantics. Yet Tichy did not waste his time in ‘proving’ this
principle: instead he worked out a positive theory that has been able to solve fundamental
problems of LANL; besides he has shown that the ‘rival’ theories were not able to solve them.
TIL, as a general approach to solving problems of LANL, differs from other approaches also
by not being an ad hoc theory that should solve a particular problem via building a special

axiomatic system. Its tools are sufficiently strong and can be, of course, further developed.

The author has been inspired by three sources: the main source is TIL; further, some

profound thoughts in Bolzano’s Wissenschaftslehre, and, finally, Church’s generalisation of



the notion of concept. The idea resulting from putting these sources together is simple:

Concepts are abstract procedures that lead (in the best case) to some object.

The notion that makes it possible to realise this general idea is that of construction, as
defined in TIL. Armed with this notion the author published in 1998 a monograph (Concepts
and Objects). Many discussions with his friends and students have convinced him that his
explication of concept was fruitful and that it could be exploited even in some more practical
areas (such as conceptual modelling). On the other hand, the importance of one chapter of
Concepts and Objects, viz. ‘Conceptual systems’, proved to be much greater than could have
been shown within the space available. Therefore, the author decided to show that a theory of
conceptual systems might influence the solution of some broader questions, even some that
would be of interest for the theory of science. The theory of conceptual systems itself belongs,
however, to LANL and its non-empirical character should be clear (which does not exclude

the building of ‘bridges’ with, say, the cognitive sciences.)

Among the results of our analysis the following observation is interesting: the
tendency to relativism characteristic of the ‘post-wave’ needs not be dangerous if the
necessity of relativisation in justified cases is explained; the explanation can be nearly
universally formulated in terms of conceptual systems. Thus the dangerous ‘conceptual
relativism’ can be replaced by admitting ‘conceptual plurality’ definable in terms of
conceptual systems; the boundary between analytic and synthetic statements does not
disappear (as Quine has claimed) but is relative to conceptual systems; incommensurability
(see Kuhn) does exist but is not as damaging to our intuition of continuity of knowledge as we

sometimes think when reading our post-authors, etc.

The author himself was sometimes rather surprised when recognising that some
consequences of his approach were totally unexpected (so, e.g., the claim that there are
synthetic concepts a priori; to get this result it was necessary, of course, to modify—in
accordance with what we now know and what Kant could not have known—the idea of

analyticity).

One point can never be sufficiently emphasised: The theory of concepts worked out in
Concepts and Objects and further developed in the present book is based on the TIL notion of
construction. It is just this notion that is most difficult to swallow for most mainstreamers.
The term itself may be not the happiest: TIL constructions are not the ‘constructions’ of
intuitionists, not to speak about connotations from other areas. But I still think that the
respective definitions unambiguously determine what they are and what they are not. The
most widespread misunderstanding consists in interpreting constructions as a kind of
expressions of an artificial language. Allow me to use the present Preface to explain once

more why this interpretation is wrong.



Constructions are extra-linguistic abstract ‘procedures’ that consist of unambiguously
determined ‘steps’. We have to define them, of course, and to do so we need some means of
unambiguously fixing them. These means are a kind of an artificial language but
constructions are not expressions of this language but what these expressions denote. Thus
whereas—according to our approach—constructions are the meanings of the given
expressions of natural language and are (using Fregean terminology) expressed by these
expressions, our artificial expressions (of the ‘language of constructions’) denote the

constructions in question.

(The Quinean prejudices strongly influence the misunderstandings concerning
constructions. In harmony with these prejudices some philosophers say: We cannot ‘jump
out’ of language; semantics can only study ‘horizontal’ relations between expressions. Well,
try at least conceive of constructions in the same way as when we use the expression
‘elephant’ to talk about extra-linguistic elephants. We will see in the main text that, e.g., while
the names of constructions in our artificial language may contain brackets and letters, the

constructions themselves can contain neither brackets nor letters.)

Some analogies may elucidate what is meant by the key notion of constructions.
Imagine a computer program. This program is an expression. The denotatum of this
expression is the function that has to be calculated. Yet between the program and the function
there is an algorithm: the latter corresponds to construction; it could be said that it is the
meaning of the program. (Needless to say the algorithm is not the same as any of its concrete
executions; the former is abstract, i.e., neither spatially nor temporally localisable, the latter is
always a concrete event, hence concrete.) What is characteristic of this algorithm is that it
consists of particular ‘steps’ (instructions), which are at the same time fundamentally different
from the set of these steps. The set cannot be executed, while the algorithm can be executed to
realise a function. (Who could forget Bolzano’s distinction between the content (/nhalt) of a
concept and the concept itself! NB Bolzano knew this distinction in the year 1837, see p.244
of [Bolzano 1837], Vol.I.) See also [Moschovakis 1990], and for a criticism of Cresswell’s
tuples [Tichy 1996a, pp.74-80], [Jespersen 2003].

Once we accept constructions as explicans for ‘abstract procedures’ we break through
the circularity that, according to Quine, makes impossible a definition of the boundary
between analytic and synthetic statements. Indeed, the meaning of an expression E (of any
language) can be identified with that concept which is the best analysis of E, where
1)  an analysis of E is a concept that is the result of synthesising (in a definable way) the
sub-concepts underlying the particular sub-expressions of E

i1)  one of the possible analyses is the best one

i)  which analysis is the best one is unambiguously determined by a given conceptual
system

iv)  concepts are (closed) constructions.



This is, of course, a very coarse characterisation of how the “obscure entity” (Quine,
e.g., his [1953]) meaning can be defined independently of defining analyticity or synonymy.
For details, see Intermezzo: Parmenides Principle in the present book. As soon as the
definition is accepted, synonymy is easily defined independently of analyticity (see 1.4.3.4);

the rest is obvious.

If some followers of Quine really believe that we sink into the metaphysical mud if we
accept the notion of construction / concept, we can only regret that in semantics the
metaphysical sin is what for mathematics the normal working method is. But of course, this is
no argument for the Quineans: since his early works Quine behaviourizes and pragmatizes
semantics, which in his hands becomes an empirical discipline; as such it is dramatically
distinct from LANL, and Occam’s razor rather than Menger’s comb can be emphasised (or at

least such an emphasis can be more tolerated).

Another point deserves attention. The term concept is frequently used in semantics,
psychology, the theory of science etc. Strangely enough, mostly we are informed about
various facts in the respective area but we are not able to appreciate the information, for we
are not informed what is meant by the term ‘concept’. Even analytic philosophers and
semanticists use such terms as intension, concept, reference extremely carelessly, even, |
would say, sloppily. It sometimes seems to me that whenever an author writes on semantics
he presupposes that everybody understands the meaning of intension or of concept, although
it is a banal truism that these terms are used in very different senses in different articles and
books. (In this respect I have to appreciate the tradition of Vienna Circle, where every new

term has been defined and then used in the same sense.)

An example of such a context: concerning conceptual schemes we get the following

information from The Oxford Dictionary of Philosophy:

The general system of concepts with which we organize our thoughts and
perceptions. The outstanding elements of our everyday conceptual scheme include
spatial and temporal relations between events and enduring objects, causal

relations, other persons,...

The meaning of the term concept is here simply taken as being well-known and uniformly
used. Using in this careless way the term concept we cannot decide, e.g., whether we can have
more concepts for the same object (even Bar-Hillel in his [1950] has not understood Bolzano
in this respect), whether the set of primes is a concept, whether some concepts are not
universalia, what does it mean when we say that a concept is empty (or whether there are
more kinds of conceptual emptiness), whether we can rationally speak about the

‘development’ of concepts, etc. etc.

The necessity of various explications of the term concept became obvious—see

Introduction. My explication has been worked out in 1998; the present book recapitulates this



explication and then tries to exploit it in analysing conceptual systems and their connections

with languages.

Among some interesting results of the present study I can adduce:
1. (To be found already in Concepts and Objects):
Distinctions of various kinds of emptiness of concepts (1.4.1.1)
An analysis of the distinction between using and mentioning concepts (1.4.2.3)
To be identified by a concept C = to be constructed by C.
Some (non-empirical) concepts do not identify any object.
Empirical concepts identify intensions (never their values in the actual world-time).
2. (New):
Simple expressions do not necessarily express simple concepts. (2.1)
Given a conceptual system C the best semantic analysis of an expression w.r.t. C can
always be found. (Intermezzo Parmenides Principle.)
At least one empirical concept in an empirical conceptual system C must be primitive in
C.(24)
The area of an empirical conceptual system can be creatively extended either
‘inessentially’ or ‘essentially’. (Def.26)
If the set of problems (= of non-simple concepts!) that can be posed in a conceptual
system C is a proper subset of the set of problems that can be posed in a conceptual
system C’ then C’ is a creative extension of C. (Follows from 3.2.2 and 3.2.3)
Analyticity is relative to conceptual systems. (3.6)

There are synthetic concepts a priori. (3.9)

The next (final) remark is rather important. TIL, which is the ‘philosophical’ and
‘technical’ base of the present theory of concepts and conceptual systems, is a logic;
contemporary logicians expect that every logical system is given by a system of axioms and
rules. Is TIL given by such an axiomatic system? We have to admit that what we call
transparent intensional /ogic is not and cannot be given by an axiomatic system. TIL is a
theory whose logical character is rather clear; what could be called semantic proofs (which
corresponds to meta-proofs in the standard logic) is unambiguously determined in TIL (see,
e.g., good examples in [Tichy 1986]) and the following characteristics of logic from [Tichy
1978] should be recognised as being compatible with the standard theory:

Logic is the study of logical objects (individuals, truth-values, possible worlds,
propositions, classes, properties, relations, and the like) and of ways such objects
can be constructed from other such objects. The logician makes it his business to
explain, for example, how Bill, the individual, and walkerhood, the property,
combine to yield or construct the proposition that Bill walks, and walkerhood
combines with some other objects to yield or construct the proposition that

everything walks. The point of investigating logical constructions of objects is



two-fold. In the first place, the nature of such constructions often guarantees
noteworthy properties or relationships between the objects generated by those
constructions. For instance, the two constructions mentioned above assure that the
proposition generated by the former is weaker than (i.e. is implied by) the
proposition constructed by the latter. In the second place, logical constructions
can be assigned to linguistic expressions as their analyses. For example, the
former construction will serve as the logical analysis of the sentence “Bill walks”
and the latter as the logical analysis of “Everything walks”. Provided that those
analyses are correct, the aforementioned relationship between the constructions
legitimises an argument from “Everything walks” to “Bill walks”. (Emphasis
mine. —P.M.)

On the other hand, it should be clear that TIL is an open-ended theory (on this point
see [Bealer 1982], 219-221) that cannot be exhaustively determined by any particular
axiomatic system (NB completeness of such a system cannot be achieved, of course). Such a
particular (Gentzen-like) system can be found in [Tichy 1982] for the 1st order (unramified)
theory of types as formulated in TIL. Particular axiomatisations for the ramified version (see
Definition 5) can be realised, of course, but any such particular axiomatic system can serve

only for particular goals; no such system can be conceived of as defining TIL.

Therefore, neither in Concepts and Objects nor in the present book can any axiomatic
system be found. Since the present theory of concepts and conceptual systems defines
concepts as procedures (‘constructions’) not reducible to set-theoretical entities, any
axiomatisation will be highly imperfect: classical models are set-theoretically oriented. This

does not mean that no attempts should be made, of course.
The present book can be naturally divided into four parts.

The first part (Chapter 1) begins with general problems of semantics; it defines and
defends transparent intensional logic (TIL) and recapitulates—with some modifications—the

explication of the term ‘concept’ in Concepts and Objects.

The second part (Chapter 2) defines—in the same way as in Concepts and Objects
—conceptual systems and presents the first fundamental application thereof in the Intermezzo

(“Parmenides Principle™).

The third part (Chapter 3) connects conceptual systems with languages and tries to
define notions needed for the application of the theory of conceptual systems to a diachronic
view which takes into account the development of language. We show that the results thereof
can be interesting for the philosophy of science (in particular, the ‘incommensurability’

problem), for epistemology (analytic vs. synthetic) and suchlike.
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Appendix 1 recapitulates the main symbols used in the book, Appendix 2 summarises
some specific features of TIL, Appendix 3 does the same for the theory of concepts, and
Appendix 4 shows an application of the approach presented to the solution of Putnam’s

‘Carnapian vs. Polish Language’ problem.
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0. Introduction

At least three monographs more or less concerning concepts appeared in the same year, 1998
(Bartsch, Fodor, Materna). It is as if philosophers, psychologists and logicians wanted to

simultaneously confirm the claim that

a host of issues in logic, philosophy of language, philosophy of mind, and
metaphysics come together in the theory of concepts and related issues of

intensionality and ontology. (G.Bealer in a personal letter.)

This ‘interdisciplinary’ character of the entity named concept is nearly commonly agreed on.
Also Rey in his [Rey 1998] writes:

The topic of concepts lies at the intersection of semantics and philosophy of mind.

Reading similar formulations we are tempted to say: What a chameleon a concept must be!

Yet such an impression is misleading. It arises, of course, if somebody says:
My topic is what concepts are. (Fodor in his [1998, 1]. Emphasis mine.)

Actually, what any author of a theory of concepts does is articulate some (optimal)
explication of the term ‘concept’, explication being meant in Carnap’s sense. Now any
Carnapian explication should take into account the most frequent contexts containing the
given term. And we will surely agree that there are many distinct kinds of context which
contain the term ‘concept’, as well as that some of these contexts are mutually incompatible in
the sense that what should correspond to the term ‘concept’ in one kind of context cannot
satisfy the requirements given by another kind of context. (A typical example: the way the

psychologists often use the term is incompatible with its use by, say, Frege.)

So there are obviously many notions associated with the term ‘concept’, which means
that there is no one such entity which could be said to be the concept. The present study is an
attempt at such an explication that takes into account mainly logico-semantic contexts. The
explication, based on 1.2.2 and closed in 1.4.2, is essentially the one articulated in [Materna
1998]. The purpose of the present study is, however, different; I would like to show that our
Platonic approach can contribute to the rational analysis of some problems connected with
what I call conceptual systems and that are at the same time relevant from the diachronic
view. I mean some problems whose formulation uses the word development and which are
interesting from the epistemological viewpoint. The ‘focal point’ of the study lies therefore in
Chapter 3. The explanations, or, if you like, ‘models’, offered in that section are, of course,
not empirical explanations: the history of languages is not the subject of logico-semantic
analyses. But if I am permitted to adduce an analogy, dynamics of natural events can be

successfully studied by exploiting the non-empirical static tools given by mathematics.
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Before beginning our own explication we should, however, mention some other

options. I have chosen two independent bivalent criteria of classifying these options, so that I

get four kinds of explication (which is indeed a very coarse-grained classification, but

sufficient for our purposes):

Criterion A: 1.
II.
Criterion B: I.

IL

Concepts as mental entities.
Concepts as non-mental entities.
Concepts as set-theoretical entities.

Concepts as structured entities (procedures).

Al BI

Al BII All BI All BIT

Traditional logic (?)

Intuitionists | Frege, Godel, Church Bolzano (?), Cresswell (?),
Bealer (?), Materna

Now we will comment this classification.
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1. Concepts

1.1. Mental entities

The main difficulty to be resolved by any mentalistic theory of concepts consists indeed in the
fact that if concepts are ‘constituents of thought’ (see, e.g., [Rey 1998]), then they should be
‘shareable’ (ibid): otherwise one could not explain the obvious fact that people, in general,
understand each other. (Or one would have to give up the fundamental intuition that

communication proceeds via concepts.)

This difficulty has been recognised long ago. Ziehen [1920, 459] tries to resolve it as

follows:

Jede Vorstellung, die als unverénderlich mit Bezug auf denselben Gegenstand
gedacht wird, wird dadurch aus dem Bereich des Psychologischen herausgeriickt

und zu einer logischen Vorstellung — Normalvorstellung, Begriff — umgedacht.

This kind of solution is, of course, not viable. Vorstellung in the ‘normal’ (not
Bolzanian, not Fregean) sense is a psychological phenomenon. There is no guarantee that it is
thought about one and the same object; it is a concrete (i.e., temporally and spatially
localisable) phenomenon; concepts, unlike thoughts, should be abstract and their status should

be independent of the way they are thought (even umgedacht) about.

There are some other difficulties, perhaps still more devastating, if we take concepts to
be images. First, images are normally distinct in distinct brains (this is the general problem of
shareability). Second, no image can correspond to an abstract object whereas everybody
knows concepts of such objects (concepts of numbers, functions, properties etc. etc.). Third,
we surely agree that an image “lasts”, i.e., that it exists just then and there when and by whom
it is possessed, whereas we would hardly agree that a concept “lasts”, that a concept “exists”

only in so far as it is possessed by somebody.

Notwithstanding these and similar problems, the mentalistic explication is not
completely absurd. It has inspired some theories interesting from a psychologico-
philosophical viewpoint; for example, one can be interested in ‘genetic theory of concepts’
and build up an essentially empirical theory based on the notion stabilisation of possible
expansions of sets under a perspective (see [Bartsch 1998, 2]). We will take mentalistic
explications to be acceptable as concerning such entities which may be interesting in some

contexts (not in the logical ones).
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1.1.1 Mental set-theoretical entities

The notion of set-theoretical entity has been explained in [Materna 1998]. To say that some
entity is set-theoretical is to say that it is not complex, not an abstract procedure. In particular,
a set cannot be executed. More details can be found in Tichy’s excellent [1995] wherefrom it
follows that to be a complex is more than to have constituents. (Bolzano seems to have been

aware of this distinction, see 1.2.2.)

Set-theoretical explications make up a great majority of the explications of the term
concept. Within the framework of mentalistic conceptions it is probably so-called traditional
logic which could serve as a representative of set-theoretical explications. I do not think that
the heterogeneous group of works classifiable with traditional logic must be always
characterised as ‘mentalistic’. As soon, however, as a textbook of logic ‘defines’ concept as a
reflection (of essential features of the object) we can see that concept has to be mental
(otherwise, how could it ‘reflect’ anything?). As for the set-theoretical character of the
traditional explications, it is clearly visible from the doctrine of the reverse proportion
between the so-called intension and extension of a concept. The extension of a concept is
traditionally construed as a class/set of objects ‘falling under’ the concept. The intension of a
concept is then the set of Merkmale (features) of the concept, which can be set-theoretically
defined as follows: Let the extension of a concept C be the intersection of the extensions of
concepts Cy,...,C,. (These are the Merkmale of C.) Then the intension of C is the set
{Cy,...,C,}. The doctrine of the reverse proportion becomes in this way a trivial consequence
of this definition. Notice that a) this conception presupposes that all concepts are universalia,
i.e., general concepts, b) the intension is defined in terms of extension, and c) the concept
itself (not only its extension and its intension) is, properly speaking, not defined, so that what

remains is to take refuge in a ‘psychological’ characteristics (‘reflection...’).

Being extensionalist is not the same as being set-theoretical. Kauppi in her [1967] has
formulated a theory of concepts that is perhaps the most modern formalisation of the
traditional theory, and she tries to emphasise the ‘intensional character’ of this theory in
Leibniz’s sense. The relation intensional containment, which should guarantee this intensional
character, is, however, deliberately undefined, it is a primitive notion in Kauppi’s calculus.
Yet even if its explication were given in the spirit of Carnapian intensions (as Kauppi seems
to intend in [1967, 26]), Kauppi’s notion of concept would remain to be set-theoretical. The
point is that intensions are mostly modelled as functions, as mappings with possible worlds as
arguments; mappings are, of course, set-theoretical entities, unlike procedures. (See [Materna
1998, esp. 81-82].)

Kauppi herself was no mentalist. It is mainly ‘traditional logic’ which can be
associated with mentalistic set-theoretical systems; this does not mean that the set-theoretical

approach would have been consciously applied. The mentalistic moment consisted, as we
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already suggested, in the pseudo-definitional claim according to which concepts were said to
be ‘reflections’ of .... The set-theoretical moment is represented by the doctrine of extension
and intension of a concept (see above). Indeed, the intension of a concept is a set of
Merkmale: in at least this respect a concept cannot be said to be structured—a traditional
logician cannot tell the difference between a concept and its intension (therefore, if we say
that a concept is a set of ‘Merkmale’ instead of saying it of the intension of the concept, no

traditional logician would probably protest). See 1.2.2.

One could object that the ‘traditional concepts’ are, of course, structured, since they
contain components, viz. the mentioned Merkmale. In this sense we could, however, say that
every set is structured, since its components are its members. Tichy’s and my answer is: sets
are properly speaking, dichotomies: they divide the respective area into members and anti-
members which fogether determine the set. This situation does not give us the right to speak
about components of a set. We will see that (abstract) procedures can be contrasted with set-

theoretical entities. (For more details see [Tichy 1995].)

1.1.2 Mental procedures

I am not sure which of the theories of concept or concept theories (for this distinction see
[Paloméki 1994]) could be construed as taking concepts to be mental procedures. Allow me,
therefore, to imagine intuitionists as theorists of concept. If they agreed to conceive of
concepts as constructions, which I think would be a very natural step, they would be good
representatives of the possible doctrine “Concepts are mental procedures”. Let the

expression “construction” in the following text be substituted for by the expression “concept’:

If one had to define constructions in general, one would surely say that a type of
construction is specified by some atoms and some combination rules of the form
‘Given constructions xj,...,x; one may form the construction C(xy,...,xx), subject

to certain conditions on xy,...,x; . [Fletcher 1998, 51]

We can see that the procedural character of such a theory of concepts is obvious. On
the other hand, the intuitionistic conception makes constructions dependent on our ability to

‘find’ them. Sundholm adduces a classical example in his [2000, 7]:

We consider, with Kronecker, a classical function f € N — N that is defined by a

non-decidable separation of cases:

k) =4, 1 if the Riemann Hypothesis is true
k) =4 0 if the Riemann Hypothesis is false.

According to Kronecker, and | agree, f'is not well defined, that is, the rule does

not give a function from N to N. Because consider /' (14), say. There is at present
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no way of evaluating this to primitive form as an Arabic numeral, since we cannot

(yet) decide the Riemann hypothesis.

This quotation, so characteristic of intuitionists, proves that constructions—and, in our
thought experiment, concepts—cannot be independent of human creativity; thus concepts

would be for intuitionists mental constructions.

Remark: ‘Mental” means here ‘mental’ in the usual psychological sense. If ‘being mental’
were related to ‘infinite mind’, ‘Absolute Intellect’ or so, our considerations would be
senseless. See [Kohler 2000].—

1.2 Non-mental entities

1.2.1 Non-mental set-theoretical entities

The most classical representative of non-mentalistic theories of concepts is obviously Frege.
His [1892] defines concepts as characteristic functions of classes of objects; as functions they
are ‘unsaturated’ so that the expressions denoting concepts cannot occupy another position in
a sentence than that of predicate. If such an expression (‘Begriffswort”) stands in the subject
position, then the respective concept becomes an object in virtue of replacing the original

function by the ‘Wertverlauf® of the latter (which is somewhat mysterious).

Some important points can be adduced as objections to Frege’s theory (see, e.g.,
[Tichy 1988] or [Materna 1998] from the viewpoint of transparent intensional logic, and

many critical articles biased in another way). Some of them, relevant for our purposes, are:

1) Only general (universal) concepts are taken into account. THE HIGHEST MOUNTAIN is

not a concept for Frege contra our intuitions.

2) The same example can serve to show that Frege is the victim of what Tichy called Frege’s
Thesis, for example in [Tichy 1996a, 23]:

Special contexts aside, a descriptive phrase does not refer to the determiner
linguistically associated with it but to the object (if there is one) which the

determiner singles out.

In the case of the empirical concepts this means, e.g., that for Frege the expression the
highest mountain denotes the object that happens to be the highest mountain, i.e., Mount
Everest, so it is not a Begriffswort. Or take a Begriffswort, say, the phrase a black cat. The
respective concept is—according to Frege’s Thesis (which is still tacitly accepted by most
contemporary semanticists) —a function which associates a concrete object with T(rue)
or F(alse) dependently on whether this object is or is not a black cat. This means,
however, that the expression a black cat denotes distinct concepts at distinct time points,

and that what concept is denoted by it depends on contingent facts, on the given state of
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the world; this consequence strongly clashes with our intuitions connected with the word

concept.

3) Consider a mathematical concept, say, A PRIME NUMBER. To Frege the concept is the
characteristic function of the class of prime numbers. One could ask, however, what
difference there is between the class of prime numbers and a concept of this class.
Properly speaking this class would be identical with its concept. (Well, one could agree,
saying that mathematical concepts are just classes; my intuition resists accepting this

view: there are many concepts of one and the same class.)

4) Knowing about Frege’s idea of semse, which should be a mode of presentation of the
object denoted and which would be expressed by the expression, one would expect that
this idea, together with a common intuition associated with the word concept, would lead
Frege to let the concept be expressed by the respective expression and serve as the sense
of the latter. Yet the Begriffsworter do not express concepts: they denote them.
Practically, they simply denote classes (as we already stated, the only distinction between
a class and the respective concept would be the distinction between a class and its
characteristic function). Briefly, concept is, for Frege, not a way to the object: rather it is

an object (sui generis) itself.

On the other hand, Frege’s conception is an anti-psychologist one. Concepts are not
mental entities; rather they are inhabitants of the Platonic realm (although some formulations

are not strictly Platonic). For the most part, Frege’s theory belongs to the box All BI.

Frege’s problems are shared by all set-theoretical conceptions. At least points 1) and
4) were, however, unacceptable to the great Fregean Alonzo Church. In his [1956] Church
deliberately ignored Frege’s construal of concepts and—avoiding thus the objections under
points 1) and 4)—placed concepts where Frege would place his Sinn. Briefly, Church has
identified concepts with senses (today we would talk promiscuously about meanings). Then,

of course, a mentalistic view is untenable. Cf. [Peacocke 1992, 237]:

If ‘meaning’ is used correlatively with ‘sense’, meanings are the concepts

expressed, not the mental representations of them.

Church’s universalism in this respect is remarkable: concepts are for him expressed
not only by universal expressions (as it would follow from Frege’s theory), and not only by
universal expressions and names/descriptions (as Bolzano had it) but by all (meaningful)
expressions: as a consequence sentences also express concepts. This last point sounds
provocative enough: traditionally nouns are supposed to denote something whereas sentences
do not denote (and they cannot, therefore, possess a sense in the Fregean interpretation):
sentences claim something, so that they can be—unlike the other kinds of expression—true or
false. And it would be incompatible with the normal use of the word concept to say that

concepts—since connected with sentences—lead to a truth-value: usually we say that
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concepts cannot be true or false. But this objection can be successfully dealt with as follows:
in the case of empirical sentences concepts are ways of identifying what the sentence says,
viz. the respective proposition. Whereas this proposition can be, indeed, true or false, the

identifying procedure (“way”) is not. So for example the proposition given by the sentence
There are living beings outside of our Solar system

is of course true or false, but the concept expressed by it only identifies this proposition, far
from determining its truth-value. (See [Materna 1998, 65].) A somewhat modified

consideration can be applied in the case of mathematical sentences.

Now the fact that Church has modified Frege’s conception of concepts (since if every
kind of expression expresses a concept, then the latter cannot be a characteristic function of a
class) cannot change the set-theoretical character of Church’s conception. For if we try to find
out what exactly Church has meant by concepts, we can see that a most cogent interpretation
could be delivered by P(ossible-)W(orld) S(emanticists) who would offer intensions as
functions from possible worlds as explicans. One of pernicious consequences thereof would

be that it would be impossible to define mathematical concepts.

Remark: To see this consider two examples. First, which intension would correspond to, say,
the expression a prime number? Obviously it would be a constant function that would
associate every possible world (and time) with one and the same class of numbers. Such
trivial, constant intensions are hardly something what would distinguish the class from the
concept. Second, still worse, if true mathematical claims were to express concepts as
intensions, then one and the same concept would correspond to every such claim: the function

TRUE, which associates every possible world with the truth-value T. —

Godel in his [1990, 128] tried to define concepts set-theoretically as opposed to the

procedurally construed notions of intuitionists: his concepts are

properties and relations of things existing independently of our definitions and

constructions.
To explain the difference between this definition and the construal of intuitionists’ notions he
says (ibidem):

Any two different definitions of the form a(x) = @(x) can be assumed to define

two different notions o in the constructivistic sense.

Interestingly enough, Bealer in [1982] uses the fact that there are distinct definitions of
‘the same object’ as a criterion of there being distinct concepts. Bealer is no intuitionist and

— similarly as Godel — he strongly opposes mentalism. Thus he more or less belongs to
Al BII.
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1.2.2 Non-mental abstract procedures

To be a realist who does not construe concepts as set-theoretical entities is a rare property. It
seems that Dummett’s ‘anti-realism’ (see [Putnam 1983]) stems just from his inability to
imagine something like that. Godel’s set-theoretical conception of concepts may have the
same roots: Gddel obviously thought that a procedural construal of concepts is necessarily
connected with mentalistic philosophy. Perhaps the first suggestion of another view can be
found in Bolzano in his [1837]. This suggestion in § 56 is highly remarkable. Bolzano defines
here intension of a concept (Inhalt) —explicitly of a Vorstellung an sich, but concepts
(Begriffe) are the most important kind of Vorstellung an sich—and as a realist he derives
complexity of a concept from complexity of the respective expression. The intension (better

perhaps: content) of a concept is for Bolzano

die Summe der Theile, aus denen eine gegebene Vorstellung an sich bestehet.
(244)

Now we could say that a similar definition could be found in any textbook of
traditional logic. Yet even neglecting the anti-mentalistic spirit of Bolzano’s logic we have to
state that a principal difference of Bolzano and tradition concerning theory of concepts
consists in the fact that Bolzano somehow derives the elements of /nhalt from the linguistic
structure of the expression whereas the traditional logicians were able to analyse the structure
of an expression only as far as the elements of the structure were connected via conjunction.
The famous doctrine about the reverse proportion of intension and extension of a concept is
based just on this assumption. Bolzano obviously was aware of the fact that such a
‘conjunctive’ analysis is very poor and admitted such analyses that led to components
(“Theile”) that were connected in another way than via conjunction. This can be seen as soon
as we read his §120 of [1837], where he criticises (unjustly, in an obvious sense) the doctrine
mentioned above and takes into account such Merkmale that the traditional logic could not
recognise as Merkmale. (Cf. his famous example of the concepts A MAN WHO
UNDERSTANDS ALL EUROPEAN LANGUAGES vs. A MAN WHO UNDERSTANDS
ALL LIVE EUROPEAN LANGUAGES.) This point is very important, since — as we now
know very well — a logical analysis of an expression cannot be indeed reduced to finding the
‘conjunctively connected’ components. But not only that. Bolzano—unlike the tradition—is

able to precisely distinguish the intension of a concept from the concept itself: He says (244):

Da unter diesem Inhalte nur die Summe der Bestandtheile, aus denen die
Vorstellung bestehet, nicht aber die Art, wie diese Theile untereinander verbunden
sind, verstanden wird: so wird durch diese blosse Angabe ihres Inhaltes eine

Vorstellung noch nicht ganz bestimmt. ..

Thus we can say that a concept consists in combining the elements of its ‘intension’.

(So that distinct concepts can share their intension, as Bolzano exemplifies in the same §. This
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holds, of course, only if the elements of the intension of the given concept are simple at least

in the Bolzanian sense.)

Bolzano’s suggestion remained to be a suggestion; Bolzano himself could not have
elaborated his idea so that it would be acceptable according to the contemporary standards.
Approximately after one hundred years Church — himself belonging to AIl Bl — invented an
ideal tool for this combining in [1940].

Properly speaking not many explicit articulations of a procedural theory of concepts
can be found in the history of logic after Bolzano. If, however, Church’s identification of
concepts (of a denotatum) with senses (meanings) (of the expression) is accepted one can see
that such a theory can be derived from the attempts at defining structured meanings. The
important part of the story begins probably with Carnap’s [1947], where Carnap became
aware of the fact that the L-equivalence criterion of synonymy does not work as soon as
propositional attitudes are to be analysed. Carnap’s notion of intensional isomorphism was
intended to derive semantic structure from the syntactic structure of the given expression.
The result is, however, too close to the grammatical structure, and Carnap’s notion can be
criticised not only from Church’s viewpoint (see Church’s surely inspiring objections in his
[1951]) but — more fundamentally — from the viewpoint of a realistic semantics: see [Tichy
1988, 8-91].

David Lewis in [1972] identified meanings with interpreted phrase marker trees; so he
gets a structure in a sense but the usual theory of trees makes it possible to reduce them by

definition to set-theoretical entities.

The same objection can be applied to the theory that has been systematically explained
in [Cresswell 1985]. Cresswell, who has coined the phrases hyperintensionality and
structured meaning, tried to save the particular components of this ‘structured meaning’ by
creating tuples embedding, as the case may be, other tuples. To adduce a most simple

example, the tuple

<_: 9: 5>
should be the meaning of the expression
9-5.

The point against this solution can be formulated as follows: Cresswell is well aware of the
fact that the meaning of the expression above cannot be “the result”, i.e., the number 4. (A
very good and simple argument is that meaning enables us to understand the given
expression; to explain what the expression above means we would certainly not cite the
number 4.) Thus he defines such semantics where the particular components of the expression
are associated with their semantic (better: ‘ontological’) counterparts and such a counterpart
of the whole expression is defined as the tuple of those particular counterparts (taking into

account various levels of embedding). Yet tuples are tuples, nothing more. Even when we
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neglect the fact of their reducibility to set-theoretical objects (mappings from the set of natural
numbers), the notion of a tuple does not contain the specific roles of the particular
components of the tuple, so that we cannot speak about (abstract) procedures. This point will

be much clearer in 1.3.3.

Remark: Much more details in this respect can be found in [Tichy 1996a], [Jespersen 2003],

where some further problems with Cresswell’s solution are analysed. —

The set-theoretical character of Cresswell’s ‘meanings’ is explicitly stated already in
his [1975]: introducing (p.30) /(c) as the intension of o, M(ca.) as the meaning of o and V as

the value assignment for his language A he defines /(o)
for a simple: /(o) = M(a) = V(),
for o =5, a, ..., o) : (o) =10){(at1),..., I(a)),
M(a) = (M(8), M(a1),. .., M(aw)),
and says:

The point is that the intension of a complex expression is obtained by allowing the
intension of its functor to operate on the intensions of the arguments of the
functor. The meaning however is simply the n+1-tuple consisting of the meaning

of the functor together with the meanings of its arguments. (Emphasis mine.)
And on p.32 we read:
[T]ruth-conditional semantics is sufficient to determine meaning.

So we get again the set-theoretical paradigm: what counts is always the result of applying a

procedure rather than the procedure itself.

Nevertheless, Cresswell could be classified with AIl BII, since he explicitly stated the
thesis that meaning (and, therefore, concept) has to be structured, and made an attempt —

although a problematic one — to satisfy this requirement.

A special attention has been paid to ‘structured propositions’. The idea of structured
propositions has been articulated first by Russell in his [1903]. Briefly, the idea consists of

two points: first, propositions contain constituents, second,

[e]very proposition has a unity which renders it distinct from the sum of its
constituents. ([1903, 52])

Notice that this second point is closely related to what Bolzano said about the distinction
between content of a concept and the concept itself (see [1837, 244], quoted above). The
weak points of Russell’s notion are well-known (see, e.g., King in [1997], Tichy in [1988, 68-
701).
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Referring to and criticising Kaplan’s, Salmon’s, Soames’ and Zalta’s attempts at
introducing the notion of structured propositions King ([1997]) asks a key question (p.6):

What Binds Together the Constituents of Structured Propositions?

This is indeed a (or even the) key question. If concept should be explicated as a structured
entity, then an adequate answer to a generalisation of this question—an answer that would
confirm the non-set-theoretical character of concepts—would entail an adequate answer to the

question above. The generalised question is:
What Binds Together the Constituents of a Concept?

Since one of the kinds of concept is concept of a proposition, our answer to the generalised

question implies the answer to the question
What Binds Together the Constituents of a Concept of a Proposition?

Bealer’s theory of P(roperties)R(elations)P(roposition) is also a theory of concepts, as
we can see reading his [1982]. While his ‘qualities’, ‘connections’ and ‘conditions’ (let them
be called ‘intensions of the 1% kind’) correspond essentially to set-theoretical intensions
known from PWS (which does not mean that Bealer would define them as PWS do), his
‘concepts’ and ‘thoughts’ (intensions of the 2™ kind) are counterparts of concepts as
procedures, which again does not mean that they would be defined in this manner. The
comparison I just formulated is supported by the fact that the intensions of the 1* kind are —
according to Bealer — sufficient for analysing modalities, whereas intensions of the 2™ kind
are what is needed for treating intentional matters (attitudes). We will see that this distinction
can be explained just via taking intensions of the 1% kind as set-theoretical objects (functions
qua mappings) and intensions of the 2™ kind as concepts qua procedures. (See also [Materna
1998, 75-77].)

As far as [ know it is just my [1998] which has explicitly defined concepts as abstract
procedures. In what follows the philosophical background and the respective technical tools

will be introduced.

1.3 Basic philosophy of 1.2.2: TIL (informal exposition)

The main problem with construing concepts as abstract procedures non-reducible to set-
theoretical entities consists in finding (more or less ‘standard’) logical tools for handling such
procedures. Surprisingly (for many philosophers and logicians) such tools have been found in
the unjustly neglected work of Pavel Tichy (see particularly [Tichy 1988], [Tichy 2004]).

The purpose of the present study is not to look for the reasons of the highly
unfortunate fact that transparent intensional logic (TIL), as Tichy coined his system, has been

nearly completely ignored. One of these reasons (perhaps a secondary one) is however

23



important, at least if we want to understand the claims and definitions essential from the
viewpoint of the genuine purpose of our study. Using a Kuhnian terminology, we could say
that in a sense TIL means a change of paradigm; the change is however only partial, it can be

characterised (not defined) by a succinct quotation from [Tichy 1988, viii]:

The theories of Frege and Russell are far from ‘noble ruins’, interesting only from
an historical point of view. They are, rather, the most advanced theories of
objectual logic we have. Those who believe that there is more to logic than the
study of finite strings of letters, have to go back to where Frege and Russell left

off and go on from there.

Thus the change of paradigm I talk about is not directed against some ‘paradigm of
logic’. Rather it opposes the more or less formalistic trends, sometimes connected with the
‘linguistic turn’ but characteristic mainly of contemporary mathematical logic, which became
simply a branch of mathematics—unlike the original symbolic logic from the ‘Russellian

times’: as Tichy says ibidem about Frege and Russell:

[t]hey themselves were not symbolic logicians; a symbolism to them was not the
subject matter of their theorizing but a mere shorthand facilitating discussion of

extra-linguistic entities.

This struggle for restoring the (original) objectual character of logic, often articulated
in a rather provocative style, could have brought about a misleading impression, as if TIL
fought against exact methods which make up the distinction between traditional and modern
logic. Not in the least. The philosophy of TIL differs from some nearly standardly accepted
assumptions made by logicians but using exact methods usually called ‘formal’ is a self-
evident part of what TIL does. On the other hand, this philosophy does have an essential
influence on the way the logical problems are stated and solved. The core of this 'philosophy
of TIL’ will be explained in the following sections. Now only a brief quotation from [Tichy
1978, 275]:

Logic is the study of logical objects (individuals, truth-values, possible worlds,
propositions, classes, properties, relations, and the like) and of ways such objects
can be constructed from other such objects.

Now we have to admit that for many contemporary (post-)analytic philosophers like
the followers of Quine, not to mention Rorty et al., the position characterised in this way
looks entirely outdated; like if it were a sort of philosophical superstition to believe that there
were some such abstract extra-linguistic entities like properties, relations, let alone possible
worlds. Logic should look for as ‘successful’ ‘models’ of our using language as possible: to
believe that there are (‘literally’) such entities as properties etc. means to violate Ockham’s
razor. Yes, we have to use such expressions as property etc., but we must not forget that such

universalia are “conceived in sin” (as we are told by Quine).
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b)

d)

Unfortunately, these philosophers are unable to answer some rather simple questions:

What do you mean by ‘model’ in this case? Is it an empirical description of our linguistic
behaviour? Then it is irrelevant for our logical purposes. Is it some axiomatisation? Well,
this is meaningless without an ‘intended interpretation’, and such an interpretation
exploits at least sets/classes, in any case some extra-linguistic entities. Should they be

only irrelevant means of our modelling?

When do we say that our model is successful? Is successfulness something what does not
need an explanation? (“Yes, it is”, is what a neopragmatist says, but a logician should

steer clear of any form of pragmatism.)

According to the attitudes mentioned above I am allowed to speak about properties etc., |
only must not assume that they °‘literally exist’. Now what is the meaning of this
‘literally’? Does anybody really believe that a realist (for this is essentially a modern form
of the dispute between nominalists and realists) thinks of abstract entities that they have
some spatial and temporal existence? It is just realists who know that abstract entities are
not spatially and/or temporally localisable. (Bolzano would say “sie haben keine

Wirklichkeit”). So why this quarrelling as concerns the ‘genuine existence’?
As for the famous Ockham’s razor, the best answer is given in [Tichy 1995, 175]:

The vision informing 20™ Century philosophy has been aptly described as one of a
desert landscape. Philosophers behave as if in expectation of an ontological tax
collector to whom they will owe the less the fewer entities they declare. The
metaphysical purge is perpetrated under a banner emblazoned with Occam’s
Razor. But Occam never counselled ontological genocide at all cost. He only
cautioned against multiplying entities beyond necessity. His Razor is thus in full
harmony with the complementary principle, known as Menger’s Comb, which
cautions against trying to do with less what requires more. The two

methodological precepts are just two sides of the same coin.

So let me say “No!” to this post-fashion and suppose that logic is about abstract

entities, that these entities should not be said ‘to exist’” but rather ‘to be objective’,

independent of particular minds, and that concepts are a kind of abstract entity.

Remark: Kohler’s conception in [2000] is not as incompatible with these claims as it could

seem at first sight. The form of Platonism suggested above could be hard to swallow for

somebody: let him/her read K&hler’s formulation. —

Now we will explain basic definitions and principles of TIL. Our aim in the first part

of the present study is to explicate concept in terms of TIL; some terminological (perhaps

even not only) deviations from Tichy‘s [1988] arose during our working out the explication in

question. Many essential points have been already explained in our [1998].
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1.3.1 What is Frege’s sense?

We can read hundreds of articles and monographs commenting Frege’s [1892a]. The core of

the famous ‘Frege’s problem’ is the question

How to explain the fact that a true sentence of the form a = b can be informative unlike

the sentence of the form a = a.

(Indeed, it is a problem: assuming — as the condition does — that the sentence is true we have

to accept that a denotes (‘bezeichnet’) the same object as b.)

Frege’s attempt at resolving this puzzle is well-known: the informative character of the
sentences of the form a = b is explained by the claim that the expressions a, b, although they
denote the same Bedeutung (denotation/reference; later we will see that these options of
translation can be fundamentally distinguished) but they do it in another way: they differ by

expressing distinct senses.

The idea is clear: the sense is the way the object is given (Frege says: die Art des
Gegebenseins, the standard translation is the mode of presentation). The idea itself is however
no definition: rather it determines a task: the task of defining this ‘way to the object’. Frege
never fulfilled this task; so host of attempts to find an adequate definition can be found in the

post-Fregean literature.

This is not a historical study. We want to reproduce basic assumptions of TIL, so let us
summarise only the points important from this point of view. The two options of defining
sense that are relevant for our contrasting All BI, All BII are:

A. Senses are intensions (as defined in PWS).
B. Senses are constructions (as defined in TIL).

To analyse these two options is of key importance for achieving the aim of the first part of the
present study: we must not forget that accepting (as we do) Church’s idea of identifying

senses with concepts we can equivalently formulate our options as follows:
A’. Concepts are intensions.
B’. Concepts are constructions.
Yet our answer is — among other things — dependent on the analysis of the denoting
relation. So we come to the following point.
1.3.2 Denotation vs. reference. Intensions and extensions

The word Bedeutung chosen by Frege to name the object denoted (bezeichnet) by an
expression is a very bad choice. The most verbatim translation would probably be meaning,
but meaning is commonly conceived of as that entity which makes it possible to understand a

given expression, so meaning would best correspond to what Frege had in mind when talking
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about Sinn. Thus, Church translation uses denotation, ([Church 1956]) whereas Geach and
Black ([Geach, Black 1952]) introduce reference. We will see that denotation is actually not
the same as reference, so let us use meanwhile the neutral expression object; it will be used in

the sense object denoted by the given expression.
Let us return to the famous example of Frege’s problem, viz. to the sentence
morning star = evening star.

When we go through the host of articles and books that try to analyse this example we
can see that nearly every author accepts Frege’s careless assumption that the object commonly
denoted by both nouns is the celestial body Venus. One of the most important claims
articulated by TIL rejects this assumption. Many arguments for this rejection can be found in
Tichy’s book and articles—for very concise argumentation see his [1978a]. Here we try to

formulate the core of this argumentation:

Frege’s problem would not exist (in connection with the example above) if morning
star and evening star were proper names (i.e. something like Millian labels) like Venus. The
equality above would be simply a linguistic statement about synonymy. The informative
character of the sentence is, however, confirmed by the fact that the sentence is an empirical
sentence which has been verified by astronomers. But then, of course, both nouns cannot
denote Venus, the body; rather they denote two distinct conditions an individual has to fulfil

to become the morning star (the evening star).

True, these conditions are commonly interpreted as being just Fregean senses, and are
explicated as intensions as defined in PWS. Then, under this interpretation, we get the
following ‘solution’ of Frege’s problem: both nouns denote one and the same object (Venus)
but via distinct senses (conditions—intensions). A strong objection to this solution can be
formulated. The first place in [Frege 1892a] where the need of Sinn is argued for is not the
popular example with the morning star; the first place introduces the example with medians of
a triangle. The sentence that states that the point of intersection of medians @ and b is the
same as the point of intersection of medians a and ¢ is only formally analogous to the
sentence about morning star and evening star. The distinction is given by the commonly
neglected or underestimated fact that the former, unlike the latter, is not an empirical
sentence. Being the point of intersection of the respective medians is not dependent on the
state of the world, and the sentence stating the identity of both points of intersection is a
mathematical claim true in all possible worlds. Thus the sense of the sentence cannot be an
intension (or it would have to be a ‘trivial’ intension with constant value in all the worlds,

which would make the idea of sense needless).

Another point is that the expression morning star was surely not created in English (as
well as Morgenstern in German) to enable us to name Venus in another way. (Another

example: the expression the highest mountain is a well formed English expression; it surely
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did not come into being only after it became known that the condition it encodes is fulfilled

by Mount Everest.)

These and similar arguments support the general claim: Empirical expressions denote
intensions (in the PWS sense), never the actual objects that are their values in the actual

world.

One of the consequences of this claim is a principle which we will call Parmenides’
Principle (a term coined by Tichy in a manuscript) which can be found already in [Frege
1884]; see [Duzi, Materna 2003]:

(Parmenides’ Principle)

An expression is not about an object X unless it contains a name of X.
Consider the sentence
The highest mountain is in Asia.

This sentence is among others about the property to be in Asia and about the highest
mountain. /¢ is, however, not about Mount Everest. This can be seen from the simple logical

fact that our sentence does not imply the sentence
Mount Everest is in Asia.

True, many people are ready to infer this sentence from the premiss above, but this is only
because of their implicit knowledge of which object is the highest mountain. The inference is

therefore logically correct only if another premiss is added:
Mount Everest is the highest mountain.

This sentence (as well as the now correct conclusion) is about Mount Everest (and about the

highest mountain as well).

Setting aside (for the time being) the question of what would correspond to Frege’s
sense we will show how TIL classifies the area of objects that can be denoted by an
expression of a natural language. This classification, based on a type-theoretical hierarchy,

harmonises well with our intuitions.

Remark I: Problems with the type-theoretical approach are well-known. Attempts to solve
logico-semantic problems within type-less (type-free) conceptions are referred to for example
in [Orilia 1999]. All the same, the way natural languages create complex expressions from
more simple ones is best understood when the underlying ontology is explained in terms of
functions of various orders and their applications to arguments. Montague (see his [1974])
knew this; and categorial grammars, based on Ajdukiewicz’ similar intuition, corroborate this
conviction. Besides, while the semantics of the typed A-calculus is simple and natural, this
cannot be said of the semantics of the type-free A-calculus (Scott’s domains are an excellent

but unfortunately unintuitive interpretation.) —
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Remark 2: The next pages could discourage those readers (most probably philosophers) who
are not accustomed to using symbolic expressions. Yet we should not forget that the
philosophy of our conception is strongly opposed to the formalistic abuse of symbolism.
Symbols are for us only ‘shorthand’ which helps us to understand more exactly what is being
said. To give an example, imagine that we would express our knowledge of arithmetic of
natural numbers in terms of verbal expressions like three times four is the same number
as five plus seven, and, e.g., learn the multiplication table in this way. When introducing
symbolic expressions we will always give intelligible definitions without any non-trivial tacit
assumptions. An effective cooperation between logic and analytic philosophy is impossible
unless logicians cease using esoteric symbolic jargon and philosophers cease a priori to avoid

symbolic texts. —

Ultimately, our hierarchy of types will be a ramified hierarchy of functions, see [Tichy

1988, 65-70]. Yet now we will define a simple hierarchy.
First we have to pre-theoretically motivate the choice of basic (atomic) types.

1) We certainly need the set {T, F}, where T is interpreted as the truth-value True and F as
the truth-value False. (The meaning of interpreted in this context is succinctly explained
in [Tichy 1988, 195-196].) One reason is that languages contain names of these objects, in
English yes and no; further some sentences denote truth-values (mathematical sentences),

some other propositions (empirical sentences), which can be true or false.

i1) A set called the universe, whose members will be called individuals, is another basic type;
individuals are the simplest objects which can possess various contingent properties and

are pairwise numerically distinct.
Remark: The types under 1) and ii) correspond to Montague’s types ¢, e, respectively.—

iii) The existence of tenses (see [Tichy 1980] for an excellent analysis of tenses in English) as
well as the fact of the temporal variability of the values of intensions make it necessary to
add the type whose members are time moments (“times”). This type serves also as the
type of numbers; TIL assumes that time is a continuum, so the type of time points is at the

same time the type of real numbers.

iv) We already suggested that we need intensions. TIL employs a possible-world semantics
(PWS); the last atomic type is the logical space (of the given natural language), whose
members are possible worlds that are best thought of as (consistent maximal) sets of
possible facts. That this characteristic does not lead to circularity is again best explained in
[Tichy 1988, sections 36 and 38].

It is obvious that nominalists will object to this host of abstract entities. Never mind;
what could be more interesting is a criticism of the choice of the basic types and/or the way

they are characterised. One example is [Sundholm 2000], where each of the types above is
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subject to criticism. (This is however not the place where answers to the particular objections

should be given.)

To mark the basic types under i}—iv) we use Greek characters o, 1, T, ®, respectively.

The other types are generated as sets of partial functions over o, 1, T,0.

Definition 1 (types of order 1)

1) The sets o, 1, T, ® are types of order 1 (they make up a kind of base).

i1) Let o, Bi,....pm, m =1, be types of order 1. Then the set (o By...B,) of all partial
functions whose arguments are tuples with members of the types Bi,...,Bm
respectively, and values are members of o is a type of order 1.

i) Only what is given by 1), ii) is a type of order 1. —

Definition 2 (a-objects)
Let a be any type (of order 1, what follows will hold also for any higher order). Members of

type o are called a-objects. —

Examples:
Arithmetic operations like addition, subtraction, etc., are (ttt)-objects.

Arithmetic sets are (ot)-objects, binary relations like > are (ott)-objects.

Indeed, any arithmetic operation of the kind above is a function that associates any
pair of numbers with at most one number. (Partiality is obvious, e.g., in the case of division,
where no pair with 0 in the second place is associated with any number.). As for sets/classes,
it holds in general for any type a that a class of a-objects is an (oa)-object, viz. a function
that associates members of the class with T and anti-members with F, analogously for
relations.

Now which type would we associate with the object the highest mountain? It cannot
be t: this would mean that the respective definite description would denote an individual, but
we have seen already that the objects Mount Everest and the highest mountain are two distinct
objects. We have said that Mount Everest only happens to fulfil the condition that is encoded
by the description, thus the object the highest mountain is just this condition that an individual
has to fulfil. As such it is best modelled as a function whose type is ((1t)®): given a possible
world W this function associates with it a chronology of individuals, i.e., a function that (in
W) associates every time point with at most one individual, viz. that one (if any) which is in
W at the given time point the highest mountain. The dependence on possible worlds can be
called modal variability (of the values of this function), the dependence on time points is then

the temporal variability. —

Now we can define objects called intensions.
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Definition 3 (intensions)
For any type a.: the ((at)w)-objects are intensions.

Intensions with constant oi-value for any t, o are trivial intensions. —

When we speak about intensions without the qualification ‘trivial” we mean non-trivial

intensions. So we can say that empirical expressions denote intensions.
Abbreviation: For any type o, we will write o, instead of ((at)w. —

Remark: If a type o is not of the form (Bw) for some 3, any a-object will be called an
extension. There are therefore objects which are neither intensions in the sense of Definition 3
nor extensions: their type is (o), where a is not of the form (ft). See examples in [Tichy

1980]. One important example is the type of the actual world, which is (o®). —

Now we have to explain an important point. According to Parmenides’ principle the
sentence The highest mountain is in Asia is not about Mount Everest but about the highest
mountain. Mount Everest is an 1-object while the highest mountain is obviously an 1,,-object,
an “individual office” (as the founder of TIL termed this kind of intension) or individual role.
Which type should be associated with being in Asia? As an empirical predicate this
expression denotes a property of individuals, i.e., an (01),-0object. Our sentence has to
predicate this property to an individual but the highest mountain names no individual; the
property to be in Asia cannot be predicated to an individual role. The solution of this problem
will be given in 1.3.3. Informally, the sentence is true in those possible worlds and times
where the individual occupying the individual office of the highest mountain is in Asia: this
agrees well with our claim that empirical sentences do not denote truth-values but their
‘roles’, i.e., propositions — the latter take the value T in some worlds-times, F in other
worlds-times and, as the case may be, are without any truth-value in the remaining worlds-

times (in our case: in those ones, that is, where there is no highest mountain).
Now we can distinguish between denotation and (what we intend to call) reference.

a) In the case of non-empirical expressions there is no reason to make the distinction.
b) In the case of empirical expressions it holds that they denote intensions; their reference is
the value of the respective denotation in the actual world+time (‘absolute reference’) or

we can speak about their reference w.r.t. the couple (possible world, time point).

1.3.3 The idea of constructions

Intensions, as defined in TIL (and, in general, in PWS), are functions qua mappings, so they
are set-theoretical objects. We have seen that concepts — if they are to play the role of
meanings — can hardly be construed as set-theoretical objects. They should be rather ways of

identifying objects.
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Remark: For a Platonist these ways are objective. It would be interesting to compare some
psychological or semi-psychological theories with this objectual conception; perhaps
substituting in such mentalistic contexts “discovering concepts” for “concepts” and letting
(objective) concepts be what is discovered could show usefulness of the Platonist view even
for mentalists. (Cf. [Bartsch 1998], [Fodor 1998]) —

A parable illustrating the conception of concepts as ways, paths can be borrowed from
Tichy 1988, 1], where it is used for constructions. Imagine travelling to some (‘target’) town
X over some definite geographical points like towns or such like. Any such travel to X (and
there are a host of them) can be described as an itinerary. Now whereas X, the target, does not
contain the particular points of the given itinerary (and is fully independent of which itinerary
has been chosen), the itinerary does, of course, contain these points. (Later we will see that

this parable is not perfect, but now it is at least didactically useful.)

Going from the parable to a genuine example consider a simple arithmetic expression,

say,

0+1.

There is no problem with denotation here: this expression denotes obviously the number 1.

The same number is, of course, denoted by infinitely many expressions, e.g.
3 -2 oroneor 12, etc.

Using Church’s terminology we can say that the meanings/senses expressed by these
expressions are distinct concepts of one and the same denotation. (This is a variant of Frege’s
example with the medians.) Now we can ask: What is the way, the ‘itinerary’ that leads to the

object 1 in the particular cases?

An answer can be given by what [ would call /inguistic deviation. The way is given by
the grammatical rules of the language used. From our viewpoint this is an unsatisfactory
answer: the grammatical rules themselves are specific for the given language, and they are
distinct for the language of arithmetic as used in our examples and for other arithmetical
notational variants as well as for natural language (zero plus one, three minus two etc.). The
obvious fact of mutual translatability (unproblematic in our examples) calls for an
explanation. The explanation offered by TIL goes as follows: the factor shared by all the
synonymous expressions (of various languages/notational systems) consists in ‘encoding’ one
and the same abstract procedure. Informally this procedure (in the case of our examples) can
be described as identification of the denotations of particular meaningful expressions
followed by applying an operation to these denotations. In the case of the first example we
identify the numbers 0 and 1 and the function +, and apply this function to the pair of these
numbers. In the last example we identify the numbers 1 and 2 and the function raising to a

power, and apply this function to the pair (1,2). A most important point is that this
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explanation can explain only if such procedures are viewed as extra-linguistic, objective
procedures, so that the way to explicating meaning independently of synonymy and

analyticity is open: Quine’s criticism of Carnap in [Quine 1953] is refuted.

The idea of constructions consists in the project of defining a minimum class of basic
procedures such that complex procedures could be composed (obeying unambiguous rules)

from these basic ones.

The last version of realising this project can be found in [Tichy 1988]. Six basic
procedures, partially inspired by the typed A-calculus, are defined. For some reasons not
important here (but see, e.g., [Materna 1998], 39, and [Zlatuska 1986]) I decided

a) to skip two of them,

b) to suggest some modifications.

Before I reproduce the definition modified according to a), I will try to formulate the

motivation for the here accepted choice of basic procedures.

A. Area of objects of order 1.
In general, procedures have to operate on some input and return some output. Procedures
called constructions of order 1 operate on and return objects of order I, where an object of

order 1 is any a-object with a a type of order 1.

B. Variables.

Procedures have to be extra-linguistic entities. The usual definitions of variables assume that
they are letters, characters, which can take values due to a value assignment or be bound by
some ‘operators’. Thus it is clear that either variables cannot be procedures/constructions, or
else that they cannot be letters. TIL, inspired by A-calculus, works with variables but these are
construed as constructions sui generis, as atomic constructions which construct objects of the
given type dependently on valuation; we say that they v-construct objects, where v is the
parameter of valuations. The letters used for variables in TIL are, of course, names of

variables. A thorough exposition of this conception of variables can be found in [Tichy 1988,
56-62].

Remark: In [Materna 1998, 50, Note 11] I suggest the possibility of a variant (which would be
in a sense equivalent) theory of constructions; the inspiring factor would be Curry’s and Feys’
combinatory logic where no variables are needed. It seems that J.Peregrin in his [2000] would

prefer this variant. —

C. Trivialisation.

The ‘input’ of constructions comes primarily from the area of objects of order 1. (We will see
however that objects of higher orders are also possible inputs.) One way of getting these
inputs is via variables. (But variables are at our disposal for any type, i.e., also for types of

higher orders.) Anyway, another way is possible: imagine a construction that accepts an
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object (of any type) and returns the same object. Such a construction (called trivialisation)
can be construed as the simplest non-atomic construction that constructs an object without
using other constructions. (A psychological counterpart could be a situation where a child —
for example — would be able to recognise a circle without any notion of such concepts as
POINT, DIAMETER etc.) In A-calculi there is no counterpart of this kind of construction;

nevertheless, it will play a most important role in our later analyses.

D. Composition.

TIL is a system based on the notion of function. Therefore it is inspired by A-calculi rather
than by predicate logics. Church’s ingenious idea of reducing procedures to applying
functions to arguments and creating functions via A-abstraction has been realised on the
objectual level in TIL. The construction called composition corresponds to the former
procedure. It consists in constructing a function and an argument and applying this function to
the argument. The result is the value (if any) of this function on the given argument. The
composition — unlike its result — contains all the steps necessary for obtaining the result,
i.e., the (v-)construction of the function, the (v-)construction of the argument and the
operation of applying the former to the latter. (The last member of this conjunction
distinguishes a composition from a simple tuple — see the criticism of Cresswell in 1.2.2. and

Bolzano’s conception of concepts.)

E. Closure.
The construction called closure corresponds to A-abstraction. A good intuitive exposition on
the ‘linguistic’ level can be found in [Church 1956, Ch.0].

Now we can formulate the definition of constructions. Since construction is what is
defined, it will be as usually italicised. Particular kinds of constructions will be emphasised

via boldfaced letters.

Definition 4 (constructions)

1) Variables are constructions.

ii) Let X be an object of any type. Then "X is a construction called trivialisation. °X
constructs X without any change.

iii) Let X, Xi,...,.Xm, m > 1, be constructions which v-construct respectively (ap;...Bn)-,
Bi-,....pm-objects. [XX...X,] is a construction called composition. If X v-constructs a
function F and F is defined on the tuple v-constructed by Xi,...,X,, then [XX;...X,]
v-constructs the value of F on that tuple. Otherwise — i.e., if F is undefined on that tuple
or some X; fail to v-construct an object — [XX...X,,] is v-improper, i.e., does not
v-construct anything.

iv) Let xy,....xn, m > 1, be pairwise distinct variables v-constructing respectively Bi-,...,Bn-

objects and X a conmstruction that v-constructs a-objects. Then [Axj...x,X] is a
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construction called closure. It v-constructs a following function F: Let (bi,...,b,) be a
tuple such that b; is a PB;-object for 1 < i < m. Let v’ associate each x; with b; and be
otherwise identical with v. Then if X is v’-improper, F is undefined on the tuple.
Otherwise F returns what is v’-constructed by X.

v) Constructions are just what is defined by the points 1) —iv). —

Definition 4a (subconstructions)

1) Let C be a construction.

i1) C is a subconstruction of C.

iii) If X is a construction, then X is a subconstruction of °X.

iv) If Cis [XX...X,], then X, X, ..., X,, are subconstructions of C.

v) IfCis Ax;...x,X, then X is a subconstruction of C.

vi) If C; is a subconstruction of C, and C, is a subconstruction of Cs, then C; is a
subconstruction of Cs.

vii) Subconstructions are just what is defined by the points 1) —v). —

Remarks:

1) We stated already that composition and closure correspond to application and abstraction
in A-calculi, respectively. Now we must note some distinctions. First, and most important:
The respective A-terms are expressions of an artificial language. As such they contain
brackets/parentheses, the A-symbol etc. It must be clear by now that the construction called
composition does not contain brackets and the construction called closure does not contain
brackets or the A-symbol. We have defined constructions and we have used a notational
system for that purpose. Our way of ‘linguistically’ treating constructions is just as distinct
from the constructions themselves as the expressions elephant, town, and beauty are
distinct from elephants, towns and beauty. Thus we are entitled to write

[0+ 07 05] constructs 12
or
[+ °7°57° contains brackets

but the following are meaningless:
[O+ 0705] contains brackets,

‘[O—I— 0705]’ constructs 12.
A second distinction can be stated: as a rule, A-calculi work with total functions only. Then
Schonfinkel’s reducibility of n-ary functions to unary functions can be proved. As soon as
partial functions are taken into account (as they are in TIL) this reduction is no longer
unambiguous (see [Tichy 1982, 52-53]). Thus we have to work in general with n-ary

functions for n > 1.
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2) We can do without Tichy’s constructions called execution and double execution. On the
other hand, we can adduce an example of modifying the hierarchy of types and the
respective system of constructions for the purposes of ‘conceptual modelling’: in the
unmodified system of TIL there is no type of tuples. The modification I mean introduces a
separate type of tuples and, of course, two further kinds of construction: one that v-
constructs tuples, and the other one (‘projection’) that selects the i-th member of the given
tuple. See [Duzi 2000], [Zlatuska 1986]. In this system all functions are unary without

Schonfinkel reduction: the arguments can be any tuples.

3) Trivialisation might be likened to a constant of formal languages. Still, there is an essential
distinction (besides the fact that trivialisation is not an expression): Whereas a constant of a
formal language denotes different objects under particular interpretations, the trivialisation
of any entity X (OX) always constructs X. Thus, e.g., 0highes‘[, ‘lowest always construct the
empirical functions highest, lowest (both of the type (1(01)).,). If we wanted to express
some common features of both functions we would use a variable, say, c/*, ranging over
the type (1(o1))w,. Thus our transparent approach is more precise and does not lose any

expressive power. —

Now we will give a construction that constructs the object
the highest mountain,

assuming that the objects the highest and mountain are given (i.e., are not analysable in this
context). All such tasks must begin with a type-theoretical analysis; the synthesis proper is the

second step.

Types

the highest is what is denoted by the respective English expression; first we note that this
expression is surely an empirical expression. Hence our object is an intension, i.e., an Oly,-
object. What does this function associate with a given world and time? It cannot be an
individual — we could accept this option if the object were the highest thing or the highest
individual, but being only the highest it needs an argument to return an individual (or to return
nothing, being undefined on the given argument). So the form of the type a will be (18). What
kind of argument can be expected? We can speak of such objects as the highest tower, the
highest tree, the highest flower (and, of course, the highest mountain), but surely not about the
highest beer, the highest truth-value, the highest possible world, the highest present prime
minister of Czech Republic. We can easily guess why the last three examples are
inadmissible: the arguments are not properties of individuals. As for the beer-example, we
could construe (being) beer as a property (even of individuals) but even so the kind of
property is somehow ‘inappropriate’; it is a ‘mass property’. Anyway, being a property of
individuals seems to be a necessary condition for being an argument of the highest. (That
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some of these properties might be also inappropriate is not a type-theoretical objection.) Thus
it seems that the type of the highest could be (1 (01))w. Yet a closer inspection shows that
this result is inadequate. True, the word following the expression the highest is always a name
of a property but what happens ontologically is that this function returns an individual (if any)
which is the highest among the members of a class: one cannot select the highest object by
merely observing a property — one has to measure individuals against other individuals given
as the members of a class. However, there is an essential connection between the given
property and the relevant class. A property of individuals is an intension whose value in
particular pairs (world, time (point)) is just a class (sometimes empty). Thus in every pair
(world, time) there is a class which is the value of the property in this pair. Our solution of the

type-theoretical problem is:
H(ighest)/ (1 (01))0, M(ountain)/ (01)e.

Remark: Notation:
Let X be an object. By X/a we say that X is an a-object.
Let X be a construction. By X — a we say that the object (v-)constructed by X is an a-object.

This notational distinction is necessary, as we will see after the ramified hierarchy is defined.

The last part of the type-theoretical analysis consists in determining the type of the
whole object, i.e., of the object the highest mountain. This question has already been
answered: this type cannot be t: being an intension (an individual role) our object is an t,-

object.

Synthesis

The target construction has to construct an i,,—object from H/ (1 (o1))., and M/ (o1),. Further
we know that H should be applied to the class of individuals that is the value of M in the
given pair (world, time). No particular world or time is given, so we will need variables v-
constructing (‘ranging over’) worlds and times. Once and for all we choose variables w — ®

and r — 7. To construct the 1,,-object (i.e., the ((1t)w)-object) we use the closure of the form
AwAt X

(omitting brackets does not cause any misunderstanding), where X v-constructs an t-object
(i.e., X = 1). X is obviously a composition that realises the application mentioned above, so

we have X:

[["Hw]] [["Mw]A]].
Remark: Notation. Where A is an o..-object we write ’A,, instead of [["Aw]¢]. (More
precisely, we should say “where A is a construction that constructs an intension A (type 0,)

we write A,, instead of [[Aw]f]. We will frequently use the simplification consisting in

writing the specific construction "A instead of A.) —
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The result is
Awht ["Hye "Myu].

The resulting construction can be checked for type-theoretical compatibility. The

algorithm of checking is simple: it is based on two rules:
Checking algorithm:

Rule I: Let X (v-)construct an (o B3;...Bx)-object and let Yy,...,Y,, (v-)construct Bi-,...,Bm-

objects respectively. Then [X Y;...Y ] (v-)constructs an a-object.

Rule 2: Let xy,...,x, (v-)construct Bi-,...,Bn-0bjects, respectively, and let X (v-)construct an

a-object. Then Axi,,,x, X (v-)constructs an (o B;...[3,)-object. —
Applying the rules to our case:

woar [['H wl A0°™M w4

Lol
(l(Ol))‘rm Q] (Ol)rm Q]
H_/
Rule 1: (1(o1)), T (ov): T
- —
(Yov) (o1)
- )
~
1
Rule 2: | (11)
Lo

It could be objected that the claim that the construction AwAt [OHW, Oth] is what is
expressed by the expression the highest mountain presupposes that the intensions the highest
and mountain are constructed just by trivialisations, whereas they may be constructed in

another way. This objection is justified; see the Remark above. We should write the schema
7\4W}\4t [Hw[ th]

instead. Then a set of possible constructions falls under this schema. But as we already
suggested, we will in similar cases write one representative of those possible constructions,
viz. that one which — simplifying, as we will see — assumes that a simple concept (see
Definition 11) is what is expressed by a simple expression. Such a construction is then really

the trivialisation of the object denoted by the respective simple expression. —

Constructions can construct new constructions and among the objects we should be
able to treat are classes and relations of constructions. Let us adduce two examples:
A. Let x; be a numerical variable. We write x; — 1 but we cannot say which type the variable

itself belongs to, so x;/?.
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B. We will define closed constructions. To which type does the class of closed constructions

belong?

In order to answer this kind of questions (and so be prepared to build up a rather
general theory of concepts) we have to extend the hierarchy of types to get a ramified
hierarchy. The next definition satisfies this requirement. It is a slightly modified definition
from [Tichy 1988] or [Materna 1998]. The definition proceeds stepwise: first fypes of order 1
are defined, second, the notion of constructions of order n is introduced, and third, types of

order n + 1 are defined.

Definition 5 (¢#ypes of order n + 1)
Ti Types of order I: See Definition 1.
C, Constructions of order n: Let a be a type of order n.
i) For any variable &: If £ —> a, then & is a construction of order n.
ii)  Let X be an a-object. Then "X is a construction of order n.
i) Let X, Xy, ..., X,, be constructions of order n. Then [XX...Xy] is a construction
of order n.
iv)  Let xy,...,x,, X be constructions of order n. Then [Ax)...x, X] is a construction of
order n.
T, Types of order n + I: Let *, be the collection of all constructions of order n.
1) *, and all types of order n are types of order n + 1.
i)  Let a, Bi,....p. be types of order n + 1. Then (a Bi...B,) (see Definition 1) is a type of
ordern + 1.
iii)  Types of order n + 1 are only what is determined by 1), ii). —

Remark: ‘all types of order n’ in T,+1 1) enables us to handle the cases when the types of the
components of composition and closure (points C, iii),iv) ) are not of the same order. Then

what counts according to T,+11) is the highest order. —
Now the examples above can be solved:

Ad a): If x; — t, then x,/ *; (see point C, 1) ). Moreover, since the type of x; is *, it is a type
of order 2 (see Ty+1 1)) so that % is a construction of order 2 and its type (*,) is of

order 3, etc.

Ad b): The class of all closed constructions of order 1 (of order 2, ...) is an (0*;)-object (an

(o*p)-object, ...).

We will see that the ramified hierarchy as defined above is necessary for a general
theory of concepts. Independently thereof its application offers a very good tool for handling
propositional and notional attitudes (see, e.g., [Materna 1997a], [Duzi 1999], [Duzi 2003b].)
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1.3.4 Concepts as closed constructions

I shall now briefly reproduce the arguments from [Materna 1998] to show that at least one
good explication of the term concept can be given in terms of constructions as defined above.
The arguments presuppose that the concepts we intend to treat are non-mental ‘procedures’

that make it possible to identify objects.

First we will compare some features of informally characterised concepts with some

properties of constructions as defined above.

concepts constructions
abstract abstract
extra-linguistic extra-linguistic

identify objects | v-construct objects

can be empty can be v-improper

We can see that there could be a problem with the last two rows where the
constructional properties analogous to the conceptual features are connected with a
parameter, viz. with a valuation. Let us therefore test our intuitions connected with using the

term ‘concept’ against the possibility of ‘parametrised’ identification of objects.
Remark: Before attempting at defining concepts let us use capital letters to denote concepts.—

Let THE FATHER OF be the concept expressed by the English expression the father
of. Clearly this concept identifies an empirical function, type (11).,. On the other hand,
consider the expression the father of x. Could we say that this expression expresses a concept,
i.e., THE FATHER OF x? No definite object is identified, since which individual role/ office
is identified depends on the value of x ( — 1). Replacing x by a constant, say, a proper name
or a definite description we get rid of the parameter and we can surely say that what we get is
a concept, for example THE FATHER OF ALBERT EINSTEIN or THE FATHER OF THE
RICHEST MAN IN PRAGUE etc. In both cases the concept identifies a definite object, viz.
an individual role (type i.,) Whose value depends, of course, on the respective state of the

world.

So we are ready to formulate a first, preliminary definition of concepts; they are
constructions which do not contain free variables. To make the definition exact we need first
to define free and bound variables. We define therefore firee and bound occurrences of

variables; a free/bound variable can be defined as usually in terms of free/bound occurrences.
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Remark: The following definition is not trivial. Unlike in the ordinary systems we have two
kinds of boundness which ‘behave’ in a distinct way: A-boundness does and ’boundness

(‘boundness in virtue of trivialisation”) does not obey the a-rule of the A-calculi. —

Definition 6 (firee, “bound, A-bound variables)

1) Let C be construction containing an occurrence of the variable &.
ii) If C is &, then the occurrence of & in C is firee in C.
1) If C is "X, then any occurrence of £in C is *bound in C.

1v) If Cis Ax;...x, X, then if § is one of x;__x,, any occurrence of & is A-bound in C
unless it is “bound in X; if & is distinct from any of x1,...,x,, then any occurrence of &

is free in C unless it is A-bound or %bound in X.

V) If C is [XX...X,], then any occurrence of & free, "bound, A-bound in X, X;,..., X, s,
respectively, free, “bound, A-bound in C. —

Remark: In virtue of the objectual character of constructions the term occurrence has a non-

standard meaning. To illustrate compare two cases:

a) The construction Ax [°> X OO], i.e., the procedure itself, contains one occurrence of x: that
one which v-constructs the first argument of >.

b) The expression ‘A\x [0> X 00]’ contains two occurrences of the name ‘x’.

The reason is that the ‘Ax’ is only our tool for defining the kind of construction. Abstracting

over T concerns only the one occurrence of x. —

The distinction between “bound (“trivialisation-bound”) and A-bound (occurrences of)
variables can be easily demonstrated by following examples.
Consider the construction (x — 1)
A [ x %07
This construction constructs the class of positive numbers. Correctly substituting y for x we
get
[y 0],
which is an equivalent construction. In terms of A-calculi an application of the o-rule

guarantees the equivalence.

Compare therewith another pair of constructions seemingly parallel to the preceding case:
" [ x 107,
"y [*> » 011
This time the constructions are not equivalent. Each of them constructs another construction.
True, the constructions they construct are equivalent, but they are distinct. In the first case x, y
were A-bound, in the second case they were %vound (see points ii), iv) of the definition). We

can say that the A-bound variables are used, whereas the ®bound variables are mentioned.
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Definition 7 (closed constructions)

A construction C is closed iff no occurrence of a variable is free in C. —

Now our preliminary definition of concepts (we will speak of concepts®) can be
formulated.

Definition 8 (concept™)

A concept* (of order n) is a closed construction (of order n). —

1.4 Concepts

1.4.1 Concepts identify objects

It has been already suggested that conceptual identification corresponds to
constructional ‘construction’. We should further know what is meant by the word ‘object’.
Having introduced the ramified hierarchy we can now say that an object is a member of a type
(of any order). We say, therefore, that concepts identify
a) I order objects, i.e., a-objects where o is a type of order 1, in particular I* order
extensions and intensions,

b) higher order objects, i.e., a-objects where a is a type of order n, n >1. Since concepts, as
explicated here, are constructions and the latter are higher order objects (see Definition 5),
concepts can identify other concepts.

The identification can however break down. We know that there are empty concepts.

1.4.1.1 ‘Empty concepts’

Some concepts are empty. Examples: THE GREATEST PRIME, NUMBER(S) DIVISIBLE
BY 0, THE PRESENT KING OF FRANCE, A HOBBIT. We can show that actually there are
more kinds of emptiness. Bolzano, for example, has clearly distinguished between
analytically empty concepts (our first two examples—Bolzano uses ROUND SQUARE) and
empirically empty concepts (our last two examples—Bolzano uses A GOLDEN
MOUNTAIN). For us there are at least three kinds. Let us demonstrate the respective

distinctions.

a) THE GREATEST PRIME. Combining the concept THE GREATEST with the concept
PRIME (NUMBER) we simply get nothing. The latter concept identifies an infinite class
no member of which is the greatest one. The function identified by THE GREATEST is a
partial and not total function. This kind of empty concept could be called strictly empty
(see [Materna 1998]).

b) PRIMES DIVISIBLE BY 3 AND 5, NUMBERS DIVISIBLE BY 0.
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Surprisingly we can show that concepts of this kind are not ‘strictly empty’: they do
identify an object, viz., an empty class. We can show this as follows:
Take the second example. The construction of the class of (natural) numbers divisible by
0is

A [y =y [ x 0],
The class v-constructed by
2y =y [ x “011].

is ‘degenerate’ or ‘quasi-empty’ for any valuation in the sense that it is undefined for any

argument; so it is not non-empty and
("3 2 "=y " x "011].
gives False for any valuation. Thus the class constructed by
2 (3 =y [ x 0001,
is empty.

This distinction is more important than it could seem. We can say something about an
empty class and be right or wrong, whereas nothing can be predicated when there is no
object at all. In other words, classes — and therefore also empty and ‘quasi-empty’
classes — are objects sui generis but there is no ‘empty particular’ (‘empty number’,
‘empty individual’ etc.).

I shall call this kind of empty concept quasi-empty (see [Materna 1998]).
THE PRESENT KING OF FRANCE, A HOBBIT. Both these concepts can be called

empirically empty. That there is just now no King of France is not a logically necessary
fact, as well as that there are no hobbits. Instead of saying that existence of the King of
France or of hobbits is logically possible we can say that there are pairs (world, time
moment) where an individual plays the role of the King of France (in this case we can
even claim that in the actual world there were such times when there was such an
individual) and that in some non-actual possible worlds a non-empty class of hobbits

realises (at some time points) the property described by Tolkien.

As soon as we explicate concepts as concepts*, i.e., as closed constructions, we can

replace our intuitions concerning conceptual emptiness with precise definitions. So we have:

Definition 9 (empty concepts*)

i)

ii)

A concept* C is strictly empty iff C is an improper construction.
A concept* C is quasi-empty iff C constructs an empty (or a ‘quasi-empty’) class /

relation.
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i) A concept* C is empirically empty at (time point) t iff C constructs an intension such
that its value at 7 in the actual world is either missing or an empty (or: quasi-empty)

class. —

Remark: We can speak of the actual world but the actual world — as (informally) the
collection of all true facts — cannot be identified as one definite world (i.e., as an ®m-object):
rather it is the identical function, type (o). Indeed, not knowing all true facts we cannot
know which world is the actual world. On the other hand, given a possible world W, which

world is actual in W? Surely W itself.

Therefore an expression containing some reference to actuality is equivalent to the
expression which skips this reference. ‘It rains’ is equivalent to ‘It actually rains’: no
information is given by ‘actual(ly)’ and suchlike. Or: when we say that p is true we properly
speaking say that among the worlds in which p is true the actual world is. We could omit ‘the

actual world’ from point iii) above. See [Tichy 1972]. —

Applying Definition 9 to our examples: THE GREATEST identifies the function, say,
G/ (t(o71)), PRIME identifies the class, say, P/ (ot). The respective concept™ is

[°G °P].
By the way, even on this somewhat simplified analysis (see 2.2) one phenomenon can
be well explained: we understand such expressions as the greatest prime although they do not
denote anything; the reason is that we possess the respective concept, i.e., we know the

procedure which would lead us to the number described if there were such a number. The

procedure (given by the construction above) shows that there cannot be such a number.

Our second example: Simplifying again we can suppose that the numbers denotes real
numbers, those which can be v-constructed by numerical variables; DIVISIBLE identifies the

relation D/ (ot1). We have
Ax [°D x °0].

Our definitions make it clear that a closure cannot be (v-)improper. Our construction
is a closure, so it has to construct some function. This function is the characteristic function of
the ‘quasi-empty’ class of numbers. In general it holds that (quasi-)empty concepts are either

trivialisations of an empty (quasi-empty) class or closures.

Concerning our empirical examples, the concept THE (PRESENT) KING OF
FRANCE obviously identifies an ‘office’: an 1,,-object. Let the type of France be a, King is
an empirical function of type (1), The office is constructed by composing the simple

concepts "King and “France:

AWMt [OKingwt OFrance].
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’King constructs an intension; the empirical emptiness consists in the fact that the value of
this intension in the actual world nowadays at the argument France is missing. Similarly in the
case of HOBBIT, where the concept® constructs a property whose value in the actual world is

an empty class.

Summarising this section we can state that with the only exception of strictly empty

concepts every concept identifies an object—in the worst case an empty (or ‘quasi-empty’)

class-relation.

Remark: Our definitions solve the old problems known from Russell’s analysis of the

denoting relation and his polemics with Meinong. Already in 1905 Russell writes:

[the present king of France is a] complex concept denoting nothing. The phrase
intends to point out an individual, but fails to do so: it does not point out an unreal
individual, but no individual at all

[quoted by [Coffa 1991, 106] ]

Yes, in the case of empirically empty concepts the respective procedure ‘intends to
point out’ an object but the state of the given world + time makes it impossible to find the

value of the respective intension.

Or: in The Principles of Mathematics Russell tries to prove that “The golden mountain
is not” is false or meaningless, for “whatever the golden mountain may be, it certainly is”.
(See [Coffa 1991, 107].) We need not work out a neomeinongian solution (like Zalta) to this
(slightly enigmatic) dilemma. Our answer to the question “Does the golden mountain exist?”’

is unambiguously negative, which we can show as follows:

Let E be an existence predicate, type (0 o). It denotes the following property of
individual roles: In a pair (W, T) the individual role 7 has this property iff / is occupied by an
individual in (W, T). The sentence “The golden mountain exists” gets the following analysis
(GM/ 140):

Awht [°E, "GM]

This construction constructs the proposition that is true in such worlds + times where
the role GM is occupied by an individual. Since in the actual world + time there is no such
individual the proposition is false (in the actual world + time).

(As Coffa in [Coffa 1991, 107] says:

In general, the presence or absence of a denotation...has nothing whatever to do
with whether the statement in question is a mere noise or expresses a meaningful

proposition.

We would say ‘reference’ instead of ‘denotation’, of course.)
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1.4.1.2 Mathematical concepts

In this section I do not intend to offer a deep analysis of mathematical concepts in general.
More interesting points are postponed to later sections. Here only the question of which kind
of objects are identified by mathematical concepts (in comparison with empirical concepts) is

to be explained.

All the same we must already distinguish between uninterpreted systems on the one

hand and their interpretations on the other hand. The principle we follow here reads:

Uninterpreted systems are schemes only: concepts(*) do not contain symbols, only

constructions of objects given by an interpretation..

In the case of, e.g., formalised arithmetic of natural numbers the respective concepts
construct objects given by the ‘intended interpretation’. If a non-standard interpretation takes

place, then we get other objects, and so other concepts too.

It does not follow from the TIL approach that the base of a type-theoretical system
(see Definition 1) must be just the set {o, 1, T, ®}. We can build up the hierarchy sufficient for
a Peano-like arithmetic on the set {0, v} where v would be the set of all natural numbers. The
concept* of the successor (say, S) would be then ’3, s/ (vv). (See also [Paloméki 2001].) No
base for mathematical systems would need the types 1, ®. The concepts over such bases
construct either particular numbers (type t or v) or functions over the respective base or truth-

values (in the case of mathematical sentences).

Remark: No explication is perfect. Whereas our claim — in harmony with [Church 1956] —
that the meaning of an expression is a concept of what the expression denotes seems intuitive
when applied to the expression a prime (understanding this expression we possess a concept
of the class of prime numbers) the intuition fails in the case of sentences: It is surely a little bit

strange to say that the meaning of the sentence
Two is the only even prime

is a concept of the truth-value T. This particular fact should not, however, prevent us from
accepting Church’s proposal. We will see that already when a sentence is empirical our

linguistic intuition comes back to us again. —
To adduce an example of a mathematical concept: THE SUCCESSOR OF THE

SMALLEST PRIME. We have S/ (vv), Sm/ (v (ov)), P/ (ov).
Our concept is (type-theoretical checking added):
S [’Sm P7].
| (o) (ov)
H_J

(vv) v
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The expression the successor of the smallest prime expresses this concept and denotes the

object constructed by the latter, viz. the number 3.

Any impression that all mathematical concepts are 1¥ order concepts is mistaken. We
can speak about equations, about substitutions, about proofs etc. etc. Such discourse concerns
constructions rather than what is or what can be constructed. See [Tichy 1988, 70-76] for an
excellent exposition of such a ‘higher order discourse’. As for the logico-philosophical
importance of this approach to mathematical texts see [Tichy 1995] or a quotation from his
1988, p.76:

The arithmetician is interested in a certain class of mathematical constructions and
proves theorems which tell us what such constructions construct. To state such
theorems, he has to use notational devices enabling him to refer to those
constructions. But to study how these notational devices work is a task for the
grammarian of arithmetical discourse, not for the arithmetician himself. There is
nothing untoward, of course, about an arithmetician’s taking interest in the
particular notation he uses. But while he indulges this interest he is not doing
arithmetic any more than a zoologist is doing zoology when his attention strays

temporarily from beasts to the grammar of the language he speaks.

1.4.1.3 Empirical concepts
Empirical concepts are procedures which ensure that Parmenides’ Principle (see 1.3.2) is
obeyed. We most frequently contravene this principle when we assume that an empirical
expression is not about an intension but rather about the object that happens to be the value of
that intension in the actual world. (I remind the Reader of our example with the highest
mountain.) Empirical concepts” are either trivialisations of intensions (see however 2.1) or
constructions of the form AwA¢ X, where X is an arbitrary open construction with w,# as the
only free variables. In both cases it is obvious that there is no way of constructing the value of
the respective intension in the actual world (and time), as explained in the Remark following
Definition 9.

Another consequence is that empirical concepts'’ are never strictly empty or quasi-
empty. As an example let us consider the concept THE TOWNS WHERE THE NUMBER
OF INHABITANTS IS DIVISIBLE BY ZERO. Types: T(owns)/ (0ot).s, I(nhabitants of)/

((0VV)1e, N(umber of)/ (t(o1)), D(ivisible by)/ (ott), Z(ero)/ t,x — 1. The concept* is
dwht Rx [ ['Tu] [°D [N ["Lix]] “ZI].
For every world-time the construction

[’D ['N [’L.x]] °Z]
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is (v-)improper. Thus the object identified by the concept (constructed by the concept’) is a
very strange property of individuals: its value is in every world-time a (‘non-standard’) class,
viz. a function that is undefined for any individual, so a quasi-empty (‘degenerate’) class. Still
another strange (but not infrequent) phenomenon can be seen here: the concept seems to be an
empirical concept but it is de facto a non-empirical (in this case not just a mathematical)

concept, since the intension identified by it is a trivial, constant intension (see Definition 3).

Remark: This last example shows that our classification of concepts is not very fine-grained.
We should divide concepts into empirical and non-empirical concepts and use a subdivision
for non-empirical concepts, distinguishing mathematical and ‘the other’ non-empirical
concepts. We can adduce many examples of the members of the last group. Take, e.g., the
concepts INDIVIDUALS SUCH THAT IF THEY ARE MAMMALS, THEN THEY ARE
VERTEBRATES (identifies the universe; but MAMMALS WHICH ARE VERTEBRATES
is an empirical concept that identifies the property (being a) mammal!), BEING A TABLE
OR NOT BEING A TABLE (but see 1.4.3.4) etc... —

Being strange or useless does not mean, however, being ‘non-existent’. We can
suppose that there are millions of concepts that are at the given moment entirely useless (or
even strange in the above sense). To adduce a Bolzanian example, we can certainly
understand the expression a bush with exactly 235 leaves, so that there is a concept that
identifies the respective property. Nobody needs such a concept but we cannot say that there
is no such concept. (By the way, we can imagine a fairy tale where finding such a bush is a

condition for liberating a princess.)

Remark: The distinction between empirical and non-empirical concepts is relevant for logic.
When we use the notion of infension in the PWS sense to distinguish concepts that identify
intensions and are thus empirical we possess a logical tool essentially important for, e.g., the
analysis of the use of a concept de re vs. de dicto (see for example [Tichy 1978b], [Duzi
2004]). A small example can serve as an illustration. We can ask: does the expression yellow
express another concept than the expression yellowness? (By the way, this is a problem
Bolzano tried to solve within his system. See [Bolzano 1837, §60]) One surely admits that
YELLOWNESS identifies a property of individuals. But what about YELLOW? We can
easily solve this problem for we explicitly use variables w, #: Let us analyse two contexts (let

X be a construction which constructs an individual A):
A is yellow.
Yellowness is a colour.

To be a colour is to belong to the class of colours, i.e., of properties of individuals. So
we have C/ (0 (01),). We claim that Y(ellow) as well as Y(ellowness) is simply a property of

individuals, Y/ (01),. Our analyses of both the contexts above result in:
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e [°Y . X1,
[°c °v].
We can see that yellow expresses the same concept’ as yellowness, viz. Y (but see
2.2): the two distinct expressions serve only to make the distinction between de re (the first
context, where the proposition constructed is true or false depending on whether A does or
does not belong to the class which is the value of Y in the given world-time) and de dicto (the
second context which is simply true independently of worlds-times; the respective sentence is
an analytic sentence, where what is spoken of is the property itself, not the particular classes

as its ‘populations’— therefore no ‘intensional descent’ is present).

This is only a particular, not very intricate example exhibiting the importance of
logically capturing the distinction between empirical and non-empirical concepts; for imagine
that our question concerning the possible distinction of the concepts YELLOW and
YELLOWNESS should be answered without having at one’s disposal the variables w, ¢ or
even without taking into account the notions of intension and of extension. Never ending
more or less sophisticated discussions could be expected. But such examples notwithstanding
you find mostly such formulations as “the necessity to introduce possible worlds into logic
arises whenever (in the worse cases “only if”’) we want to analyse modal contexts”. But we

have seen that our example did not concern any modal context. —

Unlike mathematical concepts Church’s proposal to let also sentences express
concepts is not at all counterintuitive. One could, of course, object that normally we would
not say that a concept could be true or false and that we would have to admit it if also
sentences (empirical sentences!) expressed concepts. This objection can be however easily

refuted: Consider an empirical sentence, say,
The mayor of Moscow is corrupt.

This sentence, as well as the proposition denoted by it, is, of course, true in some pairs (W, T)

and false in others, but what about the concept” expressed by it?

A concept should identify an object. We already know which kind of object is
identified by empirical concepts: it is always an intension. The concept expressed by an
empirical sentence identifies a proposition. So it cannot be true or false, for identifying a
proposition is not the same as verifying (falsifying) a proposition. We understand the sentence
about the mayor of Moscow, i.e., we possess the concept of the respective proposition (= truth
conditions of the sentence), so we are theoretically able to verify (falsify) it, but whereas the
process of identification is a (relatively) a priori process given by the linguistic convention,
the process of verifying/falsifying (an empirical sentence/an empirical proposition) is an
empirical, a posteriori process. Thus the principle according to which concepts are neither

true nor false holds even in the case that the concept is expressed by an empirical sentence.
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Remark: What if the sentence is a mathematical sentence? In 1.4.1.2 we have seen (in a
Remark) that our linguistic intuition resists admitting that, e.g., a true mathematical sentence
expresses a concept of the truth-value T. All the same, even if we accept this Churchian idea,

we can say that the concept identifies T but we would hesitate to say that it is true. —

1.4.2 Concepts are abstract procedures

1.4.2.1 Constructions as abstract procedures: too fine-grained a construal

Our aim is to make it possible to handle concepts as abstract procedures. Let procedures be
characterised or defined no matter how; they always have to consist of some ‘steps’, (or
‘instructions’, at least one step, that is) and there have to be some atomic, indecomposable
building stones. We have also to know the identity or equality conditions for procedures.

Fletcher [1998] defines these conditions (for his (intuitionist) constructions) as follows (p.52):

x =y iff x and y are built out of the same atoms using the combination rules in the

same way.

In our system variables play the role of atomic constructions. Applying the above
definition we get, e.g., that
A [™> x °0]
is distinct from (albeit equivalent to)
[ x; 0]

The distinction stems from the fact that distinct variables are used.

Our question is: Is this result compatible with the way we intuitively understand what
a procedure is? And even: is it compatible with Fletcher’s definition above? Let us try to

verbally describe the procedure connected with the construction [Ax; [°> x; °07].

We identify the relation > and apply its characteristic function to all pairs (m, 0),

where m is a real number, returning T in the cases where the pair belongs to the relation >.

This description does not mention the variable x;, nor is it distinct from the description
associated with any construction Axy [...] for k£ any natural number. Our conclusion therefore
is:

Constructions (as defined in Definition 4) are more fine-grained than procedures.

Yet this is no asset of constructions when compared with procedures. When
procedures are indifferent to bound variables we have to ask: Do we need bound variables? In
[Materna 1998] as well as in [Peregrin 2000] the possibility of building constructions via a
theory inspired by Curry’s combinators rather than by A-calculi is suggested. There are,

however, other options. In the next two sections an alternative (introduced in [Materna 1998])
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is explained, in the APPENDIX another (today I would say: a better, and later the preferred)
alternative is described.

1.4.2.2 Quasi-identity of closed constructions

First we define two relations that may obtain between two closed constructions.

Definition 10 (a-equivalence)
A closed construction C is a-equivalent to a closed construction C’ iff C’ arises from C by

correctly replacing n (n > 0) occurrences of a A-bound variable £ by a variable 1. —

Remark: Remembering the non-standard meaning of occurrence in TIL (see the Remark that
comments on Definition 6) we have to represent the result of such a correct replacement by
writing n instead of £ also in the A-part of our representation of closure, although we have

seen that there are no occurrences of & in this part. —

Claim: a—equivalence is reflexive, symmetric and transitive. —

Proof:

Symmetricity and transitivity are obvious. Reflexivity is guaranteed by admitting n = 0. —

Thus the constructions
and

are a-equivalent.

Definition 11 (simple concepts)
A concept® of the form X, where X is a non-construction (or at most a variable) is called a
simple concept™®. —
Definition 12 (77-equivalence) (in [Materna 1998] called B-equivalence)
Let us accept following abbreviations:
Instead of (af;...Bn) we will write (of3,).
Instead of Ax;...x, [X x1...x,] we will write Ax,[Xx,].
Then: Let C be a simple concept™ constructing an (((ctBm1)Ym2)--.0mn)-0object, and let
Xy -+, Ym2, Zm1 D€ Variables ranging over Opy,...,Ym2, Pm1, respectively.
C is n-equivalent to each of the concepts™

An [Cxmnls « o Mo A2 [[CXmn. - - Ym2]s AXmne o - AVm2AZmt [[CXn]- - Y2 lzm1],
and all these concepts* including C are pairwise 77-equivalent. —

Claim: n-equivalence is reflexive, symmetric and transitive. —

Proof: A trivial consequence of Definitions 4. and 12.—
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Thus following constructions are n-equivalent:
OCat, Aw ["Cat w], Awht °Cat,,, Awhidx ["Cat,ex].
Or ( Bel(ieve)/ (01#1)m, X > 1, ¢ —> *1):
'Bel, Aw [*Bel w], Awht "Bel,,,, Awiidxe ["Bel,y x c].

Now we can state that
(closed) constructions that are o- or n-equivalent differ in such a way that their
difference is not accompanied by a difference between procedures; if C is a- or n-

equivalent to C’, then the respective procedure is the same (see 1.4.2.1).
This statement justifies our transition from concepts* to concepts.

Definition 13 (quasi-identity)
Closed constructions C, C’* are quasi-identical (QUID) iff there are constructions Dy,...,D,
such that D; = C, D,, = C’, and for any D;, D;1j, 1 <i < m-1, it holds that D; is a- or -

equivalent to D;y. —
Remark: Clearly, for any #, the type of QUID"™ is (0 *, %,).—

Definition 14 (concept generated by a construction)
Let C be a concept* of order n. Let d range over *,. The concept generated by C
(abbreviation: C) is constructed by Ad ["QUID™ 4 °C]. —

Remark: Thus the type of C is (0*,). —

Some consequences:

1) Any concept* C unambiguously generates the concept C.

2) All members of C identify (i.e., construct) one and the same object (in an almost the same
way), or are strictly empty.

3) C, being a class, is not a construction.
Comments, illustrations:

Ad 1): According to our definitions, C is the class of all closed constructions (= concepts*)
that are ‘QUID-related’. We can easily see that the QUID(”) relation is an equivalence

for any n.

Ad 2): The members of C are, of course, distinct. Yet from the viewpoint of explicating
concept the differences are not essential. Expressions of a natural language do not
distinguish o- or n-equivalent concepts* (because these concepts* identify one and the
same object in an ‘almost identical’ way). The choice of bound variables is not

important for the way of identifying an object.

Ad 3): This is a controversial point. We have always emphasised that concepts should not be

set-theoretical entities. Concepts* are not, of course, since they are constructions, but
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concepts are classes (of constructions, but all the same classes), i.e., set-theoretical

entities. An apology thereof can be found in [Materna 1998], here only briefly:

A concept is a specific class: not every (o%*,)-object is, of course, a concept. The
specific character of a class-concept is given by the points 1) and 2) above. We can say that
each member of the class-concept defines the procedure that is an explicans for concept. But

when we use this procedure we can use any member of the given concept. See 1.4.2.3.

All the same, we will accept a more adequate definition, which preserves the

constructional character of concepts: see APPENDIX to 1.4.2.
Examples:
Let C be “Cat. The infinite class °Cat is

{ 0Cat, W [OCat w], AWAt OCatW,, WAL Ax [OCatwt x], Awy [OCat wil,
Awiht Ax[°Catyr, x], Awids *Catyn, ... }

The class “Suc, where Suc(cessor)/ (vv) (see 1.4.1.2) is
{ °Suc, Ax [*Suc x], Ax; [*Suc x1], Axz [*Suc x2], ... }.
The singleton 0 is { °0 }.

The singleton [Ax [°<x °01] is { *[Ax [°< x °0]] 3.

(Notice that x is “bound here so that it cannot be replaced by other variables.)

Now any concept is unambiguously generated by any of its members. So we can ask:
if the object identified by a concept C is unambiguously given by the concept® C, do we need
the category CONCEPT at all? The next section shows that there is a context where we would
probably agree that this new category must be exploited. (See, however, Appendix to 1.4.2.)

1.4.2.3 Using and mentioning concepts

(See also [Materna 1998, 5.5].)

The distinction between use and mention is well known in the area of expressions. When we
say
Cats are predators
we use the expression ‘cats’, whereas when we say
‘cats’ is the plural of ‘cat’

we mention the expression ‘cats’.

But we can observe that in mentioning the expression ‘cats’ we wuse another
expression, viz., ‘cats’, which is indicated by the inverted commas. Moreover, the distinction
above is not accompanied by the distinction between using and mentioning a concept: in both

cases a concept is used: in the first example the concept in question is a concept of the
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property being a cat, in the second example the concept used is the concept of the expression

‘cats’. In neither expression above is a concept mentioned!

If we mention a concept we speak about this concept. If we use a concept we speak

about the object identified by this concept.

It is no wonder that natural languages (usually) do not have at their disposal a
systematic grammatical means that would signal that we speak about a concept rather than
about, say, the property identified by the concept. Only when we theorise about concepts do
we use some linguistic means to explicitly distinguish between the two cases. Even then the
reader need not understand that an essential distinction is indicated. A good example can be
found in Bolzano [1837 II.] where he distinguishes (§148, p.89) even between equivalent
Sdtze an sich, if they differ by containing two equivalent concepts (“Vorstellungen”, an sich,

of course):

allein um Sitze als von einander verschieden anzuerkennen, geniigt es, dass sie
nur aus verschiedenen Vorstellungen bestehen, wenn sie auch einerlei Gegenstand
betreffen.

(to recognise sentences as mutually distinct it is sufficient when they consist of
distinct representations, even if they concern one and the same object.)

Bar-Hillel in his [1950] believes that unless we reconstruct Bolzano’s formulations in
terms of a distinction between language and meta-language we get a contradiction. But

Bolzano speaks of distinctions between concepts, not between expressions.

We will see that even such a fine-grained problem as distinguishing between using and
mentioning concepts can be solved without resorting to introducing an extra meta-language.
What we are after is not primarily a /inguistic problem: abstract procedures (concepts*) are

not linguistic entities, just as mathematical objects are not.
Consider following four sentences:
A) Charles is highly intelligent.
B) Being highly intelligent is a desirable property.
C) BEING HIGHLY INTELLIGENT is a psychological concept
D) The construction ‘Awhs Ax ["Highly Intelligent,, x]’ contains the variable x.

We will show that in A) and B) the concept HIGHLY INTELLIGENT is used, in C) it is

mentioned and in D) neither used nor mentioned.

In A), as well as in B), we speak about properties, not about concepts. In A) the
property in question is predicated of Charles, and the truth-value of the sentence is dependent
on the population of the property in the given world-time, so (the concept of) the property is

in the supposition de re. In B), the property itself — as a function — is subject to predication:
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the truth-value of the sentence is this time independent of the population of the property in
particular worlds-times. The supposition of it (or: of the respective concept) is de dicto. (See
also [Tichy 1978b], [Duzi 2004].)

In C) we speak about the concept itself: it is said to be a member of the set of

psychological concepts. Nothing is said about the property identified by the concept.

D) is a peculiar case. Here nothing is said about the property but neither is anything
said about the concept: it is fully irrelevant to speak about variables contained in a concept.

The only object of predication in D) is a particular construction.
Now we support our verbal characteristics by (simplified) analyses of Ay—D).
Types: Ch/ 1, HI/ (01)¢, DP/ (0 (01)10)r0, PC/ (0 (0%1)), Co/ (0 *1 *1),x = 1, ¢ —> *;

(Commentary: D(esirable)P(roperty) is a property of properties, P(sychological)C(oncept) is a
class of concepts (here: of order 1), Co(ntain) is a relation (in-extension) between

constructions in general and variables (here both of order 1). )

A’. awaz [°’HL,,"Ch]

B’. awiz [°DP,,  HI]

C’. [°PC re [°Quid ¢ *HI]]

D¢. [°Co ’[Awit Ax ["HL,.x]] %]

(Cf. a similar example in [Materna 1998], p.103.)

Observe that the distinction de re vs. de dicto is well visible: In A’ the property HI is
applied to w and (then) to #, which makes the truth-value of the constructed proposition be

dependent on the population of HI in the given world-time, unlike in B.

The example together with its analysis justifies our definition of concepts as sets sui
generis. There is an analogy to Frege’s claim that a concept word used in the subject position
denotes an object rather than a concept (see [Frege 1892]); this is the case of C), where
something is predicated of the concept itself and this concept is represented as a class. A
general principle holds: the object we speak about has to be constructed. So the concept we

speak about has to be constructed.

Yet another general principle holds too: Speaking about an object we always use some
concept. In our case C’ this means that in mentioning the concept "HI we use the concept of
this concept, viz. the concept

{ [he ["Quid ¢ “HI]], Ae1[°Quid ¢; “°HI]], ... }
Indeed, any member of this last concept, e.g.,
[Acas [OQUid €23 OOHI]]-
can do the job.
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APPENDIX TO 1.4.2

The difficulties connected with defining concepts procedurally (concept’) vs. set-theoretically
(concept) can be avoided in a perhaps more natural way, viz. via a normalisation. This choice
has been made in [Hordk 2001]. His key definitions (I modified their numbering by adding
‘H’) are:
HDefinition 11 (concept normal form). Let us suppose a fixed ordering of all
types, i.e. let &; be the i-th type over the TIL objectual base and let Vgij be the j-th

variable of the type &; (i.e., ranging over &;, P.M.) for two natural numbers i and ;.

An a-normal form of a construction C is the construction NF*(C) (we would write
['NF* C], P.M.) that ensues from construction C in the following way — the
structure of the construction is exactly the same except that every free or A-bound
variable is consistently renamed to a first unused variable of the corresponding
type (we parse the construction from left to right).

A B-normal form" of a construction C is the construction NFP(C), where for n > 0

there exist constructions Dy, ..., D, such that D; = C and D, = NF*(C) and for
eachi=1,...,n—1every D isa B-reduction+ of D; and D, is not B-reducible+
any more.

A normal form of a construction C is the construction NF(C)such that
NF(C) =4t NE “(NFY(C)) -

"Here “n-normal form” and “n-reduction” should stand, since the B-equivalence is

based on n-reduction. P.M. —

HDefinition 12 (concept). Let C be any CONCEPT* and let D be the CONCEPT’
constructed by NF(C). We call D a concept and we say that C points to the
concept D. —

[Horak 2001, 58, 60]

Case C in our example (BEING HIGHLY INTELLIGENT is a psychological concept)
would be analysed in the following way: PC/ (0%;), HI/ (01)w, "HI/ *, NF/ (*;%));

(C*) [°PC [°NF “°HI]]. -
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1.4.3 Concepts and expressions

1.4.3.1 A basic misunderstanding: confusing semantics with general linguistics

Perhaps it would be better to use the term logical analysis of natural language (LANL, see
[Materna 1998]) than semantics (of natural language), for what is called semantics is more
often used in the sense of /inguistic semantics. Linguistic semantics can be construed as a part
of general linguistics, which means, among other things, that our investigations are empirical:
they construe natural language(s) as a natural phenomenon, i.e., the link between an
expression and its meaning/denotation is a contingent link — which it is, of course. Semantics
in the sense of LANL presupposes that the respective linguistic convention is already given,
so that the expression—meaning—denotation link is a (relative) a priori link. (We have seen,
however, that the expression—reference link is not a priori for LANL.) To illustrate these
claims, from the viewpoint of ‘empirical semantics’ it is a contingent fact (connected,

therefore, with a piece of information about English) that the expression
the highest mountain

denotes just what it denotes (the individual role of being the highest mountain) rather than,
e.g., the property being a hungry dog; the same holds w.r.t. the meaning of that expression.
Applying, on the other hand, a LANL view to the above expression we presuppose that the
respective convention has already determined both meaning and denotation (but not the
reference, of course) thereof. Looking at [Frege 1892a] we can see that Frege’s Sinn is
construed as an entity determined a priori. (As for his Bedeutung, this is not certain when we
take into account his unfortunate Morgenstern—Abendstern example where Bedeutung is

reference rather than denotation, in contrast to his earlier example with medians.)

1.4.3.2 Given a convention, what is a priori?

Summing up, the respective linguistic convention determines — at the given femporal slice,
see 3.1—wvia its lexical part the meanings/denotations of particular ‘basic’ simple expressions,

and—via its grammatical (syntactical) part the meanings/denotations of complex expressions.

This global characterisation does not mean that the convention determines the
meanings and—independently—the denotations: The denotation (in our sense) is
unambiguously determined as soon as the meaning is. At least this should follow from our
identifying meanings with constructions: setting aside (temporarily) the complicating factors
to be mentioned in 1.4.3.4 and 1.4.3.6 we can state that the unambiguous determination of
denotation by meaning corresponds to the fact that what is (v-)constructed depends at most on
the valuation v; no empirical factor can influence the outcome of the construction of an object.

Since the object denoted by an expression E is this very outcome, our claim is proved.
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We have seen that if E is an empirical expression, then our claim still holds: what is

constructed is in this case an intension. No a priori way leads, however, from this intension to

its value in the actual world + time. Thus reference is not a priori determined.

1.4.3.3 Meanings are concepts

In his [1956, p.6] Church, deviating from the Fregean notion of concept, proposed the

following ‘quasi-Fregean’ scheme:

Expression E

Sense of E = a Concept of

l

Denotation of E

We have accepted this scheme by taking concepts as closed constructions or the sets of quasi-

identical (closed) constructions (see 1.4.2.2). The problem of defining meaning (= sense)

independently of the other members of the Quinean ‘circle’ (i.e., of analyticity and synonymy,

see [Quine 1953]) can be solved in this way.

Remarks:

a)

b)

Observe that our solution is universal, unlike any solution that would identify meanings
with intensions: mathematical expressions express meanings/concepts although they are

not connected with any intension.

Setting again aside the complicating sections 1.4.3.4, 1.4.3.6 we can now formulate the

following claim:

Meanings are concepts.
Now what about the ‘inverse’ claim, viz.

*Concepts are meanings !

This latter claim is, first of all, imprecise. Meanings are meanings of. Concepts have been
defined as non-functions; they are not concepts of. In a way, the former claim is also
imprecise in this sense, but this impreciseness is innocuous: we can always say Meanings

of any (meaningful) expressions are concepts, using the traditional notation
Ve (E(e) o C(M(e))).
(E ... the class of expressions, C ... the class of concepts, M ... the meaning of.)

Such a ‘correction’ of the latter claim poses, however, some problems. The most intuitive

option would be Concepts are meanings of some expression., 1.e.,

Ve (C(c) o de (E(e) A c =M(e))).
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But in this case an unacceptable conclusion would follow: concepts would have a
temporal dimension, for concepts would come into being dependently on existence of
respective expressions. Our (and in this respect the Bolzanian) conception takes concepts
to be entities not localisable temporally or spatially; thus we would say (using the

imperfect notation of predicate logic)
e (C(c) A —=Te (E(e) A c =M(e))). —

(There are concepts that are not expressed by any expression of our actual language.)

1.4.3.4 Homonymy, synonymy, vagueness

A. Homonymy

Saying — as we did — that to be the meaning of is a function is imprecise. The rules
governing natural languages admit — unlike those governing artificial languages — frequent
‘exceptions’. Homonymy (or polysemy, or ambiguity, see [Stechow, Wunderlich 1991, 99]:
the terminological distinctions are not always relevant here) is a phenomenon that puts a limit
on the assumed functionality. In some cases one and the same expression possesses more

than one meaning. Two subcases are important (see [ibidem, 98]):
Lexical homonymy.

Accepting the simplifying (and essentially false) assumption that simple expressions
express simple concepts (see Definition 11 and 2.1) we can define lexical homonymy as

follows:

Definition 15 (Lexical homonymy)
A simple expression is lexically homonymous iff it expresses at least two concepts. —

Structural homonymy.

Let E be a structured (i.e., not simple) expression. Surprisingly enough, the next

definition is practically identical with the preceding one.

Definition 15° (Structural homonymy)

A structured expression is structurally homonymous iff it expresses at least two concepts. —
Thus we have

Definition 16 (Homonymy)

An expression is homonymous (ambiguous) iff it expresses at least two concepts. —
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Examples:

Some standard illustrations of Definition 15 suggest themselves, for example, Bank. One is
tempted, of course, to say that the ‘right’ meaning is determined by the respective context:
robbing a bank is not admiring the bank of the Thames, but this solution is wrong. The word
bank possesses — in virtue of the presupposed linguistic convention for English — both the
meanings; the context does not change this fact, it only selects the meaning that is the right

one therein. The simple concepts connected with bank are, say, “bank;, *bank,.
The denotations are in this case also distinct; both are properties, type (01)+e.

The things are however not that simple. We will see that the assumption that a simple
lexical unit of a natural language always expresses a simple concept is wrong (see 2.1). To see
this from a “practical’ viewpoint let us consider the expression prime (number). There are two

non-equivalent concepts expressed by this term. One is
2 Yy [ [PDivay] [P [P=x 1 =y “111],
while the other is
Ax [°=[°Card Ay ["Div x 1] °2].
(Div/ (ot7), divisibility (‘is divisible by”), Card/ (t(ot)), the cardinality of.)

The respective denotations are also distinct: the former concept identifies a class

whose member is the number 1, the latter concept excludes 1 from “the class of primes”.

The moral is: True, prime as a simple expression expresses two concepts, say, _prime;,
%prime,, but actually this means that the respective linguistic convention associates prime with
two complex concepts. (See 2.1. It will be clear that in most cases — including the above

example with bank — the same consideration can be applied.)

The structurally homonymous expressions are homonymous due to the distinction
between the grammatical structure of the given language and the (“international”) structure of
constructions. Not to adduce standard examples we can offer a more sophisticated illustration.
(See [Duzi, Materna 2001].) Consider the sentence

Charles believes that Venus is bigger than Mars.

There are strong reasons for taking propositional attitudes (believing, knowing,
doubting etc.) to be relations(-in-intension) between individuals and constructions. From this
viewpoint the meaning of the sentence can be represented by the construction (Ch/ 1, V/ 1, M/
1, Big/ (o), Bel/ (01%)):)

awt [*Bel,, °Ch °[Awiz [*Big,. °V "M1]].
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Yet whereas logic cannot guarantee that Charles also believes that Mars is smaller
than Venus (which is actually blocked by this ‘constructional’ analysis), the above sentence
can be read in another way, viz. as Charles’ attitude to the state-of-affairs, in other words, as
his attitude to the respective proposition. In this case believing gets the type Bel’/ (010+¢):,

and the meaning will be
Awht ["Bel’,, °Ch [Awhs [*Big,, °V "M]]].

This time the conclusion that Charles believes that Mars is smaller than Venus does
follow since the proposition that Venus is bigger than Mars is the same as the proposition that
Mars is smaller than Venus. (Thus we can understand, why Peter, referring to Charles’
opinion, can rightly say that according to Charles Mars is smaller than Venus.)

Thus our sentence possesses two distinct meanings (i.e., the respective constructions
are distinct) and, moreover, two distinct denotations, since the respective propositions are

distinct: in some worlds one of them is true while the other one is false.

Our conceptual framework makes it possible to consider a strange kind of homonymy:
for an expression to be homonymous it suffices (according to Definition 16) to possess two
distinct meanings. We take meanings/concepts to be constructions. Now it is possible that two
distinct meanings identify one and the same object; the respective constructions can be

equivalent.

Definition 17 (equivalence of concepts)
Let C, C’ be closed constructions, i.e., concepts*. C is equivalent to C’ iff C constructs the

same object as C’ or C and C’ are of the same order and both improper. —

(Equivalence of concepts (as sets of concepts* or ‘normalised concepts ) is easily definable

in terms of Definition 17.)

So we can say that some expressions may be homonymous without denoting distinct

objects. To exemplify this possibility, consider the expression
Blowing up banks is a destructive activity.

The two meanings of this sentence differ in that one of them contains the concept'”
%bank; and the other one the concept”” “bank,. On the other hand, the proposition denoted by
the sentence is the same: ‘Interpreting’ it in the first or in the second way we get the same
truth-conditions (assuming, as it is natural, that blowing up anything is a destructive activity).
See weak homonymy, [Duzi 2004].

Remark: The above analyses show that the TIL approach makes it possible to use more fine-
grained tools than most of the standard approaches. Compare these analyses, e.g., with what is
said about the key category Bedeutung in [Stechow, Wunderlich 1991]: Besides some

pragmatic use of this term the Wahrheitsbedingungen-Semantik is (critically) referred to, and
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Carnap’s idea of intensional isomorphism, as well as Cresswell’s structured meaning and
Barwise-Perry’s situational semantics are mentioned; Montague’s approach is frequently
used. This is an informative book, rich in content, but there is no place therein for
systematically developing one consistent idea that would make it possible to solve most of the
‘logical puzzles’ stemming from unsatisfactory semantic analysis. In my opinion, TIL-being
an open system — offers such an idea. Therefore you can say — rightly in a sense — that the
present study is a dogmatic study (similarly, however, like any study based on one

conception, for example any Montagovian study). —

B. Synonymy

A very fine-grained analysis of synonymy can be found in [Materna 1998, 124-127].

Here I only recapitulate the results.

Definition 18 (synonymy)
An expression E is synonymous with an expression E’ iff E expresses the same

concept as E’. —

Definition 19 (equivalence of expressions)
An expression E is equivalent to an expression E’ iff E denotes the same object as E’. An
expression E is weakly equivalent to an expression E’ iff E is equivalent to but not

synonymous with E’. —
Remark: Compare the above definition with Definition 17. —

Definition 20 (coincident expressions)
Expressions E and E’ are coincident iff they denote distinct intensions whose value in the

actual world + time is the same. —

Two principles characteristic of TIL are responsible for the fact that we are able to

articulate the important distinctions given by the definitions 18-20:

I)  Meanings/concepts are abstract procedures linking expressions with their

denotations.

II)  Parmenides Principle (see 1.3.2) together with the claim that empirical expressions

denote intensions.

Without I) we would hardly be able to distinguish between synonymy and weak
equivalence. At most we would say something like synonymous expressions may possess
distinct syntactical structure, which is, of course, not a statement based on a semantic
analysis. Besides, we would probably say that all mathematically true sentences and all
mathematically false sentences are synonymous. We can say that all distinct true
mathematical sentences as well as all distinct false mathematical sentences are only weakly

equivalent.
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Without IT) weak equivalence and coincidence of empirical expressions would not be
distinguishable. Let us return to the unfortunate interpretation of Fregean example with
morning star vs. evening star. Our present approach to solving his problem can be summed
up as follows: morning star is not (weakly) equivalent to evening star—these two expressions
are just coincident. By the way, a generalisation of this example is highly instructive: for
Frege all true empirical sentences (just as all false empirical sentences) would be (weakly)
equivalent. We would say that they are only coincident. All these distinctions are given by II
alone. For Frege morning star as well as evening star denotes Venus; for us they denote two
distinct intensions (individual roles). For Frege every sentence denotes a truth-value; for us
every empirical sentence denotes a proposition. Venus and truth-values are references rather

than denotations of the respective expressions.

Our definitions make it clear that (and why) real synonymy is such a rare
phenomenon. As for a true lexical synonymy, i.e., where we could presuppose that both (or,
in general: all the) expressions express one and the same simple concept, why multiply
expressions for one and the same (simple) procedure? (And indeed, can you find many
examples? Well, what about consulting some dictionary of synonyms? Forget it; what the
linguists take to be a pair of synonymous expressions almost never satisfies Definition 18.) As
for synonymy of complex expressions, Definition 18 is very strict: no two such expressions
can be synonymous which differ in some semantic feature. Thus the only distinction between
synonymous expressions has to consist in some purely syntactical, semantically unanalysable
difference. Perhaps the following two sentences can serve as an illustration (see [Materna
1998, 125])

Charles believes that his wife is clever. Charles believes his wife to be clever.

Definitions are a special case. Consider the classical ‘equational definition’ or

‘equational explication’. The schema of such a definition/explication is
Dfd = @ (E,,....E,),

where Dfd, ‘definiendum’, is a simple expression and the right side of the equation is a
complex expression containing only such subexpressions Ei,...,E, whose meanings are
supposed to be already given. From the semantic viewpoint the most important thing is that
the meaning of the simple Dfd is identified with the meaning possessed by the right hand side.
Thus such a definition is no statement; it is a stipulation. Now we can ask: is the Dfd
synonymous with the right hand side? If we accepted the view that the Dfd, being a simple
expression, expresses a simple concept, our answer would be No: a simple concept cannot be
synonymous with a complex concept by Definition 18. Yet the case of definitions
/explications is very clear: the Dfd gets its meaning due to the respective definition: it does
not possess another meaning. Thus the meaning of the Dfd is not a simple concept but the

complex concept connected with the right hand side of the definition. And therefore we can
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say that as soon as the meaning of a simple expression is — in the given language L —
explicitly given by such a definition/explication, the respective Dfd and the right side of the

definition are synonyms (in L).
C. Vagueness

From the viewpoint of any theory of concepts the well-known phenomenon of

vagueness is highly interesting. The semantically interesting question is (cf. [Materna 1998]):

Where should be the source of vagueness be looked for: is it the expression, the

respective concept, or even the respective denotation?

It would be probably very strange to suppose that objects denoted would be
themselves vague. 1 cannot imagine a rational ontology that would underlie such an
assumption. What we call objects is mediated by concepts. We ask therefore: How do

concepts contribute to vagueness?
It will suffice to consider concepts*, i.e., closed constructions.

a) Variables. We can hardly make variables guilty of causing vagueness. (Especially when
we know that in principle things can be done without variables, e.g., with Curry’s

combinators.)

b) Trivialisation. Consider simple concepts. According to Definition 11 a simple concept”
X is an abstract procedure that identifies (a variable or) the object-non-construction X
without using any other procedure. Assuming that heap expresses a vague simple concept
we get “heap. Now according to Definition 4 the object heap is identified without any
change. We know, however, that at least in this frequently used example the linguistic
convention is just ‘vague’ in the sense that it is not exactly binding on the users of the
given language. Not only will distinct users dissent when deciding whether the given
object is or is not a heap: one and the same user can have different opinions at different
times. As Peirce says, “the speakers’ habits of language [are] indeterminate” (see
[Stechow, Wunderlich 1991, 251]). In Pinkal’s article in [ibidem, 250-269] we can find
various theories trying to deal with this unpleasant phenomenon; it is not our task here to
thoroughly analyse vagueness but some interesting points are relevant for our study, in
particular a comparison between homonymy/ambiguity and vagueness, and the approach
of fuzzy logic. Let us therefore continue analysing the heap example. Here we set aside
the interesting problem of how to accommodate — as the case may be — our theory of
concepts to let it cover fuzzy sets. Instead we will articulate an idea (suggested already in
[Materna 1998]) that would make vagueness a special kind of ambiguity. Pinkal in
[Stechow, Wunderlich 1991, 264] quotes from Kit Fine’s article in Synthese 1975:

Vague and ambiguous sentences are subject to similar truth-conditions; a vague

sentence is true if true for all complete precisifications; an ambiguous sentence is
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true if true for all disambiguations. ... to assert an ambiguous sentence is to assert,
severally, each of its disambiguations. ... precisifications are extended from a
common basis and according to common constraints; to assert a vague sentence is

to assert, generally, its precisifications.

So how do ambiguous and vague sentences (but in general, vague expressions) differ?
For Fine precisifications are connected with a common basis and common constraints.
The minimum number of grains (although not exactly registered) could be such a
common basis for heap. Nothing like this is necessary in the case of ambiguous
expressions (consider bank). Yet in a sense we could speak about homonymy
(ambiguity): see [Materna 1998,128,129; (H;/ (01) 1s a property which in a pair (possible
world, time point) determines the class of objects containing in the heap-like manner at

least i grains)]:

Now we can imagine thousands of such properties H; differing by the number of
grains admitted as the cardinal number of those sets which are ‘taken into
account’ by the given H;. ... The expression heap will then be homonymous in a
special way: it will cover a whole set of concepts, each of which will identify one
of H;. ... one feature which distinguishes this kind of homonymy from the other
kinds, could be formulated as follows: The concepts associated with the given
expression are in a sense similar: there is no analogy with bank, idealist, etc. If A
does not admit that the given object is a heap while for B it is (since A connects
with heap another concept...than B) A will all the same admit that the

controversial object is similar to a heap.
A consequence thereof is:

...only the fact that the particular concepts are very similar inter se, together with
the fact that there are nearly as many ‘sublanguages’ ... as users of a given
language cause the impression that the given expression possesses an enigmatic

property ‘vagueness’ rather than that it is homonymous.

Therefore, if we accept this view, we should write Oheap1, Oheapz, ..., but this would be

without any practical sense.

Composition, Closure. These constructions have been defined in such a way that the

following claim is obvious:

Let C, Cy, ..., C, be simple concepts expressed respectively by expressions E, Ej,...,
E,. Assuming that neither of these expressions is vague, neither the composition

[CC,...C,] nor any closure, say, Ax;...x, C, can be a source of vagueness.

Thus the so called vagueness is no special property of expressions, concepts or

denotations. It is only a kind of a property of expressions called ambiguity.
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Remark: 1t would be a mistake to believe that vagueness can be found only in such cases
that seem to be paradoxical (heap, bald). For example, Black has shown (in his classic
[Black 1937], the example with chairs in a ‘logical museum’) that all empirical
expressions can be considered to be vague. Further, there are many kinds of vagueness,
see [Stechow, Wunderlich 1991]; a special kind concerns individual descriptions, such as
the most famous composer etc. Here we wanted to show only that our theory of concepts
needed not be threatened by the excentric (albeit universal) phenomenon of vagueness.

1.4.3.5 Compositionality

There are many definitions of compositionality (cf. the recent analysis in [Sandu, Hintikka
2001]), many interpretations of “Frege’s principle”. In [Stechow, Wunderlich 1991, 107] we

read:

Wenn a ein zusammengesetzter Ausdruck ist, der mithilfe der syntaktischen
Operation F aus den Ausdriicken aj,...,o, gewonnen ist, dann ist b(a) =

G(b(ay),...,b(am)), wobei G die F entsprechende semantische Operation ist.

(b is ‘Bewertung’, i.e., the semantic evaluation of a syntactically given expression; the

quotation is intended to define b together with the point concerning simple expressions.)

The standard (Tarskian) definitions are based on the idea of homomorphism of a
syntactic algebra into a semantic algebra. Here we would only like to show that the TIL
theory of constructions offers a deep insight into this problem.

First, consider two natural languages L and L’. Suppose that a Montagovian-like
analyst defines such a homomorphism for L, say, H, and a homomorphism for L’, say, H’.
Consider an expression E of L and its correct translation £’ in L’. When we say that £’ is a
correct translation of E we mean that £ shares with £’ the same meaning. Now we have seen
that H ensures the compositionality for L while H* does so for L‘. At the same time, we know
that in general the operations F and G on the one hand and operations /" and G * on the other
hand are distinct. The respective syntactic algebras as well the respective semantic algebras
are distinct. So where should we search for the common meaning of £ and E°? To illustrate

(in a simplifying manner) the problem, let us compare the English sentence

Charles is hungry.
with the Czech translation
Karel ma hlad.

The operation F transforms the syntactic atoms into the English sentence so that we have
F (Charles, to be, hungry),
whereas F’ does so for the Czech sentence:

F’ (Karel, mit, hlad).
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Compositionality is ensured by
G (b (Ch), b (to be), b (hungry))
and
G’ (b’ (Karel), b’ (mit), b’ (hlad)).

We can see that F and F’ lead in the Chomskian (and, partially, post-Chomskian)
literature to trees. This idea belongs to the family of attempts to define meanings as structured
entities, see, e.g., [Cresswell 1975], [Cresswell 1985], [Lewis 1972], in a sense also [Bealer

1982]. Lewis’ formulation is a paradigmatic one (p. 182):

It is natural...to identify meanings with semantically interpreted phrase markers
minus their terminal nodes: finite ordered trees having at each node a category
and an appropriate intension. If we associate a meaning of this sort with an
expression, we are given the category and intension of the expression; and if the
expression is compound, we are given also the categories and intensions of its
constituent parts, their constituent parts, their constituent parts, their constituent

parts, and so on down.

Thus compositionality should be automatically guaranteed, at least in the sense (ii) of
[Sandu, Hintikka 2001, 49-50].

But our question is still unanswered. Having, say, the two trees, both guaranteeing
compositionality for ‘semantic analysis’ of each of the two sentences (in general, expressions)
does not give their meanings. We could speak about the meanings of the L-expressions and
meanings of the L’-expressions (in particular, about the meaning of the English sentence and
about the meaning of its Czech translation), but — if we accept some Lewisian definition of

meaning — the two meanings-trees are not identical. (See [Materna 2002].)

Concepts (as essentially constructions) are, of course, international. Taking — for the
sake of simplicity — Charles/Karel to be an individual and Hungry / (ot)., a property of
individuals and, further, accepting, for the time being, the hypothesis that simple expressions

express (in the given case) simple concepts we get the construction
AWt [OHungrywt 0Charles]

as the common meaning of both sentences above. This construction/concept'” fulfils the most
general definition of compositionality: The meaning of both the sentences is unambiguously

determined by the meanings of their semantically autonomous parts.

What could be called the (logical) analysis of natural language should be based on
another philosophy. Tichy has articulated the main features of such an approach in a

posthumous article [1996a].
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Some points that characterise that approach are adduced in Foreword to [Tichy 1996a,
43], and the posthumous (probably unfinished) manuscript intends to build up a meaning

driven grammar (of English). Here are some quotations:
...the grammarian must also determine what those meanings are.

A purely syntactic generator of well-founded expressions is in principle
impossible because the well-formedness of a compound expression often depends
not only on whether its components are well-formed but also on what they mean.

Syntax and semantics must go hand in hand.

A natural language is a code and an important part of the grammarian’s task is to
decipher that code. This task is not discharged by translating vernacular
expressions into an invented ‘ideal’ notation which is based on substantially

different coding principles.

The notion of a code presupposes that prior to, and independently of, the code
itself there is a range of items to be encoded in it. Hence...meanings cannot be
conceived of as products of the language itself. They must be seen as logical
rather than linguistic structures, amenable to investigation quite apart from their
verbal embodiments in any particular language. To investigate logical
constructions in this way is the task of logic. The linguist’s brief is to investigate

how logical constructions are encoded in various vernaculars.
(Compare with ([Shapiro 1997, p.137].)

Finally, showing that the idea of ‘autonomous syntax’ is untenable Tichy adduces the
standard ‘phrase marker’ analysis of the sentence A/i slowly works and asks how a ‘pure
syntactician’ would define particular categories used in the phrase-markerese. In particular, as

for the category ‘sister’ (slowly in our example is a sister of works) he says:

Why is it, for example, that ‘slowly’ is a sister of ‘works’ but not of ‘Fred’? The
syntactician cannot explain it by pointing out the obvious fact that ‘slowly’ stands
for an activity modifier, i.e. for a mapping which takes activities to activities, and
that the activity named by the VP ‘slowly works’ is the value of that mapping at
the argument named by ‘works’. ... For that would be transgressing the
boundaries of autonomous syntax. No pre-theoretical meaning seems to attach to

the term ‘sister’ either. (p. 46)

It is just this illusion about ‘autonomous syntax’, which can lead to prematurely stating
that such and such kind of expression does not obey the compositionality principle. As a
typical example we can adduce Stechow’s analysis in [Stechow, Wunderlich1991, 112]: here

we read that an expression whose logical form is

(Vx) Px
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does not possess a compositional interpretation. The b (Bewertung) of such an expression
would have to be calculated from bH(Vx) and b(Px). Yet we see that the form of the

construction underlying such an expression is
[V [hx °Px]]

so that the meaning of that expression can be calculated from the meanings of, say, Every (OV)
and of, say, real irrational number, which denotes a class of irrational real numbers, so that

we have V/ (o(ot)), x — 1, It/ (o7), and the (false) sentence is analysed as follows:
[V [ e x]1),

which makes it possible to compose b(Every real number is irrational) from b(Every) and

b(real irrational number): from % and [Ax ["Ir x]].

True, Stechow shows (ibidem) that Tarskian approach to semantics can safeguard
compositionality (that this can be done universally is shown — at least for the case ii) — in
[Sandu, Hintikka 2001]) but he at the same time criticises this way out from a philosophical

point of view:

Man steckt den nichtkompositionalen Teil der Semantik in die Ontologie. ... In
gewisser Weise verschleiert diese Formulierung also, dass die Semantik der

Variablenbindung nicht kompositional zu behandeln ist.

Yet from our vantage point this objection is hard to understand. First, no semantics is
independent of ontology: it is a link between language and ontology. Second: The problems
with variables arise, of course, if variables are taken to be letters which are handled according
some syntactic rules. This conception leads to analysing quantifiers gua ‘operators’: In the
above example we seem to distinguish — besides ‘P(x)’— two components: the ‘operator’ V
and the variable x. The semantics of such ‘operators’ is well-known from the standard courses
of predicate logic: the ‘operator’ does not possess a self-contained interpretation, it is only an
‘improper symbol’; only the whole context, ‘Vx A’, where ‘A’ is a well-formed formula, gets
the interpretation. In TIL the quantifiers (e.g., ‘V’) are semantically self-contained
expressions, type-theoretically polymorph (scheme of one of the possibilities: (o(oa)) ). They

are what can be generally called predicates applicable to classes.

Compositionality is a great theme for the Finnish school, in particular for Hintikka’s
GTS. Feeling that a confrontation with GTS and, e.g., [F-logic is an extra topic, maybe much
relevant for the theory of concepts, we would like to postpone such a confrontation to another
opportunity. For the present we assume that semantics based on our TIL-shaped theory of

concepts fulfils the condition of compositionality.
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1.4.3.6 Pragmatic factors. Open constructions

In On What There Is (in [1953]) Quine writes:

If we are allergic to meanings as such, we can speak directly of utterances as
significant or insignificant, and as synonymous or heteronymous one with

another.

Here, in a nutshell, is the main thesis of the neopragmatists’ conception of semantics.
As I try to show in [Materna 1998, 116], all this post-analytic fashion with Quine’s criticism
of Carnap’s attempt to define intensional semantics is based on a category mistake. Let us

briefly recapitulate the core of this anti-Quinean claim:

Meanings are what makes expressions of a language meaningful, i.e., what makes it
possible to understand those expressions. Expressions are abstract vehicles of meanings: we
cannot spatio-temporally localise particular expressions (unlike expressions-tokens). What
semantics (even in the linguistic sense, but especially as LANL, see 1.4.3.1) has to study is
the connection between (abstract) expressions and what they are about (denotational
semantics) and in which way this link expression—object is realised (semantics of

sense/meaning).

In contrast therewith, utterances are spatio-temporal events: they are concrete, not
abstract. To study utterances means to study contexts of utterances. These contexts co-
determine what we are talking about in some cooperation with the meanings of the
expressions. This is what pragmatics has to study. Therefore Montague in his Pragmatics (in
[1974, 95-118]) has among his indices not only possible worlds and times but also context-

dependent ones.

Remark: Usually the temporal expressions like now, today, etc. are also taken to be
‘indexicals’, context-dependent, pragmatic. Since the type T is among the basic types in TIL,
such expressions are analysed as context-independent. As for now, the argument goes as
follows: this expression denotes a function, type (t7): if applied to any time point 7 it returns
the same time point. Thus using now does not contribute to the informative content of the
sentence, being only an identity function. No context dependency can be stated. Example

(simplified): Compare the sentences
Charles is hungry.
Charles is now hungry.
Types: Ch/ 1, H/ (01), N/ (17). We get
Aawat [°H,, Ch],

Awhe [[["Hw][*N#]] °Chl.

70



Since N is an identical function, [*N¢] is equivalent with ¢. Thus both sentences are

(weakly) equivalent (Definition 19). —

The Quinean ‘semantic’ theories replace meaning as what concerns expressions by
‘meaning’ as an attribute of utterances. That an analysis of utterances can enrich study of
semantics is obvious; what is less obvious (and is wrong from our point of view) is that all
that can be said about meanings is given by analysing the use of expressions, i.e., utterances.
The process of learning meanings is surely a process consisting in imitating the behaviour of
our teachers when they perform particular speech acts: yet this does not mean that meaning
itself is reduced to particular acts of teachers’ behaviour. The teacher presents his/her
knowledge of the given language by behaving so and so, but (s)he reproduces this convention.
This convention has already determined that the English words swan, black, some mean what
they mean, and the syntactic part of the convention has it that Some swans are black denotes
such and such truth conditions and means such and such procedure / construction. The
sentence possesses this meaning and denotation even if it is never uttered. And if some
context of utterances reveals a metaphoric sense of the respective utterance of that sentence,
we are surely aware of the fact that without this original meaning no metaphor would be
possible.

But while some expressions are context-independent in that they are semantically self-
contained an important class of expressions cannot be said to possess this property. For the
members of this class it cannot hold that their meanings are concepts. They do not determine
what they are about: they need a pragmatic input, given by an utterance of the expression in a

given situation.

Remark: The situation of utterance of an expression E can be imitated by a preceding part of a
text, which makes it clear that, e.g., the occurrence of a pronoun in E has to be read

anaphorically. We do not analyse this case here. —

The most known representatives of such ‘not-self-contained’ expressions are pronouns
— but we will see that also proper names (‘genuine’ proper names?) behave similarly — and,
of course, expressions containing pronouns. Since the time of Frege’s Gedanke endless
discussions try to offer a satisfactory analysis of (the pronoun) /, and Kaplan’s well-known
analyses of indexicals and demonstratives (see [Kaplan 1978]) have become a classic in this
respect. Since these problems do possess relevance to any theory of concepts, we will present

some remarks without laying a claim to having found a definitive solution.

In his Pragmatics (see [Davidson, Harman 1972, 380-397], but see also very
interesting considerations in [Childers, Svoboda 2003, especially p.188]) Stalnaker says that

(one part of) pragmatics concerns

the features of speech context which help determine which proposition is

expressed by a given sentence. (p.383)
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Now imagine that somebody says:
I am hungry.

What corresponds to this utterance as an expression / sentence is the sentence
| am hungry.

Let our speech context be such that the utterance has been made by a) Richard
Montague, b) Abraham Lincoln. The same sentence denotes (mind you, denotes, not
expresses, in our terminology at least) another proposition in the case a) than in the case b).
Kaplan’s characteristic of his approach to explaining such phenomena goes as follows
(‘Dthat’, in [ Yourgrau 1990, 11-33]):

[sJome or all of the denoting phrases used in an utterance should not be
considered part of the content of what is said but should rather be thought of as
contextual factors which help us interpret the actual physical utterance as having a
certain content. (p.19)

Kaplan speaks of a content of an utterance. On the other hand, his sense is the sense of
an expression (see, e.g., [Kaplan 1978]) and possesses two components: content and
character. The latter is then a function from contexts to contents. So the above utterance
would be in case a) associated with the proposition that Richard Montague is hungry, in the
second case with the proposition that Abraham Lincoln is hungry, for Kaplan considers

content to be an intension, in the case of sentences a proposition, indeed.

Let us return to the sentence | am hungry. As a sentence, i.e., an expression, it should
encode a construction. Let H(ungry)/ (ot)., be the respective property; what about | ? Does it
encode Montague? Lincoln? Obviously nothing like that. What | encodes is something like a
‘peg’. The role of such a peg is played by variables. So let x — 1 be such a variable. Our

construction would be
Awt ["Hyp x] .

Thus what could be called meaning of such expressions would be an open construction
rather than closed. (See [Materna 1998, 7.1].)

Yet there are more problems with this approach. First, if any other individual variable
is substituted for x, it will do the same job. This problem could be handled analogically as the
problem of concepts* vs. concepts. But second, the sentence You are hungry could be
analysed in the same way, so that the clear (semantic? pragmatic?) distinction between | and
you is lost. Thus it is not sufficient to use ‘normal’ variables: their pragmatic nature has to be
respected, which can be realised by ‘typing’ them by various pragmatic indices (e.g., using a

Montagovian style). Thus our constructions could be ‘pragmatised’ as follows:
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0
AWAL ["Hy xspeaker]:
0
XW?\I[ Hivr Xaddressee]

etc. One can add further indices, of course (such as pjacc and like). For linguistic analyses see
[Stechow, Wunderlich 1991, 1V])).

These ‘pragmatic variables’ make up a ‘bridge’ between semantics and pragmatics.
Indexical expressions express constructions/concepts and denote objects only ‘potentially’.
The valuations of their free variables are given by any event when the expression is uttered.
Then an object replaces every free variable and we get — in this ‘pegwise’ manner — again a

concept.

For Kaplan, however, this is not enough. His way to the well-known dthat is given by
the following generalisation:

If pointing can be taken as a form of describing, why not take describing as a form
of pointing? ([Yourgrau 1990, 24])

This point is incompatible with our viewpoint. (Empirical) descriptions — unlike pronouns

etc. — are semantically self-contained. Let us take over Kaplan’s example:
The spy is suspicious.
Kaplan compares two utterances of this sentence (his numbering):

(17 Dthat [‘the spy’] is suspicious.
and

3) The spy is suspicious.
The contents of these two utterances, i.e., the respective propositions, are distinct: For (17):

The relevant individual is determined in the world in which the utterance takes
place, and then the same individual is checked for suspicion in all other worlds
([Yourgrau 1990, 28])

for (3)
[w]e determine a (possibly) new relevant individual in each world. (/bidem)

Kaplan rightly sees that the utterance (3) can be ambiguous in that it could be intended
as the utterance (17). We could say that also the sentence The spy is suspicious is

ambiguous. It can encode an open construction, say,

(17°) AWAL [OSUSpW, [xproperty—)individual OSPY]]

where x ranges over functions from properties to individuals, which would correspond
to those cases of utterance which Kaplan endows with ‘dthat’, but it can also encode a closed

construction
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(3") Awht ["Susp,, “The_spyu,

where The spy/ 1. (Clearly, the proposition constructed in this way will mostly lack
any truth-value: show me a world/time where there would be just one spy. This is, however,

unimportant in the present context.)

I am deeply convinced that descriptions are not “forms of pointing”: the area of
pointings is the area of functions from utterances to objects, it is a typically pragmatic area.
The propositional concept realised by (17°) is dependent on particular situations, events. The
propositional concept given by (3°) is independent of particular utterances: it determines the
proposition true in those worlds + times where the individual that is the only spy is
suspicious, false where the only spy is not suspicious, and without any truth-value where there

are no spies or more than one spy.

A consequence of this approach is that Kaplan’s dthat, applicable to utterances, cannot
be applied as a logical construct applicable to analysing expressions. No semantic analysis
can be done in terms of dthat; in trying to do so we would suppose that dthat determines the
respective object as the value of some function in the actual world. We have already argued
that this is impossible. (See the Remark following Definition 9.)

1.4.3.7 Summary
Our knowledge is realised via concepts. Our explication of the term CONCEPT, be it through

Definition 14 or through HDefinition 12, makes it possible to handle some problems
connected with the process of knowledge in a more rigorous (some will say “more formal™)
way than is customary. No analysis of fexts can be expected, though; this shortage is
innocuous since any stage of knowledge can be represented by a collection (set, if you like) of
claims whose conceptual analysis is globally possible even within the framework of our
approach. These claims can be formulated in such a way that no indexicals occur in them.
Even if this were not the case, the preceding paragraph (1.4.3.6) shows that the situational
context characteristic of using indexicals enables us to replace the respective open
constructions by closed constructions (via ‘pragmatic valuations’) and so by concepts.

Thus we can move forward to our main topic, viz. to conceptual systems, presupposing

that concepts are abstract procedures identifying objects in the broadest sense of the word.

Remark: The growth of knowledge is connected with the asking of questions. Becoming
aware of something new can be construed as answering some question. Concepts are just
tools for asking questions. In the case of mathematical concepts we ask: What is constructed?
In the case of empirical concepts we ask: What is the value of the intension (constructed by
the concept) in the actual world? Some examples (let the respective construction be a

construction pointing to a concept according to HDefinition 120; types obvious):
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CONCEPT QUESTION

Ax [°A [*Prime x]["Even x]] Which numbers are constructed?
Or: Which primes are even?

[°= °Prime °0dd] Which truth-value is constructed?
Or: Is it true that...?

Awhs ["Highest,, "Mountain,,] | Which is the highest mountain?

AWMt [OCard OPlanetw,] How many planets are there?

(A similar suggestion can be found in [Materna 1998, 65].)
The respective English expressions for the above concepts are:

an even prime number, the class of primes is identical with the class of odd numbers,
the highest mountain, the number of planets.

All these expressions are easily transformable into interrogative sentences corresponding to

the above questions. See also [Horak 2001]. —
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2. Conceptual Systems

2.1 The problem of ‘simple concepts’

First of all, we have to specify the notion of simple concept. Definition 11 concerns only
simple concepts*. We can now easily formulate definition of simple concepts based on
Definition 14:

Definition 14’ (simple concept).

A concept is simple iff it has a member a simple concept™®. —

It is, however, more advantageous to exploit the normalising definition H12: if a
concept C is simple according to Definition 14°, then Horak’s NF applied to any member of C
returns just that simple concept® (if any) which is a member of C. We can speak about a
simple concept as a trivialisation of an object, which would be inappropriate if Definition 14

were applied.

Let us consider the more interesting case of Definition 11, viz. the case where the
simple concept is a trivialisation of an object, not of a variable. As far as we examine
concepts in abstracto, i.e., without any connection with expressions of a natural language, it
seems that no great problem arises. Fully setting aside the way we use concepts via the
respective ‘linguistic codes’ (expressions) we can presuppose in a radically platonic manner
that, e.g., the concept "Prime_number is a procedure which identifies the set of primes without
‘calling’ another procedure, such as the procedure identifying the dividing function. We
cannot imagine, let alone say what such a procedure would look like, but this does not
disprove the abstract possibility of its existence. Thus, for example, according to our
definitions, the concepts

OPrime number
and
M ¥y [ ["Divay] v [P=x ] =y 1111,

are really two distinct concepts: a simple concept cannot be identical with a complex concept.
What then is ‘the problem of simple concepts’?

We have already touched on this problem here and, in more detail, in [Materna 1998]
and [Materna 2000]. To recapitulate, it is not at all obvious, and, indeed, simply false to say
that expressions that are in the given language simple express simple concepts. Applying this
claim to our example, to say that the English expression prime is not synonymous with the
expression the number such that it is divisible just by 1 and by itself is at least doubtful:
we understand the word prime just because we understand the second expression; it is a
definition which endows the simple word with a meaning, i.e., which associates it with a

concept. The simple concept does not work on the word prime, it works on the object, i.e., on
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the set of prime numbers. (Therefore, if sky-blue means the same as azure, there is only one
simple concept here: we can write either “sky-blue or “azure, we are not confronted with two

equivalent constructions but with one and the same construction!)

Remark: If Fodor’s M(ental) R(epresentation)s are reinterpreted and viewed as expressions of
a natural language instead of expressions in Mentalese then the problem of simple concepts
is well formulated in [Fodor 1988, 40 ...]. See, e.g.,

[i]f concepts express properties, then it’s not unreasonable to suppose that
BACHELOR and UNMARRIED MAN express the same property.

...the concession that being a bachelor and being an unmarried man are the same
thing is meant to leave open the question whether BACHELOR and
UNMARRIED MAN are the same concept.

Fodor speaks in the footnote about concepts as definitions. On this point see 2.2 and [Materna
1998, 144-145, Claims 19—19¢°]. —

2.2. Simple concepts as primitive concepts. Conceptual systems

A ‘non-mentalistic’ reading of Fodor (if thinkable) makes it clear that he strives to solve
problems similar to ours and that we would subscribe to, e.g., his criticism of ‘Inferential

Semantics’ (see [Fodor 1998, in particular p.36]). Compare:

Since a mental representation (read: [our] concept —P.M.) is individuated by its
form and content (read: by its structure and by what is constructed —P.M.)...both
of these are assumed to be determined by specifying the inventory of primitive
concepts (emphasis mine) that the representation contains, together with the

operations by which it is assembled from them (emphasis mine).
(Ibidem, 28)

This reminds us of the quotation from Bolzano (1.2.2 above) where a concept is said
to be the way to combine the elements of its content. Another parallel to Fodor’s idea can be
drawn: Fletcher’s characteristics of (intuitionist) constructions (see 1.1.2). Complex concepts
are the results of assembling from the simple concepts. But Fodor speaks of primitive

concepts. How are the notions simple concept and primitive concept connected?

Assuming that simple concepts are defined as here (essentially Definition 11) we can
answer:
A concept is simple iff it obeys Definition 11 (see, however, 2.1); a concept is primitive

with respect to a conceptual system.

To make this explanation clear we have, of course, to say what a conceptual system is.

In [Materna 1998] I have defined conceptual systems as follows:
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Let {Cy,...,Cu} be a set of simple concepts (of any order) of the form "X, where X is not a
construction. Let {C,+1,...} be the set of all concepts distinct from Cy,...,C,, and such that all
their subconstructions consist of either variables or some members of the first set. Then the
set

{Cl,...,Cm} v {Cm+1,...}

will be called a conceptual system. Let CS be a conceptual system. The first set will be called
the set of primitive concepts of CS, denoted PCcs, the second set is then the set of derived
concepts of CS, denoted DCcs.

However, sets are not systems. In this respect the definition is not precise. Systems can
be construed as a kind of ‘machinery’ that produces objects from some initial set(s).

Conceptual systems can be seen as systems in this sense.

Definition 21 (Conceptual system)

Any conceptual system consists of two subsystems, it is two-dimensional:

A.  Types (= Preconcepts)

B. Concepts

The system A produces the set T of #ypes of any order from a set of atomic types.

The system B produces concepts from the set P of primitive concepts and the set V of

variables.

A-dimension: The atomic types are members of the Base together with collections of
constructions of any order (*,, 7 > 1). The rules of A create more complex types from simpler

ones: if T, Ty,..., T, are types then (TT;...T,) is type, see Definition 5.

B-dimension: Let Py, ..., P; be a finite set of simple concepts. Let t;,...,t; be types of order 1.
The ‘machinery’ for B can be schematised as follows:

({P1—>ty, ..., Pr—> t;}, V, Trivialisation, Composition, Closure ),
where the rules creating complex concepts from the simpler ones obey HDef.
The whole scheme of a conceptual system CS is thus
({{T15eeesTn}, Definition 5) ( {P1— ty, ..., Px— t;}, V, Triv, Comp, Clos, HDef ) ). —

Remarks:

Let IT be the set of expressions denoting Tj,...,Tn. Let T be the set of expressions
denoting the members of T. T is decidable in the set of finite sequences of the members of 11
and left and right parentheses. T is thus well-defined.

The number of primitive concepts is finite. Further concepts can be produced by Triv,
i.e., trivialisation. Simply iterating Triv does not lead, in general, to interesting outcomes; on

the other hand, trivialisation of constructions is inevitable when propositional attitudes are
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analysed (see [Duzi, Materna 2001]). Trivialisation, Composition and Closure unambiguously
produce constructions using also members of V. The procedure that eliminates those
constructions that contain some free occurrence of a variable is also unambiguous. Reducing
all Quid-related constructions to the normalised representative is unambiguously given by
HDef, i.e., HDefinition 11 and HDefinition 12.

The set of concepts generated by the given CS is well-defined. This can be seen when
the notion length for constructions is defined (which can be achieved in various ways but is
always inductively definable); then first the constructions of length 1 are produced (with the
exception of variables) and for every length d there are finitely many possibilities of
constructions of length d due to the fact that there are finitely many primitive concepts and
that the HDef normalisation cuts the possibility of using infinitely many variables and

infinitely many ‘n-spreads’. —

It should be clear that on the abstract level, where no connection between concepts
and expressions of a language is taken into account, we can imagine infinitely many
conceptual systems whose importance for the analysis of expressions of a natural language
(“NL expressions”) is nil. It is, e.g., of no use at all to consider such exotic CSs as those
whose PCcs contain one member (try to imagine the CS such that its PCcs is {°Cat}) or such
concepts whose combinations cannot be taken advantage of from any rational viewpoint (e.g.,
{2, %blue}). Also, the way the constructions have been defined makes it clear that some
members of a PC¢s should construct functions, otherwise combining its members would be
totally uninteresting. Such requirements are pragmatic constraints, i.e., constraints concerning
the usefulness of conceptual systems. To formulate such constraints presupposes, however, a

general definition of conceptual systems; therefore Definition 21 is necessary.

Remark 1: Primitive concepts (members of the PCcs) establish contact with objects. A
concept, being a procedure, is algorithmically structured; it means that it consists of sub-
concepts (sub-procedures), but never of non-procedural objects. Only a concept of an object
can be used as a constituent of a composed concept (member of the DCcs). The simplest way
to identify an object is using its trivialisation. But a concept C can be not only used as a
constituent of another concept, it can be also mentioned as an input object of another
composed concept, using a concept C’ of the concept C. Thus trivialisation is indispensable in
the TIL theory. Actually, trivialisation together with the ramified theory of types provide a
tool for an essential extension of any classical theory: any entity of any type of any order can
be mentioned within the TIL theory without generating an inconsistency. This feature is in
particular useful when analysing (propositional / notional) attitudes (see [Duzi 2003b], [Duzi,
Jespersen, Miiller 2004]). For instance, when calculating 2 + 5, we do not calculate the
number 7; we are related to the concept of the number 7 (we are attempting to find out the
number the concept 2 + 5 identifies). Thus the analysis of a sentence
Charles calculates 2 + 5
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obtains as follows (Calculate / (0 1 *) ):

Awit [*Calculate,, “Charles °[*+ °2 °5]].
Due to the possibility of constructing concepts of concepts, and thus to mention concepts, we
are also able to analyse problems with the semantics of propositional attitudes in a way that is
inaccessible for other theories. To schematically illustrate this claim, consider a conceptual

system whose PCcs contains (perhaps among other items) the concepts

not, 0everybody, ‘believe, 0the_Earth, Orotate;
types, respectively: (00), (0(0t)), (0 U *})re,, e, (O1)re , abbreviations, respectively:

0_, Oy OB O OR .

then we will find in the respective DCcs the concept

At [*= [ hox [*Bus x “Dowit ["Rus "Euel 1]
which can be the result of analysing the sentence

Not everybody believes that the Earth rotates.

This analysis corresponds to explicitly believing, the case of a believer being related to the
meaning of the embedded clause. If, of course, among the members of the PC¢s were another

attitude-concept, viz.,
believe’
whose type would be (0 1 0¢)w— implicit believing, we would find in the DC¢s the concept
At [°= [°V Ax ["B’ e x AWt ["Ro "B 111
underlying the other reading of the preceding sentence (see [Duzi, Materna 2001]). —

Remark 2: Atomic types used in particular CSs play the role of what I would call
preconcepts. Thus in any system that uses the types o, 1, T, ® we have the following
preconcepts at our disposal: truth-values, individuals, time moments, real numbers, possible
worlds. These seem not to satisfy our definitions concerning concepts but the concepts proper

could not be described without them. —

In the next four paragraphs we will consider conceptual systems to be isolated from
languages. This purely theoretical view may seem too abstract and useless but to seem thus is
the fate of all abstractions. If we avoided pure theories then, e.g., mathematics would be
reduced to mere reckoning. Making premature syntheses is an illness well known from

philosophy. Thus I would like to say to the Reader: Be patient!
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2.3 Mathematical conceptual systems

We have seen that there is a systematic (and therefore not to be neglected) distinction between
extensions and intensions. We have shown that intensions are denoted by empirical
expressions, viz. such expressions which have to speak about objects of the real (actual)
world. The most typical examples of the other kind of expressions are expressions of
mathematics and logic. Using mathematical and logical expressions we do not intend to speak
about real objects. No empirical identification/verification is needed when the denotation of a

mathematical/logical expression is sought.

Remark: 1t is not just mathematical/logical expressions that denote extensions. The English
word colour is not a mathematical or logical term but all the same denotes an extension, viz. a

class of particular colours (which are, of course, intensions; type (0(01):y)). —

Mathematical conceptual systems have to contain only such primitive concepts which
construct extensions. Taking mathematical discourse to be independent of everyday discourse,
i.e., as concerning just mathematical objects, we need not take care of maintaining the base
{o, 1, T, ®}: in 1.4.1.2 we have seen that, e.g., the semantics of such an important system as
the arithmetic of natural numbers can work just with two types, o and v. Consider now the CS

with the following PC (the subscript ¢s will be omitted):
OZ(ero), OSuc(cessor)

Within this PC all natural numbers, but no claims, are conceptually given. Only v is used as

an atomic type.

Robinson arithmetic and Peano arithmetic (RA, PA) need o as the second atomic type.

Their primitive concepts are
97, %Suc, "=, °=, °<, O+, %%, ', Ov, 3
types (viz., of the objects identified by the concepts), respectively, v, (vv), (00), (ovv), (ovv),
(vvv), (vvv), (000), (o(oVv)), (o(ov)).
(The respective preconcepts are truth-value, natural number.)

In RA and PA claims are conceptually given; these systems are neutral with respect to true

and false claims. The RA as well as the PA contains such concepts (in the DC) as
[*="+"1"11%5],
which construct F.

Thus not only concepts of T but also concepts of F are found in the mathematical CSs.
The reason is, of course, that conceptual systems only enable us to ‘create’ new concepts from

the basic ones: verifying/falsifying concepts that identify truth-values is another procedure.
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Even (strictly) empty concepts (see Definition 9) are derivable in some CSs. Adding to
PCypa the concepts

Ol 0>

s T

where 1 is the function singulariser of type (v(ov)), “the only x such that...”, that returns the

only member of a singleton and is undefined on the other sets, and > is of type (ovv), we find
in the respective DC, e.g., the concept

[ [ ay [z x)]])
(“the greatest natural number”) which is evidently strictly empty.

Note: We use the same symbol 1 both for the type of individuals and the singulariser, since no

confusion can arise.—

What about mathematical conceptual systems which are more formal than arithmetic
of natural numbers, i.e., which may even lack the intended interpretation? (One of the
simplest cases is the theory of groups.) Here we should read section 1.4.1.2. Concepts are one
thing, schemes another one. One and the same scheme (represented, say, by a formal

expression) may cover more distinct concepts.

This simple idea can be illustrated by a maximally simple example. Let us consider a

formal 1* order theory with extra-logical axioms
1. Vx3dyR(x,»)
2. Vx—=R(xx)
3. VxVy (R(x,y) o =R(,x))
4. VxVyVz (R(x,y) o (R(y,2) © R(x,2)))

Assuming that the symbols ‘-’ and ‘>’ get the fix classical interpretation and that the system
is 1% order can we say that the axioms ‘implicitly define’ the symbol ‘R’ or, better, the
meaning of ‘R’? As Tichy showed in his [1988] this would be a category mistake. There is
nothing like the meaning of ‘R’. We could only claim that a higher order relation (here: class

of 1*" order relations), say, ® has been (explicitly!) defined in the following manner:
(P =)
Ar (Vx3y r(x,y) A VX = r(x,x ) A VxVy (r(x,y) D =r(y,x)) A VxVyVz (r(x,y) D (r(y,z) D r(x,2)))

To diminish the ambiguity connected with the absence of types in this example let us assume
that the variables 7, x, y range, respectively, over (ovv), v, v. Then @ / (o(ovv)), i.e., our
theory defines the class of those binary relations between natural numbers which obey the

above axioms. Obviously, the member of this class is <. The concept so defined is the closure
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underlying the A-expression above (or its NF after Hordk [2001]). Any CS whose DC

contains this closure has to have among the members of its PC following concepts:
Oy, 03 05 0_ 0
but we must also not forget that the preconcept natural number is presupposed: otherwise

we would have to admit also some non-standard models, or, if the preconcept were, e.g.,
INTEGERS, to state that > also satisfies the scheme.

From our characterisation of preconcepts it follows that
changing preconcepts = changing atomic types.

Thus — returning to our axioms — we can generalise as follows: Let o be any atomic
type (not necessarily v, 1, T, 0, ®). Then the scheme given by the uninterpreted axioms 1. —4.
can be interpreted so that a is an infinite set and the concept expressed by ‘R’ under the given
interpretation is a construction (or its NF) of an ordering relation over o (so we have

R/(oaa)) holding in accordance with Axiom 1.

The standard model of PA can be conceived of (from the present viewpoint) as given
by a conceptual system among whose preconcepts the concept ’natural number is. Non-

standard models are conceptually founded in such CSs that work with other preconcepts.

2.4 Empirical conceptual systems

Empirical conceptual systems are easily definable: their PCs contain at least one concept of a
(non-trivial) intension. Thus at least one concept of the form "X is a member of the respective
PC where X / Ot.

Yet our Definition 21 says that the members of DCs are concepts whose simple
subconstructions are variables or primitive concepts; thus it seems as if we could accept also
such CSs as empirical systems where all the primitive concepts would construct extensions,
and the members of DC would use variables w, ¢, so that empirical concepts would be
‘created’ within the respective DC. Theoretically, it is possible, yet to think that a really

empirical concept could be derived in this way is an illusion:

We can try to show a formal example. Let K;, K,, K3 be three cubes, K; /1. Consider a

CS whose PC contains the concepts
K1, °Ka, ’Ks.
We could place in the respective DC concepts
At °Ky, awit °Ka, Awt °Ks.

This is, of course, not the same as getting a concept CUBE. Well-known psychological

experiments with concept acquisition show, however, that if # in K,, is great enough the child
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begins to possess (understand) the concept ‘cube. Can we judge on the basis of these results
that intensions can be given by CSs whose primitive concepts identify only extensions? So

can, e.g., properties be given by classes? Not at all.

In any case, there is no simple, direct link which would connect CSs as defined above
with the way concepts come to be possessed by somebody. Our definition concerns abstract
objects, functions and constructions; it cannot be immediately used as an explanation of the
psychological process of acquiring concepts, similarly as mathematical concepts cannot

explain the process of learning mathematics.

Consider our last example and the members AwAt 9K, awnt °Ko, Aws °K5. When
derived from the PCs (type 1) they should identify the individual roles which the particular
cubes K, K», K; play. But there is no one determinate role played by K;, nor by K, nor K.
As particular concrete objects they may play in(de)finitely many roles. If they are given (in
the PC) as individuals, then — according to our anti-essentialist conception of individuals —
no empirical properties that these object possess can be taken registered. Maybe that, e.g., the
colour of the cube is important for the selection of the ‘right’ role, maybe that its weight

would do this selection, etc. etc.

The point is that the way in which the DCs have been defined should not admit
ambiguous concepts as members, and it does not: the concepts Awit °Ki, Awir °Ka,
Awht “K; are definite concepts, they identify definite intensions but the latter are trivial
intensions! Their value is for each of those cubes the same in all worlds at all times, viz. the
respective individual, the respective cube. Such ‘degenerated concepts’ are certainly no

empirical concepts.

Another illustration of this principle: if a concept of a particular class of individuals,
say, C is a member of the PC, then the only property derivable in the DC, i.e., the property

identified by AwAt 9C, is the trivial property, whose value is C in all worlds at all time points.
In general:
Principle

If A/a, where ais the type of an extension, then the concept M\wht %4 is not an empirical

concept. Empirical CSs must contain some primitive empirical concepts.

So we will consider only those CSs whose PCcgs contain some primitive empirical
concepts, i.e., constructions of the form C where C is an intension. We have seen that in any
empirical CS some empirical concepts must be primitive. These are a kind of criterion which
can be used without any other concept. If, e.g., “blue is a member of some PC then it means
that there is some abstract procedure that identifies blue objects immediately, without

exploiting any concepts used, e.g., by physics.
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Empirical CSs are theoretical constructs. Various work in psychological research
concerning concept acquisition show — as we already suggested—that people acquire ‘their’
(empirical) concepts in virtue of some experience with real, concrete objects. Interesting
philosophical generalisations based thereupon can be found in the vast literature on this topic,
see [Bartsch 1998]. Our CS-abstraction may be important for logically handling concepts
independently of the way they have been acquired. Thus the gap between particular objects
and empirical concepts inspires empirical scientists to find some empirical (cognitive)
processes in terms of which the transition from particular things to empirical concepts could
be explained (understood). Such a transition, however, is nothing that a logician should and
could study. From the viewpoint of a logical theory of concepts empirical concepts are not
derivable from such a collection of concepts which contains only non-empirical concepts. In
other words, there is no /ogical transition from extensions to intensions: empirical concepts
as concepts are independent of the way they have been possessed. How we acquire our
concepts being acquainted with particular things — this question concerns a non-conceptual
phase of our cognitive processes. Even so, some points of a logical analysis of concepts may

be of interest for a cognitive scientist, or so I hope.

Remark: Consider, e.g., the process that leads a child to possessing the concept YELLOW.
The child learns, roughly, to accept objects that are distinct but share the yellow colour, and to
refuse objects which are not yellow. Distinguishing particular properties of the objects is a
necessary condition of success. Does it mean that the child already possesses the concept
PROPERTY (OF INDIVIDUALS)? Every teacher will say: No, the concept PROPERTY is a
‘higher level concept’. Many interesting questions can be solved in this connection, see
[Bartsch 1998], in particular Ch.1; when defining concepts in abstracto like we do here we
only try to fix a logically definite notion, roughly, to take concepts to be abstract
identification procedures that can be interesting from the viewpoint of deducing conclusions
from premisses. The cognitive scientist, however, is free to exploit such an explication: at

worst it is innocuous, at best it can make some of his/her claims more precise.

2.5. Properties and relations of conceptual systems

We now recapitulate definitions 38 — 43 from [Materna 1998]. The attributes of CSs defined
are important but not very complicated, so we will not number the definitions. The notions

introduced will be marked by italics.

1. We have said that concepts identify objects. Since concepts are essentially closed
constructions our explication of this identification has been simple: ‘to identify’ means
‘to construct’. We can speak also of particular CSs by saying that they identify objects.
Thus a natural definition says that a CS identifies an object A iff it has a member that

identifies (i.e., constructs) A.
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2. We will call the set of objects identified by PC U DC the area of the respective CS.

This notion of area is the most important for our later definitions.

3. Some CSs are comparable in an obvious sense. The next notion applies to pairs of
comparable CSs. A CS; is said to be (strongly) weaker than a CS,; iff the area of CS; is a
(proper) subset of the area of CS;. (So the CS underlying Robinson’s arithmetic is

strongly weaker than the CS underlying Peano’s arithmetic.)

4. Obviously, if CS; is weaker than CS; and vice versa then we say that CS; is equivalent
to CS;. The area of the former is then identical with the area of the latter.

5. CS;is a (proper) part of CS; iff PCcs; 1s a (proper) subset of PCcsg;.

It might at first sight seem that the relation sub 5 is identical with that sub 3 or, at
least, that the former is a subrelation of the latter: having less primitive concepts at our
disposal we can conceptually cover less objects. This claim is false. An extremely simple
counterexample: compare two conceptual systems underlying (classical) propositional logic.
CS; contains in its PC-part the concepts %~ and ‘v, the PC-part of CS; is {0—., Oy, O/\}.
Artificial as this example is it shows that the area of both systems is the same, namely, the set
of all truth-functions.

So we have to find the constraint that makes the claim false. A first try: observe that
the DC of CS, identifies the same object as one member of its PC, viz. the conjunction. It
seems that this point distinguishes CS, from CS;, but we can immediately object that a
member of DCcs; , Viz., Ap [0—|0ﬁ0—|p], also identifies the same object as one member of
PCcsi , viz. %_. Now the distinction can be found: In the case of CS; the concept Ap
[0ﬁ0—|0—|p] is dependent on O_ in the following sense: %_ is one of its subconcepts. In the case
of CS; the respective member of DC, viz. Apg RY [0—|p] [0—|q]]] is independent of On. We

can define dependence of concepts as follows:
A concept C; is dependent on a concept C; iff a subconcept of C; is a subconcept of C;.

Further: A CS is independent iff no member C of PCcg identifies the same object as a
member of DCcs independent of C.

Thus the following claim is provable [Materna 1998, 111, Claim 17]:
If CS; is a proper part of CS; and CS; is independent then CS; is strongly weaker than CS;.
(Proof in [Materna 1998, 111].)

From now on we will take into account only independent CSs.

Preparing Section 3 where the abstract notion of conceptual systems will be connected
with (natural) language we can introduce some classes of CSs whose importance will be

obvious from the pragmatic/semantic viewpoint.
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A CS that could underlie a theory has to contain some concepts that make it possible
to construct some claims. Thus concepts of truth functions, quantifiers and some
mathematical concepts are necessarily members of such CSs. Further, as we already stated,
any empirical theory is based on some primitive empirical concepts. Such CSs could be called
normal. An important class of CSs can be called simply (logico-)mathematical CSs. These

contain no empirical concepts, of course.

Remark: An obvious connotation is connected with our way of defining CSs. The members of
PCs seem to correspond to primitive terms of an axiomatic system, DCs seem to correspond
to sets of expressions definable in terms of the primitives (of the respective axiomatic
system). Although we do not deny some formal resemblance we have to stress the
fundamental difference. The primitive as well as the defined expressions are just expressions.
Their choice and character is fully relativised to a particular axiomatic system. The members
of CSs are not expressions, they are concepts (as essentially abstract procedures) and their
choice and character are fully independent of any particular axiomatic system. We could
perhaps say that axiomatic systems realise a choice of a CS; moreover, the purpose of
axiomatic systems differs from the purpose (excuse this pragmatic term) of CSs: Axiomatic
systems have to draw a borderline between true and false claims (in a particular area)

whereas CSs only offer tools for identifying objects in some area. —

2.6 Complex concepts as ‘ontological definitions’

Before we begin to speak of ‘ontological definitions” we must elucidate the general role
played by concepts in our sense. We have defined concepts as abstract entities independent of
any particular language; this does not mean that we are not interested in their usefulness in the
sense that we need to possess concepts. Possessing concepts can be analysed either from the
psychological or from the linguistic viewpoint. Here the connection between concepts and
expressions will be primarily studied; after all, we accept Church’s proposal to identify
meanings with (possessing) concepts. Thus the role played by concepts is closely connected
with the role played by language. The situation could be perhaps modelled as follows:
concepts are abstract procedures that are potential tools whose realisation consists in attaching
them to linguistic entities. (This attaching is not a mechanical procedure which would
consist—if you like parodies—in having concepts on one side and language expressions on
the other side and then connecting both sides.) What is important in this vague model is the

question: Tools for what? So we returned to our original question: What role do concepts
play?

Empirical concepts classify objects into various kinds (the giving of names in Genesis
should be understood in this sense, see Concluding Essay). The respective procedures never

identify concrete particular objects — we have seen that our definitions make it impossible to

conceptually identify particular things. (See also [Bolzano 1837, §74, 333].) They identify
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intensions, i.e., some criteria that will be probably useful. (Diachronically: the obvious fact of
the development and change of these criteria corresponds to the development and change of
languages. See 3.2.) Non-empirical concepts identify what are frequently called formal

means, i.e., ways of combining empirical concepts to get more complex concepts.

This is not the whole story, as we will see later, but it is a very essential point that

enables us to answer our question.

Now we can better understand the following question: What do we do when we define

something?

The important subquestion is: What sorts of things do we define? There are three

options of" answering this subquestion:
a) We define expressions.

b) We define concepts.

c) We define objects.

I doubt option a). An expression is defined if at least its morphological, syntactic and
semantic features are articulated. Such a (linguistic) definition is possible (and common in
linguistics) but then the given expression is a kind of object to be studied; if we define, e.g.,
prime numbers then we do not define the expression prime number in the sense above. This

expression occurs in such a definition gua expression rather than gua object.

A similar doubt can be raised about option b). In defining particular concepts or the
category concept we define an object; the concept or the particular concepts in question are
here objects to be defined.

Hence we would accept option c). Yet although our intuition in this respect may be
strong, the formulation of ¢) is by far not as clear as it should be, for while expression and
concept are one-place predicates (something is an expression, something is a concept) we
cannot say the same about object. Even expressions or concepts can be objects, viz. ‘with
respect to’. This at least is one possibility of interpreting object. To accept option c) under
this interpretation means to claim that everything can be an object of our interest and that
what is defined is just such an object. In other words, if expressions or concepts are used then
we do not view them as objects of our interest; they are means of arriving at such objects.

Expressions or concepts become objects of our interest only if they are mentioned.
Thus we can always say that what is defined are objects.

We are almost always told that definitions are expressions of a certain kind. In the case
of classical, equational, definitions the so-called definiens is a complex expression whose

meaning is given to the definiendum, i.e., to a simple expression which does not possess any
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meaning before and gets its meaning as a present from the definiens. Or so can be definitions

interpreted in the spirit of Principia Mathematica:

A definition is a declaration that a certain newly introduced symbol or
combination of symbols is to mean the same as certain combination of symbols of

which the meaning is already known.
[Whitehead, Russell 1964, p.11]

Modern definitions are thus abbreviations: they are read ‘from right to left’ (if they
were read ‘from left to right’—the right side should explain the ‘essence’ of what the left side
speaks about—then Popper’s strong criticism of definitions—see [Popper 1986] — would be
better understandable). But not surprisingly you cannot offer any purely syntactical definition
of definitions. The way they behave on the linguistic level is given primarily by their

semantics. Now I believe that this can be best explained just in terms of conceptual systems:

In any CS we have at our disposal some basic, simple, within the CS primitive
concepts which are based on some preconcepts and identify some objects. (Each of them
always identifies just one object since no simple concept can be strictly empty, which is a
trivial consequence of Definitions 9 and 11.) The members of the respective DC are no longer
simple; we can call them complex concepts. These also identify objects (this time they can be

— even strictly — empty); they do so via combining the primitive concepts.

Definition 22 (ontological definition)

Any member of a DCcs defines an object in the respective CS unless it is strictly empty. —

Remark: Thus identifying is what any concept does independently of CSs, whereas defining is
relativised to CSs. (On the other hand, for every complex not strictly empty concept C there
exists at least one CS such that C is a member of it and defines an object in it). Compare [Rey
1998]:

[i]f definitions are not to go on forever, there must be primitive concepts that are

not defined but are grasped in some other way. —

Ontological definition is independent of language. For any type o and number # it is a
function of the type (a *,), which associates any closed construction of order » with the a-
object constructed by it. Whereas a recursive definition in an axiomatic system is an
expression, often considered to be a scheme with various possible interpretations, its
conceptual counterpart corresponds to a definite interpretation. As an example consider the

axiomatic definition
x+0=x

x+ty =(x-+y)

and compare with ontological definition in a CS whose PC is
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17,5, %, 0= 01
(i.e., zero / v, successor / (vv), the function singulariser / ((vvv) (o(vvv))), identity / (ovv),

conjunction / (000) ) and whose DC therefore contains the concept (f — (vvv), x,y > v )

U 10V Ay A 0= [Fx °Z] 2] 1= [£x [°SyI1 1°S [Fx v110000-

This concept ontologically defines addition (assuming the preconcept “natural number).
Once more: we do not say that the artificial expression above defines addition: the abstract
procedure/concept that is fixed, encoded by this expression does. Therefore one distinction
between this ontological definition and the preceding recursive formula is that the latter is a
scheme that has to be interpreted while the former — being a procedure rather than an
expression — cannot be interpreted: concepts are what can be attached to an expression, i.e.,

what makes the expression be interpreted.

Remark: Imagine, for a moment, that our intuitions, being fallible, deceive us as to the
character of natural numbers. Let us admit — for the sake of a thought experiment — that the
standard interpretation of Peano arithmetic is wrong in the sense that there is some limit
beyond which the natural numbers no longer obey Peano’s axioms. Further, let us admit that
in consequence thereof the addition operation behaves beyond this limit in way other than it
should according to the standard interpretation of the recursive definition above. What would

we say about our conceptual (ontological) definition

P 10V Ay A 0= [ x °Z] 2] 1= [Fx [°S »11 [°S [Fx v111110?

Apparently we would have to choose another concept (to cope with these difficulties)
but what should be stressed just now and remembered is that the concept above would not be
influenced: it surely defines some function (unless it is strictly empty); what would change
would be the way we have (‘before’) understood the word ‘adding—now a new concept
would have to be attached to it. This example, admittedly very academic and improbable,

signalises an important problem (to be handled later). —

Intermezzo: PARMENIDES PRINCIPLE

Concepts are abstract objects. (This point is shared by all non-mentalistic theories of
concept, see, e.g., [Peacocke 1992, 99].) Only our abstraction makes us ‘see’ them.
(Nominalistic version: Only our abstraction creates them.) Concepts that are not connected (as
meanings) with some expression cannot be known. Expressions not connected with concepts
cannot be understood (or, better to say: such quasi-expressions are actually only some ‘dead

forms’ not deserving to be called an expression).

Remark: Some structuralist conceptions (see, e.g., [Peregrin 2001]) will reject our viewpoint
(viz. that particular expressions are connected with abstract concepts) on the grounds that it is

the outdated ‘myth of the museum’. If however concepts are considered to be abstract
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procedures then such a label can hardly be applied. A holistic (Quine, Davidson) or nearly

holistic (Dummett) standpoint is, of course, incompatible with our ‘naive’ conception.—

Now it could seem that the task of logically analysing expressions of natural language
would become a very easy task: it would suffice to attach concepts to particular
subexpressions of an expression and get so the construction that would be its (logical)
analysis. Actually the task of logically analysing an expression is very difficult. In what
follows we will try to show that already the notion THE ANALYSIS OF is questionable and
that the solution of the problems connected therewith is much more complex than we perhaps
expected. (See [Duzi, Materna 2003].)

First let us quote from [Frege 1884]:

Ueberhaupt ist es unmoglich, von einem Gegenstande zu sprechen, ohne ihn

irgendwie zu bezeichnen oder zu benennen.

This principle (which has been called Parmenides Principle by Tichy in an

unpublished monograph) can be reformulated (and slightly modified) as follows:
PP: An expression E talks about an object X iff E or some of its subexpressions denote X.
There are two warnings involved in PP.

The first warning: If you (via the respective expression) want to talk about something then you

have to denote it.

This side of PP is ignored as soon as our analysis adds something, like when we
believe (due to our analysis) that the sentence The highest mountain is in Asia talks about

Mount Everest.

The second warning (not explicitly contained in Frege’s formulation quoted above) can be
formulated as follows: If an expression does not talk about an object then it does not denote
it. In other words: If an expression (or some of its subexpressions) denotes X, then it talks
about X.

This warning is ignored if our analysis omits some object that is, actually, denoted by
a given (sub)expression. Example: if our analysis suggests that the above exemplifying
sentence talks about the highest mountain but does not talk about mountain, then it means

that we ignore the subexpression mountain that surely denotes mountain.

The importance of this example will become clear later. Now we can try to define
what a (logical) analysis of (an expression) is.
Definition 23 (a (logical) analysis of)
A construction C is an analysis of an expression E iff a) C constructs the object denoted by E

and b) the possibly occurring closed subconstructions of C construct the objects denoted by

those subexpressions of E to which these subconstructions have been attached. —
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Remark: This definition guarantees that the analysis does not add a reference to an object that

is not denoted by a subexpression of E. —

Definition 23 does not define the analysis of an expression; it defines — for every
expression — the class of possible analyses of an expression. To illustrate, let us adduce

possible analyses of our sentence
The highest mountain is in Asia.

We have H/ (1 (01)), M(ountain)/ (o1).», A (being in Asia)/ (01).,. Let HMA be the
proposition (so HMA/ o.,) denoted by our sentence. Further let HM be the individual role
the_highest_mountain. Then we can offer the following analyses:

1) °HMA

2)  awt[°A,, "HM,,]

3) ikt ["Aw ["Hy "M,u]]

4) At ["Ane 2wt ["Huy "Myl

We certainly want to make at least an attempt at defining the analysis of. Intuitively,
such a unique analysis should be the best analysis. So what criteria for choosing the best
analysis are available? Quoting [Duzi, Materna 2003]:

There are two mutually dependent criteria leading to the ‘ideal’ choice.

Criterion 1: An analysis A is worse than an analysis B iff using A blocks some

correct inferences made possible by B.

Criterion 2: An analysis A of an expression E is worse than (>) an analysis B iff
some semantically self-contained subexpression of E has not been analysed in A

and— ceteris paribus— has been analysed in B.

It would be hardly feasible to systematically evaluate particular analyses according to
Criterion 1, although we will surely agree that it is a good criterion: any analysis is useful
primarily according to which (correct) logical inferences it makes possible. Fortunately,
Criterion 2 enables us to proceed systematically. Furthermore, it is highly intuitive to say that
evaluating according to Criterion 2 we at the same time evaluate according to Criterion 1

because a finer analysis makes it in general possible to draw more conclusions.

Let us apply Criterion 2 to our mountainous example. It would seem that what makes
an analysis better according to Criterion 2 is the number of subconstructions attached to
particular subexpressions. Thus if worse than is denoted by > then our first evaluation would
offer

1>2>3>4,
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Yet the number of subconstructions is not a sufficient condition for satisfying Criterion 2.
This criterion makes it possible that two analyses are incomparable in the sense that an
analysis A is not worse than an analysis B but the analysis B is not worse than analysis A. In
our example analysis 2 ignores "H and M but analysis 3 ignores (the concept) "HM. Thus we
cannot apply Criterion 2, for ceteris paribus does not hold. So assuming that > has been

redefined so as to become antisymmetric (=) we have a lattice
1
2 3
4

Now we already can define the analysis of (quoting again [Duzi, Materna 2003]):

Definition 24 (the analysis of)
A is the analysis of E iff there is a one-to-one function f such that f associates every
semantically self-contained subexpression S of E with a closed subconstruction C of A and C

is an analysis of S. —

Obviously we would like to prove that for every expression there exists such a one-to-
one function. For ideal cases such a proof can be found in [Duzi, Materna 2003]. Here we
have to stress that some complications have to be taken into account, one of which is
connected with conceptual systems. I will formulate some such complications as an advocatus
diaboli:

a) Which expressions are semantically self-contained?
b) At which stage of analysis should a disambiguating procedure be used?

¢) In general, when analysing simple expressions we cannot attach simple concepts
to them (see 2.1).

Now we will try to cope with these complications.
Let us begin with a):

Even in our simple example there are other options of choosing semantically self-
contained expressions. What about being in, or even being, in? We would get various distinct
analyses, distinct also from our 1 through 4. Some choice could be made by professional
linguists but I suspect that, first, their criteria are (at least slightly) distinct from those

accepted by logicians and, second, they would probably also end up with more options.

We will see that the a) problem can be taken to be a special case of the ¢) problem.
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As for b), this problem concerns the fact that homonymy (see 1.4.3.4) is a frequent
phenomenon. Theoretically, there are two kinds of solution: either the logician gets as the
input a disambiguated expression — i.e., the linguists have performed the disambiguation (see,
e.g., [Stechow, Wunderlich 1991, 102]) — or (in the case of syntactic ambiguity) an analysis
(in the sense of Definition 23) is primarily performed and the result recommends the linguists
the syntactical variants (‘readings’). From our viewpoint the second way is preferable because
syntax cannot be determined in isolation from semantics. (See a good example in [Stechow,
Wunderlich 1991, 221], where semantic considerations determine the syntactic analysis in a
decisive way.) Also, Montague’s approach has shown the impossibility of doing syntax

independently of semantics.
The key point is ¢). Compare the two sentences:
Some bachelors are homosexuals.
Some unmarried men are homosexuals.

Type-theoretically we have:

S(ome)/ ((o (o1))(01)), B(achelor), H(omosexual), M(an)/ (01):,, U(nmarried)/ ((01)(01):e)re
Analyses:

AWz [[°S By ["H]]
At [[°S [°Us "M]] [*H.]]-

Assuming (theoretically) that the conceptual system at our disposal contains in its PC
the concepts ’S, °B, °H (but not U, M) we have to accept the first analysis. If the CS
contains "U, *M instead of “B then the second analysis (but not the first) has to be accepted.

Besides, this second CS makes it possible to accept the analysis
At [[°S [Awht ["Uy M] T ["Hau 111

Let the three adduced analyses be numbered 1, 2, 3, respectively. One thing is clear: 2
> 3, since 2 shows that our second sentence talks about some, unmarried, man, and
homosexual, while 3 talks about the same objects and, moreover, about the property
unmarried_man. Now what about 1? We could say that 1 talks about bachelor (unlike 2 and
3) but it does not talk about unmarried and man — so is it incomparable with them?
However, does it speak about unmarried_man? We have to admit that it does: the object
bachelor is the same object as the object unmarried_man!

Returning to 2.6 we can see that our first CS simply identifies while the second CS
defines the object unmarried_man (= bachelor). So the first CS is — within the respective
part of its area— more coarse-grained as for classifying the objects than the second. Ceteris

paribus the second CS is more fine-grained and, therefore, more useful, so preferable.
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Now we can ask: is 3 the analysis of the second sentence? And: is 1 the analysis of the
first sentence? Ignoring a remark that will be formulated in the end of this example we can
say: accepting the CS that has been characterised in the connection with analysing the second
sentence it holds: Yes, 3 is the analysis (but see the remark!). We could say analogically that
under the given conditions 1 is the analysis (of the first sentence, with the same reservation).
These evaluations are valid only if we assume that the CS that underlies the first sentence is
distinct from the CS that underlies the second sentence (so that the better quality of the
analyses 2 and 3 is, properly speaking, given by the better quality of the second CS).

Remark: All the analyses above, i.e.,
AWz [[°S *By][*H..]]
Az [[°S U MII[Hywe]]
2wkt [[S [owhs ['Un ML "Hd]1]

can be made still better, which we have ignored for the sake of simplicity. Their improvement
will show that our sentences can provably talk also about some_bachelors, for the first
sentence, and about some_unmarried_men, for the second sentence. We show it for the first

sentence, where the ‘improved analysis’ will be
Dot [AWL [°S “Byyil e [*Hu]]. —

The moral of our INTERMEZZO is that if we want to get always just one (the best)
analysis of an expression then this goal can be achieved only when a conceptual system (or a
class of conceptual systems that share a respective part of their PCS) is given. So the analysis

of a given expression is relative to a conceptual system.
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3. Languages and conceptual systems

3.1 Synchronic view (a temporal slice)

The synchronic view assumes that during a period (whose particular length is empirically
determined and is not relevant for our analyses) a language is a relatively stable phenomenon.
Under this assumption we can take for granted that the vocabulary and grammar of the given
language is (during the period in question) fixed. In the ideal case then we could expect that
there is a definite PC underlying the given stage of the language. Unless we accept Fodor’s
atomistic conception of concepts (for criticism thereof see [Jackendoff 1995], referred to in
3.2.4.2, Intermezzo) we could further state that all meaningful expressions of the language
could be taken to express concepts that are unambiguously determined by that set of primitive
concepts (PC).

This simple scheme does not work.

(If it did ideal dictionaries would avoid circular definitions; for more on this argument
see in [Materna 1998, p.132].)

One reason is that no natural language is homogeneous; there are many sublanguages
of any language L. Setting aside the case of professional languages (in particular languages of
science) we can see that even within one and the same national language there are many
groups (or even individuals — see Kripke’s Pierre) using some kind of idiolect whose lexicon
and even sometimes syntax differs from the ‘official’ language. And if some speaker of
English does not know the meaning of, say, spin, will he be said not to know English, or not
to know physics? (See 3.2.4.2.b).)

Thus we can suppose that there are many distinct (albeit overlapping) conceptual
systems that can be said to underlie a given natural language.

Let a particular CS be given and let L¢s be that fragment of L which is based on CS.
We will show that L¢s can contain homonymous expressions (even with one CS as its
background). This can be proved via an example. Let prime (number) be an expression of
Lcs. Let our CS contain the concept “D(ivisible), concepts of particular natural numbers, the
concept of cardinality (of classes of natural numbers), the concept of identity (of natural
numbers) and concepts of logical objects. It is well known that there are at least two concepts
attached to prime:

A [V S Day] v =yl =y "1111]
or
Ax [ =1 °Card Ay [°D x 1] °2].
(Writing “D, °1, 2 etc. we do not mean that the concepts of D, 1, 2 etc. are necessarily

in the PC-part of the CS; excuse me, please, for such simplifications.)
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The sentence / is a prime is true in the first case and false in the second case. To

emphasise that no contradiction is present we can write

1 is a prime,

1 is not a prime;.

Imagine a CS that does not contain concepts that would make it possible to define
cardinality. A language based on such a system could not even formulate the second sentence
above.

The importance of connecting theories of language with the theory of conceptual
systems is not very obvious if we restrict our attention to the synchronic view. Particular
interesting insights can be expected but what seems to be much more promising is comparing
distinct possible stages of a language and of a theory from the viewpoint of our theory of

conceptual systems; this can be called

3.2 The Diachronic view
3.2.1 Definitional (conservative) model of development of language

Again let a CS be fixed and consider the language L¢cs. We can show that L¢s can develop
even without any change of the CS; this form of development is not very interesting (being
extremely conservative) but an investigation of its semantic background can yield some useful
insights. Some consequences useful for clarifying some aspects of development of a theory
(in particular, of a science in the Kuhnian ‘normal’ stage) can be discovered as well.

Our scheme can be only very artificial. The topic of our study is not concrete historical

research: we are interested in a semantic analysis of model situations. So let us proceed:
We will define particular stages of L¢s inductively.

Definition 25 (definitional development of a language)
Lcso (the ideal starting point) is a language with following features:
a) A 1-1 function connects its simple expressions with the members of PCcs,.
b) Its grammatical rules make it possible to encode compositions and closures over PCcsy.
Lcsn is identical with Lesy, with the only exception that Les, contains a finite set of
equational stipulations of the form

Ei= @ (Dy,....Di)
or a (finite) scheme of such stipulations, where E; is a new simple expression (not occurring in
any Lcsm for n > m) and ®@; is a complex expression consisting of such expressions D;; only

that occur in Lcgy.;. —

According to Definition 25 the later stages of this artificial development of Lc¢g differ
from the earlier ones just by containing more simple expressions (and, of course, by

containing expressions whose subexpressions are these new simple expressions).
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The expressions E; = @; (Dyj,...,Dy) are called (equational) definitions. We can
immediately see that they are codes of ontological definitions (see 2.6): the right side
(definiens) is an expression whose analysis is one of the members of the DCcs. The left side
(definiendum) is the respective abbreviation of the right side. Since its meaning is given
exclusively by the right side our language begins to contain more and more simple

expressions that do not express simple concepts.

It is surely not the case that a development of a language L could be reduced to this
kind of development that leaves the underlying CS unchanged. A truly interesting
development is creative in the following sense: 4 later stage of a creative development of L is
based on a CS’ such that its area (see 2.5, point 2) is greater than the area of that CS on
which the earlier stage of L was based (i.e., CS is strongly weaker than CS").

Before we proceed to examining some points concerning this creativity of the

development of languages let us make some notational conventions:

The subset of a PCcs which contains concepts that enable us to derive logical tools
(let it be concepts of predicate logic of 1% order, or concepts of higher order, modal,
intensional logics) will be called LOGc¢s. Analogically, that subset of a PCcs that contains
concepts enabling us to use some portion of mathematics will be called MATHcs. Finally, the

subset of DCcs that contains empirical concepts will be called EMPs.

Definition 26 (inessential extension of (the area of) a CS)

(The area of) CS’ is an inessential extension of (the area of) CS (IEEcs«s) iff EMP¢cs C
EMPcs: and all members of EMP¢cs: — EMPcg are constructions using only members of
EMP¢s and LOG¢cs: W MATHcs:, —

Remark: The intuition underlying Definition 26 can be exemplified as follows: Suppose that
LOGc¢s: W MATHcg: does and LOGcs ' MATHcg does not contain concepts that would
make it possible to derive conjunction. Let CS contain the empirical concepts “Cat and *Wild
or concepts that make it possible to define cats and wild objects. Then EMP¢s: — EMP¢g will
contain, e.g., the concept
Awht Ax [°A [*Wild,,, x] ["Cat, x]].

True, CS did not enable us to identify entities that are at the same time wild and cats,

but there was no necessity to do it via extending CS by some other empirical concepts. Only

such tool-like concepts as known from logic and mathematics were needed. —
Clearly, the notion IEEcs:cs cannot be applied to non-empirical conceptual systems.

The notion of an essential extension of the area of an empirical CS can be derived, of
course, from Definition 26: To be an essential extension PCcs- has to contain some new

empirical primitive concepts. The abbreviation will be EEcs:cs.
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3.2.2 Conceptual systems and problem sets

Remark: The notion of problem is closely connected with the analysis of questions. As for the

way TIL analyses questions see, e.g., [Tichy 1978], [Duzi, Materna 2002]. —

Notational changes used sometimes to simplify reading:
o Binary connectives and identity will be written using infix notation (which we are more
used to in these cases).
. Quantifiers will be denoted in the usual way.
. The trivialisation symbol ° will not be used in the case of connectives, identity and
quantifiers.
Thus instead of
At [°5 [°3 Ax[°Planet,,; x] ["— [*= [*"Numberof Planet,,] °01]]]
we will write
Awht [ 3x [*Planet,, x] > —[*"Numberof "Planet,,;] = °0]. —

One of the possible criteria of creativity of an extension of a CS has been defined in
terms of the area of the given CS. Another criterion, perhaps more important in some
contexts, can be defined in terms of problems that can be posed by a CS. Therefore we will

now explicate the notion of a problem.

Definition 27 (problems) See Definition 6.

i)  Concepts that do not contain A-bound variables and are not simple concepts are singular
problems.

i1)  Concepts that contain A-bound variables are general problems.

i)  Problems are singular or general. —

From this vantage point concepts can be viewed as problems. The only exception is

any simple concept.

Remark: A very important fact implied by Definition 27 is that we can have non-identical but
equivalent problems, in the case, indeed, when the respective constructions/concepts are

distinct equivalent constructions (concepts). —

Now we will explain our motivation. First of all, from Definition 27 it follows that no
empirical concept is a singular problem. (Indeed, unless an empirical concept is simple — in
which case it has not been defined as a problem — it constructs intensions and contains

therefore A-bound variables w, ¢.)

Some examples will support our intuitions. (The ‘solutions’ are preliminary.)
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NON-EMPIRICAL PROBLEMS

Problems Solutions
[0+ 93 05] ]
singular
[> [*+ 93 957 [V °49]] T
A [ x °0] to compute the class of positive numbers
Fermat’s Last Theorem T
general
Apq [[p A q]1 > p] {(T,T), (LF), (F,T), (F.F) }
VpVq [lp A g1 = p] T

Here we can see that another convention could be used: solutions of singular problems
should be particulars (individuals, numbers, truth-values), solutions of general problems
should be functions. In this sense general problems would be similar — if not identical — to
what are usually called mass problems (and what is or is not algorithmically solvable). In
some contexts this criterion can be useful, in particular if we consider mathematical problems
only; in the case of empirical problems we need another kind of intuition. Consider, e.g., the
case of Fermat’s Last theorem. According to our criterion this hypothesis represents general
problems; the second criterion would locate it among singular problems. True, the solution
consists in the simple answer Yes/No, but to get this answer we have to calculate (in the
broad sense of the word), i.e., to perform some (oh! how many...) intellectual steps, which
should not be the case when solving singular problems. You can object that singular problems
can also be connected with laborious, at least time-consuming, operations (take only a very
long polynomial) but then at least no functions need to be calculated (they are at most used as

simple concepts, cf. the use of the arithmetic functions in performing adding, subtracting etc.).

Another objection can be raised: According to Definition 27 the concept ’+ is not a
problem whereas Axy [+ xy] would be a general problem. But according to HDefinition 12

the latter construction points to a simple concept.

Remark: If the only occurrences of variables in a concept C are “bound, then Definition 27
says that C is a singular problem. Example: Let Cont, be the relation that holds between a
construction C of order » and a variable x of order » iff C contains some occurrence(s) of x.
Then the concept

[°Cont; °[*> x °0] %]

is a singular problem. (It is the problem whether the construction [O> X OO] contains the

variable x, and our intuition is that this is a very typical singular problem. Even the problem

[Cont; °[Ax [*> x °07] %]
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is a singular problem, though there is a A-abstraction as a subconstruction, but the variable x

is here o-bound, see Definition 6.) —

Now we will adduce some very simple examples of empirical problems:

EMPIRICAL PROBLEMS
. . . Solution
Empirical problems Verbal expression (preliminary formulation)
Awt Ax [["Mammal,,;x] A | Which mammals live in Finding individuals who are
[*Liveinwater,, x]] water? mammals and live in water
AwAs 3x [["Mammal,,x] A | Do some mammals live in Finding the truth-value of the
[*Liveinwater,, x]] water? proposition

Awht ["Capital,, “Poland] What is the capital of Poland? | Finding the capital of Poland

AwAt Ax [["Mammal,,x] A | Which mammals are not To find such mammals that
—[*Vertebrate,; x]] vertebrates? are not vertebrates. (No
result.)

YwVt Vx [[OMammalwtx] > | Are all mammals vertebrates? | Yes

[*Vertebrate,, x]]

Comments:

a)

The first example is useful for understanding what should be called the solution of
empirical problems. Our formulation suggests that a problem is solved when the members
of the class that is the value of the property constructed by the problem in the actual
world + time are found. This formulation is obviously misleading: one of its
consequences is that such a problem (that constructs an empirical property) could never
be solved. Actually, when we say that this problem can be solved we bear in mind that
any singular instance thereof can be — in principle — answered so that a criterion of
deciding 1s found. So we could better characterise the situation of having solved that
problem as follows: “Give me the actual state of the world and some individual, and I
will be able to say whether it is a mammal that lives in water, or not.” The role of
experience in solving empirical problems is obvious (“Give me the actual state of the
world” — this is what cannot be calculated by the logical analysis). (The artificial
character of the example is given by the fact that a realistic problem would be expressed
rather by the interrogative sentence Which kinds of mammal live in water? The solution
would consist in finding the particular kinds rather than particular individuals. The
respective concept can be easily found in terms of a variable over properties of

individuals and the set-theoretical inclusion.)
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b) The simple answer to the second problem is the result of empirical investigation regulated
by particular concepts that make up the problem. Which empirical procedures are used is
not important in the present context: suffice it that without knowing the concepts encoded
by the expression that expresses the given concept/problem it would be impossible to

choose a procedure, since no problem would be recognised.

c) The capital of Poland is not a name: as an empirical description it expresses an empirical
concept/problem. Compare with the proper name Warsaw. Accepting — as we cautiously
do — that proper names express simple concepts we have the simple concept "Warsaw: no

problem is present.

d) The last two examples are dubious. In both cases the answer is given a priori, no
empirical investigation is necessary (in virtue of the mutual dependence of the concepts
MAMMAL and VERTEBRATE). We have included both cases in the class of empirical
problems in order to show that they only seem to be empirical: the particular subconcepts
are, of course, empirical concepts, but they are not mutually independent. The first
example shows a construction that constructs an empty property, i.e. a property whose
value is an empty class of individuals in every world + time. The second example is a

construction of the analytic proposition TRUE.

So do the last two concepts exemplify problems? To answer this question we need the

following consideration.

As Tichy has suggested, e.g., in his [1979] a class of relations-in-extension between

intensions can be defined as follows: Let "X be "X or any construction constructing X.

Definition 28 (requisites)
Let A, B be o~ Or (00t):-0bjects. Let Xrx abbreviate [Xx] or [x = X], types derivable. B is
said to be a requisite of A (denoted by [’Req ‘B "Al]) iff it holds that

VwVe [*Eye *A] D Vax [ Aprx D Byurx]].

(A generalisation for relational types and sequences of variables is easy.) —

Remark: E is the property ‘existence’. Its type is (00e)re, it 18 @ property of an intension —
‘being instantiated’. In predicating existence of an intension / in the pair (W, T) we say that /
is occupied in (W, T) by an a-object (if / / o, o not being a type of a class) or by a non-
empty class (if 7 / (0B).w). See [Tichy 1979]. The antecedent [OEW, *A] is necessary if *A

constructs a role (o not being a type of a class).

Examples:
Let USP/ 1., be the office of the President of the USA and USC/(o1)., the property to be a
citizen of the USA. 1t holds that the following construction constructs T:

[’Req 'USC "USP].

(In our examples we will use trivialisation instead of "; the *-generalisation is clear.)
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Our last example with mammals and vertebrates is a case of the requisite relation:
[’Req “Vertebrate "Mammal].

Thus it is not an empirical problem, and at the same time it is a singular problem. Indeed, no

empirical procedures are needed: we only have to know the respective portion of English.
The other example with mammals, i.e.,
Awht Ax [["Mammal,,, x] A —["Vertebrate,,x]],

is a little strange. According to Definition 27 it is a general empirical problem. Yet the
answer, i.e., the empty class, can be obtained as a consequence of solving the singular
problem given by the construction ["Req “Vertebrate “Mammal], which is a non-empirical
problem. But no solution of a non-empirical problem can be the only source of a solution to
an empirical problem. Thus this case is one of a seemingly empirical but actually a non-
empirical problem. All concepts that construct trivial intensions (see Definition 3) are
problems of this deceptive kind.

Now our intuitions concerning the notion of the solution of a problem should be made
more precise. First let us return to non-empirical problems. There are two kinds of general

non-empirical problems (GNP):
a) GNP that construct some function. They will be denoted by GNPI.

b) GNP that apply some function to what some GNPI has constructed. Let them be
denoted by GNPII.

In the table NON-EMPIRICAL PROBLEMS the first and the third example (of
general problems) are GNPI, the other two examples are GNPII.

Empirical problems will be denoted by EP. Singular problems are SP.

SOLUTION
Kind of
Solution (explication)
problem
SP What is constructed
GNPI for natural ) ) . : .
Algorithm (recursive functions), nothing otherwise
numbers
GNPII for ) ) ) . )
The result of applying a function to the function given by the given GNPI
natural numbers
- An empirical method of finding in the actual world+time the value of the
intension constructed by the problem or particular instances of this value.
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The preceding definitions and explications make it possible to define problem sets
connected with conceptual systems. This notion is important as soon as we are no longer

content with the EE-criterion (see above) of creativity of development of conceptual systems.

Definition 29 (problem set)

Let CS be a purely logico-mathematical system, i.e. let CS contain no empirical
concept. Then the problem set of CS (PScs) is the set of all members of DCcs that are of the
kind GNP (I or II).

Let CS be an empirical system (containing LOGcs as well as MATHcs but also
empirical concepts). Then the problem set of CS (PScs) is the set of all members of DCcg that
are of the kind EP and are not ‘spurious’ (see the following Remark). —

Remark: What kind of problems are spurious (futile)? Newton-Smith in [Newton-Smith 1981,
187] adduces examples like “Why will sugar never dissolve in hot water?”, “Why are swans
green?” etc. From our viewpoint the concepts underlying such formulations are constructions
that are either improper (in the case of logico-mathematical concepts) or construct functions
that are undefined for actual world+time. In the examples above the value of the respective
intension for a given world+time is some event or property that is the cause of sugar’s not
dissolving in hot water (of swans’ being green). Here the presupposition, viz. that sugar does
not dissolve in hot water (that swans are green) is false at least in the actual world+time.
Therefore — since nothing is such a cause — the intensions constructed by the respective

concepts lack any value in the actual world+time. —

Now we are able to define another criterion of creativity of the development of

conceptual systems; we can call it the expressive power of a given system.

Definition 30 (expressive power)
The expressive power of a CS (ExPcs) is the PScs. —

The way expressive power has been defined suggests that the role of an empirical
conceptual system essentially differs from the role of a purely logico-mathematical conceptual
system (see Definition 29!). In the latter only constructions and what is constructed counts
whereas in the former the role of constructions is instrumental. This distinction can be
clarified as follows: The problem set of a purely logico-mathematical CS consists of concepts
that construct functions (and some of their features, see GNPII), and what is required is to
compute these functions (see the table SOLUTION) and evaluate the respective features
(ibidem). No problems concerning the objects of the real world can be posed; logico-
mathematical conceptual systems produce tools. In contrast with such systems an empirical
CS uses the tools offered (represented by the set LOG¢cs W MATHcs ) to pose the problems
concerning the real world, and since the actual values of those intensions constructed by these
problems cannot be computed, the solutions which are required are empirical methods (see
again the table SOLUTION).
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Thus we could characterise the Kuhnian ‘normal phase’ of a science as such process
during which the underlying CS is the same and the only distinction between particular stages
of this process consists in that some problems being posed by the CS are solved. The
‘revolution’ makes it possible not only to solve problems but also to pose new problems: new
not in the sense in which some problems that can be posed within the old system are

recognised, but in the sense that they could not have been posed in it at all.

Remark: ‘Normal’ empirical systems are, of course, mixed in that they contain not only
empirical concepts but also the part LOGcs W MATHcs. Something like ‘pure empirical

systems’ would be of no use atall. —

Purely logico-mathematical CSs underlie formal languages of logic and mathematics.
As for formal languages a reservation must be articulated: in general, a formal language uses
what could be called pseudo-constants: any such pseudo-constant is a constant with respect to
an interpretation (remember Frege’s polemics with Hilbert!), which means that a formal
language is connected with more than one conceptual system. As a classic example we can
adduce the case of formal arithmetic of natural numbers, where only one of the conceptual
systems is that of natural numbers (mathematical logicians speak about ‘metamathematical
natural numbers’): formal arithmetic allows for non-standard models where concepts produce
other objects than standard natural numbers. To use the theory of conceptual systems in
philosophy of mathematics would be a most interesting task; but it is too large, however, to be

undertaken in the present study.

3.2.3 Creative extension

In the case of empirical CSs we can state that we have two competing criteria of creativity of
extending a CS. One of them is definable in terms of EEcs’ cs, i.€., we could call an extension
CS‘ of a CS creative if EEcs> ¢s were true (remember: essential extension); the other criterion
is definable in terms of ExPc¢s (remember: expressive power), i.e. an extension CS* of CS
would be creative if ExPcs were a proper subclass of ExPcs>. We can ask, of course, whether

these two criteria are independent. Let us try now to answer this question.

First, let us suppose that EEcs:cs holds. (We do not consider here theoretically
possible cases of overlapping.) Then in the area of CS’ (but not in the area of CS) there is a
class O of some objects in the abstract sense (intensions, of course) and in EMPcg> a class C
of concepts such that the members of C belong to EMPcs: — EMPcs and identify the
members of O. But the members of C represent some new (empirical) problems that did not
occur in CS. Thus we have

Claim: If EEcs’ cs holds then ExPcs is a proper subclass of ExPcs». —

105



(The same argument justifies
Claim’: If IEEcs« cs holds then ExPcs is a proper subclass of ExPcs. —)

Now suppose that ExPcg is a proper subclass of ExPcs:. Then there is a class C of

concepts that belong to EMP¢s: — EMP¢g and obviously construct some intensions. But two
points prevent us from formulating the conversion of the claim above: First, the members of C
could be equivalent to some members of EMPcg, in which case the area of CS would not
change. Second, even in the other case the newly constructed intensions could make true
IEEcs: ¢s (remember: ‘inessential extension’) rather than EEcg ¢s. In this sense the criterion

based on ExPcg is weaker than the other criterion.

On the other hand, the EE-criterion cannot be applied to logico-mathematical CSs,

whereas the ExP-criterion can be applied to both kinds of CS.

Summing up, whereas the ExP-criterion is a satisfactory criterion of creativity in the
case of logico-mathematical CSs, the EE-criterion seems to be the strongest criterion of
creativity in the case of empirical CSs. Since it is empirical CSs that are of primary interest
for us, the following definition stipulates creativity in terms of EE.

Definition 31 (empirically creative extension)

An extension CS’ of a conceptual system CS is empirically creative iff EEcs>cs. —

We can see that if the creativity of empirical CSs were based on ExP it would not be
necessarily connected with the relation EEcs' ¢s (see Definition 26): in the last Remark in
3.2.1 we adduced as an example of IEEcs: ¢s the case when a CS does not but a CS’ does

contain a concept of conjunction. CS’ — unlike CS — contains the concept
Awht Ax [°A [*Wild,,, x] ["Cat, x]].

Using the ExP-criterion we would then have to state that ceteris paribus CS’ is a
creative extension of CS. Artificial as this example is it all the same proves that the ExP-
based creativity would be compatible with inessential extension, viz. in the situation when the
new system arises due to adding only some non-empirical, i.e. logico-mathematical concepts
to the original system. Yet this would be counterintuitive: in the case of IEE no new
empirical research is needed to enlarge our ‘knowledge base’ — only some logico-
mathematical member of the ‘library of programs’ is activated. On the other hand, one can
ask: Is it not the case that an element of creativity is present even when ‘only’ logico-
mathematical tools are activated? This problem (a rather terminological one) can be solved

via following definitions:

Definition 31° (mathematically creative extension)

An extension CS’ is a mathematically creative extension of CS iff IEEcs cs. —
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Definition 31°° (creative extension)
An extension CS’ is a creative extension of CS iff CS’ is an empirically or a mathematically

creative extension of CS. —

All the definitions 31 — 31°” concern, of course, empirical CSs. If creative extension’
should be defined for logico-mathematical systems, then the notion ExPcs would obviously

be relevant.

Remark: A phantastic question can be raised. Being confronted with the problem of the
‘revolutionary’ stage of a science (Kuhn et alii) as opposed to ‘normal science’ we can try to
characterise the former as the case of creative extension of the respective conceptual system.
Let us use the paradigmatic example of Newtonian vs. Einsteinian conceptual system. We
would like to confirm the hypothesis that the latter is not only a creative extension of the
former in the sense of Definition 31 but also an essential extension of it in the sense of
Definition 26. But what if the Einsteinian system can be derived on the basis of the
Newtonian system only due to enrichment of the latter by some mathematical concepts (like
the tensor calculus etc.)? Then we would have to state that the Einsteinian system is only an
inessential extension of the Newtonian system! Let this question be only a provocation;
without a much deeper analysis involving details of both CSs our question cannot be
answered, of course. Yet even if we could prove that the case of Newton vs. Einstein is not an
instance of the relation IEEcg: ¢s it would not mean that there are not some other interesting
cases where what is interpreted as a revolutionary change would be actually an inessential

extension. —

Returning to the problem of the development of /anguage we can call a language L* a
creative extension of the language L iff the CS® that underlies L is a creative extension of the
CS that underlies L.

3.2.4 New concepts

Our (simplified) model of the creative (as opposed to the ‘conservative’) development of
language is connected with the assumption that in the creative case the new CS contains some
new concepts. (In contrast to the conservative case where the (‘encoding’) new linguistic
system contains new expressions whereas the underlying ‘new’ CS does not contain any new
concept, i.e., is identical with the ‘old’ CS.) This holds (for the empirical CSs) for the case of
essential as well as of inessential extension: in the latter case the new empirical concepts arise
since some logico-mathematical concepts enlarge the class of possibilities of having new

members of the respective DCcs. The case of essential extension is much more interesting.
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We will try to analyse this case; since the role of the pure logico-mathematical CSs
differs from the role of the empirical CSs (see the considerations following Definition 30) we

will first investigate the problem of new concepts in the case of some number theoretic CSs.

Remark: Once again [ would like to emphasise the fact that I would confuse distinct topics if |
tried to exemplify my theoretical analyses by real, historical events. History, methodology
and philosophy of science are rich disciplines with specific methods; let, e.g., historians of

science consider the possibilities of documenting the theoretical analyses below. —

3.2.4.1 Arithmetic

It is possible using just positive integers to solve some mathematical, i.e., instrumental
problems, in particular in connection with the concepts ADDITION, (limited)
SUBTRACTION, MULTIPLICATION, (limited) DIVISION. Which are primitive and which
are derived depends on the respective CS; for example whether it does or does not contain the
‘descriptive operator’ ®t (THE_ONLY...SUCH_THAT).

Remark: ‘Descriptive operator’ is not a good term: this name denotes a linguistic expression.
Let the concept t be conceived of as what underlies this expression. (Tichy has called the
function identified by %, as the ‘singularizer’. Its type is schematically (au(oa)) — its value on

a-singletons is o, on the other classes it is undefined.) —

The special number 0 had to be discovered. Then (limited) SUBTRACTION (as we
know it from the theory of recursive functions) has become SUBTRACTION (of natural
numbers). But theoretically, there is a CS with the preconcept (see 2.2, Remark 2)
POSITIVE_INTEGER(S) and the concept ‘1, so that an interesting situation comes about: in

the respective DC we get the concept
(v Oy [=x =y VI,

a concept, that is strictly empty if the preconcept in question is POSITIVE INTEGER(S). But
the challenge of existential commitment in the above construction can be accepted, and so we
get the concept ZERO. Observe that the original CS made it possible to formulate a problem
that is — from the later viewpoint — unsolvable within CS and at the same time to propose such
an extension of itself that would make it possible to solve this very problem. Moreover, the
preconcept of the new CS is no longer POSITIVE INTEGER(S): it is now
NATURAL NUMBERS. Finally observe that ZERO need not be a primitive concept in any
such CS.

Negative integers made it possible to define subtraction of integers (better: the need to
subtract greater numbers from smaller ones has led to the introduction of the concept
SUBTRACTION_OF INTEGERS). The preconcept is now INTEGER(S).
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(Limited) DIVISION also proved to be insufficient for solving some important
problems. So a new kind of numbers had to be discovered: the concept
RATIONAL NUMBER(S) come about. Again, it can, but need not, be a primitive concept.

Nor do rational numbers suffice: the diagonal of a quadrilateral figure is
incommensurable with it sides. Let us have real numbers and so the concept
REAL NUMBER(S). In our base (Definition 1) it is a preconcept, but not necessarily so. If
some operations conceptually definable over the CS with RATIONAL NUMBER(S) as a
preconcept are conceptually redefined so that what was originally an improper construction (a
strictly empty concept) now constructs an object (a number)—recall the square root operation

—then a new CS with another preconcept arises.

Let us try to generalize from the simple examples. Let us begin with the scheme

suggested above. Summing up we can describe it globally as follows:
Scheme [of development of (number-theoretical) CSs)|

The original CS with basic types (preconcepts) «i,..., o and primitive concepts
Cy,...,Cy, determines some concepts that are strictly empty. Posing some object as the value of
such a concept we change from CS to another system, say, CS’, where some «; and maybe

some C; change (and become some [3, D;, respectively).

How reliable is such a simple law of development? Not completely: our freedom of
making such changes is limited. The following case serves as a counterexample: let a CS
contain such preconcepts and concepts that make it possible to define prime numbers. In such
a system we can easily derive the concept THE GREATEST PRIME. Now we can
immediately see that the respective concept is strictly empty. But the above scheme cannot be
applied: we simply cannot find a number as constructed by this concept and change the
original CS in order to make the above concept non-empty. An even simpler example: we can
want to enlarge the range of the division operation, leading to the transition from the CSs that
capture integers to those that capture rational numbers. But we cannot enlarge this range so as

to make it possible to divide by zero.

On the other hand, a seemingly similar case does exemplify the scheme: A CS that
identifies real numbers and contains the concept THE_ SQUARE_ROOQOT defines the concept
THE SQUARE ROOT OF - 1, which is strictly empty; but unlike the case of zero division
the transition has been realised and a new CS that is able to identify complex numbers has

been discovered.

But what then is the criterion of applicability of the above scheme? Can such a general

criterion be formulated at all?
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The reliability of the Scheme is not absolute in the sense that it cannot be always
applied. Yet on the other hand it seems that whenever we can speak about new concepts (with

respect to a CS) the Scheme has been applied.

(This last claim obviously assumes that the respective CSs are comparable: in this

sense the concepts, say, of a geometrical CS are not new with respect to an arithmetical CS.)

Now, what about translation? Imagine a person A who uses a CS that identifies
natural numbers (as the only kind of numbers) and subtraction, and a person B who uses a

CS’ that identifies integers and subtraction. A fictitious dialogue:

A: I owed Charles 10 pounds but today I paid him 3 pounds. You see, I’'m not good at
calculating. How many pounds do I owe him now?

B: Well, you must subtract 3 from 10!

A (calculates): Yeabh, still 7 pounds. But look, tomorrow I could pay him 8 pounds. Then...
B: Then Charles will owe you one pound. Great!

: How do you know?

: It’s easy. Subtract 8 from 7!

: Are you joking? You can’t subtract larger from smaller!

: Why not?

: We learned: If you subtract @ from b then a is b or smaller than b.

: You can forget that. It doesn’t hold any more.

> = op oW op ® P

: One always changes something. Is it necessary?

B: But if you use subtraction in this new manner you can tell what happens when you

tomorrow return Charles 8 pounds!
A: So I was always wrong when I used my subtraction?

B: Not at all, you were right when you subtracted smaller numbers from greater numbers.
You were also able to subtract a number from itself. But you simply did not know what to do

in the remaining case.

This schematic example shows infer alia that an important factor that causes difficulty
in communication is that the new concept is — as a rule — connected with the old expression.
So we have subtraction for SUBTRACTION _OF NATURAL NUMBERS, subtraction for
SUBTRACTION_OF INTEGERS, subtraction for SUBTRACTION OF RATIONALS
etc., and moreover the same mathematical sign is used. Thus the illusion arises that concepts

themselves developed. Actually, concepts — as abstract objects — cannot develop, of course.
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But there is some definable point of comparison between particular members of the sequence

where ‘new’ concepts follow ‘old’ concepts.

The famous problem of translatability, maybe even of incommensurability can be
identified already here in the simplest example. To sum up: we have one expression, subtract,
and at least two concepts of two distinct functions, let us denote these functions SUB1, SUB2.
Let the preconcept NATURAL NUMBER be the type v, the preconcept INTEGER be the
type y. The type of SUBI is thus (vvv) whereas the type of SUB2 is (yyy). We have two
distinct concepts expressed by one and the same expression. Both concepts are similar as well
as distinct. We easily detect points of difference, in particular SUB2 is but SUBI is not total.
But there are also similarities: Let CS1, CS2 be the systems with the preconcept v, 7,
respectively. Let C;, i > 0, be concepts in CS1 that identify particular natural numbers and let
D;, i > 0, be concepts in CS2 that identify particular integers (each C,, D; identifying the
number 7). For every i, °C; # °D; but at the same time C; = D;, i.e., C; and D; are distinct
equivalent concepts. (See Definition 17!) Now let C; (and therefore D;) construct a number i,
and C; (and therefore D) construct a number j. If i > j then applying SUB1 as well as SUB2 to
(i, j) results at the same number. Otherwise, the partial SUB1 cannot be applied, unlike SUB2.

Now a question arises: Can we compare CS1 with CS2?
On the one hand, preconcepts are distinct and so are SUB1 and SUB2.

On the other hand, the area of CS1 is a subset of the area of CS2 and the ExPcs;
ExPcsy. (See Definition 30.) But then we can state that CS2 is a creative extension of CS1.
(Here only the ExP-based criterion can be applied.) Indeed: every problem (here: every GNP)
that can be solved in CS1 can be solved in CS2 but not vice versa: subtracting a greater

number from a smaller one is forbidden in CS1 and realisable in CS2.

So what about a simulation of the (Kuhnian) incommensurability problem in this
simple ‘laboratory’ case?

Let some people, say, C and D argue as follows:
C: Great progress was made in the transition from natural numbers to integers, wasn’t it?

D: Progress? What do you mean? We simply got another system of concepts, but both
systems are incomparable, [ would say even incommensurable. The two systems simply speak

about different things: different operations and different numbers.
C: Really? Take two numbers, say, 5 and 3. Are they natural numbers, or integers?
D: Well, it depends...

C: Suppose then that they are natural numbers. Subtract 3 from 5, you get 2, again a natural

number. Now suppose that they are integers. Subtract 3 from 5, you get 2, again an integer.
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D: This coincidence ends at that moment when you want to subtract 5 from 3!

C: Which supports my claim that the change to the second system is progressive: it makes it
possible to solve the general problem of subtracting independently of whether the one number

is or is not greater than the other one.

D: But wait, this problem is not a problem for the first system! You know that within the set
of naturals no such problem can be formulated, subtracting greater numbers from smaller

numbers is simply impossible, like dividing by zero!

C: And therefore we enlarge the class of numbers so that the general problem of subtracting

can be solved.

D: But this is only a trick: you make some change to solve another problem, but you make

believe that it is the same problem and that you found a solution to it.

Now let us interrupt C and D and take some standpoint to D’s objections. Assume that
the system CS1 contains the usual Jogical concepts including “t (i.e., the function underlying
the ‘descriptive operator’) and the concept ADDITION, let it be %+, The concept of SUBI1

need not be a primitive concept. It is the following construction:
Doy [Pz [= [+ 2y ],

where x, y, z > v. Clearly, SUBI is not total (try to apply it to the pair (3,5)). The above
construction/concept is a GNP. Let it be denoted by P;. The GNP consisting in subtracting
any integers will be called P,. P,, constructing SUB2, will be

Ay [z ['= [+ 2 y] ],
where x, y, z — y. Clearly, SUB?2 is total.

Now, C claims that CS2 is more progressive than CS1 because it can solve a problem
that is unsolvable in the latter. D objects that CS2 simply poses (and then solves) another

problem and that, therefore, ‘progress’ should not be mentioned.

To take up a standpoint we will try to analyse the question “Is P; another problem
than P,?” A simple comparison (see above) shows that the only distinction between them
consists in there being distinct preconcepts (i.e., basic types). Thus D is right when he claims
that the two systems pose distinct problems but he is wrong when he draws the conclusion
that they (and thus also their solutions) do not share any features whatsoever so that they

cannot be compared. We can state this result as follows:

CS2 is able to formulate (and so to make it possible to solve) the problem P, but since
v is a subset of y CS2 offers solution also to P;. In this sense CS2 is comparable with CS1;

the former can do more than the latter.
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To what extent can this example serve as a basis for generalisation? Can we dare to

formulate the following hypothesis?

Hypothesis
A CS gives rise to its creative extension CS’ if some of its preconcepts are enlarged so
that some not total functions identified in CS become total (in CS’) and (in virtue

thereof) some improper constructions in CS change to proper constructions in CS’. —

The plausibility of this hypothesis is questionable, of course, at most it holds for a kind
of creative extension only. (The technical problem of making partial functions total has been
discussed in [Duzi 2003c, p.59].)

Another important problem has to be tackled: According to the ExP-based criterion, if
a CS’ is a creative extension of CS then it contains at least one new problem/concept, i.c., a
problem not contained in CS. Now we have seen that CS2 contained a new concept, but CS1
also contained a concept that is not contained in CS2! Compare once again the two problems,
viz. P,
Mooy [z [= [+ 2 y] 1],

with variables ranging over v, and P,
Doy [ Phz ['= [+ 2 y] 11,
with variables ranging over Y.

Distinct ranges of variables imply, of course, respective differences of types: In P; we
have: =/ (ovv), +/ (vvv), UV (v(oV)), in Po: =/ (oyy), +/ (yyy), V (y(0Y)).

Our intuition says that P; is in a sense new with respect to P;. We define:

Definition 32 (new problem)

Let P be a problem containing » (A-bound) variables ranging respectively over types o.,...,0.,.
Let P’ be like P except that variables range respectively over By,...,B, (with consequences for
the types of particular subconstructions). We say that P is new with respect to P (["New °P’

P))if, forall i, 1 <i<n, a; c B;. —

From our definitions it follows that if ["New P’ °P] constructs T then P is not identical
with P’. Accepting all this let us return to our systems CS1 and CS2 as well as to the dialogue
between C and D. Surely, D can say, CS1 and CS2 pose distinct problems, and rightly so, but
our intuition says that CS2 not only poses and solves other problems than CS1 but if it does

not ‘forget’ its predecessor it can in some sense pose the problems of CS1. In what sense?

Compare CS1 and CS1 U CS2. The former cannot pose all problems that can be

posed by the latter. The latter can pose (and solve) all problems of the former, and all
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problems from CS2 are new with respect to some problem from CS1. Thus the ‘creative

extension’ from Definition 31 should be such a union:
CS’=CSuCS”,
where all the problems posed in CS’’ are new w.r.t. some problem from CS.

Now what would be the general problem of subtracting that C talks about in our

dialogue? It would be obviously rather a scheme of problems:
doy [Pz [= [+ 2y a1,
where x, y, z— o and o is any supertype of v. (Such supertypes are, e.g., v, T.)

We can see that a) the above definition of new concepts is too narrow, even for
mathematical CSs, and b) the ‘creative development’ based on accepting ‘new problems’ in
the sense of that definition requires a transition from one type system to another one: there are
no ‘supertypes’ within one and the same type system — the types cannot overlap within one
type system. (True, considered from our meta-view we can meaningfully claim that the type v

as the set of natural numbers is a subset of the type 7 as the set of real numbers.)

All these considerations (beginning, say, with Hypothesis) make it clear that the notion
of creative extension is here (exhaustively?) determined by the change of preconcepts, i.e., of
the basic types the variables range over. Besides, only purely mathematical (NB here only
arithmetical) CSs are taken into account. This is not to claim that no other cases of what we
would like to call creative extension of mathematical systems are thinkable. A general
analysis of the ways various mathematical conceptual systems can be said to ‘develop’ would

be a task for a separate study.

3.2.4.2 Empirical systems

Once more we have to emphasise that when analysing the following problems, we must be
aware of the principal distinction between non-empirical and empirical CSs: the former
produce tools, the latter contain non-empirical concepts as such tools. Evaluating the
interconnections of empirical CSs and the questions of translatability, comparability,
incommensurability etc. will be formulated and, as the case may be, answered exclusively
from the viewpoint of their ability to pose and solve empirical problems. To be more precise,
the empirical CSs alone can only pose the problems (via the respective empirical concepts);
the solution is not a priori given (as it is the case in the non-empirical CSs); it is a matter of
some theories based on the given CS and using the concepts when questioning reality.

We try to investigate empirical CSs in connection with languages. Here we have to
distinguish two cases. First we will try to say something about ordinary (colloquial)
languages in the sense to be defined below. Second, some problems with languages of

science will be handled.
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Tarski in [1956, 164—165] has stated the universal character of colloquial languages:

[1]t could be claimed that ‘if we can speak meaningfully about anything at all, we
can also speak about it in colloquial language’. ... we must... admit into the
language, in addition to its sentences and other expressions, also the names of
these sentences and expressions, and sentences containing these names, as well as
such expressions as ‘true sentence’, ‘name’, ‘denote’, etc. ... every language
which is universal in the above sense, and for which the normal laws of logic

hold, must be inconsistent.

The way Tarski characterizes universality of a colloquial language covers only one
sense of universality. In this sense it is impossible to associate a language with one CS: the
primitive concepts of a CS that underlies a language L cannot identify the expressions of L,
another system, say, CS’ is necessary, but such a CS’ underlies another language, say, L’, and
the latter would play the role of a metalanguage for L. A consequence thereof would be, e.g.,
that whereas CS would underlie L as well as any (correct) translation of L there would be as
many ‘metasystems’ CS’, CS”’,..., as there are translations of L. For Tarski, of course, L
contains its ‘metalanguage’ L’. From the viewpoint of conceptual systems the semantic self-
sufficiency of a natural language is simply impossible: a complete semantic theory for such a

language cannot be expressed in the language itself.

But universality of a colloquial language is also connected with another phenomenon.
The languages of sciences arise, after all, within the given natural language. True, we would
perhaps hesitate to call the collection of colloquiality and professional jargons of
mathematics, physics, chemistry etc., a ‘colloquial’ language, but it can’t be helped: an

English physicist is an English speaking physicist.

In this second sense a natural language is universal since any linguistic innovation that
stems from a professional ‘sublanguage’ is a part of it. Our analysis can however make a
natural ‘cut’: we will define ordinary language as that part of a (‘universalistic’) natural
language L that does not contain the scientific ‘sublanguages’ of L. (When we say that
somebody does or does not know a natural language we mean just ordinary language in this
sense. For example, some applicant for a job claims that he fluently speaks English; being
examined he confirms this claim but he does not know what the word quark means. All the
same we can suppose — unless (!) his application concerns working in physics — that he

really does fluently speak English, ordinary English, that is.)

3.2.4.2 a) Empirical systems that underlie ordinary languages

(It is useful to have a look at 2.4, in particular Principle.)

Borrowing terminology from Haeckel we can distinguish two viewpoints concerning

the developmental analysis of languages: the onfogenetic and the phylogenetic one. The
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former concerns the way a particular person learns his mother tongue while the latter is

interested in the way a given language can develop.

A. Ontogenesis

No psycholinguistic study can be expected here, only a rational reconstruction relevant
from the viewpoint of logical (conceptual) analysis. Accepting, as we do, that every (stage of
a) language is based on a conceptual system we should try to discover the CSs that underlie
particular fragments of the given ordinary language as they are learned (first by children, later
also by adults, in some cases, at least). Involved as the learning process is, one can use

abstraction and ignore the empirical procedures accompanying every such process.

Remark: From the viewpoint of a cognitive science many highly interesting features of such
process can be found in various studies. For one example only, valuable results are brought by
R.Bartsch in her [1998]. —

Then following points may be relevant for our analysis:
Essentially we learn two interwoven things: Vocabulary and Grammar.

In the early stages of learning the simple expressions that a child is acquainted with
express simple concepts. To understand such a simple empirical expression means to possess
a simple concept, i.e., a simple procedure that identifies the respective object and does not
need any other procedure (any other concept) to do so. This is not to say that the concept
associated by the child with the expression £ is identical with the concept that is officially
(phylogenetically) associated with E. The first stages of the learned language are private,
individual languages that gradually approximate the ‘official’ language as defined in the given
stage of the language. One form of this evolution can be seen as follows: some simple
expressions of the language to be learned have come into being due to definitions: they are
abbreviations (see 3.2.1) and actually express complex concepts. The child can be acquainted
even with such expressions but usually the concept associated by the child with the expression
E will be simple and probably will not be equivalent to the concept officially associated
with E.

Let us consider some artificial examples. Suppose a small child is taught — by being
shown particular examples etc. — that such and such things are called dog(s). Whereas
officially the word dog expresses either a simple concept 0dog or some equivalent more
complex concept, our child is a little too generalizing and associates with dog a concept that
could be written

%dog or cat.
this concept is equivalent to
Awht Ax [°v [°dog,.x] [Pcat,x]]
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but it is the simple version, i.e., the child does not possess the concept CAT (nor, properly
speaking, the concept DOG): let us suppose however that the child is able to distinguish the
groups containing dogs and/or cats from other groups; he or she should be able to identify the
property being a dog or a cat. Later our child learns separately the concepts DOG and CAT.
The respective conceptual system will no longer contain the concept “dog_or cat: instead it
will contain either the primitives °dog and “cat, or such primitive concepts in terms of which

the properties dog and cat can be defined.

Now our child is (simultaneously) taught grammar. It is grammar — together with

some elements of vocabulary — which enables the child to say sentences like

Some dogs are cats.

and
No dogs are cats.
(Because of what grammar is from our viewpoint: a prescription for associating
expressions with constructions.) Thus supposing that our CS contains ’dog, ‘cat, ..., ®some,

%no, ..., and that the respective types are given — let it be for some, no, ((o(ot))(o1))— we get

as members of the DC part of our hypothetical CS
{... awt [["some “dog,, ][ cat,.]], Awrt [["no *dog,. ][ caty]]....}.

Remark: The type of some and no is explained as follows: some (no) associates with any class
A of (here) individuals the class of those classes (of individuals) whose intersection with A is

non-empty (empty). —

The two propositions constructed by these two concepts are, of course, incompatible,
one being the negation of the other. They are problems to be solved. If the CS possessed by
our child really contains (now already official) concepts DOG and CAT then our child is able
to solve these problems. Our problem is whether this is a good example of empirical
problems. Recall Definition 28; the proposition constructed by the first (second) construction
above is surely false (true) in all worlds and times because the concepts DOG and CAT are
not independent — the problem is only seemingly an empirical problem. Let us therefore

suppose that the child can formulate the sentence
Some cats are black.

The respective concept (= problem) is this time empirical. There is no necessary link between
the properties cat and black. Thus our child can use our CS to pose the problem (= to

formulate the sentence above) — but to solve it our child has to investigate reality.

(These and following considerations do not mean that a learner is able to understand
the notion of construction, of course. Just as one can wonder that he uses prose (see Moliere)

most people would be surprised when informed that the procedures encoded by the
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expressions normally used have been rationally reconstructed as constructions in our sense.

But this is a general phenomenon connected with every theoretical analysis.)

There is a degree (vaguely delimited, indeed) of one’s acquaintance of one’s mother
tongue that will justify the claim that the given person already knows this language. Summing
up, our learner (child) has gradually acquired various conceptual systems that approximate
and more and more resemble one of the conceptual systems that underlie the official language
(in the given stage of development). From our (logical) viewpoint this process can be
(discretely) described as a sequence of CSs where the later members are more similar to the
language of adults than those earlier ones. In general, comparing the members of such a
sequence, say, CS; and CS;;,, the latter should be a creative extension of the former: the child

using the latter is able to pose more problems than the child using only the former.

Remark: This is, of course, a simplification also in the sense that the sets of concepts acquired
in the earlier stages are not necessarily subsets of the sets of concepts acquired in the later

stages. —

As for the role of Grammar, its expressions very often express concepts from the
LOG U MATH part of the given CS. The child A that possesses the same CS as the child B
with the only exception that A’s CS does not contain some concept that underlies a syntactic
word (like and or if) is not able to formulate (pose) some problems that B is able to. This does
not mean that B is also able to solve these problems, but ceteris paribus B has got a better

start for solving them.

An artificial example: Let the concepts contained in CS; and CS;, make it possible to
formulate the sentence
There is lightning.
and the sentence

Thunder can be heard.

Let CS; contain — unlike CS; — the concept WHENEVER (whenever/ (0 014 0:0)e). This

concept is empirical and can be represented as

AWApgq [OVM [OD DPwt Gwil]-

The person who uses CS; cannot pose, let alone solve the problem represented by the
sentence

Whenever there is lightning thunder can be heard.

unlike the person using CS,. This is an ordinary example of a creative extension of a
conceptual system due to a new empirical concept enriching the old CS. (Recalling the
Principle from 2.4 we can say that our CS; either contained the concept “whenever, or that its
PC part contained some primitive(s) in terms of which the concept WHENEVER could be
composed in the DC part.)
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An analogy can now be stated in the case of a non-empirical syntactic word, i.e., such
a word that expresses a concept from the LOG part of the given CS. Suppose that some CS;
does not and some CS, does contain the concept of disjunction, either as v or as
Apq = [°A [°—|p] [0—|q]]] or in some equivalent way. If this is the only distinction between
CS; and CS; then the possessor of CS; can — unlike the possessor of CS; — formulate the

problem given by the sentence
Today it is Monday or Tuesday.

(Observe, however, that the possessor of CS; cannot have both the concept of conjunction and

the concept of negation.)

Recalling Definition 26 we can state that the area of CS, is only inessentially extended with

respect to CS;.

It is obvious that the real process of learning the mother tongue is extremely
complicated. Ambiguities are adopted from the very beginning. Consider the case with
learning the concept(s) underlying the word and: One of these concepts is a construction of
the classical truth function, type (000), the other one is an empirical concept, type

((001»010)w)- The first case is represented by the sentence
It rains and I watch television.
while the second case can be represented, e.g., by
My father returned home and went to bed.

Another piece of evidence of the complexity connected with learning grammar: tenses.
A rational reconstruction of this process presupposes some kind of temporal logic; in TIL we
have an excellent study [Tichy 1980], where what the grammar of English prescribes is
legitimised by a thorough semantic analysis in terms of constructions, i.e., by a conceptual

analysis in our sense.

Some interesting questions (parallelised in Phylogenesis) arise when we ask What

happens when we learn mathematics?

We can, e.g., ask whether an extension of the MATHcs makes it possible to pose only
new mathematical problems (which would make the notion of inessential extension more
intuitive), or whether also some new empirical problems could be posed. The answer, based
on our conception of CSs, will be in harmony with our pretheoretical intuition. An example

will suffice:

Let CS; arise from CS;; by adding a concept of cardinality (of a class of individuals)
to the MATH part of CS;. One possibility is to add a primitive Ocard constructing the
cardinality function, type (t(ot)) (or (v(o1)), if you like. There are, of course, infinitely many

new mathematical problems concerning cardinalities of particular classes of individuals, but
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besides, new empirical problems can be now posed. For an illustration compare 1. and II.

below:

L. The user of CS; possesses concepts of particular major planets of our Solar system (so

0Mercury, "Venus, "Earth, ..., 0Pluto) and poses (surely also solves) the problem
[card Ax [V [*V ... [°V ["= x “Mercury] [*= x *Venus]]...[’= x *Pluto]]...]
that underlies the question
How many members of the class {Mercury,...,Pluto} are there?
This problem is not empirical, of course.

II.  The user possesses an empirical concept of planet, for example “planet, where planet is
a property of individuals, type (ot).,. (Here we bear in our mind again the major planets

of our Solar system.) Then the problem formulated by the sentence
How many planets are there?
is the concept
AWt [ocard 0planetwt].

Clearly, this concept is an empirical problem and could not be posed if no concept
of cardinality (here 0card) were at one’s disposal.

(Observe that the problem sub I. is solved without any reference to actual world: it is a
purely mathematical (albeit very elementary) problem. To solve problem sub II. one has first
to identify the class of planets in the actual world, which cannot be done without experience.
All the same, the empirical problem of the number of planets cannot be posed, let alone

solved, unless some mathematical concept of cardinality is at our disposal. A clear IEE case.)

Now let our learner person finish her learning process and suppose that she has
mastered her mother tongue; we will now make some points concerning the phylogenetic

development of a(n ordinary) language.

B. Phylogenesis

First of all let us recall the argument in 3.1 according to which we cannot suppose that all
meaningful expressions of a natural language could be derived from some base whose
members would express primitive concepts. That such a unique PC is absent holds naturally
not only for the synchronic analysis; in investigating possible relations between CSs that
underlie various stages of development of a natural language we cannot suppose the existence
of such a unique PC for a given stage. All the same some interesting points can be stated

independently of that simplifying assumption.
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There are principally two ways an ordinary language can develop:
a)  autonomous development; new expressions are added due to some colloquial practice.
b)  heteronymous development; new expressions are borrowed from non-colloquial

practice, i.e., from professional vocabularies (sciences, technology).

Ad a): Autonomous development.

From the viewpoint of our theory of CSs case a) is rather simple. The simplest subcase is the
definitional one. Some property identified by a complex concept becomes more and more
frequently discussed so that a simple expression replaces the complex one. For an example,
before the 1940s Quisling served as a personal name only. Since a man named Quisling
collaborated with the Nazis (in his high political position) a new expression — this time the
name of a property — has enriched various languages (and not just Danish): quisling. The
respective concept is a complex one (A COLLABORATOR or so) so that the simple
expression cannot be understood without the respective explication. The enriched language
has got a new expression but this innovation has not been accompanied by an extension of
any of the CSs that underlie the respective language. So it would not be adequate to extend

such a CS by adding a primitive concept °quisling.

The second subcase, the non-definitional one, is much rarer. What we are after is an
illustration of the case when a(n ordinary) language autonomously accepts a new simple

expression that expresses a demonstrably simple concept.

One kind of example could perhaps exploit the phenomenon of metaphor. Some
expression (mostly denoting a property) gets a new figurative meaning. A thorough and
interesting analysis of this phenomenon can be found in [Bartsch 1998]. We borrow one of
her examples (p.115); the word dachshund can be used by a mother who is disgusted by the
behaviour of her child (and says “I don’t want a dachshund around me’’) or by somebody
who observes a short man with a long back and O-form legs (and says: “Look, what a
dachshund”). Bartsch sums up:

By these examples, we have now generated a polysemic complex for the term

dachshund that consists of three concepts:

1. the concept expressed by dachshund used under the prominent or default
perspective of natural kind identification,

2. the concept expressed by dachshund under the behaviour perspective, also
expressible by someone who always follows his caretaker around, and

3. the concept expressed by dachshund under body form perspective, also
expressible by someone with a long back and very short legs in O-form.

From the viewpoint of our theory of CSs we can analyse this example as follows:
A key notion of our analysis is the notion of requisite (Definition 28). Construing

Bartsch’s “prominent or default perspective” as what determines the official meaning of the
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expressions of the respective (ordinary) language we have to analyse the other perspectives,
e.g., those ones sub points 2. and 3. First of all, the result of applying the “behaviour
perspective” is the property always following one’s caretaker around, while the result of
applying the “body form perspective” is the property possessing a long back and very short
legs in O-form. Let the property given by the official meaning of dachshund denote by D.
Denoting the other two properties Fol, Lb, respectively, we can see that following

constructions construct T:
["Req "Fol ‘D], [’Req "'Lb 'D].

Another important notion is perspective (or point of view), see a thorough analysis in
[Hautaméki 1986]. In general, the type of a perspective is given by the scheme (at).,. For
some examples consider perspectives colour, age, behaviour, body form. For age, o is T (or v,
if you like): the number of years, that is. For the other perspectives a is (01).,: in the given
WT pair colour associates every individual with a particular colour (particular colours are, of
course, properties of individuals, so the type is (0l).,); behaviour again associates every

individual with some property that is a typical behaviour of it; similarly for body form where

the typical shape is again presentable as a property (cf. above: possessing ...).

Thus the selection of particular requisites is always given in terms of some

perspective.

Remark: The type of perspective could be generalised. We have seen above that such notions
as typical have to be used. Perhaps this is not the best analysis; we could better speak of
perspectives that connect particular kinds of object not only with individuals but also, e.g.,
with properties. So instead of speaking about the typical behaviour of an individual we could
connect behaviour with properties, in our example with the property (being a) dachshund.
Accepting this explication we would have to replace the type-theoretical scheme of
perspectives by (a3), where [ is a type of an intension, mostly of a property. Then we would
have two kinds of perspective: one of them, type (at).e, €.2., age, body form, behaviour, etc.,
the other, type (ap), e.g., the maximum age, typical body form, typical behaviour, etc. The
latter associates an intension with one of its requisites; therefore this kind of perspective is an

extension.

A minor philosophical digression is now useful. TIL is anti-essentialist in the sense
that individuals are construed as being ‘bare’, something like ‘pegs’ on which particular
properties happen to hang. All the same, the notion of essence is not tabu in TIL: essences are

associated with intensions. We define:

Definition 33 (essence)
Let A be an intension (an o-role, type o, Or an a-property, type (00,). The essence of A is

the set of all requisites of A, constructed by (p = (00)0):
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Ap ['Req p "A]

(See [Tichy 1979], where the notions of requisite and essence are explained and used to show

that ontological proofs of the existence of God by St. Anselm and Descartes are not correct.) —

The essence of that intension which is denoted by an expression E is given by the
official (default) meaning of E. The phenomenon of metaphor can be then described as
associating the original expression with one or perhaps more requisites ignoring the other
members of the essence. The selection of the apt requisites is determined by some perspective,

see above.

Thus the expression dachshund — to return to Bartsch’s example — becomes
ambiguous (homonymous) and our question is: can we — in virtue of this fact — infer that
the original CS has been enriched by a primitive concept, i.e., by the concept *dachshund,,
where dachshund, is ‘a dachshund under the perspective (say) body form’?

We know what a trivialisation means: it simply returns the object without any change.
Philosophically (or: meta-logically) it means that there is a(n objective!) procedure that
identifies the object in question, in our case the property of having a ‘dachshund body form’,
without being supported by another procedure. On a most abstract level this is imaginable, of
course, but is it necessary that the language that accepts the expression denoting the property

dachshund; does so via accepting such an autonomous procedure?

It is certainly not necessary, but we can imagine a situation where it is possible:
imagine a world where dachshunds have been for some reason exterminated but where the
linguistic memory causes the expression dachshund to still be used just in the sense of the
property dachshund,. At first this usage can be unofficial, but later the children when learning
the mother tongue learn just this usage. Yet there are no dachshunds in this world, only some
people with a long back etc. Most children learn the expression dachshund in the similar way
as they learn, e.g., the words dog, moon, water etc., i.e., by empirical generalisation. At the
time when these children become adults the word dachshund already officially denotes the
property dachshund;; we can say that a CS underlying this ‘experimental’ phase of the

development of such a language really contains the primitive concept "dachshund;.

Even this story need not be too convincing: we can expect that a language that has
accepted the changed meaning of the expression possesses also such expressions as long,
back, legs, etc. But then the primitive concept “dachshund; is not necessarily part of the PC in
question: the property dachshund; is definable in such a language, independently of the way
the respective concept is acquired in the ontogenesis of the users. Hence our story is
trustworthy only if the original language did not possess expressions for long or back or legs,

etc.
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Remark: An essential distinction between ontogenesis and phylogenesis consists in the fact
that handling the former we confront particular phases of the development with the official
language whereas the latter concerns relations between two phases of the development of one

and the same official (ordinary) language. —

Our search for genuinely new primitive concepts that would accompany some
enrichment of an ordinary language have so far only poor and doubtful results. No wonder.
Artificial experiments should be supplemented by empirical research which is the competence
of linguistic disciplines. The logical analysis of natural language (LANL — see 1.4.3.1) can
evaluate the empirical data from the viewpoint of conceptual analysis. All the same, it should
be clear that the tools offered by LANL make it possible to explain logically relevant

fundamentals of what happens on the linguistic level.
Ad b) Heteronymous development.

Expressions borrowed from science and technology are elements of the development of an
ordinary language. While such expressions are given semantics within the respective
disciplines, their usage in ordinary language is adapted to colloquial practice. This fact has to

be taken into account when the theory of CSs is to be applied.

For an illustration consider a special theoretical term like database. In computer
science we can find an exact definition (or perhaps some more or less equivalent alternative
definitions) of databases. This means that the CS(s) underlying computer science contain(s)
concepts that identify the property being a database. (Observe that the language specific for
computer science need not be based on the preconcepts o, 1, T, ®.) Since computers began to
become pervasive the need to enrich ordinary language with some important expressions
arose. Yet, whereas the professional worker in computer science has to possess the concept
underlying the professional term database (to be able to design, use, maintain, update etc.
databases) the layman, on the one hand, does not need this professional concept. But, on the
other hand, he often has to exploit databases in his customary practice, and so should be able
to somehow identify the respective property. Ordinary language offers a solution to this

problem (via dictionaries or so): a simplified definition.

Maybe more convincing examples can be taken from the cases where the borrowed
term is a technological expression. Consider the term auto(mobile), which is surely part of
contemporary ordinary language. Workers in the automobile industry know many requisites
of the property (being a contemporary) automobile but other speakers of the ordinary
language need not know all these requisites; they need not know the essence of this property.
What they do need — and what is thus a part of the official ordinary language — is a concept
that identifies any object that is an automobile. We could object that if we are to identify the
property (being an) automobile then we have to know the essence of this property. So we

should know all the requisites, not only those offered by a simplified definition.
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We can at least artificially find some extreme cases where the fact that some requisites
are ‘concealed’ causes the given property not to be identified. (I would call such cases
‘swindlers’.) Example: A model instead of an automobile is sold; the swindler disappears
before the buyer finds out that, e.g., having four wheels, coachwork, an exhaust pipe, etc. are
only some of the requisites and that requisites like possessing a tank and possessing spark-

plugs are necessary members of the respective essence.

We can see that the development of science and of technology calls for enrichment
even of ordinary (even colloquial) language. Yet how can such an enrichment be analysed
from the viewpoint of our theory of CSs? An empirically creative extension of the given
empirical CS requires that the new CS contain at least one new empirical primitive concept
(see Principle in 2.4 and Definition 31!). Our examples, however, show that borrowing
scientific and technological expressions together with some simplification of their meanings
is realised via some definitions, which means that such concepts are not simple. It looks like if
the (simplified) terms borrowed from science & technology were definable in terms of the CS

that was supposed to be creatively enlarged.

This is, indeed, impossible: we cannot assume that the CS that underlies English from
the 16th century is sufficient for founding contemporary English. The development of (the
lexical part of) any language does not deserve the name ‘development’ unless the respective

CS(s) underwent some creative extensions.
Thus some new terms have to express primitive empirical concepts.

To find such particular examples is not a task for LANL. Data that could confirm our

theoretical claim must come from empirical research in, e.g., comparative linguistics.

All the same, let us try to construct a more or less artificial example that would

illustrate the presence of a new primitive empirical concept.

For this purpose try to imagine a very early, very primitive stage of mankind and of
the language of a group of people. (We will translate this language into English.) At that time
hammer was invented. What about the expression hammer that had to be (according to our
story) a new expression of the respective language? Can we say that the concept that underlies
this expression is a simple one? To answer this question we must be aware of an obvious
empirical fact: prior to the introduction of the new expression ~zammer into the language there
was some activity, some practice. There was no possibility (as we can claim without loss of
generality) of defining the tool just invented. Because of the social practice it was immediately
clear that there was some activity, viz. hammering, that is important and needs therefore some

linguistic representation.

At this time many (perhaps most) theoreticians will say: This is how a new concept

has come into being, because it was created by the language. What I believe is that this new
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concept, a simple procedure, was discovered since its potential (objective) presence was only
actualised. Arguments can be found in Tichy’s project of meaning driven grammar, see in

particular the quotation from 1.4.3.5.

Thus the only important distinction between our theory of objective concepts and the
theories of concepts as mental entities does not consist in our denying the role a social
practice plays in the history of languages and in conceptual ‘development’; it rather consists
in the claim that facts of the developing world help us to discover various objective

procedures that deserve linguistic encoding.

3.2.4.2. b) Languages of science
[t]he idea that statements have their truth values independent of embedding theory

is so deeply built into our ways of talking that there is simply no ‘ordinary
language’ word or short phrase which refers to the theory-dependence of meaning
and truth. [Putnam 1983, 430]

The most interesting problems connected with languages of science arise at the
moment when the interplay of language and theory is taken into account. Putnam’s remark
suggests that there is a vexed question known as the problem of theory ladenness of concepts.
We will try to analyse this problem from the viewpoint of our theory of concepts and

conceptual systems.

Let us first formulate some consequences of our conception in connection with the

relation between language and theory.

a) A CSis, of course, neutral with respect to truth: for any member of a CS that constructs
a proposition P there exists another member that constructs the negation of P. In this
sense we can agree with Kuhn that “there is no sense in which a lexicon may itself be
true”. (See [Sankey 1997, 76].) We have seen that CSs are in a sense collections of
problems, and since we are analysing empirical CSs the solutions (i.e., empirical
methods of finding extensions of particular intensions) are in the following sense not
given a priori: the results of such methods are dependent on the state of the world.
Therefore, while the members of a CS are associated with the members of the
respective lexicon by convention, the theory based on the CS is (more or less, as a
theory of verisimilitude would say) true dependently on the state of the world. As

Sankey, c.d., p. 77, says:

[w]hile theories may be expressed using the resources of a conventional lexicon,
nothing follows from this about the nature of theories. To think otherwise is to

confuse the language in which a claim is expressed with the claim itself.

b)  What is a theory from our vantage point? We have two options: either it is a set of

propositions closed under entailment, or it is the set of concepts that ‘generates’ this set
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of propositions. Choosing the latter option we can define a (consistent) theory Tcs as a
(proper) subset of CS, i.e., as that part of the original CS whose members construct
accepted propositions. Whether the accepted propositions are true or not is no longer a
matter of convention. We have seen that a transition from a CS to another are creative
only if the resulting CS contains some new empirical concepts, which in the case of EE
presupposes that some new empirical concepts are simple. One of the main sources of

problems with the analysis of the development of scientific theories is that
new concepts are not always associated with new expressions.

¢)  Comparing Tc¢s with T¢s, where T¢s: is what we wish to call a creative modification of
the theory Tcs, we can see that the most interesting cases are those ones where it is not
the case that CS — CS’ (NB: this is a correction of Definitions 31): one of typical
examples is the transition from phlogistic chemistry to oxygen chemistry; it is not so
that the latter would contain the concept of phlogiston and the concept of oxygen — the

former concept ‘disappeared’. As Sankey, p. 14, says (emphasis mine):

The phlogiston and oxygen theories are examples of different scientific theories

which applied distinct conceptual apparatus to a common set of phenomena.

A very general scheme of creative modifications is then succinctly suggested in
[Sankey 1997, 110]:

New concepts are introduced and old concepts undergo modification.

Remark: Sankey’s formulations, viz. “New terms with new meanings” and “old terms shift
their meaning”, suggest that the author is aware of the inaccuracy connected with the
frequently used formulations like “some concepts change (shift etc.) their meaning”. The

latter formulations are from our viewpoint senseless, since concepts are meanings. —

The problems that are well-known from Kuhn’s, Feyerabend’s, Putnam’s et alii works
arise as soon as we begin to doubt whether two or more theories based on distinct conceptual
systems can be said to concern a common set of phenomena and, in consequence, whether
they can be compared at all. As applied to the development of a theory this problem —
known as the problem of incommensurability — consists in questioning the comparability of

two or more phases of development of one and the same (?) theory.

There are more than many articles and monographs handling the incommensurability
problem (IP), cf. Bibliography on IP, which contains (up to January 24, 2001) about 400
titles. Naturally, my aim here cannot be an evaluation of these titles and an attempt to give a
further analysis from the viewpoint of history and philosophy of science. Instead, what can be
done which perhaps offers something new can be based on our theory of CSs. Let us therefore
begin with a schematic (‘laboratory’) example whose analysis should elucidate some points

that could be neglected if we relied on verbal means only.
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Example

Let T, be a theory dealing with surfaces of Earth localities and classifying them w.r.t.
the way of their exploitation. Let T, be a later (a more ‘fine-grained’, as we will see) phase of
development of T;. Lt;, L1» be the languages of respectively T;, T,. Two vocabularies, Vi,

V,, translate respectively L, L, into English. Fragments of them are below:

Vi

bink | meadow or pastureland

bace | having the same surface as

Loc locality A

Lok locality B
\Z!

cink meadow

cank pastureland

bace | having the same surface as

e it is not the case that
Loc locality A
Lok locality B

Due to the extremely simple grammar (shared by both the languages) the following sentences
are translated into English as follows:

1. Bink Loc A is a meadow or pastureland
2. Bink Lok B is a meadow or pastureland

3. Loc bace Lok A has the same surface as B

4. E cink Lok B is not a meadow
5. Cank Lok B is pastureland

6. Cink Loc A is a meadow

7. E cank Loc A is not pastureland

8. E bace Loc Lok A does not have the same surface as B
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Now suppose that reality contains localities A and B. A is a meadow, not pastureland,
whereas B is pastureland, not a meadow. According to T, the surface of A is the same as the

surface of B (see 3), whereas T, is the negation of 3. (see 8).
This contradiction calls for an answer to some questions:

o Does the transition from T; to T, mean progress in that T, corrects a mistaken claim
made by T,?

° Can Lt be translated into L1,?
° Can L, be translated into L1;?

Let us begin with the two last questions; we will try to get a fragment of a vocabulary
V3, translating Lt into L. (Without loss of generality we can assume that L, contains the

word “or” with the same meaning as in English.)

V;

Lt L,

bink | cink or cank

bace bace
Lok Lok
Loc Loc

At least one fragment of Lr; is thus translatable into L.

Our attempt at making up an inverse vocabulary V4 breaks down:

V4
L, L,
cink ?
cank ?
bace bace
Lok Lok
Loc Loc

Now let us check our vocabularies as to whether the translation they offer is

successful. From our viewpoint the expression E is a successful translation of the expression
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E’ iff the meaning of E is the same as the meaning of E’. This verbal formulation will surely
be agreed upon perhaps by all linguists/semanticists. There is, however, a snag: how would

you define meaning?

This question could be formulated more specifically as follows: What should a nice
theory of meaning look like? (Which is the title of a paragraph in [Newton-Smith 1981, 162];
Newton-Smith’s answer (p.163-164) is:

...a theory of meaning that will help with the current problem [viz. the non-holistic
explanation of incommensurability — P.M.] will have to be fine-grained. Theories
of meaning according to which the meaning of a sentence is given by the truth-
conditions or assertability-conditions of the sentence within which they occur

would be a coarse-grained and not a fine-grained theory.

TIL can be construed as a correction and modification of Frege’s famous scheme (but
Tichy himself avoided adopting Fregean terminology in this respect); then meaning, as it is
most frequently used in English, would correspond to Frege’s Sinn rather than to his
Bedeutung. For us meaning is therefore best construed as being a structured entity. Hence
meanings — as genuinely structured (Cresswell’s tuples are not satisfactory — see 1.2.2)— are
constructions and in the case of expressions without indexicals of any kind they can be
identified with our concepts. Thus checking the vocabularies above consists in comparing

constructions that underlie the particular entries.

At least initially we will assume that all the simple expressions of Lt; and L, express
simple concepts; thus we have %ink, ’bace, etc. Then the constructions that underlie

sentences 1 — 8 will be (types: bink, cink, cank/ (01).e, bace/ (011).,, Loc, Lok/ 1):

1’ Awht [*bink,, "Loc]

2> it [°bink,, “Lok]

3’ AwAt [Obacewt "Loc 0Lok]

4 awt [°= [Pcink,, "Lok]]

5" Awht [°cank,, *Lok]

6> AwAt [OcinkW, 0Loc]

7 Awht [0—| [Ocankw, 0Loc]]

8 awht ["= [“bace,, “Loc "Lok]]

Naturally, we can write down these analyses in virtue of accepting the vocabularies V,
and V,. But without the assumption that these vocabularies offer successful translations into

English we simply could not do anything.

130



Remark: The fact that Ly, is untranslatable into L1, is compatible with the translatability of

both Lt; and Ly, into English. For thorough argumentation see [Sankey 1997]. —

Now we come to our first question. Its presupposition is that Ty, is mistaken in that it

makes it possible to accept a false claim (sentence 3).
But is this really so? Is the sentence 3, as formulated in Lr;, really false?

Let us once more compare the constructions 3’ and 8’: Obviously, in every (W, T)
they construct opposite truth-values, so it looks like if sentence 8. actually corrected the false
sentence 3. Yet there is a presupposition — that the meaning of the word bace is the same in
the case of Lt; and in the case of Lty; indeed, %bace in 3’ is the same construction as ’bace
in 8.

We will return to this question later; now it seems as if this presupposition were too
strong: if it were correct, then claim 3, when translated into English, would say that both A
and B are meadows or pasturelands and that their surface is the same, and this claim would be
wrong. On our conditions, however, where ’bink is a simple concept, the language Lr; is
insensitive to the distinction between meadows and pasturelands (no separate concepts
identify meadows as something distinct from pasturelands), which, by the way, makes a V-
like vocabulary impossible. Thus should (and could) a speaker of Lt; deny that A and B are

indiscernible (as for their surface)?

It seems that we are confronted with the situation (suggested above in point ¢)) when a

new concept is associated with an old expression. Claim 8 may be true without 3 being false.

Remark: Our example may bring to mind Field’s theory of denotational refinement (see
[Newton-Smith 1981, 176-178]). (We could perhaps associate bink with Newtonian mass,
cink with proper mass and cank with relativistic mass; another real example (a ‘safer’ one)
could be surely found, since it seems that the example with ‘proper mass’ and ‘relativistic
mass’ is not just a refinement — see [Earman, Fine 1997].) According to Field (and his notion
of partial denotation) claims made about objects determined by a coarse-grained concept are
true if they are true about objects determined by both more fine-grained concepts, false if they
are false about objects determined by both more fine-grained concepts, and without any truth-
value otherwise. Our examples do not support the adequacy of this definition. For let us
consider the following claims (formulated for simplicity’s sake in a mixture of Ly, and

English without any loss of intelligibility):
1. There are n surfaces bink.
2. Binks are endangered by dry seasons.

3. Sheep graze on binks.
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Under normal conditions sentence 1 is (for a given number n) true of bink objects and
false of both cink and cank objects. Hence it should be false according to Field. But why
should it? The sentence 2 is obviously true of bink, cink and cank objects. This is in
accordance with Field. Finally the sentence 3 can be interpreted in two ways: either it means
on all binks or on some binks. In the former case it is false of bink objects, false of cink
objects and (may be) true of cank objects. In the latter case it is true of bink objects, false of
cink objects and true of cank objects. In both cases it should lack a truth-value according to
Field. But why should it? —

We will try now to accommodate our analyses to our denying that bace has the same

meaning in Lt as in Lr,. There are two options here:

First, let both meanings remain simple concepts (very improbable, of course). Then we
have to admit that the (simple, immediate) procedure connected with bace in Ly, — let the
word bace be provided with an index, say, bace; — is distinct from such a procedure
connected with bace,. This option is not very intuitive, considering the character of the
English translation (having the same surface as). Let us therefore consider the second option:
the concepts underlying bace; and bace; are distinct complex concepts. Then the ontological
definitions (see 2.6) will contain some other concepts, like SURFACE, and “bace; would use
another (more coarse-grained) classification of surfaces than “bace,. Does it however justify
the claim that ‘bace; is another concept than “bace,? Not at all: Let bace be defined as follows

(a, b —> 1, i.e., localities, Surfof/ ((0V)1)+, i.€., the surface of (the locality) ):
["bace,, ab] iff [*= [*Surfof,, a] [Surfof,, b]]

Now the transition from Lr; to Ly, means that the coarse-grained concept "Surfof has
been decomposed into a more fine-grained concept “Surfofl, in correspondence with the
transition from bink to cink and cank. Now [*bacewt °Loc OLok] holds (in the given (W, T)-
pair) for Surfof and does not hold for Surofl; bace simply determines whether the ‘input
properties’ of the given localities are or are not distinct. Since bink is another property than
cink or cank and cink is distinct from cank it would be absurd if [*bacewt %Loc 0Lok] did hold
in the case of bink as well as in the case of cink and cank. The concept bace; is the same

concept as the concept "bace,.

We have shown that T, does not correct T,. So our elementary schematic example
seems to corroborate the incommensurability thesis, i.e., that the content of two or more
theories (most frequently phases of the development of a theory) cannot be compared, so that

we cannot speak about a progress of a theory if some shifts of meanings take place.

Yet such a consequence does not obtain. This can be shown independently of any
theory of verisimilitude (which is not to say that a good theory of verisimilitude must be
irrelevant here). T, is more progressive than Ty ; because it can pose more real problems than

the latter: to speak informally, in Ty, we can pose the problems
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How many meadows or pasturelands are there?
How many meadows are there?
How many pasturelands are there?

whereas T, can — ceteris paribus — pose only the first of them. (Our example falls under

the EE-case, of course.) —
Now what can we learn from our long Example?

First, if the general scheme given in this example can be successfully applied to a real
scientific theory then a holistic approach to semantics is unnecessary. The phenomena of
untranslatability and incommensurability can be accounted for without taking refuge in
Quinean holistic relativism. (The condition of applicability has to be fulfilled, of course, so

that our rejection of holistic semantics is not as convincing as a genuine refutation would be.)

Further, what does applying distinct conceptual apparatus to a common set of
phenomena mean? In other words, how do we know that two distinct CSs concern the
common set of phenomena? In our Example we knew this because there was a background
language, viz. English, and both Lt; and L1, were translatable into it (not being symmetrically
translatable one into the other). Thus: We can claim that two distinct CSs concern a common
set of phenomena if and only if a background (obviously natural) language L is at our
disposal and all members of both the CSs are expressible in L. The ‘if” is obvious; as for the
‘only if’, it is at least difficult to imagine a situation where we would have no support from

natural language for our claim.

After all, natural language is always present whenever we handle primitive, i.e., simple

concepts. To elucidate this fact let us have some thoughts about the role of trivialisation.

Intermezzo: specific character of trivialisation; analytic truths and logic

Trivialisation is the most controversial kind of construction. Whereas composition and
closure represent intuitively clear procedures, and variables (even in our objectual version) are
well-known as for what we can expect they do, trivialisation is too simple to let us imagine a
particular procedure and too complex to be identified with some variable-like entity. This
somewhat enigmatic character of trivialisation makes it possible, e.g., to avoid the Millian
idea of proper names as being simply labels on objects (see [Jespersen 2000]). But because of
the obviously important role trivialisation plays in our theory of CSs it deserves some more

thorough comments.

One important point to be taken into account is that any theory of procedures (and
TIL is one of such theories) is necessarily finitist in the sense that it has to start with some
elements that are simple in that they are no more decomposable into more simple components.

(Let me here once more quote a relevant formulation from [Fletcher 1998, 51]:
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If one had to define constructions in general, one would surely say that a type of
construction is specified by some atoms and some combination rules of the form
‘Given constructions xj,...,x; one may form the construction C(xy,...,xx), subject

to certain conditions on xi,...,Xx .

Trivialisations are such ‘atoms’, better perhaps ‘the simplest molecules’, since the
atoms proper are variables (see [Tichy 1988, 63]); the only constituent part of a trivialisation
is the object/construction under trivialisation. A pre-theoretical idea is that the respective

object/construction is constructed directly, i.e., without any mediation by other constructions.

What has been here defined as simple concept is just a trivialisation: the object under
trivialisation is either a variable (which is not an interesting case in the present contexts) or an
object whose type is of order 1 (thus a first order object, ‘FOQ’). FOOs are objects, not
constructions. Simple concepts identify (= construct) FOOs directly. Not taking into account
variables (which depend upon a valuation) all other ways of conceptually identifying FOOs
are compositions and closures, i.e., complex constructions that use various distinct concepts to

get the respective FOO.

We have seen that the concepts expressed by simple expressions are frequently
complex since simple expressions are frequently abbreviations (see also [Materna 2000]). The
process of introducing new abbreviations can be studied by theoretical linguistics; it is — as a
historical and hence an empirical phenomenon — outside LANL but LANL takes the fact of
abbreviation into account. From our viewpoint the linguistic definitions that realise the
abbreviations use as definiens an expression whose ontological counterpart is an ontological
definition of the object (see 2.6). The ontological definition — as a non-simple concept —
contains other simple concepts as its components. Theoretically the following case is
possible: within a particular CS there are two or more concepts that are equivalent, i.e.,
construct one and the same object. On the linguistic level, this corresponds to the case where
we can formulate two or more variant (but equivalent) definitions. (Bealer would rightly say
that these definitions determine distinct concepts, see [Bealer 1982].) Yet a more interesting
case can occur: Imagine a CS whose PC contains a concept "A and whose DC contains a
(complex) concept B equivalent to °A among whose components %A does not occur. (This can
happen even in the independent CSs (see 2.5).) How would we decide whether B is

equivalent to °A?
This question is answered as follows: We know that the B is equivalent to “A, since

1) ‘A’ (i.e., our artificial name of that construction) contains ‘A’, which is a name of an

object in our (background) natural language,

i1) all the simple concepts that are components of B are also given via names in our

language,
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iii)  the procedure given by the complex concept B is unambiguously given; thus

v) we know the object constructed by "A and the object constructed by B and can see

whether the object is the same in both cases.

On the other hand, logic — with its model-theoretical and proof-theoretical methods
— cannot decide such equivalences where at least one side of the equivalence relation is
(given by) a simple concept. Logically relevant properties of and relations between complex
concepts (e.g., analyticity, entailment) are, in general, not inaccessible to logic. To exemplify
our suggestions consider the following examples that should elucidate the classical problem

of the relation between logical truth and analyticity.

Consider and compare following two sentences:
a)  Those individuals that are mammals and water animals are (belong to) mammals.
b)  Bachelors are (belong to) men.

Both sentences are analytically true. Our conceptual analysis gives us (we use here set-

theoretical concepts without loss of generality, m / ((o1)(ot)(o1)), =/ (o(or)(ov)) ):
a’) Awit [OC [Oﬁ "Mammal,,, 0Wa‘[er_animalwt] 0Mammalw,]
b’) AwAt [Oc Bachelor,, 0Manwt]
Instead of a’), b’) we could write
a’’) Awht [Obelong_to [Oand [OMammalwt 0Wa‘[er_anirnalwt] OMammalw,],
b’’) AwAt [Obelong_to Bachelor,, 0Manwt].

We have chosen a‘), b‘): as speakers of English we know that and and belong to
behave here as N, <, respectively. Thus the analyticity of a) can be discovered by logic; here
we can ignore the denotations of mammal and water animal — these expressions play the role
of predicate symbols that can be interpreted in any way without affecting the truth-value of

the sentence.

The analyticity of b) cannot be discovered by Logic if its analysis is b’) (or b’’)). The
reason is that bachelor as well as man are extra-logical words (unlike and and belong t0), i.e.,
their interpretation is variable. Thus if we choose (in some WT-pair) an interpretation that
bachelor denotes, e.g., a class {a, b, c} and man denotes a class {c,d}, the resulting truth-

value will be F.
The distinction between logical truth and analyticity is standardly defined as follows:

A sentence is logically true iff its truth-value is T in all interpretations that preserve the

meanings of all logical words (connectives, quantifiers, identity).
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A sentence A is analytically true iff its truth-value is T in that interpretation that preserves the
meaning of all subexpressions of A.

Thus logically true sentences are analytically true but not vice versa. For if a sentence
is logically true, then it is true in any interpretation (that preserves the meanings of logical
words), and among such interpretations there will also be that one that preserves the meanings
of all its subexpressions. On the other hand there are sentences (like b)) that are true in that
interpretation that takes into account the meanings of all subexpressions and false in some
other interpretations, including those ones where meanings of the ‘logical’ words are

preserved.

This distinction is exemplified above (sentences a), b)). From the viewpoint of our

conceptual analysis we can say something more.

First, any case of trivialisation of a first-order object (see Definition 1 and 2)
exemplifies what we have said about the presence of natural language: trivialisation of such
an object constructs what is denoted by the name X in "X. (A banal warning: trivialisation
does not construct this name! See also the sky-blue vs. azure example in 2.1.) So the simple
concepts in our analyses are intelligible because of the banal fact that we understand

expressions of our background language.

Second, the way to reconcile analyticity with logical truth has to be the way of
transition from an analysis to the analysis (see Intermezzo: Parmenides Principle) based on
finding more and more fine-grained concepts and thus on discovering such CSs that are
relevant w.r.t. the given problem and make it possible to (ontologically) define objects given

originally by simple or at least more coarse-grained concepts.
In our example, let us refine the concept “bachelor as follows:
%bachelor = Awht [Om [OManwt 0Unrnarriedw,]
Then we can replace b’) by
c’) Awht [Oc [Om [OManw, "Unmarried,]] 0Manw,].
This time logic can check that b) is logically true.
But what if we want to know whether the sentence
d) Bachelors are adults.

is analytic. Again, due to the banal fact that we understand the word bachelor we can
immediately say: “Yes, this sentence is analytic”, but logic is again silent. This time c’) brings

no solution either. But let us refine the concept “man as follows:
"man = Awht [Or\ [Oﬁ [OHumanwt 0Malewt] OAdultw,]];

our analysis of d) is then
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d) awnt [°< [’ [N [~ ["Human,,, *Male,,,] *Adult,,]] "Unmarried,,.] “Adult,],
which means that logic can do its work again.

We know that Carnap tried to solve our problem via introducing meaning postulates.
Quine’s well-known criticism of Carnap’s attempt is justified in some respects but
independently of this criticism we can offer a more fundamental solution. In this connection
we should cite Jackendoff, who in his [1995, in particular 38-41] criticises Fodor’s claim that

all concepts are simple, and shows that

a meaning postulate approach to inference either misses all generalizations across
inferential properties of lexical items or else is essentially equivalent to a

decomposition theory.

What is then a ‘decomposition theory’? We could say that it is a linguistic counterpart
of the above conceptual (objectual) theory of conceptual refinement. So on the linguistic level
it is said:

The problem of lexical decomposition, then, is to find a vocabulary for
decomposition that permits the linguistically significant generalizations of

inference patterns to be captured formally in terms of schemas ...
(see [Jackendoff 1995, 39])
It is plausible to assume:

If a natural language sentence gets the analysis in the sense of our explication of the
Parmenides Principle and the respective CS is no longer decomposable, then every claim

entailed by the sentence can be logically justified.

This principle of detecting all logical consequences of a sentence works however with
a somehow unclear (albeit intuitively perhaps intelligible) term decomposable CS. Now we

will try to characterise more precisely what we mean by decomposing a CS.

End of Intermezzo

3.3 Decomposition

In 2.5 we have defined dependence of concepts. Now we have to introduce a more precise
notion of dependence, which will be relevant w.r.t. the notion of decomposing empirical

conceptual systems.

Definition 34 (empirical content)
The empirical content of a concept C (EC¢) is the set of all empirical subconcepts of C (see
Definition 4a). —
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Definition 35 (dependent concepts, comparable concepts)
Let C, C’ be concepts. C’ is dependent on C iff ECc < ECc.
C’ is comparable with C ifft ECc N ECe # &, —

We can formulate some easily provable claims:

1) If C’ is dependent on C, then C, C’ are comparable. (Not vice versa!)

i) All members of DCcg are dependent on some members of PCcs.

1) All members of DCcg are comparable with some other members of DCcs.

iv) No member of PCc¢s is dependent on any other concept.

V) Every member of PCcs is comparable with some members of DCcs.

vi) No member of PCcg is comparable with any other simple concept.

vii)  Dependence is antisymmetric; therefore it induces partial ordering of concepts.
viii))  Comparability is reflexive, symmetric but not transitive.

(Ad vii): Let ¢, ¢’ be variables ranging over concepts. A formulation of vii) — using a

symbolism of predicate logic — is:
Vee’ (EC.=EC,Dc=¢")

It could seem that the Bolzanian examples like the pair FATHER of MOTHER and
MOTHER of FATHER refuted vii), since the respective concepts are distinct and the
empirical content seems to be the same. Yet the equality of the empirical contents would
obtain only if empirical content contained only simple concepts (as it is obviously

presupposed by Bolzano).

Point iv) is the core of all problems connected with trivialisation. A CS, could be
conceived of as a decomposition of a CS; if some of its primitive concepts were dependent on
some (distinct) primitive concepts of CS,, which is impossible due to point iv). Thus the

following attempt to define decomposition fails:

*Definition (decomposition, abortive)
A CS, is a decomposition of a CSyiff (¢, ¢’ range over concepts; a simplified notation)

Jec’(c € PCesi A c#¢’ Ac’ € PCesy A cis dependent on ¢’) —

Our next attempt must take into account point iv); before we try again, let us once

more consider the character of trivialisation.

Decompositions discover the (‘hidden’?) procedure that is presupposed by
trivialisation. Thus what seemed not to need other concepts actually used them. Hence
decomposition is a sort of discovery. We are able to describe it in virtue of the fact that we use

a (background) natural language. Our second attempt to define decomposition will exploit this
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fact; this time we cannot use the notion DEPENDENT (point iv)!) but equivalence of

concepts (see Definition 17) will serve our purpose.

Definition 36 (semi-dependence)

’

¢ semi-depends on ¢’ iff 3¢’ (c is equivalent to ¢’” and ¢’ is dependent on ¢’) —

Definition 37 (decomposition)
A CS, is a decomposition of a CS iff

dec’ (c € PCesi A c#c¢’ Ac’ € CS; A c semi-dependsonc’) —

Now we will illustrate the above definitions by an (artificial) example.
Let the PC, be

{Ofather, mother, %son, 0daughter, husband, *wife, *brother, Osister},
and let the PC; be

{°male, parent, *spouse}.

Here an even stronger condition than that required by Definition 37 is fulfilled:

Ve(ce PCesiodc’ (c#c” Ac’ € CS; A ¢ semi-depends on ¢”))
Thus, for example,

[OEquiV father Awht Axy [[Oparentw,xy] A [*male,,;x]]]
constructs T, and
Awht Axy [[parent,, xy] A [‘male,, x]]

0 0
depends, of course, on “parent and on “male.

This solution is viable: we cannot prove that ECc < EC¢ if C’ is simple. On the other

hand, equivalence can be checked due to translatability to our background language.

Thus the transition of a CS to a decomposed CS’ means that at least some primitive

concepts of the CS get an ontological definition in the CS’ (see Definition 22).

Again, we have to stress that to define decomposition of a system is not to say that the
languages of (empirical) scientific theories develop just in this way, i.e., by transitions to
more and more decomposed conceptual systems. We have to take into account the cases
where the primitive concepts underlying one language are replaced by other concepts that
need not semi-depend on the original ones. Further, we have to take into account the frequent

cases when the same expressions of a language are associated with distinct concepts.

Remark 1: There is a problem with the term ‘expression’. To adduce an example, are we to
say that the English term ‘bank’ is the same expression if it denotes a financial institution (or
a respective building) and if it concerns that route along a river? We have accepted this
viewpoint when defining homonyms, but perhaps it would be more precise if we admitted that
there are two expressions here, since an expression is defined not only by its morphological

form but also by its meaning. We will set aside this problem. —
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Remark 2: One of the well-known cases where the same expressions are associated with
distinct concepts is the discovery of non-Euclidean geometries: it should be clear that, e.g.,
the concept of Euclidean parallels is another concept than the concepts of Riemannian or
Lobatschewskian parallels. Many misunderstandings — especially occurring in philosophy —

would disappear. —

3.4 Incomparable conceptual systems

The core of the problems with incommensurability is — from the logical viewpoint — the
problem of incomparable conceptual systems, which can become a sufficient condition of
incommensurability based on such systems. Here we will concentrate on incomparable
empirical CSs. (See Definition 35.)

First of all, incomparability of concepts is defined by Definition 35: Two concepts C,
C’ are incomparable iff ECc N ECc= .

Remark: In her [1967] R. Kauppi elaborated an analysis of concepts that is probably the most
modern articulation of extensional (and traditional) conception. Kauppi defines incomparable

concepts as follows (see p. 38):

Zwei Begriffe heissen miteinander vergleichbar ... wenn beide wenigstens einen

eigentlichen Begriff als ihr gemeinsames Merkmal enthalten.
(‘eigentlich’ means non-empty, see p. 12.)

Thus to be comparable means to share at least one Merkmal, i.e., obviously, at least
one member of the empirical content (see Definition 34). Yet our theory differs from that of

Kauppi’s in at least one essential point.

To see this let us consider Kauppi’s example (ibidem). According to Kauppi, the
concepts RED and YELLOW are comparable because they share the concept COLOURED.
But how do we know that they share this concept? This is not clear in Kauppi: she introduces
a notion of conceptual systems but her notion differs from ours; it is based on an intensional
(in Kauppi’s sense) relation containment (‘Enthalten’). Using our terms we can obtain

Kauppian conceptual systems like
{ DOG, ANIMAL, LIVING BEING, ...},

or some more complex systems (p.72f), obeying some axioms concerning properties of
comparability, compatibility etc.; obviously, Kauppi’s criteria of creating conceptual systems
are distinct from ours. The reason is that although Kauppi strives for making concepts
structured she cannot do so: her systems are based on an extensional (in our sense) conception
of concepts, and the components of her concepts are actually members of their content

(‘intension’); the general notion of construction is what is needed. Our concepts-constructions
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are much more similar to Bolzanian concepts (as what links together the members of the

respective content).

All the same, the idea of ordering concepts according to their empirical contents

(Definition 35) is well realisable in our theory (see [Duzi 2003a]). —

Our question is now: When can we say that two CSs based on the same preconcepts

are incomparable?

True, the phenomenon of incomparability of concepts is mostly innocuous: most
members of a CS are mutually incomparable without any influence on the problem of

incommensurability. Consider, e.g., our example PC,, where the concept
AWAE Ax [OEIXy [O/\ [Oparentw, xy] [Omalew, x111,

i.e., a concept of the property being a father, is incomparable, say, with the concept ’spouse.
Hence we have to be very careful when defining incomparability of conceptual systems so

that the definition is relevant w.r.t. the problems with incommensurability.

These problems are always articulated in connection with various stages of the
development of a scientific theory. (The most frequently adduced examples are mechanics —
Newton vs. Einstein, impetus vs. momentum — chemistry — phlogiston vs. oxygen —
classical physics vs. general relativity / quantum mechanics; see [Sankey 1997, 108].) A

consequence of incommensurability is:

Let 7T, T" be incommensurable theories. Let T, T’ be the sets of sentences that express,
respectively, T, T". Then at least one of T, T’ is not translatable into the other.
(Do not forget that theory has been construed here as a subset of a CS.)
For, suppose that T would be (correctly, of course) translatable to T’ and vice versa. Then the

notion of incommensurability would be entirely obscure.

One of the consequences of mutual translatability of both T, T” would be that the area
of T, T” (see 2.5, point 2), as well as their expressive power (see Def 30) would be the same.
All examples of incommensurable theories seem to demonstrate that something (area,
expressive power) has changed during the transition from a theory to its incommensurable
counterpart: it seems that, e.g., theories of relativity are able to pose problems that cannot be
posed by Newton’s physics. Our artificial ‘bink — cink’ example shows that this phenomenon

can be demonstrated at least in simple cases.

To sum up, if two theories are mutually translatable then no progress in posing

problems can be expected.
Now the questions arise:

Is the problem of incommensurability connected with incomparability of conceptual systems?

How can the incomparability of conceptual systems be defined?
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The first question, cannot be answered without answering the second. Let us try.

Here we suppose that the preconcepts are shared. So we set aside cases like comparing
CSs that are based on distinct types (thus, e.g., arithmetic of natural numbers vs.
thermodynamics). Now take, e.g., the case where the new concept RELATIVISTIC MASS
has been introduced to physics. There are two options here. Either this is a primitive concept
or it has been derived from primitive concepts. Let us suppose that the latter case is a case of
EE, so that both options lead to the consequence that there is a new primitive empirical
concept in the Einsteinian CS, new w.r.t. the original, say, Newtonian system; then there is
no concept in the old system that would be comparable with this new concept. So we can

generalise and formulate the required definition.

Definition 38 (incomparable CSs)
Conceptual systems CS and CS’ are incomparable iff at least one of their members is

incomparable with all concepts of the other. —

That such a case is in a sense anomalous can be seen from the point v) (following
Definition 35).

It is clear that in the case of incomparability a concept that is incomparable with all
concepts of the other CS is necessarily a member of PC. In our artificial example, there are no
concepts in the poorer system that would contain cink or cank. Thus the two systems are
incomparable according to Definition 38. From another viewpoint (in)comparability can be
defined in another way: for example both cink and cank share bink as a requisite (see
Definition 28 and [Duzi 2003a]).

Incomparability is irreflexive and symmetric (and so cannot be transitive).

Let INTARcs be the subset of the area of CS (see 2.5, point 2) that contains just
intensions. Let the systems CS and CS’ be such that the intersection INTAR¢cs N INTARcg =
& or is at least very small. Incomparability of such systems is obvious and trivial. (As an
example consider some conceptual systems that underlie a part of physics and a part of
biology.) The fact of incomparability of conceptual systems is interesting only in two cases:

a)  The areas of the two systems essentially overlap
b)  The systems underlie distinct stages of the development of one and the same science.
(Clearly, b) is a special case of a).)

Let us consider case b); we consider empirical CSs only.

When can we say that two or more CSs underlie one scientific discipline during its
development? One possible answer would be: Let CS, CS’ be two conceptual systems. If the
INTARcs is the same as INTARcg: or if the former is a subset of the latter, then we say that

CS and CS’ underlie two stages of one and the same scientific discipline. Thus physics, for
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example, can be said to be one and the same discipline even when the areas of its conceptual
systems obviously increase during its development. (The INTAR of our artificial example
with bink is also a subset of the INTAR of the system with cink, cank, assuming that the latter
contains, e.g., a concept of disjunction.) The problems with incommensurability obviously
concern just this occurrence of incomparability of conceptual systems (on the linguistic level:
incommensurability of theories). How should incommensurability be analysed (i.e., defined)
from our viewpoint (from the viewpoint of logic, in particular of TIL and our theory of

conceptual systems)?

Here we must make a choice: the term ‘incommensurability’ is not unambiguous.
Newton-Smith in his [1981, p.149—150] adduces two spurious sources of incommensurability,
viz. incommensurability due to value variance and incommensurability due to radical standard
variance. These two possible interpretations we will dismiss here (as Newton-Smith does) and

will take into account only incommensurability due to radical meaning variance.

Yet speaking about meaning variance we presuppose that some terms have changed
their meaning so that they have become ambiguous. A new concept has not been associated
with a new term. Newton-Smith’s example: Newton’s mass term has another meaning in the
relativistic mechanics. If we claim “mass is invariant”, and then “mass is not invariant” we do
not necessarily claim a contradiction — this is immediately clear if we write mass;, mass:

instead of mass in the first, second claim, respectively.

Let us model this situation by slightly changing our artificial ‘bink’ example. So let us
write bink in V, instead of cink, other entries unchanged. Let the resulting vocabulary be
denoted by V’,. Thus the original bink denotes now meadows, whereas cank denotes
pasturelands. Now Loc bace Lok is true in V; and false in V’,. Moreover, E bink Lok is true in
V’,, false in V; but not translatable from V’, to V. Also, our example against Field, viz.,
There are n surfaces bink, is — under normal circumstances — true (for some 7) in V; and
false in V’, or true in V’, and false in Vy; it will possess the same truth-value in both
vocabularies only in such worlds+times where either there are no pastures or there are no

meadows (or, of course, there are neither pastures nor meadows).

A question arises: if the situation with Vi, V’; models in a simplified way
incommensurability, can we model the incommensurability case also in the situation with Vj,
V,? Let the latter situation be denoted by S1 and the former by S2. S1 differs from S2 by not
being — at first sight — connected with an equivocation. All the same, one point is common
to both S1 and S2: the (fragments of the) underlying CSs are incomparable in the sense of
Definition 38. The cink in S1 is incomparable with any concept from V;, which also holds of
the bink in V’, in S2. Incommensurability in the former case means that sentences that contain
cink cannot be translated to V; (which should model the earlier stage of the theory), which
could suggest that the stage of the theory that corresponds to V, does not make it possible to

143



compare both theories. The latter case is more interesting: there it seems as if no development
of the theory could be stated, since the new theory does not correct the claims made by the old
theory — it simply formulates other claims that are incomparable (rather than incompatible)

with the old claims.

Let us return to the question whether the transition from bink to cink in S1 or to bink in
V’, in S2 has influenced a change of meaning of the word bace. It looks so, because — as we
have already suggested — if bace did not change its meaning the new theory could be said to
correct the old one: sentence 8 would be the negation of sentence 3. (An analogy in the case
of sentences 2 and 4 does not hold because cink is incomparable with bink, and similarly so if
bink would occur in the situation S2.) Yet we could insist on the view that the new theory
does not correct the old one even if bace did not change its meaning. (We have shown that
actually it did not: indeed, in translating bace into English we presupposed that predicating
bace in some (W,T) pair about a pair of surfaces will give True just if the two surfaces are of
the same kind. Now the transition to the new theory did not change this presupposition; what
did change was only that due to the greater sensitivity of the new theory the (new) names of
kinds of surface denoted sometimes other kinds than the old names.

To sum up: incommensurability is always connected with the incomparability of the
respective conceptual systems. Therefore it cannot be claimed that due to new concepts the
old theory is corrected by the new, ‘incommensurable’ theory. (The new theory can, of
course, correct the old one — just like the hypotheses formulated in the stage of ‘normal
science’, i.e., within one and the same conceptual system, can be corrected within this very
stage — but such corrections will be independent of the fact that some incomparable CS has

come into being and some untranslatable expressions have been added.)

So we can accept the phenomenon of incommensurability, both if new concepts are
associated with new terms and if this is not the case. What we do not accept are some
inferences from the fact that some stages of development of a theory are incommensurable. |
mean such false inferences as some form of relativism. Sankey’s [1997] and Newton-Smith’s
[1981] as well as many participants of the Incommensurability (and Related Matters)
discussion have adduced strong arguments against relativism in this respect. Here I would like

to stress only two points connected with our main topic, i.e., theory of conceptual systems.

First, our theory is obviously realistic and anti-holistic. This feature satisfies a
necessary condition of overcoming relativistic hypotheses around the incommensurability

phenomenon.

Another important feature of our theory is that it strives to be as fine-grained as
possible; concepts as ‘structured meanings’ are good explanatory tools. This last point can be

documented as follows:
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To sum up: The fact — accepted here — that distinct stages of the development of a theory
are incommensurable, so that the ‘progress’ of the theory cannot be defined simply as a
correction of the preceding stages, is compatible with the fact that the progress can be stated
using another criterion: over a wider area the new stage can pose (and dependently on reality
solve) more problems. Schematically we can distinguish two forms (or ‘degrees’) of creative
development of theories. The ‘lower degree’ consists in mathematically creative extensions
(Definition 31°): new logico-mathematical tools are used; the ‘IEE case’. The ‘higher degree’
consists in empirically creative extensions (Definition 31): new empirical concepts enrich the
PC part of the given CS; the ‘EE case’.

This hypothesis, whose plausibility has been argued for above, could have been
articulated due to the way the concepts have been defined, since the connection between
concepts and problems has been made explicit (Which no set-theoretical conception of

concepts could make possible).

3.5 Empirical vs. non-empirical

We have shown that distinguishing empirical and non-empirical concepts and CSs is
important (for example when IEE and EE case are distinguished). Can the above scheme

guarantee that this distinction is detectable?

Empirical concepts have been defined as those concepts that identify non-trivial
intensions. Thus there are two kinds of non-empirical concepts: those ones that identify
extensions and those that identify trivial intensions. Any non-empirical concept P of the
former kind is automatically detected: if t in P — t is a type of some extension, then P is a
non-empirical concept. However, not vice versa: t may be o, for some a but the respective P

will construct a trivial (or an almost trivial) intension.

Remark: An intension is almost trivial iff its value is the same in all WT-pairs where it exists.

See the Remark accompanying Definition 28. For details, see also [Duzi 2003c]. —

Let us illustrate this case by an (artificial) example. Our CS will contain some logico-

mathematical primitives and following empirical primitives (let I be some individual):
*mother — (W10, Ofather — (WW1e» I - 1, "woman — (01
The respective DC certainly contains the concept
AWt [Owomanw, [Omotherw, OI]],

say, D;, which constructs the proposition I’s mother is a woman. Clearly, D; = 0., We
know, however, that the proposition is an almost trivial intension — its value is True in all
WT-pairs where the mother of the respective individual exists. Is this fact detectable by the

means that our CS has at its disposal?
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On the one hand, possessing the above concepts means that the respective user should
not admit the possibility of falsity of that proposition. On the other hand, this fact obviously
holds because one of the requisites (see Definition 28) of the property mother is the property
female or not male. In our CS this holds only implicitly: the CS does not contain the concept

%female (or "male, which would suffice if CS contained a concept of negation).

Let CS’ be a decomposition of CS, for example with following empirical primitives

instead of the primitives above:
*human — (01105 female — () 0parent — (0.

CS’ is a decomposition of CS according to Definition 37. We know that woman is equivalent
to

Az Ax [°A [*human,,, x][*female,, x]];
also, “mother is equivalent to
Awhidx [ Ay [°A [°A [*human,, V] [“female, il [Oparentwt yx]]].

True, when we say that AwAfix [°A [‘human,, x][’female,, x]] is an ontological
definition of the property whose linguistic abbreviation is the word ‘woman’, and when we
say the same of AwAzs Ax ["t Ay [°A [*human,y] [°A [°parent,,, yx][’female,,»]]]] and the word
‘mother’, it seems a very unnatural claim; we usually learn first the word ‘mother’ — the
phrase ‘the human female parent’ comes much later, similarly for ‘woman’. So it looks as if
we claimed that we first learn abbreviations and only afterwards what has been abbreviated.
This would be absurd, of course, but we do not intend to describe the temporal course of the
learning process. (See, however, the Remark below.) What is important here are the logical
relations between such expressions like ‘woman’ and ‘female human’ etc. The direction of
some learning process is not relevant; after all, we hardly can speak about the direction —
sometimes we go ‘from abbreviations’ (like here), sometimes ‘to abbreviations’ (like when

we learn some professional definitions).

From the viewpoint of CS’ the sentence ‘I’s mother is a woman’ can be analysed as

follows:

Awht [ [awt [Ax [°A ["human,,, x][*female,; x]]]]wr
[AwAt [01 Ay [0/\ [0/\ [Ohumanw, V] [Ofemalewt V] [Oparentwt y OI]]]]wt],

or, using abbreviated infix notation:
Awht [ Ax [["human,, x] A ["female,;x]] Oty [[*human,, vl A [“female, A [OparentW, y M1

Standard logic immediately discovers the trivial character of the constructed proposition. (See
Intermezzo in 3.2.4.2.b).)
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The transition from one CS to another one, that is a decomposition of CS, is at the
same time a transition from a system whose concepts are connected with their requisites only
implicitly to a system in which the requisites of the old concepts are discovered and made

explicit, being themselves concepts of the new system.

Remark: The seeming absurdity of the idea that a child first learns concepts underlying some
abbreviations and only later the concepts in terms of which the objects identified by these
primarily learned concepts are defined can be now explained away. The new interpretation
could be: not first abbreviations but first requisites implicitly (later explicitly). The concept
mother is, of course, connected with its requisites from the very beginning but when a child
knows only this concept not knowing concepts like FEMALE, PARENT etc. then it means
only that his or her learning language (and thus the respective CS(s)) is connected with
verbally fixed discovering requisites of the originally learned concepts, so with semantic

dependencies of particular expressions of the respective language. —

Similarly what is semantically nonsense need not be explicitly checked in conceptual
systems that do not take into account requisites of the respective intensions. Consider the

following sentence:
‘Some tables speak English’

Grammatically and type-theoretically the sentence is correct. It is nonsensical in the
semantic sense; fable as well as speak English are properties of individuals but among the
requisites of fable there is the property not being a living creature and among the requisites of
speak English there is the property being a living creature, so what we feel to be semantically
nonsensical gets the form ‘to be inconsistent’. This remains implicit unless the respective
conceptual system contains the concept BEING A LIVING CREATURE.

There are, however, nonsensical sentences in a more radical sense (cf. Wiener Kreis).

As an example we can adduce
‘Some numbers are red’
Why do we feel that this sentence is ‘more nonsensical’ than the preceding one?

This intuition can be perhaps supported by the fact that we could somehow imagine a

table that would speak whereas there is no way to imagine a red number.

In TIL the preconcepts are based on atomic types among which two (disjoint) types
are 1 and t. According to Definition 4 the above sentence cannot be analysed: red is a
property of individuals whereas the variables ranging over numbers v-construct t-objects.

Thus in TIL (given the distinct preconcepts 1 and t) the sentence does not say anything.

Imagine, however, a CS whose preconcepts would not distinguish between numbers

and individuals. The fact that a separate type for numbers would be missing would have to be
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compensated by activating a requisite of red, viz., e.g., not being a number. As soon as this
would be done our sentence could be analysed and shown to be a contradiction — so its
nonsensical character would be on the same level as our first example. By the way, since this
result is not in harmony with our intuition we can see that the preconceptual distinction

between 1 and t (as in TIL) is justified.

In any CS where some members of DCcs construct some requisites of some concepts
from CS we should mark the pairs of concepts standing in the requisite relation. The
constructions of the form [OReq C, °C;], where C;, C, are members of such marked pairs, can
be associated with any CS that contains the marked pairs; they are not members of some part
of the given CS, they are above such a system and can be said fo be accepted by the
respective CS — independently of any theory that may be a part of it: they would rather
correspond to Carnap Carnap Carnap’s meaning postulates. So we could say that a CS
together with its marked pairs (that determine the requisite claims) defines which propositions
constructed by its members are analytic, derivatively, it defines which sentences of a
language based on it are analytic. See also the Relativity of analyticity claim in the next
paragraph.

3.6 Comparing conceptual systems

Let us consider following CSs:
CS1:
{Py1—>ty, ..., Pr—> i}, V, Triv, Comp, Clos, HDef ")
with t; from T,
and CS2, CS2’
P’ 1>ty ..., P> 'y}, V, Triv, Comp, Clos, HDef )
with t; from T°,
where a) for some or all i, P;# P’;and T =T’ (CS2)
b) as above, but T = T’ (CS2”)

Our question is: To what extent are we justified to claim that the areas of CS1, CS2,

CS2’ are the same, or disjoint, or overlapping?

Let us begin with the more simple case of comparing CS1 with CS2. These systems
share at least their preconcepts. All the same the comparison is difficult, since at least some

primitives of both systems are incomparable (Definition 35). Is there any way out?

At least in some simple cases one way out can be easily found: see 3.2.4.2.b),
Intermezzo. All simple concepts in such simple systems identify objects that the user of the
respective natural (ordinary) language knows. Therefore, the areas of the respective systems

are accessible to the (ideal) user of this background language.

148



What about the pair CS1, CS2°? Here even the preconcepts are distinct. Imagine the
case where a type in CS1 —unlike in CS2’ —is 1 and a type in CS2’ — unlike in CS1 —is,
say, T, i.e., the set of ‘material points’ (which is thinkable in some CS for a fragment of
physics). The propositions that are conceptually identified in CS1 can be — let us admit —
denoted by some sentences of the natural (ordinary) language. Similarly some sentences of
the natural language will denote the propositions that are conceptually identified in CS2’. Let
the set of the former sentences be denoted by S/ and the set of the latter sentences by S2. Not
all members of one of the sets S/, S2 are translatable to the members of the other set. We
assume, however, that all members of both sets are translatable into the given natural
language. So it looks like the following situation: in order to swallow both S/ and S2 the
given natural language accepts both CS1 and CS2’, i.e., their union. The areas of both

systems should then be accessible for such a stage of a natural language.
Unfortunately, things are never that simple.

Our solutions presuppose that expressions of scientific theories may be mutually
untranslatable but that they all are translatable into natural language(s) (see [Sankey 1997]).

The problem is, however, that natural languages can be construed either as languages
that accept every sublanguage including professional jargons, or else as ordinary languages
(see 3.2.4.2). In the former case our solutions are no solutions at all: mechanically adjoining
any professional sublanguage to the preceding stage preserves the phenomenon of
untranslatability. In the latter case the translatability is an illusion only: take, e.g., a theory of
subatomic particles and the concept, say, spin. We can say that ordinary English has the
expression ‘spin’, which should denote the entity identified in an exact way by the concept
"spin. But any speaker of English who is not a physicist and says that (s)he understands this
expression obviously lies or is simply mistaken. Thus it seems that comparing conceptual
systems of the kind CS1 and CS2’ (maybe even CS2) is connected with essential problems.

But the presence of these problems is not surprising. When people say that they do not
understand what the particular (notably the exact) sciences talk about it is not primarily
because people, in general, have not learned the claims made by such sciences: they have not
mastered the respective sublanguages and so the respective concepts. And mastering a
scientific language means reconciling ourselves to at least partial untranslatability also w.r.t.

ordinary language.

Imagine the situation where a man A, who has learned quantum physics tries to
explain some claims made by this science to B, who does not understand its basic terms. It
seems that the only way — if the explanation should be real, not metaphorical — consists in
making B learn the language of quantum physics. There is an analogy with somebody’s
learning another natural language. True, the translatability of the new language to the, say,

mother tongue is mostly unproblematic, but first, also in this case it surely sometimes happens
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that an exact translation is impossible —imagine English vs. Chinese—and, most importantly,
learning foreign languages is independent of whether the learned language is translatable

into the mother language. As Sankey in his [1997, p.89] says:

Bilingual speakers do not translate ‘in their heads’ while conversing in a foreign
language, so a bilingual may understand a foreign expression not translatable into
his home language.

This is the key point.

Its consequence is: The particular scientific sublanguages of a natural language L need
not be translatable to L. The resulting pluralism of conceptual systems is compatible with
using L on the one hand and professional sublanguages on the other hand.

Summing up: All distinct conceptual systems cannot be compared w.r.t. their areas. The

systems incomparable in this sense induce radically distinct classifications of objects.

Are we bound therefore to accept the relativistic interpretation of untranslatability,
incommensurability etc.? Not at all.

The problems with evaluating (various stages of) theories with respect to progress or
verisimilitude (and so the problems with incommensurability) always concern the
development of a scientific discipline. These problems never arise when observing radically
distinct disciplines: we never ask whether quantum physics or biology is closer to the truth or
more progressive. But comparing various stages of development of one and the same
discipline is not connected with the radically distinct classification of objects, at least (but not
only) the preconcepts are the same during the respective development, or perhaps the set of
preconcepts is enlarged.

Remark: The later stages of the development of a discipline may change the earlier
classification of objects, but in an obvious sense we would not call such a change ‘radical’. To
illustrate this claim imagine the stage of astronomy where the concept PLANET, say P,
identified such a property that its value in the real world was the set {Sun, Mercury,
Venus,...,...}(some of which were not yet known). In the later stages of astronomy two
changes are observable: P changed to P’, which caused that its value in real world was
{Mercury,...}, i.e., Sun ceased to be a planet. Second, some other members of the set (being
the members independently of the given state of the knowledge, of course) have been
discovered. The former change can be characterised as a change of the original classification

of objects but we will hardly call such a change ‘a radical change’. —

Let us now return to Putnam’s criticism of the incommensurability thesis (see [Sankey

1997, p.83], where the core of this criticism is quoted):

[I]f this thesis were really true then we could not translate other languages — or

even past stages of our own language — at all. ... [tlhe members of other cultures,
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including seventeenth-century scientists, would be conceptualizable by us only as
animals producing responses to stimuli.. [T]o tell us that Galileo had
‘incommensurable’ notions and then to go on to describe them at length is totally

incoherent.
Sankey’s response to this criticism is based on the idea that natural language is

a conglomerate of terminologies or local idioms with special areas of application.
Untranslatability between theoretical languages constitutes a relation between

sublanguages within a total language. (ibidem, p.87)

Thus our claims concerning untranslatability of some sublanguages are not necessarily

incoherent since the total language can serve as a metalanguage for those sublanguages.

Our artificial ‘bink-cink languages’ were an illustration of this idea. L1, was not
translatable into Lt; but this fact could have been formulated in English as a ‘background

language’ since L1 as well as L1, were translatable into English.

We have however seen that in the real cases of scientific languages ordinary language
cannot play the role of the metalanguage. Scientific jargons are based on such primitives and
— do not forget — such sophisticated members of the MATHcg that the only way to master the
respective jargon is to learn it directly, not by translating from the natural language in

question.

Thus we have to live with various mutually irreducible conceptual systems, i.e., tools
for defining objects from various distinct points of view. Indeed, the situation where our
knowledge of the world is scattered and becomes more and more specialised can be described

in terms of a theory of conceptual systems as follows:

Every concept—with the exception of strictly empty and (in a sense also) quasi-empty
concepts —identifies (constructs) some object. Grouping concrete things according to various
criteria is what the empirical concepts do. They construct intensions and in virtue of this the
concrete things can be seen as bearers of individual roles, of properties and relations. Some
empirical concepts construct propositions; these become true or false, which is dependent on
the state of the world. People are — in general — interested in truth. Languages are codes of
concepts (in general, of constructions — see [Tichy 1988, §44]). The way we usually say this
is that concepts are meanings of linguistic expressions. Thus detecting truth happens due to
the verification of sentences, i.c., due to the verification of propositions, i.e., due to concepts
that construct propositions. The emergence and development of particular sciences means that
our view of objects had to become more fine-grained, which leads to the origin of particular
groups of concepts whose constructing potential defined what we have called area. (See 2.5,

point 2.) The resulting pluralism of conceptual systems serves the pluralism of areas.
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Every empirical (theoretical) discipline can be characterised by an initial area;
perhaps it happens that the initial area is shared by more disciplines. Anyway, the
development of a discipline can be conceived of as extending this initial area (or at least of a
core thereof). This process of extending is realised via two forms: InEssential Extension
(IEEcs’ cs)) and Essential Extension (EEcs’ cs)): see Definition 26. The ‘essent’ root of these
names should not be taken to signal a positive feature: it is rather a neutral characteristic.
Indeed, in some cases IEE is clearly not very radical (when compared with EE) — remember
our example with wild cats. On the other hand, considering such disciplines as theories of
modern physics, where the role of the MATH part of the given CS is ‘very essential’, we
have to state that the changes of the area caused by extending the LOG U MATH part of the

given CS can be surprisingly radical.

Remarks:

1. We use here the singular “the (given) CS”, although the developing discipline is
necessarily connected with various CSs. We can accept this way of speaking and support
it by the following convention: a sequence of CSs that underlie particular stages of the
development of one and the same (empirical) discipline can be called ‘the CS underlying’
this discipline.

2. One could ask: why is the LOG U MATH part of a CS not included in the machinery of
this CS? After all, the members of this part are typical fools neutral to the objects
investigated. We can answer as follows: All (logical and) mathematical functions and
constructions are objects that can be handled via constructions. Let CS be a conceptual
system in the sense of Remark 1. Then we can state that various stages of CS contain
various mathematical concepts, mostly their number increases. That part of CS which we
want to call machinery is however the same in all the stages of development. Thus the
core of machinery is made up of detecting (rather than creating) functions and applying
functions to arguments. If the members of the (variable!) LOG U MATH part of CS were
part of the machinery then within one stage thereof we would have, e.g., an addition and
subtraction operation, in some following stage the operations of multiplying and dividing
would be added, later powers and extracting roots etc. etc. Now all these operations can be
constructed via primitive or derived concepts and the constant machinery would take care
of the rest. After all, once these mathematical objects are at our disposal their use is

reducible to creating and applying functions. —

The particular areas are not absolutely isolated one from the other. We have rightly
said that as for radically distinct disciplines we never ask which is ‘more progressive’, etc.,
but there is one moment that explains why the plurality of areas does not lead to atomised
membra disiecta of our knowledge. Some disciplines are able to explain some claims made by
other disciplines. Let us analyse this interesting phenomenon from the viewpoint of our theory

of conceptual systems.
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First of all one example (see [Rosenberg 2000, 76-77]):

[t]he balanced equations of chemical stoichiometry (for example 2H, + O, —
2H,0) are explained by assumptions the chemist makes about electron-sharing
between hydrogen and oxygen atoms. But these laws, underived in chemistry, are

the derived, explained generalizations of atomic theory. (Emphasise mine. — P.M.)

Thus we compare chemical stoichiometry, chemistry, atomic theory. Each of these
disciplines is based on some conceptual system. At the same time, could we draw from the
above quotation the conclusion that the sequence chemical stoichiometry, chemistry, atomic
theory makes up one discipline, whose stages of development are the members of this
sequence? If this were the case, then with chemistry every development of chemical
stoichiometry would disappear, with atomic theory the same would hold for chemistry. Since
this is not the case we can certainly claim that the members of the mentioned sequence are (in
this sense) independent disciplines. What about the particular CSs?

Here we meet a difficulty, which Rosenberg (ibidem) from another angle characterises

as follows:

No one suggests that scientists actually present theories as axiomatic systems, still
less that they explicitly seek the derivations of less fundamental laws from more
fundamental ones. It is important to remember that ... the axiomatic account of
theories is a ‘rational reconstruction’ of scientific practice designed to reveal its
underlying logic.

An analogous consideration concerns the fact that no scientist explicitly reveals the
primitive concepts of his/her discipline. Moreover, our rational reconstruction is complicated
by the following:

a) Our explication of the term concept is not well known;
b) using such an explication is not a matter for (empirical) science, but for philosophical

logic.
What can be done, then?

Certainly nothing what would try to describe the real process of developing particular
disciplines. ‘Laboratory’, artificial assumptions are the only option that would remain in the
framework of philosophical logic and be useful for a general theory of science as far as
philosophical logic can be.

Let us return to the problem that could be formulated as follows:

Consider two CSs that underlie two distinct disciplines T1 and T2: CS1 and CS2. Let A be a
general law-like claim accepted by T1. Our problem is:
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What does it mean (in terms of our theory of conceptual systems) when we say that T2 offers

an explanation of A?

(It suffices to presuppose that A is a general sentence; explaining particular events can

be derived from explaining general claims via adding respective boundary conditions.)

Ignoring — for the sake of simplicity — some criticisms of the classical D(eductive)
N(omological) model of explanation [Hempel 1965] (see, e.g., [Rosenberg 2000]) we will

apply its scheme to solving our problem.

To make our solution easier suppose first that T2 developed from a later stage of T1.
Tcs1 contains concepts that construct accepted propositions of T1. Among these propositions
is that one denoted by A. Tc¢s, contains concepts that construct accepted propositions of T2.
Since T2 is later than T1 we can suppose that it is more fine-grained than T1; thus some
(primitive) concepts of CS2 are decompositions of some concepts of CS1. A consequence
thereof is that T1 is translatable to T2 but not vice versa. (Remember our laboratory example
in 3.2.4.2.b, T1 and T2.) Even then the claims made by T1 can be derived from T2. To use

our example mentioned above for illustration, we can formulate a correct derivation:

There are m surfaces cink
There are k surfaces cank
bink = cink or cank
m+tk=n

.. There are n surfaces bink

(Observe that the third premise, necessary for the derivation, ‘or’ exclusive, is realised
due to the translatability from Lt to Lr,. Since this translatability is one-direction only, no
symmetric derivation is possible, i.e., from the fact that there are n surfaces bink nothing can

be deduced concerning the number of cink and cank surfaces.)

Now if what is claimed by A is explained by T2, then using the DN model of

explanation we get
Vz
A
where V7 is a sentence (perhaps a conjunction of sentences) accepted as a law (as laws) in T2.

This is the easier case; it can be characterised as a fine-grained justification of a

coarse-grained (or less fine-grained) claim.

The case where T2 is simply another discipline is more complicated. Here we cannot
suppose that the area of the respective conceptual systems is the same or at least that the two

areas overlap. In general, Tcs; may contain other primitive concepts (or even preconcepts)
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than Tcs;. As for the Rosenberg example cited above, we can ask: is this the case of chemistry

and atomic theory? Of atomic theory and quantum theory?
A plausible working conjecture (at least for some cases):

Let CS1 contain primitives Cy,...,Cx, and CS2 (possibly incomparable, hence distinct)
Dy,...,Dm. Among the members of D¢s; there is a construction @ (an ontological definition,
see Definition 22) the simple subconcepts of which are members of {Cj,...,Ci}. It can happen
that CS2 adds (see Remark 1 above) a new primitive D,,;; to its Pcs; so that it holds

Dm+l =,

(A necessary presupposition is that the sets of the preconcepts of both systems at least

overlap.)

This means that T2 speaks about an object that has been defined in T1 but ignores the
way this object has been defined. Now the necessary condition of communication between
both systems has been fulfilled: both areas now overlap sharing at least the object identified
by the simple D,,+; and defined by @.

Now the explanation can be realised. ® has defined an object, and the respective
theory describes its behaviour in terms of CS1. An explanation of this behaviour is needed, be
it a causal or another kind of explanation. The conceptual means of the theory T1 (i.e., the
theory as a subset of CS1—see 3.2.4.2b, consequence b)) are not sufficient; the conceptual
means of T2 suffice. Thus our DN model scheme (see above) can be used where A is the
description of the behaviour of the object defined by @ and V* is some set of law-like
sentences of T2 (the underlying set of concepts being a subset of the theory as a subset of
CS2). Here we can presuppose that both theories are mutually untranslatable; all the same the
explanation will work, since whoever uses this explanation will behave like a bilingual

person: he will understand both languages directly, without translating.

This schematic conjecture obviously implies that a necessary condition for explaining
some general claims of a theory T in terms of a theory T’ is that the areas of the respective

conceptual systems are not disjoint. This condition is, of course, not a sufficient condition.

We have already suggested that real examples that would exploit our theoretical
framework are difficult to find (see the points a), b) above). We can only try to offer some
schematic examples within our theoretical reconstruction. Thus consider the physiological
concept (HUMAN) LIVER. We can suppose that a conceptual system of physiology (in a
given time span) can be theoretically reconstructed. It is highly probable that within this
system, say, Sy, the concept LIVER is an ontological definition, i.e., it is a complex concept
rather than a simple one. Now imagine that we have a conceptual system of anatomy, say, Sa.
Among the concepts of the latter system we can certainly find a concept LIVER’, expressed

by the same (English, German, etc.) expression, but this time we are justified in believing that

155



LIVER and LIVER’ are equivalent but all the same distinct concepts. There is probably no
need to take over the definition from S, and make it an element of S,,. It is not important to
repeat such parts of the physiological definition as, e.g., the concept GLAND in handling
LIVER’, where such concepts like those which identify the relative position of the liver in the
(human) body are relevant. Thus LIVER’ is either a simple concept in S,, or another

ontological definition, distinct from LIVER.

Naturally, this example is not very good, in particular because the relation between
physiology and anatomy is not comparable with the relation between a more coarse-grained
and a more fine-grained discipline. (So we would hardly say that what we know of the liver
from physiology is in some way explained by what we know from anatomy, or vice versa.)
Some afterthoughts, however, connected with considering this example may be illuminating.
First of all, we cannot talk about any communication between the conceptual systems (here
Sph and S,,) if the respective areas are disjoint. In our example this cannot happen since we
stated that LIVER and LIVER’ are distinct but equivalent: there is some property (being a
liver, that is) that is constructed by LIVER as well as by LIVER”.

So which property is it? Ignoring the professional jargons we just use the term liver in
the natural language and speak obviously about this property; also, when communication
takes place between a physiologist and an anatomist, when they speak about /iver they
understand each other although using distinct concepts. In still other words: the set of objects
that possess this property in a world W at the time T is unambiguously determined for any W,
T independently of whether LIVER or LIVER’ is used. A simpler example from mathematics:

equilateral triangles are equiangular triangles.

Now we can try to tackle a similar semantic problem frequently handled in the

contemporary literature.
Consider the sentence
All drops of water are drops of a substance with molecular composition H>O
Is it necessary? Is it analytic? Is it a priori?
We will answer all these questions from our viewpoint.

1. Necessity: As we are told by modal logicians, there are many kinds of necessity. As for
logical or analytic necessity, we will say more in 2. It seems that nomological necessity is
not relevant for our sentence and for our problem. (Although the ‘twin-water’ problem

seems to suggest some relevance.)

2. Analyticity. This problem seems to reduce to the problem whether WATER and
(SUBSTANCE WITH MOLECULAR COMPOSITION) H,O are equivalent concepts.
Thus: can water possess some other molecular composition than H,O? (The twin-water

problem.) Now let WATER be a simple concept (so: Owater). The concept
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(SUBSTANCE WITH MOLECULAR COMPOSITION) H,O is, of course, not simple,
since it has other concepts (HYDROGEN, OXYGEN, MOLECULE etc.) as components.
Thus the two concepts are not identical; they are really two, but the property of some
wholes being water is one and the same. Thus it looks as if the sentence above is analytic.
The discussions about this problem show, however, that the simplicity of this solution is at
least suspicious. Actually, the problem is more complicated because it cannot be solved in
terms of pure concepts only. Our sentence contains the simple expression ‘water’. It is not
obvious that the simple expression ‘water’ expresses the simple concept "water. We can
see this in Putnam’s twin-water analysis (see [Putnam 1975]), where the expression
‘water’ is connected with a complex concept (surely not the only one possible, taking into
account various (even individual) idiolecta, see, e.g., 3.1). Whereas water should simply
identify the objective property identical with what is identified by (...)H,0, some of the
complex concepts connected with the expression ‘water’ may be not equivalent to the
latter. Hence the question of analyticity cannot be unambiguously answered unless we
choose some concept to be attached to the word ‘water’. But this choice of concept can be

construed as dependence on a particular CS.

This approach to deciding whether a sentence is analytic can be generalised as
follows:

(Relativity of Analyticity)

Let A be a sentence (in any natural language). Let CS1, ...,CSn be various distinct
conceptual systems and let C4 be an analysis of A (see INTERMEZZO: PARMENIDES
PRINCIPLE). Further, let C4 be based on the assumption that all the subexpressions of A
express members of some CSi. If the truth-value of A can be unambiguously determined
under C4 we say that A is analytically definite (i.e., analytically true or analytically false)
with respect to CSi.

As our last example shows, one sentence can be analytically definite w.r.t. one CS
and synthetic w.r.t. another. A classical instance of this fact can be found in [Frege
1892a], where Frege shows that one and same sentence about Aristotle can be informative
and at the same time analytic dependently on the meaning connected with the name
‘Aristotle’.

Remark: Observe what Quine in his [1953, 33] writes about analyticity:

The notion of analyticity about which we are worrying is a purported relation
between statements and languages: a statement S is said to be analytic for a
language L, and the problem is to make sense of this relation generally, that is,
for variable ‘S’ and ‘L.
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The relativity considered by Quine concerns statements (= sentences) and languages. If
we consider instead (constructions of) propositions and conceptual systems we get a non-
circular relativity, whereas Quine’s approach seems to prove that a non-circular definition

of analyticity is impossible. —

3. A priori? The answer is dependent on an answer to 2. The following claim holds,
however: If the sentence is analytic (due to a suitable choice of the concept attached to
‘water’), then it is a priori as well. Otherwise an experience (investigating the state of the

world) is necessary for verification.—

Remark: The claim that analyticity is relative is connected with the well-known problem of
natural kinds and the theory of direct reference. It is therefore very instructive to quote from

[Marti 2002, p.3], a review of Soames’ book Beyond Rigidity, where the author says:

Going back to the conclusion of chapter 9, it seems to me that Soames’ approach
provides the basis for a definition of rigidity for kind predicates. A compound
predicate like ‘is a substance with molecular composition H,O’ expresses a
complex property that determines a kind as designatum; in this case the kind
designated is arguably (for metaphysical reasons) the same with respect to every
index, and thus the predicate is rigid. But if the predicate is ‘fills rivers and lakes’
or ‘is Mary’s favorite substance’ the kind designated may well vary from index to

index.

We will show formulations that have to be changed from our viewpoint; thereafter it
will be clear that what the author wanted to say is in harmony with our approach to ‘water vs.

H,0O’ problem (as well as to other similar problems).

Ad ‘complex property’: according to the PWS (and our) definition of properties there
are no ‘complex properties’. Here ‘concept’ instead of ‘property’ should stand.

Ad ‘the predicate is rigid’: The Reader is surely able to see that the expression ‘H,O’
is rigid in the sense that it denotes a property; it is not rigid if it should mean that the class of
objects possessing the property being water would be the same in all worlds. (See [Tichy
1996].)

Ad ‘the kind designated may well vary from index to index’: what actually varies is
the population of such properties so that there is no essential distinction between this case and
the case with H,O. In both cases there is a property conceptually identified and in both cases
the class of the bearers of the given property varies from world to world. So what connects
these observations of the reviewer with our claim is that the attaching of the concept H>O to
the expression ‘H,O’ is essentially unambiguous whereas there are many concepts that can be
attached to the simple expression ‘water’.
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One more comment: This quotation shows how indeterminate expressions are used by
the proponents of the ‘natural kinds’ theory. The way the term ‘kind’ is used in the quoted
review means that kinds are simply classes that are determined by a property in particular
worlds (so: ‘populations’). Here the Occam’s razor should be applied —

We can, of course, raise a general question: when we want to speak about one and the
same object (property, role, relation, magnitude etc.) in terms of distinct CSs and use
therefore distinct concepts, can we be sure that these distinct concepts will be equivalent? The
answer is: No! There is no automatic guarantee, of course. Particularly interesting cases can
be sought when a theory (in the linguistic sense, as a set of sentences) is said to develop. Thus

we come to a frequently discussed and misunderstood topic.

3.7 The development of concepts
What kind of entities can be said to develop?

We do not intend to articulate here a particular theory of development (or even a
theory of evolution). We would, however, like to take up a definite standpoint to such
formulations that talk about developing concepts. Thus we should first of all answer the

question above.

To say that
(The entity) X develops

means bearing in mind the following points:

1) There is some process.

ii) There is some entity (X) that takes part in this process and is identified as such an
object that is recognisable during the process.

1) There are some stages of the process.

1v) In distinct stages of the process X possesses distinct sets of properties.

We could define the scheme of constructions that construct particular developments;
here we only illustrate a particular case. When saying that somebody develops during some
period of his/her life from the viewpoints of properties Pi,...,P,, we mean that there is an
interval I when an individual i has the property being a person and that there are some
subintervals of I such that i possesses in each of them distinct subsets of the set {Py,...,P,}.
The same individual i can be said to develop (even in the same interval I) with respect to
distinct sets of properties. Thus we can evaluate his/her development from the viewpoint of
sexual maturity, education, sociability, etc. The X (see the points 1) through iv) ) is in this case

the individual i as a person. (Individuals as bare individuals cannot develop, of course.)

To come closer to our problem, consider (scientific) theories. Can a theory develop in

our sense? We have introduced two notions of theory. A theory in the first sense is a set of
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sentences closed w.r.t. entailment. A set— and a fortiori a set of sentences — cannot develop.
What can develop is a set of claims accepted by a theory T. The process of development of T
(in the given world W) consists in changing, i.e., adding and/or rejecting claims during the
process. This time the constant X (see the points above) could be the property being accepted
by T. Let {Cy,...,Ci,} be the set of (axiomatic) claims accepted by T during a time interval I,
and {Ci-,...,Cp,} such a set during a time interval 12. The two sets are distinct (otherwise no
development is present) but both share a property being accepted by T. Yet we can see that we
are threatened by contradiction: if a theory is a set of sentences and if the sentences accepted

by it in I1 differ from the sentences accepted in 12, then our notion of theory is inconsistent.

This problem is a nice example of the untenability of extensionalism. We have said —
repeating the routine formulation—that a theory is a sef of sentences etc. It is not, it cannot be.
First of all, it is not sentences as specific linguistic units that determine whether something is
a theory: what really counts are the propositions denoted by the respective sentences. Thus we
could say that a theory is a set of propositions (or of constructions of propositions). This
definition is also not correct: being a theory is an intension: something is a theory in a world-
time, and even not taking worlds into account we get a contradiction when ignoring the
temporal factor, since the set of propositions that is a theory at a time ¢ is mostly another set

than the set of propositions that is a theory at another time. Thus we have to say:
A theory (in the first sense) is a property of a set of propositions. Thus
Theory; / (0(00:0))re-

Returning to our example, let T be the value of some theory in a world W, so that it is
a chronology of sets of propositions. Thus T remains T even when the sets of accepted claims
by T in distinct times differ. Thus the X (the constant entity, that what develops) is in any
world W the chronology Tw, and the ‘changing’ properties are just the distinct sets of

accepted claims (propositions).

A theory in the second sense has been defined as a subset of the given CS (see
3.2.4.2.b), point b) ). This definition is also an extensionalist simplification. Actually, it is a

property of sets of constructions (of the given order), so— most frequently —
Theory;/(0(0%*1))ze.
The explication of development proceeds then similarly.

Applying this style of explication to the problem of the development of concepts we

can proceed as follows:

First of all, concepts themselves — like sets — cannot develop: they are abstract,
hence they are not temporally localisable. On the other hand, the process w.r.t. which we

could speak about development can be described as a process during which a developing

160



discipline (see Remark 1 in 3.6) accepts a sequence of distinct concepts, say, C;....,C, (with at
least one concept simple) that share one feature — this is our constant X — viz. they
construct objects that are similar in a following sense: all of them are in the area that is
studied by this discipline and are intended to explicate one and the same “intuitive or pre-
analytic idea” (see [Brown 2000, p.109]). This fact is often accompanied by another fact, viz.
that all the concepts are expressed in the given language by one and the same expression,

which means that there is often an undetected homonymy.

The expressions in italics show that the notion of development of concepts is not a
logical/semantic notion. It is an empirical notion characterised, if not defined, in terms of
pragmatics. All the concepts C,,...,C,, are simply distinct concepts, their similarity is given by
the pragmatic context of a developing discipline. If however the concepts themselves were

% <

defined only pragmatically, then we could understand Lakatos’ “proof-generated concepts”
that “erase” the naive concepts so that they “disappear without any trace”. (See Proofs and
Refutations, 1976, quoted by [Brown 2000, 110].) Our concepts as abstract (prescriptions of)

procedures cannot disappear (neither can they be born).

Thus what develops when we say (as we often do) that a concept underwent a change,
a development? It is the pragmatic context of being exploited by a discipline in the process of
the development of the latter. So when we say that the concept MASS underwent
development during the transition from Newton’s mechanics to relativistic mechanics then
actually we have got two distinct concepts covered by one and the same expression; their
developmental connection can be seen only in the pragmatic context of developing
mechanics. (Whether this example is adequate may be dubious — see [Earman, Fine 1977]; a

better example could be surely found.)

A nice example of a /ocal ‘development’: 1 cannot help quoting Lakatos as does
Brown in his [2000, 107-109]. There was evidently an intuitive or pre-analytic idea of a
polyhedron, connected with the Descartes-Euler claim that the numbers of vertices V, edges

E, and faces F was given by the equality
V-E+F=2
Now the first approximation (the first concept!) (A SOLID WHOSE SURFACE
CONSISTS OF POLYGONAL FACES) is opposed by a counterexample (a nested cube),
where V — E + F = 4. A new concept is offered (A SURFACE CONSISTING OF A SYSTEM
OF POLYGONS) which again meets a counterexample (tetrahedra having an edge or a vertex

in common), where V — E + F = 3; the definitive (?) concept also eliminates this counter-

example.

This micro-example is very instructive. The illusion that concepts themselves develop

is supported by the fact that the same expression (‘polyhedron’) is used, moreover, that
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instead of saying that the same expression is gradually connected with distinct concepts it is
(usually) said that the concept gradually develops. We could see, however, that unless
concepts are identified with expressions (and even then with some difficulty) the development

characterises an empirical process rather than concepts themselves.

3.8 Different theorems, different concepts?

Up to now, distinct but artificial conceptual systems have been tested as for the comparability
of their concepts. The conceptual systems we have so far considered have been encoded by
some linguistic means. Brown in [Brown 2000] formulates a much more radical question.
Comparing ‘verbal’ proofs of the three “intermediate theorems™ (as presented in a Bolzanian
spirit) with “pictorial proofs” Brown shows that both kinds of proof ‘explain’ the theorem and

tries to react to the following objection (p. 29):

[t]hat we actually have different concepts of continuity at work: one is the &-0
concept, which is more or less Bolzano’s; the other is so-called pencil identity, a

geometrical notion.
Brown agrees, but he adds:

However, it would be mistake to infer that the results of the two proofs are

incommensurable.
A convincing argument is given (p.30):

Even if the picture merely does psychological work, that in itself would be only
explicable by assuming that €-8 continuity and pencil continuity are somehow
deeply related. If they are completely unrelated, then what is the picture doing
there? It would be like a dictionary giving a verbal description of apples but

illustrating the definition with a picture of a banana.
Discussing the role of diagrams in mathematics Brown says in the same monograph (p.174):

If, as Platonism maintains, there is more to mathematical reality than
mathematical language (which is merely an instrument to represent non-linguistic
mathematical reality), then pictures might be another way to represent that reality.

(Emphasis mine. P.M.)

Now this is a good topic for theory of conceptual systems: let us compare two
conceptual systems: Let CS1 be a CS reconstructed from natural language (including
geometrical expressions) and CS2 a conceptual system reconstructed from pictorial language.

Can we compare CS1 and CS2? (From the last but one quotation it follows that we should!).

Once more: When speaking about concepts and conceptual systems in connection with

languages we start from the assumption that there is some /anguage L, which encodes what
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has been defined as constructions. The latter are abstract (prescriptions of) procedures, which
enjoy objective (i.e., subject-independent) character and may become — if encoded —
meanings of the expressions of L. Our problem can be formulated as follows: Considering a
system of geometric pictures G and, on the other hand, a system of expressions of a language
L, where particular claims formulated in L can be unambiguously associated with some
members of G we pose the following question: Can the system G be reconstructed so as to
make it possible to compare the conceptual system connected with L with the conceptual

counterparts derivable from the system G?

The most transparent instance of this problem is probably the invention of analytic
geometry. L is the language of analytic geometry, G is a system of geometric (planimetric)
pictures characterized by xy coordinates. It is not difficult to associate particular claims of L
that can be translated into sentences of the form

The straight line satisfying the equation y = —x + 5 intersects the straight line satisfying the
equation y = x + 1 in the point (2,3)

and the like with particular pictures. (The corresponding picture would be:)

The problem begins when general claims of analytic geometry are to be
(unambiguously) associated with pictures. A simple example: Let us for the time being
suppose that our set of types is extended to contain ‘tuple types’ (see [Zlatuska 1986]). Where
B1, ...,.Bm are types, we denote the Cartesian product of types Bi,...,3n by (Bi,...,pn). There is a
general claim in L that describes the calculation of the point of intersection of two straight
lines. Simplifying a little (omitting trivialisations, using infix notation and the usual way of
writing quantifiers) we can connect that claim with the following concept (Intersect / ((t,7)
(ot1) (ot1)) , Kk \nn'—> 1, xy — (1,7), p1, p» — (o(1,7)), VV (1,7)(0o(1,1)), identities and
arithmetic operations of obvious types)
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Vik'nn’ [[Inters pip2] = [Wx,p) [[p1 =Axy [y =kx +n]] A [p2=hxy [y =k'x +n]]]]
x=[n —-n]:[k-k7].

No picture at all can be ‘translated’ so that the above concept would become the
meaning of such a picture. An attempt at a generalisation can be made, of course: let us say
about such a particular picture that it is ‘paradigmatic’. This method is usual in geometry

when some claims of trigonometry are explained (and ‘visually proved’). The picture below

represents “any triangle”, as we are often told. Some ‘pictorial operations’ realised on such a
picture can be then interpreted either so that they psychologically support the proof given in
L, or that they can be (unambiguously?) associated with some expressions of L. It is only this

latter case that is of interest for /ogical analysis of natural language.

The general claims illustrated by a particular picture can be taken to be ‘translations’
from G if the picture is paradigmatic, i.e., when the situation that results from applying the
pictorial operations to the picture can be described independently of some idiosyncratic
properties of the picture. Thus the ‘pictorial proof” of the claim (SAT) that the sum of internal

angles of a (planar Euclidean) triangle is 180° can be given as follows:

and you can see that the situation does not change as for the desired claim if the kind or the
size of the triangle changes. But, this ‘you can see’ I s just this suspicious point: you always
can test your hypothesis on a finite number of examples only; the generalisation looks then
like an inductive process. The analytic character of SAT, as formulated in L, seems to be lost.
(Therefore so many mathematicians deny ‘pictorial proofs’ genuinely proof-theoretical
character — see [Brown 2000].) On the other hand, even if we gave up any effort to prove
that G, in general, were able to offer the means of distinguishing analytic claims from the
empirical ones, one important point obviously holds: the L-like and the G-like systems can be
meaningfully compared and the respective CSs are not unrelated. The respective translation is

in principle possible and the respective L- and G- expressions will be synonymous: we should
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get the same construction, so that L and G would differ only by the vocabulary and rules that

would lead to one and the same construction/ concept.

The link between a ‘normal’ and a ‘pictorial’ language can be more easily seen when
we compare the languages of geography with the ‘languages’ of geographical maps.
Understanding (‘ability to read’) geographical maps means that a ‘vocabulary’ and some
grammatical rules are given, so that looking at a place in the map we can say, e.g., “Well,
London is a larger town than Prague, and it is situated in the west of Prague”; applying a
respective CS we can write down the respective construction (a concept of the proposition in
question), which is the meaning of the above sentence and, at the same time, of the respective
part of the map (of a ‘pictorial sentence’). Clearly, maps at the scale 1:1000 represent a richer
language than maps at the scale, say, 1:75000; the languages represented by distinct
specialised maps (for example, political maps vs. the other kinds) are distinct; we could
continue showing the clear correspondence of the two kinds of language. Some special
features characterise, of course, the ‘map languages’. For example, the proposition denoted by
the sentences of the form “A is in the west of B” and “B is in the east of A” is one and the
same — which can be immediately seen when inspecting the map — but the sentences are not
synonymous but only weakly equivalent (see Definitions 18 and 19), which cannot be seen
when inspecting the map (unless a prescription of the way the reader has to move his/her head

when reading the map is a part of the grammatical rules for the ‘map languages’).

3.9 Once more analyticity

(See also [Duzi, Materna 2004])

The claim of the relativity of analyticity can be generalised in a most natural way: we
can ask whether a given concept, i.e., not only a sentence (or: propositional concept) is
analytic. To give a non-trivial answer we begin by stating that no empirical, i.e., a posteriori
concept can be analytic, let our intuition of analyticity be however broad. Thus it could seem
that any non-empirical, i.e., a priori concept is eo ipso analytic: Kant’s ‘proof’ that
arithmetical claims are synthetic a priori has been long ago shown to be incorrect (see, e.g.,
Couturat’s analysis, [Couturat 1908]), at least for examples ala 7 +5=12.

Yet there seems to be some rational intuition contained in Kant’s view. Being aware of
the fact that neither Kant nor his critics had at their disposal logical means we can use
nowadays, we hope that this (suspected) rational core could be formulated in a way not
accessible to Kant or his later opponents. First however let Kant speak [1781, Einleitung II,
quoted from http://www.Gutenberg2000.de/kant/krva/krva004.htm ]:

Entweder das Priadikat B gehdrt zum Subjekt A als etwas, was in diesem Begriffe

A (versteckterweise) enthalten ist; oder B liegt ganz ausser dem Begriff A, ob es

165



zwar mit demselben in Verkniipfung steht. Im ersten Fall nenne ich das Urteil
analytisch, im andern synthetisch.

From the viewpoint of contemporary logic Kant’s definition is vulnerable first due to
his reducing sentential structure to subject-predicate. Ironically, this reduction (routine in
Kant’s time) is most unnatural just in the case of mathematical (in particular, arithmetical)
statements, which Kant hoped to prove to be synthetic. To see this let us observe the famous
example adduced by Kant: the statement 7 + 5 = 12 is (of course, a priori but at the same
time) synthetic, since in the ‘subject’, i.e., according to Kant, ‘7 + 5° the number 12 is not

contained.

Now let us apply our theory of analysis to the statement 7 + 5 = 12. For the sake of
simplicity let us use trivialisations, setting aside the well-justified doubts concerning their

universal applicability; here their use will not influence our arguments. So we have
[°=["+°7°51%12].
A concept that represents what could be called predicate here is the concept of
identity, so ’=. The pair of concepts that together represent the ‘subject’ is then the pair

([°+ 97951, °12 ). All these concepts are used, which is in harmony with what Kant wanted to

tell us. Now we will modify Kant’s question.

If Kant had (per impossibile) accepted that it is identity that plays the role of predicate,
then his question would not be whether the number determined by the concept 12 is
contained in what is determined by the concept [+ °7 °5] but whether the pair of these
numbers is contained in the relation =. The answer is, however, positive, so that the statement

is analytic.
(The situation will not change if the role of predicate will play the expression ‘=12".)

All the same, we can show that not all arithmetic statements can be evaluated in this

simple way. Consider again Fermat’s Last Theorem (variables ranging over natural numbers):
Vabecn(n>2>—-(d"+b" =c"))

Trying to save the paradigm of the subject-predicate structure of a sentence would be
extremely unnatural here. Even so, Kant’s vague idea proves to cover a rational intuition. Let

us compare the construction that underlies Fermat with the construction [= [+ °7 %51 °12].

The object constructed is in both cases a truth-value. In the latter case, however, to get
this truth-value it is sufficient to use the concepts contained — as proper subconstructions —
in the whole construction. Let us check the former case. Here the relevant concepts are o_,
05, Oy, 0= 04 05 0y OExp (where Exp(x,y) = x¥). Under the finitist assumption it is
impossible to construct the truth-value in question working with those concepts only. The

proof had to use some further concepts.
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This comparison — together with our explicating concepts as constructions (and so as

problems) — leads us to the following definition:

Definition 39: Let C be a non-empirical concept the simple concepts—subconstructions of
which are Cy,...,C;. C is an analytic concept iff a finitary method of identifying the object
constructed by C is definable in terms of Cj,...,C; only. The non-analytic (non-empirical)

concepts will be called synthetic concepts. —

Since non-empirical concepts identify their extensions a priori we can formulate a
pseudo-Kantian

Claim: There are synthetic concepts a priori. —

Remark: A similar thought —based on intuitionistic principles —can be found in [Martin-Lof
1992]. -

In general the following statement can be formulated:

Finding an algorithmic solution to a problem can be considered to be discovering an
analytic (a priori) concept that is equivalent to the respective synthetic (a priori) concept (=

problem, see 3.2.2).

A classical example illustrating this statement is the “case n”): By now we should
know that “n” is an abbreviation only: the respective definiens (‘ratio of ...”) expresses the
ontological definition of 7 in a CS that contains concepts like CIRCLE, RADIUS and not
necessarily many other mathematical concepts. This ontological definition does not enable us
to use an algorithmic method of calculating any member of the infinite expansion of ©. What
can be called a mathematical discovery was finding an equivalent concept that does make it

possible; more such algorithms have been defined, e.g.

w(—l)’f{ 2 2 1 J
kZ:(; 4* 4k+1+4k+2+4k+3

(The case of explicating the term algorithm (likewise all the cases of a genuine explication) is

distinct from the case m: The term ‘algorithm’ means roughly ‘a mechanical method’ and is

markedly vague—unlike the term ‘n’.)

The transition from a synthetic (a priori) concept to its equivalent analytic
counterpart(s) can be described in terms of conceptual systems: We can distinguish between

two situations:

1) The given problem is formulated in a CS that contains all the concepts necessary
for the transition. This situation is analogous to Kuhn’s stage of normal science, the
possibility of solution is already given, what remains to be done is to become aware that such

and such already known concepts make the solution possible.
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2) The given problem is formulated in a CS that does not contain the concepts
necessary for the transition. Then something like a change of (maybe local mini-)paradigms

is realised — a Kuhnian (mini-)revolution: new primitive concepts are needed.

(What decides which of these situations takes place is, of course, whether the concepts

necessary for solution are (situation 1) or are not (situation 2) derivable from the given PCcs.)

Remark: So it holds — in harmony with our Relativity of Analyticity claim — that, e.g., the
(concept of) Fermat’s Last Theorem is analytically definite (true) with respect to such
CSs that contain all concepts necessary for finite decision; with respect to other CSs it is
synthetic. —

But: Most a priori concepts are incurably synthetic. This follows since there are
uncountably infinitely many functions but only countably infinitely many recursive functions.
Thus, e.g., any concept of the class of 1% order theorems of predicate logic is synthetic: this

class is undecidable in the class of all 1* order formulas of predicate logic.
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4. Concluding essay: Concepts and objectivity

We have seen that conceptual systems determine various areas. At the same time we have
argued that the variety of conceptually determined areas does not imply an insurmountable
confusion of languages (a Tower-of-Babel phenomenon). The relativist moods characteristic

of the post-wave lead however to questions of the following kind:
Isn’t it so that the area described by a conceptual system is created by this system?

In other words, some people suspect that the functions, properties, relations etc. that
we are able to talk about due to a conceptual system S come into being with S only; a change
of S (i.e., transition to another system) as if caused that those functions, properties, relations

etc. cease to ‘exist’.
(In [Davidson 1984, p.183] this view (not shared by him) is characterised as follows:

Reality itself is relative to a scheme: what counts as real in one system may not in

another.

This is a very succinct characterisation. Davidson’s views are well-known but we must
not forget that his notion of conceptual scheme differs from ours, and, last but not least, that
Davidson construes concepts as “words with fixed meanings”, which must lead to other
results (comparable, not ‘incommensurable’) than our definition. Some of Davidson’s
considerations can be interpreted from our point of view and then accepted. Take, for
example, the Davidsonian principle of charity, i.e., his recommendation to suppose that what
our partner claims is (mostly) true. Applying this principle we can detect (with some higher

degree of probability) which concepts our partner associates with respective expressions.)
Let us now investigate the views of this kind.

To illustrate these views with a particular example, imagine the situation where a
language cannot express the concept of spider. (The users of such a language live — in some
isolation, to be a little bit realistic — in a country where no spiders live, and they do not use
the language of zoology.) Does it mean that for the speakers of such a language there is no
such property as (being a) spider? And that as soon as that language (better: its underlying
conceptual system) is enriched by the respective concept the property comes into being for the

speakers of this enriched language?

Still in other words: does the property spider(hood) exist just for such languages (and
their speakers) whose underlying conceptual system contains the concepts necessary for
defining spider(hood)?

First of all, we must be aware that the elements of any conceptually determined area

are either mathematical objects or other abstract objects, empirical or non-empirical. Setting
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aside mathematical objects we can see that the empirical objects whose existence we
investigate are intensions. Thus we have to distinguish two questions: Do spiders exist? and
Does the property ‘to be a spider’ exist? The latter question is independent of answering the
former question: once we specify what the term ‘exist’ means we can easily admit that the
latter question can be positively answered even then when there are no spiders. Some more
details (see also Tichy 1979]): If the attribute ‘to exist’ stands before an occurrence of an
empirical expression E (in English, modifications for other languages can be always realised)

then it can mean either

i) that the intension denoted by E is in an intelligible way ‘occupied’ in the given
world-time (by an individual, by a non-empty class etc.) — see the Remark following

Definition 28, or

ii) that the intension is objective (then the expression denoting the intension is as a rule
preceded by expressions like ‘the property’ or ‘the role’ or ‘the proposition’ etc. Thus the
distinction between the two questions above can be fixed just as above. An alternative in

some cases is attaching the ending ‘hood’, so: Does spiderhood exist?

Thus Colours exist means: The class Colour is not empty, thus this kind of existence is
simply the existential quantifier. Not only that: saying The class of colours exists we say: The
class containing the class of colours is not empty. If we intend to say more then we have to
say only that (like in ii) above) the given extension is objective (which is — for Carnap as
well as for most post-philosophers — a metaphysical claim). In our example we can even
suppose that there are no spiders but our second question is still here: for a realist even empty
properties (or properties empty in the given world) do exist in the sense of objectivity.
(Bolzano would add: they — as well as the non-empty ones — do not exist in the sense of

spatio-temporal localisability.)

Now we can return to our question. This question has introduced a new category: to

exist for.... We can immediately see that the phrase
A exists for sth/sb
is only a paraphrase of
sth/sb (a language, a language user...) knows (is acquainted with, has access to...) A.

Thus (‘absolute’) existence in our sense is presupposed by phrases containing this

‘existence for...". Therefore our question, i.e.,

does the property spider exist just for such languages (and their speakers) whose

underlying conceptual system contains the concepts necessary for defining spiderhood?

only seems to be ‘revolutionary’, provocative: actually the (expected) positive answer is a

tautology, since its sense is given by the formulation
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Just those languages whose underlying conceptual system contains the concepts

necessary for defining spider(hood) have the access to the property spider(hood).
(We can see that the objective property spiderhood is presupposed by this answer.)

Remark: A recapitulation is here maybe useful: the property spider is identical with the
property spiderhood. The evident distinction in our using these terms is given by the
distinction de re and de dicto. ‘spiderhood’ can be used only if the concept is in the de dicto

supposition. Compare
Some spiders live in water. vs. Spiderhood is a zoological property.
See 1.4.2.3, example A. and B. —

Our approach implies that to claim ‘existence’ of abstract objects means to claim that
they are definable independently of any subject (in this way Bolzano defines objectivity) and
that they are not created by the mind of a subject but rather discovered by it. The development
of a language is connected with discovering new abstract entities that have to be fixed by
expressions of the language because we need them for our description of the world and
explanations of particular phenomena. Language is needed for fixing abstract entities, the
latter are needed as criteria that are used for determining which (important) properties can
be attributed to which empirically found concrete objects. When Adam was asked by God to
give names to animals etc., it did not mean that he should give names to particular concrete
animals: it meant that the property elephant had to be distinguished from the property dog

etc.: Adam had to invent language, not to fix contingent ostensions.

Which rival approach could contribute to the question of objectivity? It seems that
negative solutions have to defend extremely counterintuitive claims; for example, that to be is

to be known — a new version of Berkeley’s form of solipsism (esse est percipi).

Further, we can observe that the fact of various (even incomparable) conceptual
systems — ‘conceptual plurality’ — does not at all prove that various areas are not objective.
On the contrary, to conceptually determine an area would not be possible if the abstract
objects were not objective; some of them proved to be useful, some of them led to a blind
alley — e.g., the property phlogiston, which is objective but as being empty in the actual
world is not useful. Anyway, usefulness and objectivity are distinct categories. We can
‘fabricate’ the concept A DOG WHOSE TAIL CONTAINS JUST 357 PIECES OF HAIR;
the impression that this is only our invention arises due to the fact that such a concept is of no
use at all. Yet the respective property surely ‘exists’, independently of whether some
individual does or does not possess it, and independently of our speaking or thinking of it.
Moreover, we can logically guarantee that the property is not the empty property: no
contradiction is derivable from the assumption that there is such a dog so that there are such

world-times pairs where the class of individuals possessing this property is not empty.
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(A question for a relativist: Does the above property exist for the language of
astronomy? And if not, does it mean that this property is not objective? Solution: see the

preceding text.)

To sum up.: Concepts discover abstract entities that may be useful for describing and
explaining the world. Conceptual systems define particular areas (of interest) and make it
possible to distinguish truth from falsity; the pure logico-mathematical systems do so a
priori, empirical systems, using the logico-mathematical part as a priori tools, pose
empirical problems whose solution is to be found via empirical procedures (which are a sort

of questions to be answered by the world).
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Appendix 1: Symbols
1. TYPES

Ist order:

Atomic:

o (truth-values)

t (individuals)

T (time moments, real numbers)
o (possible worlds)

Complex:

(o Br...Bm) Brx ... x B> )

Ordern, n > 1

*n-1

2. CONSTRUCTIONS
X1, Xa,..., (variables)

X trivialisation

[X Xj...X] composition

[Ax;..xn X] closure

3. LOGICAL SYMBOLS
Connectives: —, A, Vv, D
Quantifiers: V, 3
Identity: =

‘Descriptive operator’: 1 (context determines when 1 is not the type of individuals)
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Appendix 2: Some specific features of TIL

1. Frege’s ‘semantic triangle’ corrected

expression
‘sense’ (meaning) = construction (concept)

denotation (intension in the empirical case)

under this line experience necessary

reference (in the empirical case)

2. Transparency: meaning is the same in all contexts.
(What seems to be a change of meaning is actually a change of supposition.)
3. No formal language in the standard sense is introduced.

(‘Formal means’ for fixing constructions — see Appendix 1 — are not formal in the
sense that they would ‘wait for interpretation’: in terms of them we simply speak about
constructions themselves, which are prescriptions of extra-linguistic abstract procedures

given unambiguously by these ‘formal means’ (‘language of constructions’, if you like). )
4. An objectual notion of variable.

(Variables — as a kind of construction — are extra-linguistic; the letters used for them

are names of variables.)

5. The ramified hierarchy makes it possible to avoid the distinction object language —
metalanguage.

(In TIL we can mention, not only use constructions. Mentioning constructions means that

the ‘hyperintensionality’ is present.)
6. Explicit use of variables w, t for possible worlds and times.

(The ‘standard’ way of handling intensionality consists in ‘translating’ the respective
expressions of a natural language to an artificial formal language and interpreting the
result in a metalanguage. In TIL translating is replaced by a (direct) analysis, i.e., by

finding a construction that constructs the intension in question via AwAf [...].)
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7. Intensionality is a universal phenomenon: it is present not only in modal contexts but
wherever an empirical expression stands.
(See point 1.)

8. Using Fregean terminology: ‘sense’ has to be structured.
(Cresswell’s ‘structured meanings’, i.e., tuples, are replaced by constructions.)

9. Functions (as mappings) are taken to be partial, i.e., returning at most one value.
(Which corresponds to a natural phenomenon, e.g. truth-gaps.)

10. Anti-essentialism: individuals are ‘bare’, they possess no empirical property necessarily

(i.e., in all possible worlds-times).

(‘Essential properties’, ‘requisites’, concern no particulars, only intensions. ‘being a man’
is a requisite of ‘being a philosopher’ — 1i.e., the former property is a requisite of the
latter; if an individual happens to be a philosopher then ‘being a man’ is not a requisite of
that individual.)

11. It is impossible to logically determine which of the possible worlds is the actual one.
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Appendix 3: Some principles of the theory of concepts based on TIL

10.

1.

12.
13.
14.

Concepts are abstract language independent entities.

(Meaningful) expressions are codes of concepts. Particular languages differ in the way

they encode concepts.
Concept acquisition, concept possessing are mental entities unlike concepts themselves.

As Bolzano already suspected, concepts are structured. Under this assumption only we

can explain why various distinct concepts can identify one and the same object.
Concepts can be modelled as closed TIL constructions.

Constructions that are a- or n-equivalent do not represent distinct concepts. The relation
Quasi-identity (definable in terms of a- and m-equivalence) enables us to define a
distinguished, ‘normalised’ construction among all quasi-identical constructions and let it
represent the respective concept (while the other quasi-identical constructions can be said

to point to this concept).

No empirical concept identifies a particular. Every empirical concept identifies a non-

trivial intension.

Where X is an object of order 1 the trivialisation X isa simple concept.

Any improper closed construction is a strictly empty concept.

Any closed construction that constructs an empty class/relation is a quasi-empty concept.

Any closed construction that constructs an intension whose value in (W, T) is either

missing or an empty class/relation is a concept empirically empty in (W, T).
Synonyms are expressions that express one and the same concept.
(Weakly) equivalent expressions express (distinct but) equivalent concepts.

Coincident expressions express distinct non-equivalent empirical concepts that identify
distinct intensions whose value is the same in the actual world-time. (L.e., their

denotations are distinct unlike their reference.)
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Appendix 4: A solution of a Putnam’s problem

(‘Carnapian vs. Polish Language’)

The classical problem formulated in [Putnam 1990] consists in handling the following

situation:

Let us have a ‘world’ with three individuals a, b, ¢ (Putnam uses xi, x, x3, we use the
latter characters as names for variables.); let us ask: “How many objects are there in this
world?” Now Putnam constructs a confrontation between a ‘Carnapian’ language, in which
we can answer the question as follows: ‘There are just three individuals here, viz. a, b, ¢.” and
a ‘Polish logicians’ language’, obviously a language of a (Le$niewskian) mereology, where
we would have (omitting the ‘null” object) seven objects, viz. a, b, ¢c, a + b, a + ¢, b + ¢,

a + b + c¢. Further: supposing that, say, a is red and b is black and considering sentences
(1) There is an object which is partly red and partly black.
(2) There is an object which is red and an object which is black.

we can state that (2) is true in both ‘Carnapian’ and ‘Polish logicians’ ¢ world whereas (1)
seems to be true only in the Polish version. On the other hand, we can easily prove (?) that (1)
implies (2) and vice versa, which leads to the following question: “What is the point of
treating (1) as an abbreviation of (2) if it doesn’t, in fact, have the same meaning as (2)?”
(p.100). (By the way, using the term ‘meaning’ should be suspicious under Quine’s
admonishing finger, but ‘to preserve meaning’ has to be understood as ‘to obey translation

practice’; so no ‘ontological commitment’ arises... . Difficile satiram non scribere.)

Putnam reproduces a probable Quine’s solution (facon de parler) and he himself

defends a kind of (Carnapian) conceptual relativity.

We can show that our approach makes it possible to justify not only verbally a simple

(and verbally easily expressible) solution based on plurality of conceptual systems.

In the following analysis we will again use following abbreviations: infix notation for
truth functions and identity. The resulting symbolic expressions should be read as (names of)

constructions.

We have a, b, ¢ /1, v/ (000), =1/ (ot1), =2/ (ou), 3/ (0 (o1)), Card / (t (ov)), +/ (1), Red,
Black | (0, 1/ (t (O7); Kk = 1, x, y, z = 1; (Distinguish, please, 1 as a type and 1 as a

function — a ‘singulariser’ — the distinction should be clear from context.)
First : How many objects are there in that ‘world’ ?

Clearly, the problem is not unambiguously defined unless the word ‘object’ is
specified. To specify this word means to decide which concept is associated with it; this

decision is again dependent on a particular conceptual system. To show this let us consider

177



two conceptual systems (defining their primitive part only and admitting that there is no loss
of generality connected with this assumption):

CS1 { %, %, °c, °v, =, °=,, °Card, *Red, °Black, *1 }
CS2 CSlu {%+}

The function + constructs from two individuals a new individual (their ‘mereological sum’).
We can assume that + is associative, i.e., [+ [+ x v] z] v-constructs the same individual as

[+ x [™+ y z]] for all valuations v.
Now in CS1 our question encodes the construction
O nk [ k= ["Card Ax [[x =2 a] v [x =, b] v [x = ]]]]
whereas in CS2 the construction is
Ok [ k= ["Card Ax [[x =2 a] v [x =2 b] v [x=2c]vI hy T hz [x = [*+y 1111

Now everything is clear as for the first question. The CSI1 construction (concept)
constructs the number 3, the CS2 construction (concept) constructs the number 7.
Furthermore, even if we used the vague °‘identification’ of meaning with ‘translational
practice’ we would not say that the respective answers shared a meaning. Our approach shows
it precisely — the constructions above are distinct (and, moreover, are not equivalent).
Verbally expressed, the reason is that CS2 is a creative extension of CS1, expanding the area
by adding the primitive *+, so that the extension of the term ‘object’ changes. Thus both

answers are true, only that they do not use the same concept associated with the term ‘object’.

This result determines the solution of the problem of semantic interrelation between
the sentences (1) and (2). The analyses of these sentences are (in TIL; a little bit simplified

without loss of generality):
(1) awt [°3 hx [*Red, x] A [*Black,,x]]
(2°) Awht [[°3 Ax [*Red,ix]] A [°3 Ax [*Black,.x]]]

(Indeed, a degree of ‘Davidsonian’ Charity is needed: Red, as well as Black is now
supposed to be predicable even in the sense of ‘partly red’, ‘partly black’; a conceptual
refinement, which would distinguish ‘partly red’ from ‘red’ is feasible, but our results would

be the same.)

Now it indeed holds (as Putnam states) that the proposition constructed by (2°) is true
(assuming that a is red and b_is black) in both systems, but in the case of CS1 the term
‘object” means from the viewpoint of CS2 and from the viewpoint of our (‘background’)
language ‘a simple (i.e., no parts having) individual’ whereas its extension in CS2 embraces
any individuals. And it indeed holds (as Putnam also states) that the proposition constructed
by (1°) is true in CS2. What to do now with the ‘logical proof’ that (2) implies (1) within

178



CS2? 1t works, of course, but again the price to be paid is that the term ‘object’ used within

CS1 has to be semantically changed when used in CS2.

The whole problem is thus rather simple. This can be demonstrated by using two terms
where the formulation of the problem contains one term. Thus let as transcribe both sentences

as follows (‘object;” denotes the Carnapian objects, ‘object,” denotes the “Polish” objects):
(1°’)  There is an object; which is partly red and partly black.
(2>’)  There is an object, which is red and an object, which is black.

Under our assumptions the sentence (1°°’) cannot be true (perhaps it lacks any truth-
value). The sentence (2°’) is true. But there are two other sentences whose truth-value we can
check assuming the facts holding in the particular ‘worlds’ (i.e., there are three simple

individuals, a being red and b being black):
(3) There is an object, which is partly red and partly black.
(4) There is an object; which is red and an object; which is black.
Now it is clear that the sentence (3) is true as well as the sentence (4).

The replacing the term ‘object’ by the two terms ‘object;” and ‘object,’ is possible
only in such languages that are based on CS2 or on a system that contains CS2. See also the

‘language games’ presented in the main text of the present book (‘bink’, ‘cink’, ‘cank’, etc.).

Remark: After having written the present Appendix 4, I became aware of [Brueckner 1998]. |
have to appreciate Brueckner’s analysis and am happy with the harmony of his analysis with

what I just presented within the framework of my theory of conceptual systems.
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Logiken fiir bestimmte Aufgabengebiete - etwa fiir Folgern aus widerspriichlichen Satzmengen, fiir Erset-
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Horst Wessel
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Das Buch ist eine philosophisch orientierte Einfiihrung in die Logik. Thm liegt eine Konzeption zugrunde, die
sich von mathematischen Einfithrungen in die Logik unterscheidet, logische Regeln als universelle Sprachregeln
versteht und sich bemiiht, die Logik den Bediirfnissen der empirischen Wissenschaften besser anzupassen.

Ausfiihrlich wird die klassische Aussagen- und Quantorenlogik behandelt. Philosophische Probleme der Logik,
die Problematik der logischen Folgebeziehung, eine nichttraditionelle Pradikationstheorie, die intuitionisti-
sche Logik, die Konditionallogik, Grundlagen der Terminitheorie, die Behandlung modaler Pridikate und
ausgewihlte Probleme der Wissenschaftslogik gehen iiber die iiblichen Einfithrungen in die Logik hinaus.
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Die intuitionistische Logik und die Relevanzlogik gehoren zu den bedeutendsten Rivalen der klassischen Logik.
Der Verfasser unternimmt den Versuch, die jeweiligen Grundideen der Konstruktivitéit und der Paradoxien-
freiheit durch eine ,,Relevantisierung der intuitionistischen Logik* zusammenzufiithren. Die auf diesem Weg
erreichten Ergebnisse sind auf hohem technischen Niveau und werden iiber die gesamte Abhandlung hinweg
sachkundig philosophisch diskutiert. Das Buch wendet sich an einen logisch gebildeten philosophisch interes-
sierten Leserkreis.



Horst Wessel

Logik und Philosophie
ISBN: 978-3-89722-249-6  Preis: 15,30 €

Nach einer Skizze der Logik wird ihr Nutzen fiir andere philosophische Disziplinen herausgearbeitet. Mit mi-
nimalen logisch-technischen Mitteln werden philosophische Termini, Theoreme und Konzeptionen analysiert.
Insbesondere bei der Untersuchung von philosophischer Terminologie zeigt sich, dafl logische Standards fiir
jede wissenschaftliche Philosophie unabdingbar sind. Das Buch wendet sich an einen breiten philosophisch
interessierten Leserkreis und setzt keine logischen Kenntnisse voraus.
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Zeitlogiken thematisieren ,nicht-ewige* Sitze, d.h. Sitze, deren Wahrheitswert sich in der Zeit verdndern
kann. Modallogiken (im engeren Sinne des Wortes) zielen auf eine Logik alethischer Modalbegriffe ab. Kom-
binierte Zeit- und Modallogiken verkniipfen nun Zeit- mit Modallogik, in ihnen geht es also um eine Analyse
und logische Theorie zeitabhédngiger Modalaussagen.

Kombinierte Zeit- und Modallogiken stellen eine ausgezeichnete Basistheorie fiir Konditionallogiken, Hand-
lungs- und Bewirkenstheorien sowie Kausalanalysen dar. Hinsichtlich dieser Anwendungsgebiete sind vor allem
pradikatenlogische Sprachen aufgrund ihrer Ausdrucksstirke von Interesse. Die vorliegende Arbeit entwickelt
nun kombinierte Zeit- und Modallogiken fiir pradikatenlogische Sprachen und erértert die solchen logischen
Systemen eigentiimlichen Problemstellungen. Dazu werden im ersten Teil ganz allgemein multimodale Logiken
fiir pradikatenlogische Sprachen diskutiert, im zweiten dann Kalkiile der kombinierten Zeit- und Modallogik
vorgestellt und deren semantische Vollstandigkeit bewiesen.

Das Buch richtet sich an Leser, die mit den Methoden der Modal- und Zeitlogik bereits etwas vertraut sind.

H. Franzen, U. Scheffler

Logik.
Kommentierte Aufgaben und Losungen
ISBN: 978-3-89722-400-1 Preis: 15,- €

Ublicherweise wird in der Logik-Ausbildung viel Zeit auf die Vermittlung metatheoretischer Zusammenhinge
verwendet. Das Losen von Ubungsaufgaben — unerliflich fiir das Verstindnis der Theorie — ist zumeist Teil
der erwarteten selbstdndigen Arbeit der Studierenden. Insbesondere Logik-Lehrbiicher fiir Philosophen bieten
jedoch hiufig wenige oder keine Aufgaben. Wenn Aufgaben vorhanden sind, fehlen oft die Losungen oder sind
schwer nachzuvollziehen.

Das vorliegende Trainingsbuch enthélt Aufgaben mit Losungen, die aus Klausur- und Tutoriumsaufgaben in
einem 2-semestrigen Grundkurs Logik fiir Philosophen entstanden sind. Ausfiihrliche Kommentare machen
die Losungswege leicht verstdndlich. So iibt der Leser, Entscheidungsverfahren anzuwenden, Theoreme zu
beweisen u. 4., und erwirbt damit elementare logische Fertigkeiten. Erwartungsgemif beziehen sich die mei-
sten Aufgaben auf die Aussagen- und Quantorenlogik, aber auch andere logische Gebiete werden in kurzen
Abschnitten behandelt.

Diese Aufgabensammlung ist kein weiteres Lehrbuch, sondern soll die vielen vorhandenen Logik-Lehrbiicher
erginzen.



U. Scheffler

Ereignis und Zeit. Ontologische Grundlagen der Kausalrelationen
ISBN: 978-3-89722-657-9  Preis: 40,50 €

Das Hauptergebnis der vorliegenden Abhandlung ist eine philosophische Ereignistheorie, die Ereignisse iiber
konstituierende Séitze einfithrt. In ihrem Rahmen sind die wesentlichen in der Literatur diskutierten Fragen
(nach der Existenz und der Individuation von Ereignissen, nach dem Verhé&ltnis von Token und Typen, nach
der Struktur von Ereignissen und andere) lésbar. In weiteren Kapiteln werden das Verhéltnis von kausaler und
temporaler Ordnung sowie die Existenz von Ereignissen in der Zeit besprochen und es wird auf der Grundlage
der Token-Typ-Unterscheidung fiir die Prioritét der singulidren Kausalitidt gegeniiber genereller Verursachung
argumentiert.

Horst Wessel

Antiirrationalismus
Logisch-philosophische Aufsitze

ISBN: 978-3-8325-0266-9  Preis: 45,- €

Horst Wessel ist seit 1976 Professor fiir Logik am Institut fiir Philosophie der Humboldt-Universitét zu Berlin.
Nach seiner Promotion in Moskau 1967 arbeitete er eng mit seinem Doktorvater, dem russischen Logiker
A. A. Sinowjew, zusammen. Wessel hat grofien Anteil daran, dal am Berliner Institut fiir Philosophie in der
Logik auf beachtlichem Niveau gelehrt und geforscht wurde.

Im vorliegenden Band hat er Artikel aus einer 30-jihrigen Publikationstéitigkeit ausgewéhlt, die zum Teil nur
noch schwer zugénglich sind. Es handelt sich dabei um logische, philosophische und logisch-philosophische
Arbeiten. Von Kants Antinomien der reinen Vernunft bis zur logischen Terminitheorie, von Modalitédten bis
zur logischen Folgebeziechung, von Entwicklungstermini bis zu intensionalen Kontexten reicht das Themen-
spektrum.

Antiirrationalismus ist der einzige -ismus, dem Wessel zustimmen kann.

Horst Wessel, Klaus Wuttich

daf3-Termini
Intensionalidt und Ersetzbarkeit

ISBN: 978-3-89722-754-5  Preis: 34,- €

Von vielen Autoren werden solche Kontexte als intensional angesehen, in denen die iiblichen Ersetzbarkeits-
regeln der Logik nicht gelten. Eine besondere Rolle spielen dabei daf$-Konstruktionen.

Im vorliegenden Buch wird gezeigt, daf§ diese Auffassungen fehlerhaft sind. Nach einer kritischen Sichtung
der Arbeiten anderer Logiker zu der Problematik von daf-Termini wird ein logischer Apparat bereitgestellt,
der es ermoglicht, daff-Konstruktionen ohne Einschrinkungen von Ersetzbarkeitsregeln und ohne Zuflucht zu
Intensionalitéiten logisch korrekt zu behandeln.

Fabian Neuhaus

Naive Pridikatenlogik
Eine logische Theorie der Pradikation

ISBN: 978-3-8325-0556-1  Preis: 41,- €

Die logischen Regeln, die unseren naiven Redeweisen iiber Eigenschaften zugrunde liegen, scheinen evident und
sind fiir sich alleine betrachtet vollig harmlos - zusammen sind sie jedoch widerspriichlich. Das entstehende
Paradox, das Russell-Paradox, 16ste die sogenannte Grundlagenkrise der Mathematik zu Beginn des 20. Jahr-
hunderts aus. Der klassische Weg, mit dem Russell-Paradox umzugehen, ist eine Vermeidungsstrategie: Die
logische Analysesprache wird so beschrinkt, daf§ das Russell-Paradox nicht formulierbar ist.

In der vorliegenden Arbeit wird ein anderer Weg aufgezeigt, wie man das Russell-Paradox und das verwandte
Grelling-Paradox 16sen kann. Dazu werden die relevanten linguistischen Daten anhand von Beispielen analy-
siert und ein angemessenes formales System aufgebaut, die Naive Pradikatenlogik.



Bente Christiansen, Uwe Scheffler (Hrsg.)
Was folgt

Themen zu Wessel
ISBN: 978-3-8325-0500-4  Preis: 42,- €

Die vorliegenden Arbeiten sind Beitrége zu aktuellen philosophischen Diskussionen — zu Themen wie Exi-
stenz und Referenz, Paradoxien, Priadikation und dem Funktionieren von Sprache iiberhaupt. Gemeinsam
ist ihnen der Bezug auf das philosophische Denken Horst Wessels, ein Vierteljahrhundert Logikprofessor an
der Humboldt-Universitit zu Berlin, und der Anspruch, mit formalen Mitteln nachvollziehbare Ergebnisse zu
erzielen.

Vincent Hendricks, Fabian Neuhaus, Stig Andur Pedersen, Uwe Scheffler, Heinrich Wansing (Eds.)
First-Order Logic Revisited
ISBN: 978-3-8325-0475-5  Preis: 75,- €

Die vorliegenden Beitrige sind fiir die Tagung ,,75 Jahre Priadikatenlogik erster Stufe“ im Herbst 2003 in Berlin
geschrieben worden. Mit der Tagung wurde der 75. Jahrestag des Erscheinens von Hilberts und Ackermanns
wegweisendem Werk ,, Grundziige der theoretischen Logik“ begangen.

Im Ergebnis entstand ein Band, der eine Reflexion iiber die klassische Logik, eine Diskussion ihrer Grundlagen
und Geschichte, ihrer vielfiltigen Anwendungen, Erweiterungen und Alternativen enthélt.

Der Band enthalt Beitrige von Andréka, Avron, Ben-Yami, Briinnler, Englebretsen, Ewald, Guglielmi, Ha-
jek, Hintikka, Hodges, Kracht, Lanzet, Madarasz, Nemeti, Odintsov, Robinson, Rossberg, Thielscher, Toke,
Wansing, Willard, Wolenski

Pavel Materna
Conceptual Systems
ISBN: 978-3-8325-0636-0  Preis: 34,- €

We all frequently use the word “concept”. Yet do we know what we mean using this word in sundry contexts?
Can we say, for example, that there can be several concepts of an object? Or: can we state that some concepts
develop? What relation connects concepts with expressions of a natural language? What is the meaning of an
expression? Is Quine’s ‘stimulus meaning’ the only possibility of defining meaning? The author of the present
publication (and of “Concepts and Objects”, 1998) offers some answers to these (and many other) questions
from the viewpoint of transparent intensional logic founded by the late Czech logician Pavel Tichy (11994
Dunedin).

Johannes Emrich

Die Logik des Unendlichen

Rechtfertigungsversuche des tertium non datur in der Theorie des mathematischen Kontinuums
ISBN: 978-3-8325-0747-3  Preis: 39,- €

Im Grundlagenstreit der Mathematik geht es um die Frage, ob gewisse in der modernen Mathematik géngige
Beweismethoden zuléssig sind oder nicht. Der Verlauf der Debatte — von den 1920er Jahren bis heute — zeigt,
dass die Argumente auf verschiedenen Ebenen gelagert sind: die der meist konstruktivistisch eingestellten Kri-
tiker sind erkenntnistheoretischer oder logischer Natur, die der Verteidiger ontologisch oder pragmatisch. Die
Einschétzung liegt nahe, der Streit sei gar nicht beizulegen, es handele sich um grundlegend unterschiedliche
Auffassungen von Mathematik. Angesichts der immer wieder auftretenden Erfahrung ihrer Unvertriglichkeit
wiére es aber praktisch wie philosophisch unbefriedigend, schlicht zur Toleranz aufzurufen. Streiten heifit nach
Einigung streben. In der Philosophie manifestiert sich dieses Streben in der Uberzeugung einer objektiven
Einheit oder Einheitlichkeit, insbesondere geistiger Sphiren. Im Sinne dieser Uberzeugung unternimmt die
vorliegende Arbeit einen Vermittlungsversuch, der sich auf den logischen Kern der Debatte konzentriert.



Christopher von Biilow

Beweisbarkeitslogik
— Godel, Rosser, Solovay —

ISBN: 978-3-8325-1295-8  Preis: 29,- €

Kurt Godel erschiitterte 1931 die mathematische Welt mit seinem Unvollstéandigkeitssatz. Godel zeigte, wie fiir
jedes noch so starke formale System der Arithmetik ein Satz konstruiert werden kann, der besagt: ,,Ich bin nicht
beweisbar.“ Wiirde das System diesen Satz beweisen, so wiirde es sich damit selbst Liigen strafen. Also ist dies
ein wahrer Satz, den es nicht beweisen kann: Es ist unvollstdndig. John Barkley Rosser verstirkte spiter Godels
Ergebnisse, wobei er die Reihenfolge miteinbezog, in der Séitze bewiesen werden, gegeben irgendeine Auffassung
von ,Beweis“. In der Beweisbarkeitslogik werden die formalen Eigenschaften der Begriffe , beweisbar® und
,wird frither bewiesen als“ mit modallogischen Mitteln untersucht: Man liest den notwendig - Operator als
beweisbar und gibt formale Systeme an, die die Modallogik der Beweisbarkeit erfassen.

Diese Arbeit richtet sich sowohl an Logik-Experten wie an durchschnittlich vorgebildete Leser. Thr Ziel ist
es, in die Beweisbarkeitslogik einzufithren und deren wesentliche Resultate, insbesondere die Solovayschen
Vollstandigkeitssédtze, prizise, aber leicht zugénglich zu présentieren.

Niko Strobach

Alternativen in der Raumzeit
Eine Studie zur philosophischen Anwendung multidimensionaler Aussagenlogiken

ISBN: 978-3-8325-1400-6  Preis: 46.50 €

Ist der Indeterminismus mit der Relativitdtstheorie und ihrer Konzeption der Gegenwart vereinbar? Die-
se Frage ldsst sich beantworten, indem man die fiir das alte Problem der futura contingentia entwickelten
Ansitze auf Aussagen iiber das Raumartige {ibertrigt. Die dazu hier Schritt fiir Schritt aufgebaute relati-
vistische indeterministische Raumzeitlogik ist eine erste philosophische Anwendung der multidimensionalen
Modallogiken.

Neben den tiblichen Zeitoperatoren kommen dabei die Operatoren ,iiberall“ und ,irgendwo* sowie , fiir jedes
Bezugssystem® und ,,fiir manches Bezugssystem* zum Einsatz. Der aus der kombinierten Zeit- und Modal-
logik bekannte Operator fiir die historische Notwendigkeit wird in drei verschiedene Operatoren (,,wissbar,
Hfeststehend”, | beeinflussbar) ausdifferenziert. Sie unterscheiden sich beziiglich des Gebiets, in dem mégliche
Raumzeiten inhaltlich koinzidieren miissen, um als Alternativen zueinander gelten zu kénnen. Die Interaktion
zwischen den verschiedenen Operatoren wird umfassend untersucht.

Die Ergebnisse erlauben es erstmals, die Standpunkt-gebundene Notwendigkeit konsequent auf Raumzeit-
punkte zu relativieren. Dies ldsst auf einen metaphysisch bedeutsamen Unterschied zwischen deiktischer und
narrativer Determiniertheit aufmerksam werden. Dieses Buch ergénzt das viel diskutierte Paradigma der
verzweigten Raumzeit (,,branching spacetime®) um eine neue These: Der Raum ist eine Erzéhlform der Ent-
scheidungen der Natur.

Erich Herrmann Rast

Reference and Indexicality
ISBN: 978-3-8325-1724-3  Preis: 43.00 €

Reference and indexicality are two central topics in the Philosophy of Language that are closely tied together.
In the first part of this book, a description theory of reference is developed and contrasted with the prevailing
direct reference view with the goal of laying out their advantages and disadvantages. The author defends
his version of indirect reference against well-known objections raised by Kripke in Naming and Necessity
and his successors, and also addresses linguistic aspects like compositionality. In the second part, a detailed
survey on indexical expressions is given based on a variety of typological data. Topics addressed are, among
others: Kaplan’s logic of demonstratives, conversational versus utterance context, context-shifting indexicals,
the deictic center, token-reflexivity, vagueness of spatial and temporal indexicals, reference rules, and the
epistemic and cognitive role of indexicals. From a descriptivist perspective on reference, various examples
of simple and complex indexicals are analyzed in first-order predicate logic with reified contexts. A critical
discussion of essential indexicality, de se readings of attitudes and accompanying puzzles rounds up the
investigation.



Magdalena Roguska

Exklamation und Negation
ISBN: 978-3-8325-1917-9  Preis: 39.00 €

Im Deutschen, aber auch in vielen anderen Sprachen gibt es umstrittene Negationsausdriicke, die keine ne-
gierende Kraft haben, wenn sie in bestimmten Satztypen vorkommen. Fiir das Deutsche handelt sich u.a. um
die exklamativ interpretierten Sétze vom Typ:

Was macht sie nicht alles! Was der nicht schafft!

Die Arbeit fokussiert sich auf solchen Exklamationen. Thre wichtigsten Thesen lauten:

e Es gibt keine Exklamativsitze aber es gibt Exklamationen.
e Alles und nicht alles in solchen Sdtzen, haben semantische und nicht pragmatische Funktionen.

e Das ,nicht-negierende“ nicht ohne alles in einer Exklamation ist doch eine Negation. Die Exklamation
bezieht sich aber trotzdem auf denselben Wert, wie die entsprechende Exklamation ohne Negation.

e In skalaren Exklamationen besteht der Unterschied zwischen Standard- und , nicht-negierenden* Nega-
tion im Skopus von nicht.

Die Analyse erfolgt auf der Schnittstelle zwischen Semantik und Pragmatik.

August W. Sladek

Aus Sand bauen. Tropentheorie auf schmaler relationaler Basis

Ontologische, epistemologische, darstellungstechnische
Moéglichkeiten und Grenzen der Tropenanalyse

ISBN: 978-3-8325-2506-4 (4 Bénde) Preis: 198.00 €

Warum braucht eine Tropentheorie zweieinhalbtausend Seiten Text, wenn zweieinhalb Seiten ausreichen, um
ihre Grundidee vorzustellen? Weil der Verfasser zuerst sich und dann seine Leser, auf deren Geduld er baut,
tiberzeugen will, dass die ontologische Grundidee von Tropen als den Bausteinen der Welt wirklich tragt und
sich mit ihnen die Gegenstéinde nachbilden lassen, die der eine oder andere glaubt haben zu miissen. Um
metaphysischen, epistemologischen Dilemmata zu entgehen, sie wenigstens einigermaflen zu meistern, preisen
viele Philosophen Tropen als , Patentbausteine* an. Die vorliegende Arbeit will Tropen weniger empfehlen
als zeigen, wie sie sich anwenden lassen. Dies ist weit miihseliger als sich mit Andeutungen zu begniigen, wie
brauchbar sich doch Tropen erweisen werden, machte man sich die Miihe sie einzusetzen. Lohnt sich die Miihe
wirklich? Der Verfasser wollte zunéichst nachweisen, dass sie sich nicht lohnt. Das Gegenteil ist ihm gelungen.
Zwar sind Tropen wie Sandkorner. Was lésst sich schon aus Sand bauen, das Bestand hat? Wenn man nur
genug ,,Zement“ nimmt, gelingen gewiss stabile Bauten, doch wie viel und welcher ,,Zement® ist erlaubt?
Nur schwache Bindemittel diirfen es sein; sonst gibt man sich mit einer hybriden Tropenontologie zufrieden,
die Bausteine aus fremden, konkurrierenden Ontologien hinzunimmt. Die vier Béinde bieten eine schwiéchst-
mogliche und damit unvermischte, allerdings mit Varianten und Alternativen behaftete Tropentheorie an samt
ihren Wegen, Nebenwegen, Anwendungstests.



Mireille Staschok

Existenz und die Folgen
Logische Konzeptionen von Quantifikation und Pridikation

ISBN: 978-3-8325-2191-2  Preis: 39.00 €

Existenz hat einen eigenwilligen Sonderstatus in der Philosophie und der modernen Logik. Dieser Sonderstatus
erscheint in der klassischen Pradikatenlogik — {ibereinstimmend mit Kants Diktum, dass Existenz kein Pradikat
sei — darin, dass ,Existenz“ nicht als Pradikat erster Stufe, sondern als Quantor behandelt wird. In der
natiirlichen Sprache wird ,existieren dagegen pridikativ verwendet.

Diese andauernde und philosophisch fruchtbare Diskrepanz von Existenz bietet einen guten Zugang, um die
Funktionsweisen von Préidikation und Quantifikation zu beleuchten. Ausgangspunkt der Untersuchungen und
Bezugssystem aller Vergleiche ist die klassische Pradikatenlogik erster Stufe. Als Alternativen zur klassischen
Pradikatenlogik werden logische Systeme, die sich an den Ansichten Meinongs orientieren, logische Syste-
me, die in der Tradition der aristotelischen Termlogik stehen und eine nichttraditionelle Priadikationstheorie
untersucht.

Sebastian Bab, Klaus Robering (Eds.)

Judgements and Propositions
Logical, Linguistic, and Cognitive Issues
ISBN: 978-3-8325-2370-1  Preis: 39.00 €

Frege and Russell in their logico-semantic theories distinguished between a proposition, the judgement that
it is true, and the assertion of this judgement. Their distinction, however, fell into oblivion in the course of
later developments and was replaced by the formalistic notion of an expression derivable by means of pureley
syntactical rules of inference. Recently, however, Frege and Russell’s original distinction has received renewed
interest due to the work of logicians and philosophers such as, for example, Michael Dummett, Per Martin-Lf,
and Dag Prawitz, who have pointed to the central importance of o both the act of assertion and its justification
to logic itself as well as to an adequate theory of meaning and understanding.

The contributions to the present volume deal with central issues raised by these authors and their classical
predecessors: What kind of propositions are there and how do they relate to truth? How are propositions
grasped by human subjects? And how do these subjects judge those propositions according to various di-
mensions (such as that of truth and falsehood)? How are those judgements encoded into natural language,
communicated to other subjects, and decoded by them? What does it mean to procede by inference from
premiss assertions to a new judgement?

Marius Thomann

Die Logik des Konnens
ISBN: 978-3-8325-2672-6  Preis: 41.50 €

Was bedeutet es, einer Person eine praktische Fihigkeit zu attestieren? Und unter welchen Umsténden sind
derartige Fahigkeitszuschreibungen wahr, etwa die Behauptung, Max konne Gitarre spielen? Diese Fragen
stehen im Zentrum der vorliegenden Untersuchung. Thr Gegenstand ist die philosophisch-logische Analyse des
Fihigkeitsbegriffs. Als Leitfaden dient eine Analyse normalsprachlicher Fahigkeitszuschreibungen, geméifl der
Max genau dann Gitarre spielen kann, wenn er dies unter dafiir angemessenen Bedingungen normalerweise
erfolgreich tut. Drei in der Forschungsliteratur vorgeschlagene Systeme werden diskutiert, die zwar wertvolle
Impulse fiir die formale Modellierung geben, als Vertreter des so genannten modalen Ansatzes aber von der
Diagnose ontologischer Inadéquatheit betroffen sind: Die Entitdten, die als Fihigkeiten attribuiert werden,
lassen sich nicht iiber Propositionen individuieren; ohne die explizite Referenz auf Handlungstypen, die eben
gekonnt oder nicht gekonnt werden, bleibt Max’ Fahigkeit, Gitarre zu spielen, unterbestimmt. Um diesen
Einwand zu vermeiden, liegt demgeméifl der hier vorgestellten Logik des Konnens ein Gegenstandsbereich
zugrunde, dessen Struktur an der Ontologie von Handlungen orientiert ist.



Christof Dobief3

Kausale Relata

Eine Untersuchung zur Wechselbeziehung zwischen der Beschaffenheit kausaler Relata und der
Natur der Kausalbeziehung

ISBN: 978-3-8325-5083-7  Preis: 57.00 €

Dieses Buch macht nachdriicklich klar, daf§ die Thematik ,Kausale Relata“ kein Nebenschauplatz der Kau-
salitétsdiskussion ist und sich die Analyse von Kausalitit nicht auf die blofle Betrachtung der Kausalrelation
selbst beschrianken darf. Zwischen der Metaphysik der kausalen Relata und der Natur der Kausalbeziehung,
so die Hauptthese dieses Werks, besteht eine enge theoretische Wechselbeziehung.

Untersucht wird diese These anhand zentraler kausaler Problembereiche: (1) der kausalen Pridemption, (2)
der Transitivitdt der Kausalitdt, (3) der dispositionalen Verursachung, (4) der negativen Verursachung und
(5) der Konzeption von Verursachung als ,,qualitativem Fortbestand® (,,qualitative persistence®).

Wihrend die Probleme der Praemption und des qualitativen Fortbestands in der Auseinandersetzung zwischen
kontrafaktischen Kausalkonzeptionen und Transfertheorien Bedeutung entfalten, betreffen die Transitivitit
der Kausalitit sowie negative und dispositionale Verursachung nahezu alle Kausaltheorien. Der Forderung
nach der Transitivitdt der Kausalitdt kann nur durch eine hinreichend prézise und eindeutig gefaite Konzep-
tion der kausalen Beziehungstriager entsprochen werden. Ob Dispositionen oder Negativereignisse in kausale
Beziehungen treten konnen, hingt entscheidend davon ab, inwiefern Entitéiten dieser Art ein ontologisches
Bleiberecht zugestanden wird.



Logische Philosophie
Eds.: H. Wessel, U. Scheffler, Y. Shramko and M. Urchs

The series “Logische Philosophie” introduces philosophi-
cally relevant results of logical research. In particular, trea-
tises are issued in which logical means are employed to solve
philosophical problems.

We all frequently use the word “concept”. Yet do we know
what we mean using this word in sundry contexts? Can we
say, for example, that there can be several concepts of an
object? Or: can we state that some concepts develop?
What relation connects concepts with expressions of a
natural language? What is the meaning of an expression?
Is Quine’s ‘stimulus meaning’ the only possibility of defin-
ing meaning? The author of the present publication (and
of “Concepts and Objects”, 1998) offers some answers to
these (and many other) questions from the viewpoint of
transparent intensional logic founded by the late Czech
logician Pavel Tichy (11994 Dunedin).
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