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Preface

First-Order Logic Revisited is the proceedings from the conference FOL75 —
75 Years of First-Order Logic held at Humboldt University, Berlin, Germany;,
September 18 — 21, 2003.

As the editors of this volume and the core group of organization for the
conference we would like to express our gratitude to the following individu-
als for contributing to making FOL75 — 75 Years of First-Order Logic the
successful conference it was:

J.v. Benthem, J.M. Dunn, H.-D. Ebbinghaus, D. M. Gabbay, G. Sandu, P.G.
Hansen, and a group of students from Humboldt University

The conference was only made possible by the financial and organizational
cooperation between the following institutions to which we would also like
to extend our gratitude:

SHF — The Danish Research Council for the Humanities, DFG — Deutsche For-
schungsgemeinschaft, Dresden University of Technology, Humboldt University,
Logos-Verlag, ®LOG — The Danish Network for Philosophical Logic and Its Ap-
plications, Roskilde University, Carl und Max Schneider Stiftung at the Institute
of Philosophy of Humboldt University

It is our hope that these proceedings adequately convey the satisfactory
fulfillment of the conference aim of reflecting upon and discussing first-order
logic, its history, its wide range of applications, its extensions and alterna-
tives in the light of the 75 years past since the publication of Hilbert and
Ackermann’s seminal Grundziige der Theoretischen Logik.

Vincent F. Hendricks Fabian Neuhaus
Stig Andur Pedersen Uwe Scheffler Heinrich Wansing
June 2004
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Introduction

V. Hendricks, F. Neuhaus, S.A. Pedersen, U. Scheffler, H. Wansing

In 1928 Hilbert and Ackermann published their famous Grundzige der Theo-
retischen Logik. In the impressively short book they were able to cover the
propositional calculus, the calculus of classes, the higher-order calculus of
relations and, most importantly, present an axiomatic system of the first-
order logic, which altogether may be viewed as the very starting point of
modern mathematical logic. Today, 75 years later, first-order logic (FOL) is
a powerful tool and an indispensable companion in a variety of fields rang-
ing from philosophy over mathematics to computer science, linguistics and
psychology.

This Anniversary called for a celebration. The aim FOL75 — 75 Years of
First-Order Logic was to honor the 75 years since the publication of the semi-
nal book, and accordingly dedicate an event to reflection upon and discussion
of first-order logic, its history, its wide range of applications, its extensions
and alternatives.

In order to meet this ambitious aim with satisfaction, leading interna-
tional scholars were invited to deliver plenary talks in such a way that all
aspects from history to applications were covered as they relate to first-order
logic. It was with no greater pride that the following list of distinguished
philosophers, mathematicians, logicians, and computer scientists could be
put together:

Hendricks et al. (eds.):
First-Order Logic Revisited
Logos Verlag Berlin (2004), 1-6



2 INTRODUCTION

Hajnal Andréka (Hungary) Wilfrid Hodges (Great Britain)
George Englebretsen (Canada) Istvan Németi (Hungary)
William Ewald (USA) Alan Robinson (USA)

Jeroen Groenendijk (The Netherlands) Dana Scott (USA)
Petr Hajek (Czech Republic) Valentin Shehtman (Russia)

Jaakko Hintikka (USA) Martin Stokhof (The Netherlands)

Equally important was to have a program committee capable of putting
a feasible program together. Again a matching assembly was established
consisting of

Johan van Benthem (The Netherlands) Dov M. Gabbay (Great Britain)
J. Michael Dunn (USA) Gabriel Sandu (Finland)

Heinz-Dieter Ebbinghaus (Germany)

together with the core group of organizers. The program committee was also
responsible for assessing the large number of contributed papers submitted
for presentation. The result of this careful selection process is reflected in
these proceedings. Rather than attempting to categorize the papers and
presenting them in potentially arbitrary and overlapping compartments, we
decided to simply place them in alphabetical order after authors and let
this listing in turn demonstrate the many theoretical aspects, considerations,
discussions and practical applications first-order logic has generated over the
past 75 years.

In the first paper ‘Logical Analysis of Relativity Theories” by H. Andréka,
J.X. Madarasz, and I. Németi first-order logic is applied to analyze relativ-
ity theory. Among other interesting results is the presentation of a first-
order logic axiomatization called Spectrel, which turns out to be ‘a faithful,
streamlined FOL axiomatization of (the kinematics of) special relativity the-
ory. Specrel is intended to consist of simple, intuitively convincing, logically
transparent, natural axioms.” Various fragments of the axiomatization are
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then scrutinized together with generalizations to the general theory of rela-
tivity.

‘Safety Signatures for First-Order Languages and their Applications’ by
A. Avron develops a general framework for safely isolating the set of all safe
formulas of various first-order languages. The significance of circumscriptions
of this nature is then illuminated through examples drawn from a rich pool of
applications in naive set theory with respect to the comprehension schema, in
computability theory pertaining to recursive relations and in query languages
for databases.

K. Briinnler and A. Guglielmi in ‘A First Order System with Finite Choice
of Premises’ suggest a simple and elegant way of eliminating infinite choices
in sequent systems of first-order logic which is of particular interest to auto-
mated deduction and logic programming. The elimination is accomplished
by applying a particular calculus of structures allowing for derivations using
inference rules ‘deep’ inside first-order formulae.

In ‘Predicate Logic, Predicates, and Terms’ G. Englebretsen outlines a
Term Logic developed jointly with F. Sommers which is on par with the gen-
eral inferential powers of first-order logic but simultaneously ‘enjoys certain
advantages in terms of simplicity and naturalness.” The outline of the term
logic is accompanied by a becoming historical overview and motivation.

The history and chronological development of first-order logic before and
around the publication of Hilbert and Ackermann’s Grundziige der Theo-
retischen Logik is discussed by W. Ewald in ‘FOL757". It turns out that
Hilbert’s (and Bernays) meta-mathematical understanding of logic pre-dates
both this publication and Hilbert’s later research in proof theory. However his
early understanding of first-order logic from 1918 was not quite the modern
one later associated with him.

Petr Hajek begins by addressing the vagueness of propositions and from
here on is lead to fuzzy logic in ‘Fuzzy Logic and Arithmetical Hierarchy
IV’. Fuzzy first-order logic (BLV) is subsequently defined and a number of
interesting arithmetical complexity properties are then either outlined or
proved.

The expressibility of first-order logic is discussed by J. Hintikka in ‘What
is the True Algebra of First-Order Logic?’ with particular emphasis on quan-
tifier dependencies. Standard syntactical nesting of quantifiers is incapable
of capturing many pertinent patterns of dependence between variables in
the language. A remedy to this shortcoming is to introduce an indepen-
dence operator into first-order logic which in turn implements Hintikka’s
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independence-friendly (IF) logic. IF logic is subsequently situated in an al-
gebraic setting.

In ‘The Importance and Neglect of Conceptual Analysis: Hilbert-Acker-
mann iii.3” W. Hodges returns to the intellectual surroundings before and in
the vicinity of the publication of Grundzige with particular attention paid
to the debate between Frege and Hilbert on conceptual analysis and logical
inference. The twist and turns of this debate are closely followed and ends
with an interesting outline of a program for mathematical work which both
Hilbert, Frege and also Tarski could subscribe to.

Marcus Kracht continues by discussing substitution in ‘Notes on Substitu-
tion in First-Order Logic’. Substitutions are used all the time and everywhere
in first-order logic. Kracht rightfully asks whether the syntax of first-order
logic actually naturally lends itself to a notion of replacement of formulae
or terms in the first place. Through linguistic theory an interesting result
is presented, which goes to show the apprehensions one may rightfully have
towards substitution in first-order languages.

A new formal system of logic is presented in ‘Logical Inquiries into a New
Formal System with Plural Reference’ by R. Lanzet and H. Ben-Yami. The
idea is to base a formal system of logic on the semantics of natural language
rather than on an artificial language like first-order. Furthermore, one may
obtain a deductive power of this new system matching the deductive power
of some versions of first-order logic.

The relation between first-order logic and the general theory of relativity
is revisited in ‘On Generalizing the Logic-Approach to Space-Time Towards
General Relativity: First Steps’ by J.X. Madarasz, I. Németi, and C. Tdoke.
Using many-valued first-order logic and the axiomatization in Spectrel the
authors outline two first steps of applying logic to the general theory of
relativity in terms of (i) foundations for space-time theories, and (ii) logic-
based conceptual analysis of theories of relativity.

‘Constructive Predicate Logic and Constructive Modal Logic. Formal Du-
ality versus Semantical Duality’ by S.P. Odintsov and H. Wansing analyzes
constructive modal and first-order logic together with duality properties of
the modal operators. In particular, a translation of modal logic into con-
structive predicate logic is used to obtain natural examples of constructive
modal logics with strong negation that fail to satisfy syntactic duality.

J.A. Robinson goes on to discuss mechanization, proof and formalized rea-
soning in ‘Logic is not the Whole Story’. First-order logic is often considered
to be capturing important features of actual reasoning in mathematical proofs



HENDRICKS et al. 5

notably ‘objective validity or logical correctness’. With historical flashbacks
Robinson provides an illuminating discussion as to whether another impor-
tant feature of mathematical proofs, namely ‘epistemological coherence’ is
reflected in the logical setting.

In ‘First-Order Logic, Second-Order Logic, and Completeness’ M. Ross-
berg focuses on second-order logic. While first-order logic is typically consid-
ered to being properly a logic, second-order logic is considered more dubious
as incompleteness results are taken to demonstrate the intractability of the
second-order consequence relation. The author provides arguments to the
effect that although a completeness result of some kind is lacking for second-
order logic this does not suffice for dismissing second-order logic as a logic.

First-order logic as a formal model of reasoning is revisited by M. Thiel-
scher in ‘Logic-Based Agents and the Frame Problem: A Case for Progres-
sion’. In Artificial Intelligence a common problem encountered is the Frame
Problem. Using progression-based rather than regression-based logic pro-
gramming systems, the superiority of the former progression-based system is
discussed for dealing with the Frame Problem.

D.E. Willard introduces new variations of Godel’s second incompleteness
theorem in ‘A Version of the Second Incompleteness Theorem For Axiom Sys-
tems that Recognize Addition But Not Multiplication as a Total Function’.
Such variations are interesting in that boundary-exceptions to the theorem
have been uncovered, and the limits of the famous Godel result in turn may
be explored.

In the final paper ‘First-Order Logic: (Philosophical) Pro and Contra’
J. Wolenski takes first-order logic for a thorough philosophical treatment.
Questions of purpose, scope, relation to other disciplines, the inherent nature
of logic in the human mind, are dealt with. It is convincingly argued that
firm and rigorous meta-logical results actually may shed illuminating light
on the traditional philosophical questions about logic and its very nature.

The participants of the conference took an extraordinary interest in the
celebration; both in recognition of the general multi-disciplinary importance
of first-order logic, but apparently also because of the importance first-order
logic has had in shaping their own ideas and subsequent intellectual accom-
plishments. Alongside with Gottlob Frege, Kurt Godel, Leopold Lowenheim,
Thoralf Skolem, Jacques Herbrand, Gerhad Gentzen, Alfred Tarski, Per Lind-
strom and others, Leon Henkin has made path-breaking contributions to
the development of first- and higher-order logic. Although Prof. Dr. Leon
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Henkin was unable to attend for reasons explained by himself immediately
below he eloquently expresses this sentiment in his reply to the invitation:

Saturday, June 8 / 2002
Dear Prof. Dr. Wansing,

Thank you very much for your invitation to give a plenary talk
at the conference FOLT5. Please extend my thanks also to the
other distinguished members of the organizing committee. The
concept of a conference on the evolution of predicate logic dur-
ing the first 75 years of Hilbert and Ackermann’s Grundzige is a
wonderful one, and of course that evolution is entwined with my
own development as a logician. Imagining a visit to Humboldt
University in 2003 and participating in the conference excites me,
and I would like to be able to accept. Unfortunately, I am 7 years
older than the book we are admiring, and my own evolution is
subject to biological forces that do not exist for predicate logic.
Had I received your invitation at a time when I was 75, I surely
would have accepted — if sureness is meaningful in a counterfac-
tual conditional! — but in the last 6 years I have suffered serious
declines in my vision, my hearing, and my memory, so that I
must unwillingly decline. Please accept my best wishes for the
wonderful conference you are starting to put together. I hope I'll
be able to read its Proceedings.

Leon Henkin

Professor Emeritus

We dedicate this volume to Prof. Leon Henkin.



Logical analysis of relativity theories!

Andréka, H. Madarasz, J. X. and Németi, I.

andreka@renyi.hu, madarasz@renyi.hu, nemeti@renyi.hu
Alfréd Rényi Institute of Mathematics, Budapest, H-1364 Hungary, Pf. 127

1 Introduction

In this paper we try to give a small sample illustrating the approach of
Andréka et al. [2],[5],[21]-[24] to a logical analysis of relativity theory con-
ducted purely in first-order logic, FOL. We stick with FOL for methodological
reasons. Here we first concentrate on special relativity, but in [22],[2],[5],[24]
steps are made in the direction of generalizing this FOL-approach towards
general relativity. We discuss that direction in the second half of this in-
troduction. In [5] we build up variants of relativity theory as “competing”
axiom systems formalized in FOL. The reason for having several versions
for the theory, i.e. several axiom systems, is that this way we can study the
consequences of the various axioms, enabling us to find out which axiom is
responsible for what interesting or “exotic” prediction of relativity theory.
Among others, this enables us to refine the conceptual analysis of relativity
in Friedman [12] and Rindler [28], or compare the Reichenbach-Griinbaum-
Salmon approach to relativity (cf. [31] or [12]) with the standard one. Later
we will refer to the just indicated “several competing axiom systems” feature
of our theory as flexibility feature or modularity feature.

One of our FOL axiom systems will be called Specrel. We will see that
Specrel is a faithful, streamlined FOL axiomatization of (the kinematics of)

'Research supported by the Hungarian National Foundation for Scientific Research
grants No’s T'30314, T43242, T35192, as well as by COST grant No. 274.

Hendricks et al. (eds.):
First-Order Logic Revisited
Logos Verlag Berlin (2004), 7-36



8 LOGIC AND RELATIVITY THEORY

special relativity theory. Specrel is intended to consist of simple, intuitively
convincing, logically transparent, natural axioms. Besides Specrel we study
its fragments, its generalizations towards general relativity and other versions
of relativity.

As explained in [5, §1], the present approach is (in some sense) more am-
bitious (as a relativity theory) than e.g. a formalization of, say, Minkowskian
geometry in first-order logic would be, in various respects: (i) One respect
is that if we identified Minkowskian geometry with special relativity, then
this would yield an uninterpreted (in the physical sense) version of relativity,
while the first-order theory which we develop in [5] contains “its own interpre-
tation”, too. (ii) It is not clear to us how the conceptual analysis? suggested
e.g. in [12] could be squeezed into Minkowskian geometry. (iii) Our formal-
ized relativity theory is undecidable, while the FOL-theory of Minkowskian
geometry in [13] is decidable, pointing in the direction that in our theory one
can talk about things which do not appear in pure Minkowskian geometry.
Someone may argue that Minkowskian geometry is the heart of special rel-
ativity theory; but it is only the heart, and we would like to formalize the
full theory and not only its heart. (iv) The observational /theoretical dual-
ity outlined in [12] motivates us to keep our vocabulary and axioms on the
modular, observational side (while Minkowskian geometry remains more on
the “monolithic”, “theoretical” side).® (v) Besides building up observational
relativity in FOL, we also formalize the “monolithic”, theoretically oriented
geometric theory of space-time in FOL in e.g. [21],]23]. Then we prove that
these two FOL theories are FOL-definitionally equivalent. So the user of
our FOL theory can switch between the observational and theoretical ver-
sions whenever he so wishes. (vi) We also work on generalizing gradually our
FOL theory of special relativity in the direction of general relativity in e.g.
[2],[22],[24]. For this gradual generalization we will rely on the modularity
feature of our observational theory mentioned way above. This feature is tied
to the theory’s having many small building blocks each of which carries some
intuitive and natural meaning and which blocks can be removed or added
one-by-one like in a lego toy world yielding new, meaningful and coherent
versions of the theory. Besides generalization towards general relativity, this

2Which axiom is responsible for what prediction, which axiom is intuitively more nat-
ural than the other, etc.

3We use the observational/theoretical distinction in relativity in the sense of [12] going
back to Reichenbach (1920). Sometimes it is useful to think of this as bottom-up/top-down
distinction.



ANDREKA, H. MADARASZ, J. X. AND NEMETI, 1. 9

modularity feature is used in answering the so-called why-type questions and
for conceptual analysis. This degree of modularity does not seem to be easily
available if one starts out with an axiomatization of Minkowskian geometry
or some other “top-down” approach.

After having formalized relativity theory in first-order logic, one can use
the well developed machinery of FOL for studying properties of the the-
ory, e.g. Specrel (e.g. the number of non-elementarily equivalent models, or
its relationships with Godel’s incompleteness theorems, independence issues,
etc). The reasons why we find it important to stick with FOL as a frame-
work throughout the logical analysis of relativity can be found e.g. in van
Benthem [8] when read together with Sain [29]. These reasons are further
explained in [5, Appendix|, Vaénanen [32], Wolenski [34]. It is explained
e.g. in Feferman [10] and in Ferreir6s [11] why and how we can stay in the
framework of FOL throughout all our developments, if we want to.

As already indicated, the present work intends to give samples from a
broader ongoing project represented by e.g. [5],[2],[21],]22],]24],[1]. A gen-
eral plan for this broader project goes as follows: First we build up (the
kinematics of) special relativity theory in FOL obtaining the finitely axiom-
atized FOL theory Specrel. Specrel was mentioned already at the beginning
of this introduction. We put emphasis on making the axioms of Specrel
streamlined, transparent, and intuitively convincing. First, as usual, we es-
tablish adequateness of Specrel for special relativity (completeness theorem,
independence of the axioms, etc).* Then we elaborate a conceptual analy-
sis of special relativity, its variants, and its generalizations. This analysis
is based on the FOL axiom system Specrel, on variants and fragments of
Specrel and their generalizations. Among others, we analyse Specrel both
from the logical point of view (model theory, proof theory, “reverse mathe-
matics” etc) and from the physico-philosophical relativity theoretic point of
view. Much of this is done in [5],[21],[2],[24]. As a natural continuation of all
this, we also experiment with generalizing Specrel in the direction of general
relativity.

The first two steps in this generalization are (I) and (II) below. (I) We
extend Specrel to accomodate accelerated observers which, via Einstein’s
equivalence principle, enables us to study some features of gravity. E.g. the
Twin Paradox and the Tower Paradox (gravity slows time down) become
provable in the accelerated observers version Acc(Specrel) of Specrel, cf.

4In some sense, we consider this as “Step Zero”.
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e.g. [2]. (II) As a second step in this direction, we make Acc(Specrel) local
where “local” is understood in the sense of general relativity. We do this
via the so-called method of localization which can be applied basically to
any version of Specrel and Acc(Specrel). The localized versions of these
theories are built up also in FOL (we make special efforts to ensure this)
for methodological reasons mentioned earlier. Since localization turns out
to be such a general procedure, we can denote the so obtained theories as
Loc(Specrel), Loc(Acc(Specrel)) ete. So, Loc(—) can be regarded as some
kind of a general “operator” applicable to theories (which are variants of
Specrel).

It is explained in the classic textbook [25, pp.163-5] on general relativity
that by suitably combining accelerated observers and localization one can
safely move towards general relativity by starting out from special relativity,
cf. e.g. Box 6.1 on p.164 therein. This motivates our study of the FOL theory
Loc(Ace(Specrel)) and its variants. The investigation of Loc(Acc(Specrel))
is analogous with that of Specrel, i.e. after introducing the theory and prov-
ing theorems about its basic properties comes a fine-scale conceptual analysis
both from the logic point of view and from the relativity theoretic point of
view. The operator Loc(—) and Loc(Specrel) in particular are discussed in
the present volume in [22]. The ideas in [22] are easily combined with those
in [2] on Acc(Specrel) in order to obtain a comprehensive understanding of
Loc(Acc(Specrel)). More on Loc(—) and Loc(Specrel) is in [22],[24], while
more on Acc(Specrel) is found in [2], and the works quoted therein.

The research project reported herein is part of a much broader back-
ground literature of logic-based approaches to space-time. E.g., axiomatiza-
tions of special relativity are abundant in the literature. To mention some:
axiomatizations of special relativity have been studied in works of Robb, Re-
ichenbach, Carathéodory, Alexandrov and his school, Suppes and his school,
Szekeres, Ax, Friedman, Mundy, Goldblatt, Schutz, Walker. This is only a
small sample. There are more works listed in the bibliographies of [2],[5],[21].
Latzer [19], Buseman [9] represent moves towards general relativity in a spirit
similar to that of our [22],[2],[24].

2 The frame language

We introduce the first-order logic language, which we will use for formalizing
(first special) relativity, with an eye open for the subsequent generalization
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of the theory. We want to talk about motion of bodies.” What is motion?
It is changing location in time. Therefore we will talk about bodies, time,
space, and about a location-function which tells us which body is where at
a given time. We want to talk about relativity theories; therefore these
location functions will depend on observers; different observers may see the
same motion differently. (The location function determined by an observer
m will be called the world-view function w,, of observer m.) We will treat
observers as special bodies whose motion will be represented exactly the same
way as that of the rest of the bodies. These observers are often called, in the
literature, reference frames.%

It will be convenient for us to be flexible about the dimension of space:
we will not only treat 3-dimensional space, but 1 or 2, or higher-dimensional
spaces as well. We will treat time as a special dimension of space-time. n
will denote the dimension of our space-time.” Thus, usually n = 4 (3 space-
dimensions and 1 time-dimension), but we will consider also n = 2,3 or
n > 4. Our bodies will be idealized, pointlike.

The vocabulary of our language is the following: unary relations

B (bodies)

Obs (observers)

Ph (photons)

@) (quantities used for giving location and “measuring time”);

an n + 2-ary relation, the location- or world-view relation

W (world-view relation, W (m,b,t,sy,...,s,_1) intends to mean that
according to observer (or reference-frame) m, the body b is present at
time ¢ and location (si,...,8,-1));

for dealing with quantities, we will have two binary functions, and a binary
relation:

5In this paper we concentrate only on kinematics; the same kind of investigations can
be carried out concerning mass, forces, energy etc. However, if a theorem can be proved
without referring to these extra notions, we consider that a virtue.

6This difference is only a matter of linguistic convention.

"Recent generalizations of general relativity in the literature (e.g. M-theory) indicate
that it might be useful to leave n as a variable.
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+, 0 <.
In our theories, we will always assume the following:
e observers and photons are bodies,

e W(m,b,t,s1,...,S,—1) implies that m is an observer, b is a body, and
t,s1,...,S,_1 are quantities,

e (Q,+,, <) is a Euclidean® linearly ordered field.

We found that the simplest way of treating these assumptions is to use a
2-sorted first-order language, where

B, Q) are sorts or universes,
Obs, Ph are unary relations of sort B,
W is an n + 2-ary relation of sort B x B X Q X @ X --- X @,

+,- and < are operations and relation of sort Q.

Let
M = (B, 0bs™, PAM; QM +M, M <M M)
be a model of our two-sorted language. This means that BM and QM are sets,
they are called the universes of sort B and @ respectively, ObsM, PhkM C BM
etc. We will omit the superscripts M. We call M a frame-model if (Q, +, -, <)
is a Euclidean linearly ordered field and W C Obs x B x Q X --- X Q. E

denotes the usual semantical consequence relation induced by frame-models,
i.e. Th |= ¢ means that for every frame-model M, if M |= Th, then M = .

Next we introduce some terminology in connection with arbitrary frame-
models M = (B, Obs, Ph; Q,+, -, <; W).

The essence, the “heart” of a frame-model is the world-view relation W.
Since W C Obs x B x "(@), for every observer m € Obs it induces a function
Wy, "Q — {X : X C B} as follows: for every p € "Q

wp(p):={be B : W(m,b,p)}.

Thus w,,(p) is the set of bodies present at space-time location p for m. We

8An ordered field is called Fuclidean if every positive element has a square root in it,
ie. if (Vo > 0)(Jy)z =y - y is valid in it.



ANDREKA, H. MADARASZ, J. X. AND NEMETI, 1. 13

"Q

Figure 1: The world-view function w,,.

call a set of bodies an event, and w,, is called the world-view function of m,
which to each space-time location p tells us what event observer m observes
or “sees happening” at location p. “Seeing” has nothing to do with photons
here, it really means “coordinatizing” only.

The trace or life-line of a body b according to an observer m is the set of
space-time locations where m sees b, i.e.

trm(b) :={p€"Q : W(m,b,p)}.

The world-view function w,, can be recovered from the family of traces of
all bodies (from (tr,,(b) : b € B)), and the world-view-relation W can be
recovered from all the world-view functions (from (w,, : m € Obs)). Thus
we can ‘represent” the function w,, by the world-view of m, which is just the
indexed family (tr,,(b) : b € B), and which, in turn, we represent by drawing
the traces of bodies that we are interested in. See Figure 2.

Since Q = (Q, +, -) is a field, we can define n-dimensional straight lines
as follows (these will be the life-lines of “inertial bodies”). We will use the
vector-space structure of "Q, i.e. if p,qg € "Q and A € Q) then p+q,p—q, \p €
"Q and 0 denotes the origin, i.e. 0 = (0,...,0), where 0 is the zero-element of
the field. Let ¢ C "Q). We say that ¢ is a straight line iff there are p,a € "(Q)
such that o # 0 and

C={p+r-a:re@}

Lines denotes the set of all straight lines (of dimension n). ¢ denotes the
time azxis,

t:={(r,0,...,0) : r€Q}.
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t?“m(bl)

t?"m (b2)

¥ £, (b3)

Figure 2: World-view of m.

t is a straight line. If ¢ € Lines, then ang(f), defined below, represents
the angle’ between ¢ and ¢ (where a = {(ap,...,q,_1) is associated to ¢ as
before):

a2 Oé2 .
ang({) = % if ap # 0, and
0
ang(l) :== oo if oy = 0. Here oo is any element not in Q.

ang(¢) = 1 means intuitively that the angle between ¢ and t is 45°. (See
Figure 3.) Assume that ¢r,(k) = £ is a straight line. Then ang(¢) represents
the velocity'® of k as seen by m:

(k) := ang(tr,,(k)), if tr,,(k) € Lines.

E.g. v,,(k) = 0 means that tr,, (k) is parallel with ¢, i.e. k’s location does not
change with time, i.e. k is at rest w.r.t. m. The bigger v,,(k) is, the bigger
distance k travels in a unit time (as seen by m).

3 Basic axioms of special relativity

As already indicated, a plurality of “competing” axiom systems (or “relativity
theories”) is an essential feature of a logical analysis of relativity as devel-
oped in e.g. [5],[21],[2]. In this section we recall one of these axiom systems

9 Actually, ang(¢) is the square of the tangent of the angle between ¢ and £.
Tnstead of “velocity”, the precise expression would be “speed”, since vy, (k) is a scalar
and not a vector.
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. \ vm(h') > 1

Figure 3: Velocities.

and will call it Specrely. It consists of five axioms. In the following axioms,
m, k stand for arbitrary observers, h for an arbitrary body, ¢ for an arbitrary
straight line (i.e. element of Lines), and ph for an arbitrary photon. We use
the standard custom in logic that free variables should be understood as uni-
versally quantified, e.g. the axiom tr,,(m) = t means (Vm € Obs)tr,,(m) =t.

Our first axiom says that the traces of observers and photons, as seen by
any observer, are straight lines:

AxLine tr,,(h) € Lines for h € Obs U Ph.

Since translating our intuitive statements to first-order formulas in the
language of our frame-models (M’s) will be straightforward, we will not give
these translations,!* we will only give the intuitive forms.

The second axiom says that any observer sees himself at rest in the origin:
AxSelf tr,,(m)=1.
The third axiom says that we have the tools for thought-experiments: on

any appropriate straight line we can assume there is a potential observer;
and the same for photons:!?

"They can be found in [2],[21].
12This axiom can be “tamed” by using modal logic, such that space-time does not get
crowded with k’s and ph’s, cf. [5].
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AxPot ang(f) <1 = (3k € Obs)l = tr,,(k), and
ang(l) =1 = (3ph € Ph)l = tr,,(ph).

The fourth axiom says that all observers “see” the same events (possibly

at different space-time locations):!3

AxEvents Rng(w,,) = Rng(wg).
The last axiom says that the velocity of a photon is 1, for each observer:
AxPh v, (ph) =1 (and tr,,(ph) € Lines).
Our choice for a “first possible” axiom system for special relativity is:
Specrely := {AxLine, AxSelf, AxPot, AxEvents, AxPh}.

When we want to indicate explicitly the number of dimensions, we will
write Specrely(n) in place of Specrely. We note that AxPh together with
the photon part of AxPot is the relativistic part of Specrely. (The rest are
true in Newtonian Mechanics.)

Let n > 2. In this paper we show that Specrely(n) is consistent, it is
not independent, and it forbids faster than light observers but permits faster
than light bodies.!* We show that Specrel, generates an undecidable first-
order theory but we can strengthen it so that it becomes decidable (moreover
categorical); and also we can strengthen it so that it becomes hereditarily
undecidable, further both of Godel’s incompleteness properties hold for this
strengthened version. We will see that both kinds of extension of Specrel,
are natural.

13This will have to be considerably weakened, when preparing for a generalization of
our axiom systems like Specrely towards general relativity, cf. [5],[2],[22]. For a function
f, its range is Rng(f) := {y : Jx(f(z) = y)}.

4The point in proving things like Specrely = no FTL observer is in the small number
of axioms and concepts needed. Actually in [22] we show that a much weaker version of
Specrely is enough for proving this conclusion. A more refined version of the theorem says
that FTL observers “lose most of their meter rods”, cf. [5].
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4 Traveling with light, traveling faster than light

As a warm-up, we begin with a simple statement about our axiom system
Specrely. When Einstein was a child, he once dreamed that he traveled
together with a photon, and then he tried to imagine how the world could
look like when one sees it while traveling with a photon. Our first proposition
says that in models of Specrely, you can’t see the world while traveling with
a photon. (By “seeing” we mean “coordinatizing”.)

Proposition 1. Specrely = trp,(k) # trp(ph) for any m,k € Obs and
ph € Ph.

Proof. Assume that tr,,(k) = tr,,(ph) for some m,k € Obs,ph € Ph in a
model of Specrely. Then try(k) =t and vg(ph) = 1 by AxSelf, AxPh. Thus
tre(k) # trg(ph). Then k sees an event in which k is present but ph is not
present (namely such is wy(p) for any p € tri(k) \ tri(ph)). However, m does
not see such an event by tr,, (k) = tr,,(ph). This contradicts AxEvents,
proving the proposition. See Figure 4. QED

/]

try, (k) = trm(ph) tri(k) # tri(ph)

Figure 4: An observer cannot travel together with a photon.

Theorem 1. Let n > 2.
(1) Specrely(n) is not independent, namely

{AxSelf, AxPot, AxEvents, AxPh} | AxLine.

(11) Specrely(2) is independent, i.e. for any Ax € Specrely(2) we have
Specrely(2) \ {Ax} [ Ax.
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Proof. For brevity, we will write Specrely — Ax for Specrely \ {Ax}. It is
not difficult to check that Specrely — Ax [~ Ax for any Ax € Specrely, if
Ax # AxLine. So we have to show that

Specrely(n) — AxLine = AxLine and
Specrely(2) — AxLine [~ AxLine.

Assume that M is a model of Specrely(n) — AxLine. Let m,k € ObsM
and define

fok = {(P, @) €"Q X "Q : wp(p) = wi(q)}.

Thus f,,x is a binary relation on space-time locations; two space-time loca-
tions are related when m and k see the same “events” at those points. We
now show that

(*) fmr is a bijective mapping of "Q) onto @), in any model of
{AxPot, AxEvents}.

Let p,q € @ be distinct. Then there is a straight line ¢ with ang(¢) < 1
separating them, i.e. p € £ and ¢ ¢ ¢. By AxPot, ¢ is the trace of some
observer h. Then h € w,,(p), h ¢ w,(q), showing that w,, is injective for any
observer m. By AxEvents we have that both the domain and the range of
frnk 8 "Q (since f ) = frm). These facts imply (*).

fmi is called the world-view transformation between m and k: its intuitive
meaning is that m thinks that k£ is “crazy” to the extent that his seeing is
distorted by this function f,,; (whatever event m sees at space-time location
p, k sees it at location f,.x(p)).

Now, AxPh, AxPot require that f,,, preserve light-lines (i.e. straight
lines with angle 1). By a slight generalization of the celebrated Alexandrov-
Zeeman theorem (that we will recall in a moment) then f,; has to pre-
serve all straight lines, in other words, it is a collineation. Then try(m) =
fmk(trm(m)) = fir(t) is a straight line by AxSelf. Thus AxLine holds.

To show Specrely(2) — AxLine [~ AxLine we construct a bijection f :
2R — 2R, where R is the set of reals, which preserves light-lines, but which
takes t onto a curve which is not a straight line. Here is the idea of the
construction (see Figure 5):

Let ¢’ be a “slightly bent” version of ¢, and let f be any bijection between
t and t. We extend f to any point p not on ¢ as follows: Let a and b be
the two points where the two light-lines through p intersect ¢, and let f(p)
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Figure 5: Illustration for the proof of Thm.1(ii). f preserves all light-lines
but not all straight lines. Thus ¢ cannot be defined from light-lines in 2R.

be the intersection point of the two corresponding light-lines going through
f(a) and f(b). With some care this extension of f will be a bijection, and it
preserves all light-lines by its construction. Now it is not difficult to construct
a model of Specrely(2) — AxLine where this f is one of the world-view
transformations; and so in this model AxLine does not hold.

We now briefly recall the Alerandrov-Zeeman theorem. This theorem
states that a permutation of *R which preserves light-lines is a collineation
of a special form (namely a so-called Lorentz-transformation up to a dilation,
a translation, and a field-automorphism-induced transformation!®). An illu-
minating logical proof can be found in Appendix B of Goldblatt [13]. That
proof can be generalized to any Euclidean field () and n > 2 in place of R and
4. About the Alexandrov-Zeeman theorem see also [22] in this volume. We
sketch the proof for n = 3. Let ¢ be any light-line. Let P be the set of those
points through which no light-line intersecting ¢ goes through. Then it is not
difficult to see that P is just the plane tangent to any light-cone!® containing
¢, see Figure 6. Now we can obtain all straight lines ¢ with ang(¢) > 1 by
intersecting such tangent planes; then we can define all planes using these
newly obtained straight lines, and then we can obtain all the straight lines
by intersecting again these new planes. Hence, any light-line preserving per-
mutation is a collineation. We omit the proof of the rest, but for an idea of

15This latter will matter when R will be replaced with Q.
16 A light-cone is the union of all light-lines going through a given point.
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Plane(¢,p) = P Plane(?,p) # P

¢ / 0 (

Figure 6: Ilustration for the proof of the Alexandrov-Zeeman theorem. Def-
inition of tangent planes: P is the set of points p through which no light-line
intersecting ¢ goes. All straight lines can be defined from light-lines in 3R.

the proof see the proof of Thm.3 herein. QED

Let M be a frame-model, and k£ be an observer in it. We say that £ is a
faster than light (FTL) observer, if v,,(k) > 1 for some observer m. Below,
no FTL observer abbreviates the sentence (Ym, k € Obs)v,,(k) < 1, i.e. that
there is no FTL observer in the model.'”

Theorem 2. Let n > 2.
(i) Specrely(2) = no FTL observer.
(ii) Specrely(n) = no FTL observer.

Proof. Since we want to stay visual, we give a proof for n = 3. We give
a proof that is centered around the notion of Minkowski-orthogonality. Let

TThere are well known common sense arguments, going back to Einstein, against FTL
(cf. e.g. [27, p.11]). These involve “causality” among other undefined concepts. As e.g.
Godel pointed out, these arguments are not proofs in the logical sense. Our present
Theorem 2 is of an essentially different character from this point of view (contrast e.g. (i)
with (ii)).
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¢, k be two straight lines. We say that ¢ is Minkowski-orthogonal (or shortly,
M-orthogonal) to k if ¢ is orthogonal in the usual Euclidean sense to the
reflection k' of k to the zy-plane. We say that ¢ is Minkowski-orthogonal
to the plane P if it is Minkowski-orthogonal to at least two distinct straight
lines lying in P, see Figure 7.

j [

Figure 7: ¢ is Minkowski-orthogonal to P.

Minkowski-orthogonality is exhaustively investigated, e.g. fully axiom-
atized, in Goldblatt [13]. We will use here the following corollary of the
generalized Alexandrov-Zeeman theorem:

(1) If a bijection of ") preserves light-lines, then it preserves Minkowski-
orthogonality.

We call a plane space-like if it contains no light-lines, and we call a straight
line time-like if it is Minkowski-orthogonal to a space-like plane. It is not
difficult to check (see Figure 8) that

(2) ¢ is time-like iff ang(¢) < 1.

Clearly t is time-like, since it is M-orthogonal to the wzy-plane which
contains no light-line. Now we have seen in the proof of Theorem 1 that
f = fem is a bijective collineation that preserves light-lines. Thus f takes
the zy-plane to a space-like plane to which f[f] is M-orthogonal by (1), thus
f1t] is time-like. By (2) then ang(f[t]) < 1. But f[t] = fem[tre(k)] = tru(k),
thus v, (k) < 1in M.
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time-likelines are
within the cone
/>
space-like planes are
outside the cone

v

Figure 8: Time-like lines and space-like planes.

To show Specrely(2) = no FTL observer, we have to give a model of
Specrely(2) in which there are FTL-observers. Such models are given in [5],
in section 2.4. QED

On pushing the limits of Theorem 2: The Alexandrov-Zeeman theorem is not
true for functions f not defined everywhere in *R. Therefore the above simple
proof does not generalize to the local version Loc(Specrely) of Specrely. In
[22, Thm.3], “no FTL observer” is proved from a very weak axiom system,
where the world-view transformations are only partial functions and where
AxPh is substantially weakened. Theorems proving “no F'TL observer” from
weak axiom systems are also in [5] and in [21]. In the process of finding the
“limits” of the “no FTL theorems”, we also gave some intuitively appealing
axiom systems (such is e.g. Relphax in [5, §3]) which do have models with
faster than light observers. More about these FTL investigations is in e.g.
[2]. We also note that in [22] a new Alexandrov-Zeeman style theorem is
proved for the local version Loc(Specrely) of Specrely.

Now we are going to introduce seven extra natural axioms that will make
Specrel, categorical over any field. The theory Specrely extended with these
seven axioms (and with any decidable theory of fields) is decidable. We will
see that if we leave out any one of six of these axioms, the theory will become
undecidable, and such that it can be extended to a hereditarily undecidable
theory where both Godel’s incompleteness theorems hold.
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5 A principle of relativity

The world-view transformation f,,, between two observers m, k is defined as

fmr = {{p, @) : win(p) = wi(q) and wi(q) # 0} .

We already used f,,x in the proof of Theorem 1. From our previous axioms it
follows that f,.x is a transformation of ") (and not only an arbitrary binary
relation) if m, k are observers.'® Therefore we will use f,; as a function.
Then f,.x(p) is the “place” where k sees the same event that m sees at p, i.e.

wm(p) = wk(fmk(p)) .

When p = (po, ..., pn_1) € "Q, we will denote py by p; in order to emphasize
that p, is the “time component” of p. Let p,q € Q). Then p; — ¢; is the time
passed between the events w,,(p) and wy,(q) as seen by m and fx(p); —
fmr(q)¢ is the time passed between the same two events as seen by k. Hence
|(fonk (D)t — frk(@)¢)/(pe — q¢)]| is the rate with which &’s clock runs slow or
fast as seen by m. Here, ||a|| denotes the absolute value of a when a € @, i.e.
lall € {a, —a} and [[a]| > 0.

AxSym All observers see each other’s clocks run slow to the same extent,
[k (®)e = fr(@)ell = [[fom(p)e = fum(@)¢ll, when m, k € Obs and p,q € L.

AxSym states only that any two observers “see” each other’s clocks
“change” the same way. In principle, this allows the clocks run fast, be
right, or run slow. In the Newtonian world AxSym is true because there
each observer sees that the other’s clocks are right. In models of Specrely,
AxSym can be true only in the way that any observer sees that the clocks
of any other observer not at rest wr.r.t. it run slow. Figure 12 in the proof
of Thm.3 shows how it is possible in models of Specrely that both observers
“see” the clock of the other run slow.

On the choice of our symmetry axiom AxSym.: Under mild extra as-
sumptions, Specrely implies that AxSym is equivalent with an instance of

8This is a typical example of a property of special relativity which is relaxed in the
process of localization (towards general relativity) in [22]. Namely, the axioms of the local
theories in [22] will not imply that the function f,) is everywhere defined in "@Q. This is
an essential generalization towards general relativity.
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Einstein’s special principle of relativity SPR as it was formalized in [21,
pp.87-89]. The principle SPR goes back to Galileo, intuitively it says that
the “laws of nature” are the same for all inertial observers. A careful logic
based analysis of SPR and its role in relativity is in [21, pp.84-91]. See
also Friedman [12, p.153]. We note that, for n > 2, in models of Specrely,
AxSym is equivalent to the potential axiom requiring that, in space, in the
direction orthogonal (in the Euclidean sense) to the direction of the move-
ment there is no relativistic distortion, i.e. there is no length-contraction.
Other equivalent formalizations of AxSym can be found in [5, §3.7].

6 Axioms making Specrel, categorical

Here we introduce six more axioms that will make Specrely categorical (over
any given field). As in section 3, in the following m, k stand for observers, ¢
for a straight line, ph; for photons; and free variables in the axioms should
be understood as universally quantified.

The first two axioms deal with the direction of flow of time. We define
for any two observers m, k

Intuitively this means that time flows in the same direction for m and k, see
Figure 9.

m k m
fkmlt fk:m()
im0 frm1e
m7Tk mlk

Figure 9: m 1 k means that time flows in the same direction for m and k.

Our first axiom is a stronger version of part of AxPot, it says that ev-
ery appropriate straight line is the life-line of an observer whose time flows
“forwards”.
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AxPot™ ang(l) <1 = (3k € Obs)[l = tr,,(k) and m 1 k].

The next axiom says that time flows in the same direction for any ob-
servers at rest in the origin.

AxT tr,(k)=t = mTk.

The next axiom says that every observer can “re-coordinatize” his world-
view with a so-called Galilean transformation. To formalize the next axiom,
first we single out special transformations, that we will call Galilean trans-
formations. A mapping f : "Q — "Q is called a Galilean transformation if it
preserves Euclidean distance and f(1;) — f(0) = 1; where 1, = (1,0,0,...)
and 1 denotes the unit element of the field ). In other words, a Galilean
transformation is a congruence transformation which is the identity map on
t, composed with a translation. See Figure 10. It is known that a Galilean
transformation is a linear transformation composed with a translation, hence
the next axiom is a first-order logic one.

t) g9(1)

1, —~

Figure 10: A Galilean transformation takes the unit vectors into pairwise
orthogonal vectors of length 1, and does not change the direction of the
time-unit vector.

AxGal G(0) €t = (Ik € Obs) fur = G, for every Galilean transformation
G.

The next two axioms say, intuitively, that of each kind of observers and
photons we have only one copy (or in other words, according to Leibniz’s
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principle, if we cannot distinguish two observers or photons via some observ-
able properties, then we treat them as equal).!® In other words, these are
so-called extensionality axioms. Id denotes the identity mapping.

AxExt, fuo=1d = m=k.
AxExty tr,,(phi) = tr,(pha) = phy = pha.

The last axiom says that every body is an observer or photon.
AxNobody B = ObsU Ph.

Compl := {AxSym, AxPot", AxGal, AxExt;, AxExt,, AxNobody}
Specrel := Specrely U {AxSym}
Specrelt := Specrel U Compl U {Ax1}

In the terminology of e.g. Malament and Hogarth, Specrely, Specrel and
Specrel™ correspond to causal space-time (or metric-free space-time), space-
time, and time-oriented space-time respectively, cf. Hogarth [18]. Specrely is
also strongly connected to the “conformal structure of space-time”. When
we write “causal space-time”, we have in mind the symmetrized version of the
strict “causality relation” <. (Sometimes “metric-free space-time”, “space-
time”, “time-oriented space-time” are used.)?

We did not include AxT into Compl because, as we will see, its effects
are different from those of the the elements of Compl.?!

Theorem 3. Let?* n > 2 and let Q = (Q, +, -, <) be any Fuclidean field.

(i) There are exactly two models of Specrel U Compl with field-reduct Q,
up to isomorphism.

9We could have named these axioms after Occam, too.

20The terminology varies with different authors, but what we wanted to point out is
that the levels of abstraction corresponding to Specrely, Specrel and Specrel™ seem to be
generally distinguished levels of abstraction in the literature of relativity.

Hntuitively, Ax? excludes only one model of two choices, while the rest exclude an
infinite number of possibilities, c¢f. Thm.s 3-5. Sci.Am.(Sept. 2002, special issue, pp.30-31)
discusses the justification of assuming Ax? which turns out to be not as straightforward
as one might think at first sight.

22We exclude the case n = 2 for simplicity only.
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(it) There is a unique model of Specrel™ with field-reduct Q, up to isomor-
phism.

On the proof. We illustrate that in any model of Specrel, all the world-
view transformations are so-called Poincaré-transformations (i.e. Lorentz-
transformations composed with translations), and this is the most important
part of the proof of Theorem 3.

Let m, k be observers in a model of Specrel, we will investigate the world-
view transformation f := f,,x. We have already seen that f : "Q) — "Q is
a bijection. It is a collineation by the Alexandrov-Zeeman theorem in case
n > 2, and by [22, Thm.2| in case n = 2. By AxPh, f takes light-lines onto
light-lines, and this implies that f takes the unit vectors into vectors of the
same length and Minkowski-orthogonal to each other. Figure 11 illustrates
the idea of the proof of this part.

t t
’ /f\ F(11),
(1,0) : ‘ 217 1) f\l(<170> . v
(‘ ( o r,1)
0,0 ] Joy 70,0 /.- R
e N Z 7 BN x
phi pha phi pha

Figure 11: World-view transformations in models of Specrely take the unit
vectors to vectors Minkowski-orthogonal to each other and of the same length.

Finally, AxSym implies that the length of the unit vectors is fixed, as
follows. We write out this part of the proof in more detail, because e.g. it
shows how it is possible that both observers see each other’s clocks run slow.

Let 1; = (1,0,0,...), and let us see where e := fy,,(1;) is on tr,, (k). Let
a, b and o’ be as in Figure 12; i.e. they are the points on tr,,(k) and on ¢ such
that the straight line connecting 1, and a is parallel with Z, and the straight
lines connecting 1, and b and connecting a and o’ are parallel with f,,[Z].
See Figure 12. If e = a, then m sees that k’s clock shows 1 just when his
clock shows 1, because 1, and a are simultaneous for m. But k will see that
m’s clock shows a’ < 1 when his clock shows 1, because for k, e = a and o
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are simultaneous. So k will think that m’s clocks run slow, but m will think
that k’s clocks are right. Analogously, m thinks that k’s clocks are right (run
slow or fast, respectively) iff e = b (> b or < b respectively). And, k thinks
that m’s clocks are right (run slow or fast, respectively) iff e =a (< a or > a
respectively). Thus both think that the other’s clocks run slow iff b < e < a.
The rate of “slowness” is the same for them at a unique point in between
a and b, because the change of rate is a continuous and strictly monotonic
function (of the “number” ||e||). Now, Minkowski-distance is defined so that
the Minkowski-distance is 1 between 0 and this unique point (where the rates
of “running slow” are the same for m and k). Figure 13 shows the points
whose Minkowski-distance from 0 is 1, i.e. it shows Minkowski-circle with
radius 1 and center 0.

- €= fkm(lt)
b i
1t S Ja , :
. / directi f simultaneities for k
o - / irection of simultaneities for
. direction of simultaneities for m

Figure 12: Both m and k think that the other’s clocks run slow iff f,,.(1;)
is in between a and b. The rates of “running slow” will be equal at a unique
point.

It is known that any collineation is an affine transformation composed
with a field-automorphism-induced transformation. Using that the above line
of thought is valid for any p € t in place of 1;, one can show that the world-
view transformations are actually affine transformations. Summing up: in
models of Specrel, the world-view transformations take the unit vectors into
pairwise Minkowski-orthogonal vectors of Minkowski-length 1. These kinds of
affine transformations are called in the literature Poincaré-transformations.

QED
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Figure 13: Minkowski-distance 1.

7 Decidability and Godel incompleteness

We now turn to decidability questions. We start this by recalling the defini-
tion of real-closed fields and by recalling some facts from the literature.

An ordered field F is real-closed if it is Euclidean (i.e. every positive
element has a square root), and if every polynomial of odd degree has zero
as a value. This last requirement can be expressed with the infinite set
{Gons1 : n € w} of first-order formulas, where for every n € w, ¢, denotes
the following sentence

Vag.. Ve, yle, #0 = (zo+x1 -y + -+ 2, - y" =0)].

By a theory we will understand an arbitrary set of first-order formulas (i.e.
we will not assume that it is closed under semantical consequence). We call
a theory Th decidable (or undecidable respectively) if the set of all first-order
semantical consequences of Th is decidable (or undecidable respectively). We
call Th complete if it implies either ¢ or —¢ for each first-order formula ¢ (of
its language). Propositions 2,3 below are known in the literature. Prop.2 is
a corollary of Tarski’s famous elimination of quantifiers for real-closed fields.

Proposition 2. The theory of real-closed fields is decidable and complete.

Proposition 3. The theories of ordered fields and Euclidean fields are un-
decidable. *

ZNote that if a finitely (or more generally, recursively) axiomatizable theory is unde-
cidable, then it is not complete.
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Conjecture 1. Any finitely axiomatizable consistent theory of ordered fields
15 undecidable.

Corollary 1. Specrely, Specrel and Specrel™ are undecidable.

Proof. This is a corollary of Prop.3, and the theorem that for any Euclidean
field F there is a model of Specrel™ with F as the field reduct (Theorem 3).:
Let ¢ be any field-theoretic first-order formula written by using variables of
our quantity sort. Then ¢ is valid in a frame-model M with field reduct F iff
¢ is valid in F. Thus ¢ is valid in the class of Euclidean fields iff ¢ is true in
all models of Specrel™. Since the first-order theory of the Euclidean fields is
undecidable by Prop.3, the first-order consequences of Specrel™ is undecid-
able, too. Since this is a finite theory, then any subset of it is undecidable,
too. QED

The above suggests that if we want to obtain interesting decision-theoretic
results, we have to concentrate on real-closed fields; or at least include a
decidable theory of field-axioms into our theories. Let ® denote the theory
of real-closed fields.

Theorem 4. Let n > 2.

(i) Specrely U Compl U ® is decidable.
(ii) Specrely U Compl U{Ax1} U P is decidable and complete.

(iii) SpecrelyU (Compl\ {Ax})U{AxT} U is undecidable, for any axiom
Ax € Compl.

Proof. We show that (i) and (ii) are corollaries of Theorem 3, we sketch the
proof of (ii). Let M and M' be models of Specrely U Compl U {Ax?1} U ®.
We cannot apply Theorem 3 yet, because the field-reducts F and F' of M
and M’ respectively may not be the same. But they are elementarily equiva-
lent, because ® is complete, so by the Keisler-Shelah isomorphic ultrapowers
theorem they have isomorphic ultrapowers, say F; and F}. Let M; and M)
be the ultrapowers of M and M’ respectively, taken by the same ultrafilter.
Then the field-reducts of these are F; and F] respectively. Now we can apply
Theorem 3 to M; and M) because F; and F} are isomorphic, getting that M
and M) are isomorphic, so elementarily equivalent. But then M and M’ are
elementarily equivalent, too, since the former two models are ultrapowers of
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these. This finishes the proof of (ii). (iii) is a corollary of the next theorem;
we included it here because it nicely contrasts (i) and (ii). QED

We now turn to the analog of Gddel’s first incompleteness theorem.

Theorem 5. Let n > 0 and let Ax be any member of Compl. There is a
formula v (in our frame-language) such that

(1) v is consistent with Specrely U (Compl \ {Ax}) U {AxT}U P
and for any theory Th consistent with v

(1) Th is hereditarily undecidable in the sense that no consistent extension

of Th s decidable.

(111) The conclusion of Gadel’s first incompleteness theorem applies to the
theory Th, i.e. no consistent recursively enumerable extension of Th
15 complete; moreover there is an algorithm that to each consistent,
recursively enumerable extension Th' of Th gives us a formula ¢ such

that Th' = ¢ and Th' [ —¢.

Proof. The idea of the proof is to show that absence of any member of
Compl allows us to interpret Robinson’s Arithmetic into our theory. We
sketch this for the case Ax = AxNobody. We will see that in this case
v will be quite natural: it will state the existence of a periodically moving
body. Consider the following formulas (with free variables m,b and t):

I(t) = I(m,b,t) == W(m,b,t,0), and
v = I(0) N (Vt,s)
(t<1 At#0—=-I(t) A
t>0—=[I(t) < It+1)] A
(L) NI(s)] = [L(t+s)NI(t-s)]).
Add, for a moment, m and b as constants to our language. Then t re-
mains the only free variable of I which then specifies a subset of the field-

reduct in any frame-model: the set of time-points where the observer m
sees the body b at the origin. Now the formula v requires that this subset



32 LOGIC AND RELATIVITY THEORY

behaves like the set of integers: it is a discrete periodic subset containing
0,1 and closed under +, -. Since the field-reduct of a frame-model is a field,
then Robinson’s arithmetic will be true in the field-reduct restricted to the
subset defined by I. In other words, I is an interpretation of Robinson’s
Arithmetic in Th U {v}, whenever v is consistent with Th. For definition
of Robinson’s Arithmetic and (semantical) interpretation see e.g. Monk [26,
Def.14.17, Def.11.43]. Thus, Robinson’s Arithmetic can be interpreted in
Th U {v}. Then ThU {vr} is inseparable (which is a strong version of un-
decidability) by Thm.16.1 and Prop.15.6 in [26]; and thus (i) and (iii) of
our Theorem hold by Monk [26, Thm.s 15.9 and 15.8]. Finally, if we omit
the constants m, b, then semantical consequence does not change, so (ii) and
(iii) will hold for the original language (set of formulas not containing the
constants m or b), too (in (iii) a further little argument is needed).

To show (i), we have to construct a model of Specrely U {Axt} U P U
{v}U(Compl\ {AxNobody}). This is not difficult as v basically states the
existence of a periodically moving body; see Figure 14.

m

Figure 14: b is a periodically moving body in m’s world-view.

Take a “standard” model with minimum set of observers and photons;
and add one periodically moving body. We omit the details of the definition
of this model.

The proofs for the other cases are analogous; we only give different in-
terpretations of Robinson’s arithmetic. This means that we give a different
formula 7, but v will be the same (speaking about I), and then we only have
to show that Th U {v} is consistent, where T'h is the theory in (i). To give a
flavor, we give this new interpretation I for the case when Ax = AxPot™.
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I(m,t) = (VO)[ang(t) =+ = (Gk)({trm(k)=LAm 1t k)]ort=0,1.

t

This finishes the proofidea of Theorem 5. QED

A theorem analogous to Theorem 5 but concerning Godel’s second incom-
pleteness theorem can also be stated and proved with analogous methods. For
details see [4].

For current research directions in logic started by Godel’s incomplete-
ness theorems we refer to Hajek and Pudlak [14], Willard [33], the latter in
the present volume. The connections between the “observations oriented”
and the “theoretically oriented” approaches to relativity were studied in [21]
where the logical theories of definability and identifiability are used and fur-
ther elaborated in the spirit of works of Hodges (cf. [17]) and Hintikka [15].%4
Actually, these logic based relativistic investigations induced new research
in definability and identifiability theory. In later work continuing [2],[22] we
plan to look into the logical structure of general relativistic space-times per-
mitting closed time-like loops (which can be regarded as causing a kind of
self-reference®). In Scheffler [30, p.179], and in Lewis [20, pp.67-80, pp.212-
3] it is pointed out that these causal loops do not imply logical contradictions
or even logical paradoxes. They simply have more complex logical structures
than “linear causation”. We plan to extend the mathematical logic based
approach to further analyzing these and related possibilities thoroughly and
carefully.

Acknowledgements. We would like to express our deep gratitude to the
organizers and to the participants of the FOL75 conference for useful dis-
cussions, suggestions, encouragement and for a very fruitful, creative, and
supportive atmosphere.
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1 Introduction

In several areas of Mathematical Logic and Computer Science one would
ideally like to use the set Form(L) of all formulas of some first-order language
L for some goal, but this cannot be done safely. In such a case it is necessary
to select a subset of Form(L) that can safely be used. Three main examples
of this phenomenon are:

e The main principle of naive set theory is the comprehension schema:
AZ(Vr.x € Z & A)

where A is a formula in which Z is not free (but may contain other
parameters). Ideally, every formula A should be used in this schema.
Unfortunately, it is well known that this would lead to paradoxes. What
the various axiomatic set theories do is to replace the general compre-
hension schema by “safer” versions. Thus most of the axioms of ZF', the
most famous axiomatic set theory, are just particular instances of the
comprehension schema. Historically, the guiding line behind the choice
of these instances has been the “limitation of size doctrine” ([8, 10]).
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However, the criterion provided by this doctrine is not constructive, so
Z F uses some constructive substitutes to select formulas which seem to
meet it. These principles are usually explained and justified ([18]) on
semantic ground, using certain general ontological assumptions. (some
of which, like the “cofinality principle”, may be debatable).

A main goal of computability theory is to characterize the decidable
relations. Now the most straightforward method of defining relations
is by using formulas of an appropriate formal language L (like the
language of Peano Arithmetics PA in the case of arithmetical relations).
However, usually not every formula of L defines a decidable relation.
Hence a major problem here is: what are the “safe” formulas which do?
A strongly related problem of crucial importance for proof theory and
the foundations of Mathematics (especially Gédel theorems) is: what
formulas of L binumerate relations within a given theory 7?7 ' Again
it is well known that in the case of PA no constructive general solution
can be given for either problem. Therefore some constructively defined
classes of “safe” formulas, broad enough for the various applications,
have been selected in its language. Two major examples are the class
of primitive recursive (p.r.) formulas (]9, 14]) and the class of bounded
formulas ([21]).

A query language for a database ([24, 2]) is an ordinary first-order lan-
guage with equality, the signature of which includes predicate symbols
for the database relations. Ideally, every formula v of a query language
can serve as a query. If 1 is closed then the answer to the query is either
“yes” or “no”. If 1 has free variables then the answer to ¢ is the set of
tuples which satisfy it in the intended structure. However, an answer to
a query should be finite and computable, even if the intended domain
is infinite. Hence only “safe” formulas, the answers to which always
have these properties, should be used as queries. Unfortunately, it is
again undecidable which formulas are “safe”. Therefore all commercial
query languages (like SQL) allow to use as queries only formulas from
some syntactically defined class of safe formulas.

In all these examples the same pattern repeats: a certain undecidable

class of f.o. formulas, originally characterized by some semantic criterion, is

'If T is r.e. then such a relation is necessarily decidable.



ARNON AVRON 39

singled out for some fundamental application. Then an effective, syntacti-
cally defined subclass that can serve as a sufficient substitute is found. In
what follows we show that despite the different purposes and intuitions, the
principles which have been used in all these areas in order to secure safety
are similar (although they have independently been developed), and are di-
rectly based on the role of the first-order logical constants. By merging them
we will be able to develop a unified, purely logical framework for dealing
with “safety”. The key feature of this framework is the use of a generalized
concept of a f.o. signature. The idea is that a generalized signature for a
language can contain more than just the arity of the possible interpretations
of the primitive symbols of the language. It can contain e.g. also informa-
tion about the size and/or the computability of their intended interpretations
(reducing by this the class of allowed models).

Three concrete applications of our framework are:

e In set theory it provides a new, concise presentation (and in our opinion,
a new understanding) of ZF. This presentation is based on purely
syntactic criteria concerning the role the f.o. connectives and quantifiers
have in defining legitimate new sets.

e In Computability Theory it provides a general framework for analyzing
relative computability of both extensional and intensional relations and
functions, on arbitrary (or at least countable) f.o. structures.

e In database theory it provides a simple syntactical notion of safety,
which allows to use properties of relations and functions which do not
belong to the database scheme. This notion is adequate not only for
conventional databases, but also for databases in which there is only a
partial access to some of the relations (like in the world wide web).

2 The General Framework

In the examples above two different factors were involved in questions of
“safety”: size (of the class of tuples which satisfy a given formula) and com-
putability (of this class). Now of the three example above only safety in
databases is connected with both. It is reasonable therefore to take database
theory as our starting point. Another reason for this choice is that many
explicit proposals of decidable, syntactically defined classes of safe formulas
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have been made in this theory. Examples are: “range separable formulas”
([5]), “range restricted formulas” ([16]), “evaluable formulas” ([6]), “allowed
formulas” ([23]), and “range safe formulas” ([2]) 2. The simplest among them
(and the closer to what has actually been implemented) is perhaps the fol-
lowing class SS(D) (“syntactically safe” formulas for a database scheme D)
from [24] (originally designed for languages with no function symbols) 3:

L. pi(ty, ... t,,) € SS(D) in case p; (of arity n;) is in D, and each t; is
either a variable or a constant.

2. x = cand ¢ = z arein SS(D) (where x is a variable and c is a constant).

3. AVB e SS(D) if A e SS(D), B € SS(D), and they have the same

free variables.
4. 3xA € SS(D) it A€ SS(D).

5. If A=A ANAy A ... A Ag then A € SS(D) if both of the following
conditions are met:

(a) For each 1 < i <k, either A; is atomic, or A; is in SS(D), or A;
is a negation of a formula of either type.

(b) Every free variable x of A is limited in A. This means that there
exists 1 < i < k s.t. x is free in A;, and either A; € SS(D), or
A; € {x = y,y = x}, where y is already limited in A.

There is one clause in this definition which is somewhat strange: the
last one, which treats conjunction. The reason why this clause does not
simply tell us (like in the case of disjunction) when a conjunction of two
formulas is in SS(D), is the desire to take into account the fact that once
the value of y (say) is known, the formula x = y becomes safe. One of the
crucial observations on which our framework is based is that in order to find

2In our opinion there is a mistake in the definition of the last one. According to this
definition a formula like 2 = ¢A(—Jy(y # x)) is range safe, although it is clearly not domain
independent (despite a theorem to the converse which is proved in [2]). We believe that
the source of the problem is a mistake in the way negation is handled there, and that it
should be corrected along the lines this is done below.

3What we present below is both a generalization and a simplification of Ullman’s orig-
inal definition. It should be noted that Ullman’s main concern is the stronger property of
domain-independence that we discuss in subsection 3.2.



ARNON AVRON 41

a common generalization of the various notions described above one should
indeed consider partial safety. In other words: safety should be viewed as
a relation between formulas and (finite) sets of variables rather than as a
property of formulas 4. Since two different issues are involved here (size and
computability), this observation leads to the following two generalizations of
SS(D) (where Fu(E) denotes the set of free variables of F):

Definition 1. A relation = between formulas A of a first-order language L
in a signature o and subsets of Fv(A) is a size-safety (s-safety) relation if it
satisfies the following conditions:

(1) A>0 for all A.

(2) If e € Fo(t) thenx =t > {x} andt =z > {z}.
(3) If A~ X and B > X then AV B >~ X.

(4) Ify & X and A = X U{y} then FyA = X.

(5) If A= X, B>Y, and XN Fu(B) =0 or YN Fv(A) = 0, then
ANB > XUY.

Definition 2. A c-safety relation between formulas of a language L and finite
sets of variables is defined like in Definition 1, except that condition (1) is
replaced by the following weaker conditions:

(1a) p(xq,...,x,) = 0 in case p is a primitive n-ary predicate symbol of o.
(1b) If A= O then ~A = 0.

Our standard interpretation of s-safety is that A(xy,...,Zn, Y1, -, Yk)
is s-safe w.r.t. {xy,...,x,} in a given structure S, iff either n = 0, or
for any assignment c¢; ..., c; of values from S for yy,...,ys, the set of tu-
ples (dy,...,d,), which together with ¢ ..., ¢, satisfy A in S, is finite.
It is easy to prove that this interpretation indeed defines an s-safety rela-
tion (see section 4). To get an intuition concerning definition 2, think of
A(z1, ..., Tn, Y1, ..., Yg) @s a query with parameters yi, ..., yx, and interpret
“A(xy, . Tny Y1y yk) = {21, 2.} as: “The answer to the query A

4This may be compared with Tarski’s definition of the validity property of formulas in
structures via the satisfaction relation between formulas and assignments in structures.
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is finite and effectively computable for any values of the parameters”. In-
tuitively (see again section 4), this defines a c-safety relation, provided that
the interpretations of the primitive function symbols of ¢ are all effectively
computable, and the interpretations of the primitive predicate symbols of o
are all effectively decidable (This cannot be rigorously proved, though, since
we do not have a precise definition of an “effectively computable answer to
a query”. We shall return to this point in section 4).

Note 1. For the present framework it is preferable to take A,V,— and 4
as primitive, and — and V as defined in terms of them. Moreover: we take
—(A — B) as an abbreviation for AA—=B, and Vz; ... 2;A as an abbreviation
for =dxy ... xx—A. This entails the following important property of “bounded
quantification”: If = is a c-safety relation, A = {x1,...,2,}, and B = (),
then 3x1 ... 2,, ANB =0 andVx,...2,.A — B = 0.

Note 2. In all examples we know, whenever a safety relation > is defined by
some semantic property, it obeys the following principle: If A = X, B is log-
ically equivalent to A, and Fv(A) = Fu(B), then B > X. s-safety is usually
closed under the even stronger principle: If A = X where X = {z7... 24},
Jyr ...y Va1 ...z (A < B) is logically valid, and {y;...y,} N Fo(B) = 0,
then B > X. The reason we have not included these principles in the defini-
tions above is that we want to be able to define decidable safety relations that
can serve in applications as good substitutes for the undecidable, semantically
defined ones. Still, for convenience one may incorporate into the definitions
useful special cases of these properties, like standard boolean identities, and
the following facts concerning substitutions (which follow from the equiva-
lence between A(t/y) and 3z3y(z = t Ay = zAA), where z € Fo(t)UFv(A)):

o Ify X, A= XU{y},Y C Fu(t),YNFv(A) C{y},and z =t > Y for
z & Fu(t)UFv(A), then A(t/y) is equivalent to some B s.t. B = XUY.

e Ify ¢ X, A > X, and X N Fo(t) = 0, then A(t/y) is equivalent to
some B such that B > X.

The straightforward way of defining a reasonable syntactical substitute
for a given semantical safety relation is to use definitions 1 or 2 as a basis
for an inductive definition. In most cases this amounts to specifying what
atomic formulas (other than those of the form z = t or ¢t = x) are taken
as safe w.r.t. what variables. For this it is usually best to use the following
generalization of the notion of a signature for a language (see the introduction
for the motivation):
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Definition 3. A safety-signature is a pair (o, F'), where o is an ordinary
first-order signature and F' is a function which assigns to every n-ary symbol
s from o (other than equality) a nonempty subset of P({1,...,n}), so that if
I € F(s)and J C X then J € F(s).

Definition 4. Let (0, F) be a safety-signature. =) (=(, ) is the (in-
ductively defined) minimal c-safety (s-safety) relation = (in the first order
language induced by o) which satisfies the following conditions:

1. Ifp is an n-ary predicate symbol of o; x1, ..., x, aren distinct variables,
and {iy, ..., it} is in F(p), then p(z1,...,x,) = {xiy, ..., @i, }.

2. If f 1s an n-ary function symbol of o; y, x1, ..., x, are n+1 distinct vari-
ables, and {i1,...,ix} € F(f), theny = f(x1,...,xn) = {zi, ..., 2, }.

Proposition 1. Both > r) and (o, F) satisfy the following conditions:
1. If A= X then X C Fu(A).
2. If A= X and Z C X, then A »~ Z.

In the coming sections we shall see several applications of these notions.

3 Safety in Databases

From a logical point of view, a database of scheme D = {py,...,p,} is just
a given set of finite interpretations of py,...,p,. As noted in the introduc-
tion, a corresponding query language is an ordinary first-order language with
equality, the signature of which contains D. A query is “safe” if its answer is
finite and computable for all interpretations in which py, . .., p, are finite (and
given), while the interpretations of all other predicate symbols are decidable,
and function symbols (if any) are interpreted by computable functions. Our
framework leads in this case to the following syntactical counterpart:

Definition 5. Let D be a subset of o such that each ¢ € D 1is a predicate
symbol of arity k.

1. The safety signature (o, Fp) corresponding to o and D is defined by:

Folg) = { R A
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2. A formula A is called (0, Fp)-safe if A = pyy Fv(A).

It is easy to show inductively (using the intuitive meaning of c-safety
given in the previous section) that each (o, Fp)-safe formula can safely be
used as a query for any database of scheme D, and that in a language without
function symbols every formula in Ullman’s SS(D) is logically equivalent to
some (o, Fpp)-safe formula®. It is important to note that our notion can in fact
be used even if function symbols are allowed (provided that their intended
interpretations are computable). Moreover: it is very easy to extend it in a
natural way in order to be able to take into account safety properties that
other functions and relations (not in the database scheme) might have in
the intended domain(s). Suppose for example that “<” is in the language,
and that its intended interpretation is the usual order relation of A/, or the
substring relation on strings. In such a case the set {z | # < a} is finite and
computable for every a in the intended domain. This fact can be exploited
by taking Fp(<) = {0,{1}}. An example of a query that will become then
(0, Fp)-safe is JxFy(p1(z,y) Az < x + y).

3.1 An Application: Querying the Web

An interesting application of c-safety has implicitly been made in [15]. There
the web is modeled as an ordinary database augmented with three more spe-
cial relations: ¢ N(id, title,...), L(source,destination, ...), C(node,value).
The intuitive interpretations of these relations are the following:

e The relation N contains the Web objects which are identified by a
Uniform Resource Locator (URL). id represents the URL and is a key.

e The relation L holds between two nodes source and destination if there
is a hypertext link from the first to the second.

e The meaning of the relation C' is that the string which is represented
by its second argument occurs within the body of the document in the
URL which is represented by its first argument.

The question investigated in [15] is: what queries should be taken as safe,
if we assume that what is practically possible in the case of N and L is to

5If we strengthen > (o,Fp) as suggested in Note 2, then SS(D) becomes a proper subset
of the set of (o, F)p)-safe formulas.
SFor simplicity, we ignore other special relations which are used there.
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list all their tuples which correspond to a given first argument, while C' is
only assumed to be decidable. A special “Safe Web Calculus” based on these
assumptions is then introduced. It is not difficult to see that the notion of
safety which is defined by this calculus is in fact equivalent to (e, Fivep)-C-
safety in our sense, where {L, N, C'} C 0y, and F is defined like in ordinary
databases, except that FI(L) = P({2,...,m}) (where m is the arity of L),
F(N)="P({2,...,k}) (where k is the arity of N), and F(C) = {0}.

3.2 Domain-independence

Another property of queries to databases which is considered to be crucial
([12, 24, 2]) is domain-independence (d.i.). Tts definition (in the case of
ordinary databases) is the following:

Definition 6. 7 Let o be a signature which includes ? ={P,...,P,}, and
optionally constants and other predicate symbols (but no function symbols).

A query in o is called ?—d.i. (?—domain—independent) iof it has the same
answer in S1 and Ss, whenever Sy is a substructure of So, and the interpre-
tations of { Py, ..., P,} in Sy and Sy are identical.

Our next goal is to show that domain-independence can also successfully
be handled within our framework (using safety-signatures as our main tool).
For this we generalize first the ordinary notion of an extension of a structure
(for a signature o) to structures for safety-signatures:

Definition 7. Let (0, F) be a safety-signature with no function symbols
(other than constants). Let Sy and Sy be two structures for o s.t. Sy C Ss.
Sy is called a (o, F)—extension of Sy if the following condition is satisfied:
If p € o is of arity n, I € F(p), and ay,...,a, are elements of Sy such
that a; € Sy in case it & I, then Sy = p(ay,...,a,) iff a; € Sy for all i and
S1Eplay, ... a,).

Note 3. Since ) € F(P) for all P € o, S is a substructure of Sy whenever
Sy is a (o, F')—extension of Sj.

Examples:

"This is a slight generalization of the definition in [Su98], which in turn is a general-
ization of the usual one ([Ki88,U188]). The latter applies only to free Herbrand structures
which are generated by adding to ¢ some new set of constants.
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1. Let 0 = {=,<}, and let F(<) = {0,{1}}. Obviously, a structure for o
is a (o, F')—extension of its initial segments (and only of them).

2. Let 045 = {=, €} and let Fag(€) = {0,{1}}. In this case the “uni-
verse” is a (04s, Fas)— extension of what are known in Set Theory as
“transitive sets”.

Definition 8. Let (o, F') be as in Definition 7. A formula A of o is called
(o, F)—di. wrt. X (A >‘(if77F) X ) if whenever Sy is a (o, F))—extension
of S1, and A* resulted from A by substituting values from Sy for the free
variables of A that are not in X, then the sets of tuples which satisfy A*
in Sy and in Sy are identical. ® A formula A of o is called (o, F)—d.i. if
A >?;F) Fu(A).

It can easily be proved that >?§7 F) is a c-safety relation. It follows that if
A =) X (Definition 4) then A >?§7F) X. In particular: if A > p) Fv(A)
then A is (o, F)—d.i. It is also obvious that if D is a database scheme
in a signature o, then a formula A is (o, Fp)—d.i. iff it is d.i. for D in
the usual sense (of Definition 6). Since already in this case the notion of
d.i. is undecidable ([7]), the class of (o, Fp)—safe formulas is again a good
syntactical substitute.

Note 4. Despite the close connection, safety of queries (in the sense of being
“effectively finite”) and domain independence of them are in general indepen-
dent notions. Thus every logically valid sentence (or a logical contradiction)
is d.i. w.r.t. (), but not necessarily safe w.r.t. (. On the other hand Vz.z = ¢
is (effectively) safe w.r.t. @ (it is true if the domain is a singleton, false
otherwise), but not d.i. w.r.t. () (for precisely the same reason).

4 Safety in Computability Theory and in Metamathe-
matics

We have followed up to now the intuition that a query is safe iff its answer is
finite and computable, but we have not defined what “computable” means.
The intuitive notion we have in mind is not identical to that investigated
in Classical Computability Theory (CCT). CCT provides answers to the
questions “what extensional relations are decidable?” and “what extensional

8 A* is a formula only in a generalized sense, but the intention should be clear.
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functions are computable?”. Queries define however intensional relations,
and CCT provides only necessary conditions (like finiteness and decidability)
for the computability of such relations and functions. Thus every extensional
finite relation is “computable” according to CCT, but in reality we might not
know how to actually compute an intensional relation even if its extension is
finite. However, it is precisely the question of computing intensional relations
and functions that we encounter in practice. A particularly delicate question
in this context is what is the interpretation of “The answer to the query ¢
is computable” in case ¢ is a sentence (i.e.: a query with a “yes” or “no”
answer). This is a question to which CCT provides no clue, but is important
for database theory, and is also the main point of difference between s-safety
and c-safety. It should be noted that this question is crucial for constructive
computability theory too. Thus Bridges explicitly gives in [4] the following
example of a function f from N to N, which is “computable” according to
CCT, but not constructively so: For all n, f(n) is 1 if Goldbach conjecture
is true, 0 otherwise.

I am not aware of any precise definition in the literature (or an analogue
of Church’s thesis) for the concepts of “computable intensional function” and
“computable intensional relation”. What can therefore be done at present is
to provide obvious properties of these notions and use them for developing a
useful corresponding general theory.” Where should we start? Well, the usual
approach to CCT is to characterize first the class of computable functions,
and then to define the class of decidable relations as those relations whose
characteristic functions are computable. However, in modern mathematics
functions are defined as a special type of relations, and so it seems more
reasonable from its point of view to go the other way around. This is certainly
more natural when a theory of intensional computability is sought, since even
intensional relations and functions should be defined in some formal language
— and what first-order languages (which are the most natural languages to
use for this purpose) directly define are relations. ' Now for intensional
relations the general framework suggested here does provide a general relative
computability theory (though we do not claim it to be the ultimate one). In
fact it provides general sufficient criteria for a parametric formula in some
first-order language L to define a (finite) computable (intensional) relation

9A similar procedure is suggested in [17] as a possible approach for trying to prove
Church’s thesis in the extensional case.

10This has indeed been the approach of [21], where the class of “bounded formulas” is
used for defining the basic notions of CCT. We will return to this class below.
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in all structures for L in which the interpretations of the primitive predicates
and functions of L have certain computational properties:

Definition 9. Let L be a first-order language with equality, and let S be a
structure for L.

1. A formula A of L which is not a sentence is S—effective if the number
of tuples which satisfy it in S (for some order of its free variables) is
finite, and they can effectively be listed. A sentence is S—effective if its
truth-value in S can effectively be computed.

2. A formula A of L is S—effective w.r.t a finite subset X of its free
variables if for any substitution of concrete (syntactic names for) ele-
ments from S for the free variables of A which are not in X, we get an

S—effective formula (in the extended language L(S) of S ([17])).

Note 5. It should again be emphasized that this definition assumes the
intuitive notion of “effective computability” which is left here undefined (and
probably cannot be defined!). Note also that S—effectiveness of a formula A
w.r.t. () means that the relation on S which A defines is effectively decidable.

Definition 10. Let (0, F) be a safety-signature. A structure S for o is
appropriate for (o, F) if it satisfies the following two conditions:

e If p is an n-ary predicate symbol of o; x1,...,x, are n distinct vari-
ables, and {iy,... i} € F(p), then p(xy,...,x,) is S—effective w.r.t.
{Iil, e ,SL’ik}.

o [f f is an n-ary function symbol of o; y, x4, ..., x, are n+1 distinct vari-

ables, and {iy,... it} € F(f), then y = f(x1,...,2,) is S—effective
w.r.t. {y} and w.rt. {x;, ...,z }.

Theorem 1. If S is appropriate for (o, F), and C =, py X, then the formula
C is S—effective w.r.t. X.

Intuitive Proof: By induction on the structure of C. If C' is of the form
x =t or t = x then the claim is proved by induction on the structure of
t (using the assumption that every formula of the form y = f(x;...,x,)
is S—effective w.r.t. {y}). The other safety conditions concerning atomic
formulas directly follow from the fact that S is appropriate for (o, F'). The
induction step splits into four cases. We do here the case where C' = AA B,
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A= X, B»>Y, and Y N Fv(A) = (. To simplify notation, assume that
Fv(A) = {xz,z}, Fv(B) = Fv(C) = {z,y,2}, X = {2}, Y = {y}. Let ¢ be
an element of S. To compute {< z,y >€ S? | C(c/z)}, compute first the
set Z(c) = {z € S| A(c/z)} (Z(c) is finite and effectively computable by
our assumptions on A). Then for each d € Z(c¢) compute the set W(c,d) =
{y € S| B(d/z,c/z)} (W(c,d) is finite and effectively computable by our
assumptions on B). The set {< z,y >€ S* | C(c/z)} is the finite union of
the sets {d} x W(c,d) (d € Z(c)).

We present now two famous applications of Theorem 1 from the literature
on Metamathematics. This is another area in which one needs (especially
for the proof of Gddel’s second incompleteness theorem) a class of effective
intensional relations, defined by formulas in some particular f.o. languages.

Bounded safety: Let 0, = {=,0, 5, +, X, <}. Define Fy(<) = {0, {1}} and
F(f) = {0} for any function symbol f. Let =,=> (5, i)

Primitive recursive safety: Let opy = {=,0,S5,+, x}, and let opg be
opa augmented with function symbols for every primitive recursive
(p.r.) function. Define Fpr(S) = P({1}), Frr(+) = P({1,2}), and
Fpr(f) = {0} otherwise. Let >pr=>(0pp Fpr)-

Definition 11. A formula A is =p-effective if A =, 0. A formula A is
= pr-effective if A =pg 0.

It is easy to see that the structure N of the natural numbers (with the
standard interpretations of the symbols in o, and opg) is appropriate for
(op, Fy) and (opg, F'pr). Thus {1} € F}(<) means that x < y >, {z} (where
x and y are two different variables). This in turn means that given any
n € N, there is only a finite number of k’s such that k¥ < n, and they can
effectively be listed. Similarly, the fact that {1,2} € Fpgr(+) means that
y = x1 + 22 >=pr {1, 22}. This in turn means that given any n € N, there
is only a finite number of pairs (k, k2) such that n = k; + ks, and they can
effectively be listed. Both claims are obvious. It follows from Theorem 1
that if A is =p-effective or = pg-effective then A defines a decidable relation
on the structure N.

By letting < y abbreviate in opy JwIzrdzy = 2 +w Aw = S(z), we
get that x <y =pgr {z} as well. Hence >, is contained in > pr. Now Note 1
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implies that the set of >=-effective formulas is closed under bounded quan-
tification (the same applies to the set of > pg-effective formulas). It follows
that this class is an extension of the class of bounded formulas ([21]). It
is not difficult to see, in fact, that the two classes define the same class of
(extensional) relations on N. Similarly, the class of = pg-effective formulas
1is equivalent to Feferman’s class of primitive recursive formulas ([9, 14]),
which is of crucial importance in Metamathematics. Actually, this impor-
tance is easily seen to be due to the following connections between >pr and
provability:

Theorem 2. Let Q* and PA* be the extensions in opg of Q and PA (respec-
tively) with the defining azioms of every p.r. function'?. Let A be a formula
in opr such that A =pg {x1,...,z1}.

1. Assume that A is a closed substitution instance of A. If A is true (in
N ) then b« A', while if it false then g« —A’.

2. Let Fy(A)—X ={y1,...,Yn}. If k > 0 then there exists a p.r. function
fa st bor A= (21 < falyr, s yn) Ao Az < falyr, - 0n)). 12

3. A= Prpa(TA(d1, ... 20,01, - .., Un)!) is provable in PA*. '

Proof: The proof of (3) is similar to the usual proofs of such results in
the literature, using the fact that by (2), if A >=pr {z} then the existential
quantification of A on x can be replaced by bounded quantification on .
The proofs of (1) and (2) are done simultaneously, using an induction on
the construction of >pg. We do here the case A = JyB as an example. To
simplify notation we assume that F,(B) = {z,y,z}, B =pr {z,y} (and so
indeed A =pp {z}). By induction hypothesis there is a p.r. function fp s.t.:

1)  Fg- B—z< fp(2)
(II) kg B—y< fp(2)

More accurately: the class of formulas which result from the > pg-effective ones by
substituting everywhere 6¢(z1,...,2,,y) for y = f(x1,...,2y,), where df(x1,...,2,,y) is
the standard formula in op4 which binumerates f in PA ([14]).

121t is well known ([14]) that Q* and PA* are conservative extensions of @ and PA.

I3For convenience, we use here the same symbol for f4 in both opr and in our meta-
language.

14The notation here follows that of [20].



ARNON AVRON 51

It immediately follows from (I) that Fg« A — = < fp(z), proving (2) for A
(take fa = fp). To prove (1), assume that A" is a closed instance of A. Then
there are numbers n and k such that A’ is equivalent in Q* to 3yB(m, y, k). If
A’ is true in AV there is a number m such that B(@,mm, k) is true, and so (by
induction hypothesis) provable in @*. This entails that A’ is provable in Q*.
If, on the other hand, A’ is false then B(m, i, k) is false for every i < fg(k).

Hence, by induction hypothesis, we have for every ¢ < fg(k):
(1) - ~B(m,i, k)
On the other hand (II) above implies that

(IV)  Fo- B(@,y, k) =y < fu(k).

Together, (IIT) and (IV) imply that ko« =3yB(7, y, k), and so ko« - A’

Note 6. Let 0, = {=, 1,5, +, x}. Define F,(S) = P({1}), F,,(+) = F,(x) =
P({1,2}). Let =,=>(,F,). It is possible to show that the class of >,-
effective relations is exactly the class of arithmetical relations that can be
decided in polynomial time (some other complexity classes can similarly be
characterized).

The class of =-effective relations is a proper subclass of the class of > pg-
effective relations. Our general definition allows us, accordingly, to capture
different notions of “effectiveness”. None of them can exactly capture the in-
tuitive notion of “constructive effectiveness” (by a diagonalization argument).
What does seem to be robust is the notion of semi-decidable relations:

Definition 12. A formula is called >,-r.e. if it is of the form JxA, where
A is a =y-effective formula. A relation is called =y-r.e. if it is defined by a
=p-1.€. formula. The classes of =,-r.e. and =pgr-r.c. formulas and relations
are defined similarly.

Proposition 2. The classes of =p-r.e. relations, >=,-r.e. relations, and
- pgr-T.e. relations are all identical (to the usual class of r.e. relations).

Note 7. From the last proposition it is clear that a possible formulation of
Church’s Thesis is that a relation R on N is semi-decidable iff it is definable
by a formula of the form Jx A, where A is either a ,-effective or > pg-effective
(R is of course decidable iff both R and its complement are semi-decidable).
It follows that CCT for extensional relations does not really involve principles
that go beyond those that are suggested in our framework for c-safety of f.o.
formulas and for intensional computability.
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Note 8. Unlike in databases, the interest in CCT and in Metamathematics
has been in safety of a formula A w.r.t. () (rather than w.r.t. Fv(A)).

5 Safety in Set Theory

As we have noted in the introduction, what the various axiomatic set theories
actually provide are syntactic criteria for classes of formulas which may be
assumed to be “safe” for applying the naive comprehension schema. This
is evident, e.g., in the case of Quine’s NF, in which the notion of a “strati-
fied formula” is used. However, we show in this section that it is true also
in the case of ZF, the most famous (and universally accepted) among the
axiomatic set theories. Most of the axioms of ZF are indeed just particular
instances of the comprehension schema. As noted in the introduction, the
guiding line behind the choice of these instances has been the semantic “lim-
itation of size doctrine” ([8, 10]). According to this criterion, only collections
which are not “too big” can be accepted as sets. Here “not too big” is an
intuitive notion (which encompasses quite large infinite sets). With this in-
tuitive notion in mind, a formula A of set theory may be called “size-safe”
(“s-safe”) w.r.t x, if {x | A} determines a collection which is “not too big”.
The comprehension axioms of ZF' lists all the cases which are universally
recognized to be “s-safe” in this sense. Now in databases “size-safe” means
“finite”. In set theory it means something completely different (like “not
equipotent with the collection of all sets”). We show now that the principles
which have been used in these two disciplines in order to secure limitation
of size are nevertheless the same, although they have been developed inde-
pendently. This, we believe, provides strong support to the claim (recently
made, e.g., by H. Friedman) that with the exception of the infinity axiom,
all the other comprehension axioms of ZF are obtained by an extrapolation
from the finite case to the general one. It also leads to new presentations of
Z F' which are based on purely syntactic considerations — in contrast to the
usual semantical justifications (as presented, e.g., in [18]).

To achieve these goals we should use of course an appropriate s-safety
relation rather than a c-safety relation (computability is not an issue here!).
To be able to present one, we need (because of the Powerset axiom) to as-
sume that =, € and C are all primitive symbols of ZF !5, Finally, in order
to get a real insight into the nature of ZF', we follow its presentation in [18]

5Hence the usual definition of C in terms of € should be taken as one of the axioms.
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(where the axioms of ZF' are explained and an attempt is made to justify
them on a semantic ground). Practically this means that we use for ZF a
dynamic language which has the means to introduce new symbols for de-
finable functions. In other words: once 3lyA(xy,...,x,,y) is proved, it is
possible to introduce a new function symbol F4 together with the axiom
Vo, ..o 2 (A(xy, .oy xn, Fa(x, ..., 2,))) (see [17], section 4.6). Officially
we assume that the language includes all these function symbols from the
start, and that every instance of the following schema is an axiom:

Vay, ..., 2, (3YA(z, .. o0, y) = ATy, . T, Fa(zr, .o, 20)))

By this we obtain a conservative extension of ZF which we denote by ZF/.
We next introduce a corresponding safety-signature:

Definition 13. Let ozp = {=,€,C}, and let 0455 be o7 augmented with all
the function symbols of ZF'. Define Fzp(€) = Fzp(C) = {0,{1}}. Extend
Fyp to ozpr by letting Fypi(g) = {0} for every function symbol g.

In the rest of this section “safety” will mean (ops, Fiypr)-s-safety. For
the reader convenience, we recall that this relation is defined here as follows:

(A) Every formula is safe w.r.t ().
(B) f & Fo(t) then x =t,t =2, x € t, and x C t are safe w.r.t {z}.
(C) If A and B are both safe w.r.t. X, then sois AV B.

(D) If A is safe wr.t. X, B is safe wr.t. Y, and X N Fu(B) = 0 or
Y NFv(A) =0, then AA B is safe wr.t. XUY.

(E) If y ¢ X and A is safe w.r.t. X U {y}, then JyA is safe w.r.t. X.

Theorem 3. The standard comprehension azioms of ZF/ (Pairing, Pow-
erset, Union, Separation, and Replacement) can be replaced by the following
single safe comprehension schema (SCn/):

AZVzx.x € Z & A, where A is safe w.r.t. {x}, and Z & Fuv(A).

Proof: The comprehension axioms of ZF7 are all instances of SCn/:
Pairing: 3Z¥Nzx € Z & (x =y Vo = z)
The formula used here is safe w.r.t. {z} by (B) and (C).
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Powerset: 3Z¥z.x € Z < (x C y)

The formula used here is safe w.r.t. {z} by (B). '

Union: 3ZN¥z.x € Z < (Fv.x €vAv € y)

The formula used here is safe w.r.t. {z} by (B), (D), and (E).

Separation: 3ZVr.x € Z < (x € y A B)

The formulas used in this schema are safe w.r.t. {z} by (A), (B), (D).

Replacement: 3ZVzx.x € Z < (Jvw €y Az =1t)

Here x,y,v are 3 distinct variables, and ¢ is a term in which x does not
occur free. The formulas used in this scheme are safe w.r.t. {z} by
(B), (D), and (E).

For the converse, let C' be a formula which is safe w.r.t. {z1,...,2,}
(where {x1,...,x,} are all free in C). Define Set,, ., C to be =C' Vv C in
case n = 0, and 3Z(Vxy ... Vo, (< z1,...,2, >€ Z & () in case n > 0.
We show by induction on the structure of C' that Set,, ., C is a theorem
of ZF/ (the principle we want to show is obtained from this result as the
particular case in which n = 1). Most of the cases are straightforward.
We again do here the case of conjunction (which is the most complicated)
as an example. To simplify notation, assume again that Fv(A) = {z, 2},
Fv(B) ={z,y,z}, Aissafe wr.t. {z}, B is safe wr.t. {y} (and so AA B is
safe w.r.t. {z,y}). By induction hypothesis, Fzps Set, A, and Fzps Set,B.
We show that s Set, (A A B). Now the assumptions imply that there
are sets Z(z) and W(x,z) such that:

Forrr € Z(z) & A Fopry €Wz, 2z) < B

It follows that {< z,y >[ AN B} = U,ez{< 2,y >[y € W(x,2)}. Hence
Set, (AN B) follows from the axiom of replacement and the axiom of union.

16Note that the validity of the Powerset axiom is enforced here by taking C as primitive,
and letting {1} € Fzr(C).
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Example: The existence of the Cartesian product of two sets, U and V, is
due to the safety w.r.t. {z} of Jadb.a € UANb € V Az =< a,b > (One should
here justify first the use of the term < a,b >. This is easy.

Already Theorem 3 suffices for supporting the claim that the construction
principles behind ZF' are nothing more than standard syntactical principles
concerning the first-order logical constants which are normally used to secure
finiteness'”. However, if one insists on using just standard first-order formulas
of the signature oz, then replacement causes a problem. The reason is that
unlike the other comprehension axioms of ZF, its official formulation in ZF
has the form of a conditional. A possible solution to this problem is to
translate into the language of ZF the conditions which define safety, and
take these translations as our axioms. For this we assume first that a binary
function symbol <, > for forming ordered pairs is added to ozp, together
with an axiom which corresponds to its usual definition.!®

Theorem 4. The various comprehension axioms of ZF can be replaced (in
the language with <,>) by the following azioms:

(A) Sety,  .,A= Set,, . A wherez,...,z, is a permutation of
L1,y -

Ty
(B1) set,z =y
(B2) set,z Cy
(C) (Sety,..anANSety,. 2. B)= Sety, ., AV B

(D) (Setsy. o AN (NVxy .. Va,Sety, ., B)) = Sete,  anurumANDB
in case {y1,...,ym}t N Fov(A) =0.

(E) Setxl,...,xn,yA = Setﬂch---,xnayA

Proof: We shall show here how to prove replacement from the new set of
axioms, leaving the rest for the reader. For this it is convenient to use the
version of replacement given in [17]. In the present notation, this version can
be formulated as follows:

VySet, A = Set,Jy.y e wN A

TThis basing of the axioms of ZF on a syntactically defined notion of “smallness” is
similar in spirit to recent works on category-theoretic models of ZF (see [11, 19]).
18 Alternatively, one may add a function symbol for forming unordered pairs.
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So assume VySet,A. Since Set,y € w is logically valid, this assumption
implies (Set,y € w) A (VySet,A). By axiom (D) we can infer therefore
Set,,y € wA A. From this Set,3y.y € w A A follows by axiom (E).

Note 9. Still another approach, in which an extra case is added to the notion
of safety in ZF (and the explicit use of the abstraction operation is allowed)
is outlined in [1]. In that paper also the infinity axiom is presented as a
particular case of the safe comprehension schema, but for this one needs to
use an extension of first-order logic with a transitive closure operation.

Note 10. We have seen that in database theory the interest is in safety
of a formula w.r.t. to its whole set of free variables. Then we saw that in
computability theory and in metamathematics the interest is in safety of a
formula w.r.t. the empty set of variables. Now we see that in set theory,
in contrast, the main interest is in safety of a formula w.r.t. exactly one of
its free variables! These differences might be the reason why the connection
between the three cases has been hidden for so long.

5.1 Absoluteness

It is interesting to note that also an analogue of the concept of domain-
independence from database theory (see subsection 3.2) has independently
been introduced in the literature on set theory. This is the notion of abso-
luteness, which is crucial for independence proofs (see, e.g., [13]). Indeed, it
is easy to see that a formula is (045, Fas)—d.i. with respect to () (see the
second example after Definition 7) iff it is absolute according to the literature
on set theory. Again we see here an interesting difference between what has
been taken to be important in database theory and in set theory: while in
database theory the main interest is in d.i. of a formula w.r.t. its set of free
variables, in set theory the interest has been in d.i. of a formula w.r.t. 0!
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1 Introduction

We call finitely generating an inference rule in a sequent system [7] if, given
its conclusion, there is only a finite set of premises to choose from. This
property is desirable from the viewpoint of proof search, since it implies
that the search tree is finitely branching. It is also desirable for showing
consistency, since the biggest obstacle to showing consistency is the cut rule,
which is not finitely generating.

Much effort has been devoted to eliminating the cut rule in various sys-
tems: theorems of cut elimination are at the core of proof theory. In addi-
tion to the cut, there is another source of infinite choice in the bottom-up
construction of a first order proof, namely the choice in instantiating an exis-
tentially quantified variable. Research grounded in Herbrand’s theorem [11]
deals with this aspect and is at the core of automated deduction and logic
programming.
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Implementations of sequent systems for first order predicate logic are
usually based on rules that are finitely generating. Such rules can be obtained
for example as follows: first prove cut elimination to get rid of the cut rule,
then use unification instead of blindly guessing instantiations.

This paper shows how one can eliminate all sources of infinite choice in
a system of first order classical logic in a much simpler way, in particular
without the use of cut elimination. To do so we use the calculus of structures
[9], a formalism based on deep inference, which is the possibility of applying
inference rules deep inside formulae. Systems in the calculus of structures
offer the same proof theoretical properties as systems in the sequent calculus,
in particular it is possible to prove cut elimination and many other normal-
isation results [9, 3, 1, 2]. The point here is that it is possible to obtain
finitely generating systems without having to use these complex methods.

The main idea we exploit is that there are actually two sources of infinite
choice in the cut rule: an infinite choice of atoms and an infinite choice in how
these atoms can be combined for making formulae. Deep inference allows us
to separate these two kinds of infinite choice. First we reduce the cut rule to
atomic form, which is immediate thanks to deep inference. Then we eliminate
only those cuts which (seen bottom-up) introduce atoms that do not occur
in the conclusion. This is much simpler than a full-blown cut elimination.
The instances of cut that we retain introduce atoms that already occur in
the conclusion, so they are finitely generating.

Just like the cut rule, the rule for existential quantification also has two
sources of infinite choice: an infinite choice of function symbols and an infinite
choice in how these function symbols can be combined for making terms.
We eliminate them by using the same technique that we used for the cut:
first we reduce the instantiation rule to a form which instantiates only with
one function symbol at a time. Then we eliminate those instances which
introduce function symbols that do not occur in the conclusion. We are left
with a finitely generating instantiation rule.

In the sequent calculus, which restricts the application of inference rules
to the main connective of a formula, it is impossible to eliminate infinite
choice in such a simple manner. First, the cut rule can not immediately be
reduced to atomic form: one has to use cut elimination for that. Second, the
rule for instantiating existentially quantified variables can not be restricted to
instantiating with only one function symbol. The adoption of deep inference
instead allows this.

When proving in the system we obtain, the only infinity that remains is
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in the unboundedness of the proofs themselves, every other aspect in proof
construction is finite: at any given step, there are finitely many inferences
possible, and each inference rule can only be applied in a finite number of
different ways. Also, the consistency of the system is easily shown.

The point we make in this paper is not so much the existence of the
finitely generating system that we show, but the simplicity of the techniques
that are used to obtain it, which are purely syntactic and much less complex
than cut elimination.

The notion of a finitely generating inference rule is closely related to that
of an analytic rule, cf. Smullyan [12]. An analytic rule is one that obeys the
subformula property. We tend to think of the notion of being finitely gener-
ating as a more general, weaker subformula property: there are interesting
rules that are finitely generating but do not obey the subformula property,
for example in system GS4ip, cf. Dyckhoff [6]. However, not all analytic rules
are finitely generating, as witnessed by the existential-right rule. This is due
to the fact that analyticity is defined with respect to the notion of Gentzen
subformula (where instances of subformulae count as subformulae), rather
than the literal notion of subformula.

In previous work, Briinnler and Tiu proved that classical logic can be
presented in the calculus of structures in such a way that applying a rule
only requires a bounded effort [1, 3]. This paper improves on that result by
bounding choice.

In Section 2 we introduce first order logic in the calculus of structures
and in Section 3 we show how to eliminate infinitely generating rules and we
show the consistency argument.

2 First Order Logic in the Calculus of Structures

Variables are denoted by z and y. Terms, denoted by 7, are defined as usual
in first-order predicate logic. Atoms, denoted by a, b, etc., are expressions of
the form p(7,...,7,), where p is a predicate symbol of arity n and 7,...,7,
are terms. The negation of an atom is again an atom.

The structures of the language KSq are generated by

Su=flt]all[S,....,S]](S,...,8)]| IS |VaS|S
>0 >0

where t and f are the units true and false, [Si,...,Sh] is a disjunction,
(S1,...,5h) is a conjunction, 3 is the ezistential quantifier and V is the
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Associativity Commutativity
R, [T),U] = [R,T,U] [R,T) = [T, R]
(R, (T),U) = (R, T,U) (B, T)= (T R)
Units Negation
f.f) = [f,R] =R f=t
[7t]: (t7R):R E:f
[R,T] = (R.T)
Context Closure (R,T) = [R,T]
JxR = V2R
. S{R} = 5{T}
it R=T then R_T ViR = 3R
R=R

Vacuous Quantifier
if y is not free in R then VyR =dyR=R
Variable Renaming

VR =VyR|[z/y]

if y is not free in R then
JzR = JyR[x/y]

Figure 1: Syntactic equivalence of structures

universal quantifier. S is the negation of the structure S. The units are
not atoms. Structures are denoted by S, R, T, U and V. Structure contexts,
denoted by S{ }, are structures with one occurrence of { }, the empty context
or hole, that does not appear in the scope of a negation. S{R} denotes the
structure obtained by filling the hole in S{ } with R. We drop the curly
braces when they are redundant: for example, S[R, T stands for S{[R,T]}.
Structures are equivalent modulo the smallest equivalence relation induced
by the axioms shown in Fig. 1, where Rand T are finite, non-empty sequences
of structures. In general we do not distinguish between equivalent structures.
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An inference rule is a scheme of the kind p , where p is the name of

S{R}

the rule, S{T'} is its premise and S{R} is its conclusion. A (formal) system

S is a set of inference rules. The dual of a rule is obtained by exchanging

premise and conclusion and replacing each connective by its De Morgan dual.
A derivation A is a finite chain of instances of inference rules:

T
7T —
V

mw —

-

U

"R
A derivation can consist of just one structure. The topmost structure in a
derivation is called the premise of the derivation, and the structure at the
bottom is called its conclusion. A derivation A whose premise is T', whose
conclusion is R, and whose inference rules are in & will be indicated with

T
Alls . A proof 11 in the calculus of structures is a derivation whose premise is

R
the unit true. It will be denoted by HES . A rule pis derivable for a system S

T
if for every instance of p — there is a derivation |s. A rule p is admissible
R R
for a system S if for every proof ESU{/) Y there is a proof gs .

Besides deep inference, the calculus of structures employs a notion of
top-down symmetry for derivations. Symmetry makes possible to reduce the
cut rule to its atomic form without performing cut elimination: this would
be impossible by solely adopting deep inference. The dual of a derivation
is obtained by flipping it upside-down, negating each structure in it, and
replacing each rule by its dual.

System SKSgq, shown in Fig. 2, has been introduced and shown to be
sound and complete for classical predicate logic in [1]. The first S stands for
“symmetric” or “self-dual”, meaning that for each rule, its dual (or contra-
positive) is also in the system. The K stands for “klassisch” as in Gentzen’s
LK and the second S says that it is a system in the calculus of structures.
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S{t} 4 SR
SR, R S{f}
S([R,U],T)
*S[(R,T),U]
S{Vxz[R,T]} S(3zR,VxT)
™ S[VzR, 32T Y S{E(R, T))
S{f} S{R}
"SR 5w
S[R, R] S{R}
4 Sty Tsr R
S{R[z/7]} . S{¥aR)
S{3cR) S{R[z/7]}

Figure 2: System SKSgq

The g is for “general” (as opposed to atomic) contraction. The q denotes
(first-order) quantifiers.

The first and last column show the rules that deal with quantifiers, in the
middle there are the rules for the propositional fragment. The propositional
rules i},s,w] and c| are called respectively identity, switch, weakening and
contraction. The rule ul is called universal, because it roughly corresponds
to the RV rule in sequent systems, while n| is called instantiation, because it
corresponds to R4.

In the sequent calculus, going up, the RV rule removes a universal quan-
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tifier from a formula to allow other rules to access this formula. In system
SKSgq, inference rules apply deep inside formulae, so there is no need to
remove the quantifier. Note that the premise of the ul rule implies its con-
clusion, which is not true for the RV rule of the sequent calculus. In all rules
of SKSgq the premise implies the conclusion.

As usual, the substitution operation in the rules n] and n? requires 7 to
be free for z in R: quantifiers in R do not capture variables in 7. The term
7 is not required to be free for z in S{R}: quantifiers in S may capture
variables in 7.

The dual of rule carries the same name prefixed with a “co-”, so e.g. wt
is called co-weakening. The rule s is self-dual. The rule it is special, it is
called cut. Rules with a name that contains an arrow pointing downward are
called down-rules and their duals are called up-rules. The system enjoys cut
elimination: all up-rules are admissible, as has been shown in [1].

Sequent calculus derivations easily correspond to derivations in system
SKSgq. For instance, the cut of sequent systems in Gentzen-Schiitte form

[16]:

(@41, [¥, )
"0, (A,[9,])]
D, A FU A L [@,0, (A, 4)]
Cut corresponds to it
Fo, W [P, U]

9

3 Eliminating Infinite Choice in Inference Rules

There are several rules with infinite choice in system SKSgq: the co-weaken-
ing, the cut, the instantiation and the co-instantiation rule. The equivalence
on structures is infinitely generating as well: equivalence classes are infinite.
In the following we will see for each of these rules and the equivalence how
to to replace them by finitely generating rules without affecting provability.

3.1 The Co-weakening Rule

The rule wt is clearly infinitely generating, since there is an infinite choice of
atoms, but it can immediately be eliminated by using a cut and an instance
of w| as follows:
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S{R}
" S(R, [&.])
> St (R, 9)]
Sl (R R))

S{a} T STt f]
st TSy

wT

3.2 The Cut Rule

The cut is the most prominent infinitely generating rule. The first source
of infinite choice we will remove is the arbitrary size of the cut formula. To
that end, consider the atomic cut rule:

S(a,a)
S{f}

The following theorem, also proved in [1], allows us to restrict ourselves
to atomic cuts.

ait

Theorem 1. The rule i1 is derivable for {aif,s, ut}.

Proof. By an easy structural induction on the structure that is cut. A cut
introducing the structure (R,T') together with its dual structure [R,T] is
replaced by two cuts on smaller structures:

S(RT.[R.T)

S(R[R,(1.1)))

SRR, (1T
S(R,T,[R,T)) _S(R,R)
sy 7 T

A cut introducing the structure Vo R together with its dual structure 3z R
is replaced by a cut inside an existential quantifier followed by an instance
of ut:
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S(VrR,3xR)
© (3R R}
_ S(vVaR,3R) RNTEr!
s{f} T s
These reductions can be repeated until all cuts are atomic. O

The rule aif still is infinitely generating, since there is an infinite choice
of atoms. Let us take a closer look at the atoms:

S(p(Tla s 77-n)7p(7-17 s 7Tn))
S{f}
There are both an infinite choice of predicate symbols p and an infinite
—
choice of terms for each argument of p. Let 7 denote Ti,...,T, and x denote

x1,...,T,. Since cuts can be applied inside existential quantifiers, we can
delegate the choice of terms to a sequence of n| instances:

ait

— —

N S(p(7),p(7))
S{3z(p(z),p(x))}

LS T s(E
S{f} SR

The remaining cuts are restricted in that they do not introduce arbitray
terms but just existential variables. Let us call this restricted form vaif:

vait S(p(z), p(z))
S{f}

The only infinite choice that remains is the one of the predicate symbol
p. To remove it, consider the rule finitely generating atomic cut
S T

(p(z), p(z))

S
fait —————  where p appears in the conclusion.

S{f}

This rule is finitely generating, and we will show that we can easily trans-
form a proof into one where the only cuts that appear are faif instances.
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Take a proof in the system we obtained so far, that is SKSgq without wt,
and with vaif instead of if. Individuate the bottommost instance of vai] that
violates the proviso of faif:

I
vait S(p(z),p(z))
S{f} ’

where p does not appear in S{f}. We can then replace all instances of p(?c})

and p(?c)) in the proof above the cut with t and f, respectively, to obtain a
proof of S{f}. It is easy to check that all rule instances stay valid or become
trivial; the cut
2 (t,f)
vai ,
S{f}

can just be removed, since (t,f) = f.

Please notice that if p appeared in S{f}, then this would not work, be-
cause it could destroy the rule instance below S{f}.

Proceeding inductively upwards, we remove all infinitely generating atom-
ic cuts.

3.3 The Instantiation Rule

The same techniques also work for instantiation. Consider these two re-
stricted versions of nJ:

SRR S{Rl/)
' S{3xR) * S{3xR}

An instance of n| that is not an instance of n}, can inductively be replaced
by instances of n|, (chose variables for 7 that are not free in R):

. S{R[z/f()]}
S{3zR[x/f(7)]}

S{R[z/f(T)]} =  S{373xR}
S{3zR} - S{3zR}

n}

1
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This process can be repeated until all instances of n| are either instances
of n}, or nl,.
Now consider the following rules, which are finitely generating
S{R[z/f(x S{R|z
oy, ST SRl
S{3zR} S{3zR}

where fn], carries the proviso that the function symbol f either occurs in
the conclusion or is a fixed constant ¢, and fnl, carries the proviso that the
variable y appears in the conclusion (no matter whether free or bound or in
a vacuous quantifier).

Infinitely generating instances of n|; and nJ,, i.e. those that are not
instances of fn), and fnl,, respectively, are easily replaced by instances of
finitely generating rules similarly to how the infinitely generating cut was
eliminated. Take the constant symbol ¢ that is fixed in the proviso of fn,,
and throughout the proof above an infinitely generating instance of nl,,
replace all terms that are instances of f (z) by c. For n], we do the same to
all occurences of y, turning it into an instance of fn,.

3.4 The Equivalence and the Co-instantiation Rule

The equivalence can be broken up into several rules, for associativity, com-
mutativity, and so on. Those rules are clearly finitely generating except for
variable renaming and vacuous quantifier, which, technically speaking, have
an infinite choice of names for bound variables. The same goes for the co-
instantiation rule. Of course these rules can be made finitely generating since
the choice of names of bound variables does not matter. There is nothing
deep in it: the only reason for us to tediously show this obvious fact is to
avoid giving the impression that we hide infinity under the carpet of the
equivalence. The need for the argument below just comes from a syntax
which has infinitely many different objects for essentially the same thing,
e.g. Vap(z),Yyp(y) and VyVap(z) .... If you are not concerned about this
‘infinite’ choice of names of bound variables, then please feel invited to skip
ahead to the next section.

Consider the following rules for variable renaming and vacuous quantifier,
they all carry the proviso that x is not free in R:
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S{VzR[y/x]} N S{3zRy/x]}
S{¥yR} S{3yR}
S{3xR) S{R}

S{R} T Stvary

Let us now consider proofs in the system that is obtained from SKSq by
restricting the equivalence rule to not include vacuous quantifier and variable
renaming and by adding the above rules. This system is strongly equivalent
to SKSq as can easily be checked.

The rule v7 is clearly finitely generating. Let us see how to replace the
rule v] by finitely generating rules, the same technique also works for the
rules a7 and a |. Consider the finitely generating rule fv|,, which is v
with the added proviso that x occurs in the conclusion (no matter whether
bound or free or in a vacuous quantifier) and the infinitely generating rule
v}’ which is v} with the proviso that z does not occur in the conclusion.

Fix a total order on variables. Let fv], be v] with the proviso that z is
the lowest variable in the order that does not occur in the conclusion. This
rule is clearly finitely generating: there is no choice.

Each instance of v is either an instance of fv], or of v|’. In a given
proof, all instances of v’ can be replaced by instances of fv/, as follows,
as we we will see now. Starting from the conclusion, going up in the proof,
identify the first infinitely generating vacuous quantifier rule:

|

,S{3zR}
S{R}

x does not occur in S{R}

H
T

where x is not the lowest in our fixed order that does not occur in the
conclusion. Let y be the lowest variable that does not occur in the conclusion.
Now, throughout the proof above, do the following:

1. Choose a variable z that does not occur in the proof. Replace y by z.

2. Replace x by y.
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By definition neither x nor y occur in the conclusion, so the conclusion is not
broken. All the replacements respect that variable occurrences with different
names stay different and variable occurrences with the same names stay the
same. So the proof above stays intact. Replace the v’ instance by a fv,
instance and proceed inductively upwards.

4 A Finitely Generating System for Predicate Logic

We now define the finitely generating system FKSgq to be
(SKSga\ {it, wt,n}) U {fait, fly, flo} .

and, for what we showed in the previous section, state

Lemma 1. Fach structure is provable in system SKSgq if and only it is prov-
able in system FKSgq.

To put the finitely generating system at work, we use it to show consis-
tency of system SKSgq. Of course, for this purpose it suffices to have finitely
generating cut. Having infinite choice in instantiation would not affect the
following argument.

Lemma 2. The unit f is not provable in system FKSgq.

Proof. No atoms, but only f, t and vacuous quantifiers can appear in such a
proof. It is easy to show that f is not equivalent to t. Then we show that
no rule can have a premise equivalent to t and a conclusion equivalent to f.
This is simply done by inspection of all the rules in FKSgq. O

From the two lemmas above we immediately get consistency:
Theorem 2. The unit f is not provable in system SKSgq.
Now we can make use of symmetry by flipping derivations:

Theorem 3. For all structures R, if there is a proof of R then there is no
proof of R.

Proof. We assume that we have both proofs:

W and W

R R
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Dualise the proof of R to get
R

f

and compose this derivation with the proof of R to get a proof of f, which is
in contradiction to Theorem 2:

—- =5y —

5 Conclusion

In this paper we showed simple proof theoretical techniques for making a
system of first order classical logic finitely generating. We believe that these
considerations help make clear that finite choice and cut elimination, or other
normalisation techniques, are conceptually independent.

Some of the techniques we used, for example the replacement of an atom
and its dual by t and f, are folklore. However, in order to produce a finitely
generating system they have to be combined with the reduction of the cut
rule to its atomic form. This crucial ingredient is provided by deep inference
and top-down symmetry, which are not available in the sequent calculus.

In the calculus of structures, there are presentations of various modal
logics [13], linear logic [14, 15] and various extensions of it [9, 10, 4] and
noncommutative logics [5]. All these systems are similar to system SKSgq in
that they include rules which follow a scheme [8], which ensures atomicity of
cut and identity. The techniques shown here thus also work for these logics.
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Predicate Logic, Predicates, and Terms

George Englebretsen
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My primary aim here is to introduce in a very preliminary way a system
of formal logic that has been built by Fred Sommers and myself over the
past few years. This Term Logic matches the inferential power of the stan-
dard first-order Predicate Logic, but enjoys certain advantages in terms of
simplicity and naturalness. What I hope this can offer is some insight into
ideas concerning formal logic that are extremely old but not often encoun-
tered today. I may rightly be accused of atavism for touting such antiques,
but perhaps the contrast between these ideas and more contemporary ones
will be of interest. So, some of my remarks will concern some central logical
concepts (especially the concept of predication), while others will be a bit
historical.

The very title of this conference, “75 Years of Predicate Logic,” and
its recognition of the anniversary of Hilbert and Ackermann’s great work,
inevitably puts one in a historical frame of mind. I shall begin with a few
historical remarks.

1 Historical Remarks
A century and a half ago De Morgan wrote:

We know that mathematicians care no more for logic than logi-
cians for mathematics. The two eyes of exact science are mathe-
matics and logic: the mathematical sect puts out the logical eye,
the logical sect puts out the mathematical eye, each believing
that it can see better with one eye than with two.

5

Hendricks et al. (eds.):
First-Order Logic Revisited
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That was a long time ago. Before Boole no one, with the obvious excep-
tion of Leibniz, thought much about the connection — if any — between logic
and mathematics. But by the time of Boole and De Morgan the algebraic
logicians were contending that logic was a branch of mathematics (indeed, a
branch of algebra). Soon after, the logicists were turning the tables, insist-
ing that mathematics (or much of it), if not a branch of logic, was at least
founded on logic. Since 1931 logicism has lost much of its steam. But long
before that the new logic (Predicate Logic) had supplanted the old logic in
all of its old guises — including algebraic. Today, it seems to me, logicians
and mathematicians don’t spend much time poking out each other’s eyes.
But the exact nature of the relation between logic and mathematics is still
not clear. De Morgan had called them “the two eyes of exact science.” And
that sounds pretty much correct. Perhaps they are just the two branches of
a more general discipline — the science of reckoning.

Back in the '60s, when I began teaching logic, students had been more
thoroughly instructed in Grammar [it seems to me that Rhetoric holds the
premier position in the trivium today]. They knew that the natural com-
plement of the term ‘predicate’ was ‘subject’, and would sometimes ask the
whereabouts of the Subject in Predicate Logic. Of course there are expres-
sions that play the grammatical role of subject in Predicate Logic — individual
constants and variables. But so-called Subject-Predicate Logic, the logic of
the Schoolmen, of Leibniz, of the algebraic logicians from Boole to Schroder
and Peirce, had been thoroughly replaced by a logic giving pride of place
to the predicate alone. Frege had written: “I believe that the replacement
of the concepts of subject and predicate by argument and function, respec-
tively, will stand the test of time.” The smart money, it turned out, was on
Frege. Russell impeached Leibniz’s entire philosophy because he took it to
rest on Leibniz’s logic — a logic that still recognized subjects and predicates,
a Subject-Predicate Logic. How was it that the old Subject-Predicate Logic
gave way to the new Predicate Logic? And Why?

Well, the answer to the second question is easy. The new logic could
do far more, and usually do it far more efficiently, than the old. The old
logic was bad at offering any insight into the logic of inferences involving
singular terms, compound propositions, or relationals. The latter require an
adequate representation of propositions of so-called multiple generality, and,
as Fregeans like Geach and Dummett are fond of pointing out, the best the
old logic could do here was the cumbersome Scholastic semantic theory of
supposition. So, on these grounds, the victory of the new over the old was
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easy. The answer to the first question is a longer, more complex story. Its
historical outlines are familiar, and have been recounted in detail elsewhere,
so I need only briefly highlight them here — the rest of the answer will come
later.

Philosophers (not to mention mathematicians, linguists, cognitive psy-
chologists, and others) have been interested in formal logic for a variety of
reasons. Attempts to articulate a formal logic can throw light on how we
do, or should, reason, might reveal the foundations of mathematics (or at
the very least can illuminate basic mathematical concepts and procedures),
could (once fitted with a practicable algorithm) ease the burden of logical
reckoning, and so forth. Aristotle, who started it all, laid out the principles
governing correct argumentation (from one or two categorical premises to a
categorical conclusion) — syllogistic — as a tool to be used for the teaching and
doing of theoretical sciences (physics, mathematics, metaphysics, for him).
He said a little, but not much, about other forms of argumentation and other
kinds of propositions. The Stoics, though soon forgotten, took on the task of
formalizing the rules governing arguments involving compound propositions
— truth-functional logic as it is usually called today. Fusing, and sometimes
confusing, Aristotelian and Stoic insights, the Scholastic logicians codified
formal logic and added a number of their own insights concerning both log-
ical syntax and semantics. In the 17th century Leibniz made a number of
attempts to use the tools of mathematics to formalize a symbolic algorithm
for a logic that was essentially syllogistic. Two centuries later most of his
ideas were rediscovered by the algebraic logicians and by Frege. It is the logic
of Frege, filtered through Russell and Whitehead, Hilbert, Gentzen, Godel,
Quine, and others that we teach today.

2 Formatives

Logicians recognize a fundamental distinction between expressions that have
some “material” sense and those that merely determine the form of more
complex expressions in which they occur. For the Scholastics this was the cat-
egoremata /syncategoremata distinction — the constant/variable distinction
today. However, defining or characterizing logical constants (or formatives,
as I shall call them) so as to draw this distinction sharply and objectively
has posed a challenge for post-Fregeans. Logicians such as Russell, Tarski,
Quine, and many others have conceded that the best one can do is simply
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enumerate those expressions that one recognizes as determining logical form.
The task of defining or characterizing formatives is simply abandoned. Thus
Quine wrote that “a morpheme is a particle or a lexical element according
as there are fewer or many expressions in its grammatical category” ([6], pp.
18-19). Some logicians, on the other hand, have claimed that a definition
(of sorts) can be given by Gentzen-like rules for the introduction or elimi-
nation of formatives in proofs. The idea is that one begins with a simple
formal language with no formatives (perhaps consisting of just Tractarian
atomic formulae) and then formulates rules of proof that introduce or elimi-
nate each formative. But there remains a question about whether or not this
process actually reveals anything about the nature of the formatives rather
than about the nature of proof.

If you believe, as I do, that logic is the science of how we ideally rea-
son and express our reasoning in natural language, then whatever one might
offer as a characterization of formatives must reflect how their natural lan-
guage analogues actually work when properly used. A number of traditional
logicians had a good idea of this. Hobbes thought reasoning should be a
kind of calculating in which ideas are added or subtracted; Leibniz thought
all formatives could be defined in terms of copulae (‘is’/‘isn’t’) and could
be symbolized by plus and minus; De Morgan, too, held that all formatives
amount to algebraic operators of addition and subtraction. Many years after
Boole’s death his widow wrote of his aim in formulating his logic: “...to
express ordinary statements about facts in some sort of arithmetical or al-
gebraic notation so as to be able to work out the logical consequences of
premises with the same ease as we work sums” (quoted in [3], 59). The idea
that formatives share some unique characteristic and the idea that one can
thus build a symbolic algorithm in which logical reckoning becomes a mat-
ter of algebraic addition or subtraction have been carried out to the fullest
extent by the American logician Fred Sommers. His version of formal logic
is Term Logic. It takes seriously the notion that all logical formatives are
oppositional in nature. And, just as in arithmetic or algebra, there is both a
unary and a binary version of each.

3 Logical Copulation

To over-simplify, logic began twice — first with Aristotle and then with Frege.
Traditional logic was a Term Logic; modern logic is Predicate Logic. When
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Frege began his logical researches, seeking a way to place arithmetic on the
firmer foundation of logic, he looked at the logic of Boole and the algebraists.
But he soon concluded that such a logic was flawed and limited in a number
of ways. It was plagued by what he termed “psychologism,” it was too closely
tied to natural language with all its ambiguity and untidiness, it mistakenly
took terms to be logically prior to sentences, it made use of mathematical
concepts and notations, rendering it inappropriate for use as a foundation
for mathematics, and, of course, it was burdened by the old-fashioned notion
that sentences should be analyzed in terms of subjects and predicates. Frege
offered an account of the logical syntax of propositions, an account of why a
proposition is a logical unit rather than just a string of terms, that was far
different from the logical syntax of traditional term logic.

In the Sophist Plato claimed that propositions result from combining
nouns (onoma) with verbs (rhema). In the simplest case a noun is com-
bined with an intransitive verb (e.g., ‘Men reason’). His logical insight was
gleaned from Greek grammar, and his intention was to show that in a true
proposition the combining of a noun and a verb reflects the mixing of Forms
(the form Man mixes with the form Rational). Both the ontological mixing
and the logical combining are natural; nothing further is required. At least
for the simplest cases, this binary theory of logical syntax is the one Frege
adopted many centuries later. But where Plato looked to grammar for logical
guidance, finding onoma and rhema, Frege looked to mathematics, finding
arguments and functions.

Early on Aristotle seems to have accepted his teacher’s binary theory of
logical syntax, with its implicit explanation of propositional unity. However,
once on the road to formulating the syllogistic in Prior Analytics he was
forced to adopt a theory that would allow terms to play different logical roles
in different propositions (because in any valid syllogism at least one term
occurs once as a subject-term and once as a predicate-term). Grammar was
of little use here. Aristotle had to look deeper. What he discovered was that
any proposition fit for use in a syllogism (i.e., any categorical) had to consist
of a pair of terms whose logical roles were independent of their grammatical
roles. The logician could simply view them as terms (horos). But this left
the question of propositional unity unsolved. The binary theory holds that
propositional unity is the result of combining a pair of expressions (terms)
that are just grammatically fit for one another (axe heads and axe handles
forming axes). But how do two terms whose grammatical features are inert
form a unified proposition? Aristotle’s answer was the logical copula. He
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generally formulated propositions with a pair of terms flanking an expression
that was itself not a term — it was a formative. Its job was to mediate between
the two terms, tie them together to form a unified proposition. There were
four such formatives: ‘belongs to some’, ‘belongs to no’, ‘belongs to every’,
and ‘does not belong to some’. Aristotle’s formatives acted as the glue that
binds pairs of terms to form a logical unit. His theory of logical syntax is
thus ternary, analyzing a proposition as a pair of terms and a logical copula.
The ternary theory made syllogistic possible.

The Scholastic logicians had a field day in the land of syllogistic, amend-
ing and emending at will while preserving Aristotle’s core insights. The most
obvious change they made was this: Aristotle’s propositions consisted of a
pair of terms at the two ends (literally termini) of the proposition with a
copula in the middle. The Scholastics recognized first that this was not only
awkward in both Greek and Latin (and English, German, French, etc.), but
that the copula was providing the proposition with two features simultane-
ously — quantity and quality. Their solution was to

1. split the copula into two parts (e.g., ‘wisdom belongs to / some men’),
2. reorder the results (‘some men / wisdom belongs to’),
3. reorder the second part (‘some men / belongs to wisdom’),

4. replace the second half of the now split copula with a grammatically
appropriate version of the verb ‘to be’, which Abelard had first called
a ‘logical copula’ anyway (‘some men / are wisdom’), and then

5. put the terms in the appropriate cases (‘some men are wise’).

On this analysis the two fragments of the logical copula are the quanti-
fier and the qualifier, each attached to its own term. The first became the
subject-term and the second became the predicate-term. The quantifier plus
subject-term became the Subject; the qualifier plus predicate-term became
the Predicate. This quaternary theory of logical syntax is the heart of so-
called Subject-Predicate Logic. It is important to recognize however that
the quaternary analysis is just a version of the ternary one. Even though
the logical copula of the ternary theory has been split, its two fragments still
constitute a single copula.
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4 Frege’s Theory of Logical Syntax

Frege saw a sharp and unbridgeable chasm between function expressions and
arguments. The lowest level function expresssions are predicates; arguments
are names (singular terms, including proper names, personal pronouns, and
definite descriptions). The Bedeutung (reference or even supposition per-
haps) of a predicate is a concept; the Bedeutung of a name is an object. The
asymmetry here is complete and absolute. No concept is ever an object; no
object is ever a concept (not even the concept of a horse). And likewise for
their linguistic counterparts. In the logically simplest cases of propositions,
so-called atomic propositions, only predicates can occur in predicate posi-
tions, only names can occur in subject positions. Geach has said it quite
clearly:

It is logically impossible for a term to shift about between subject
and predicate position without undergoing a change of sense as
well as a change of role. Only a name can be a logical subject;
and a name cannot retain the role of name if it becomes a logical
predicate. ([2], p. 48)

But just how does one know which term in such a proposition is the
predicate and which the subject? Frege’s answer was that predicates are
incomplete, unsaturated, while names are complete, saturated. Predicates
contain (one or more) gaps; names don’t. And this is how he can account for
the unity of a proposition. Names just naturally happen to be fit to fill the
gaps in predicates. Round pegs in round holes. No glue, no logical copula is
required. A new version of Plato’s binary syntax.

Geach spoke of both subjects and predicates in characterizing Frege’s new
theory of logical syntax, so why is that logic a Predicate Logic rather than a
Subject-Predicate Logic? Predicate Logic must distinguish between propo-
sitions consisting of a single predicate (having one or more gaps) and names
filling each gap — atomic propositions. If logic were to limit itself to just
dealing with such propositions it might be acceptable to call it a Subject(s)-
Predicate Logic. But an adequate logic must be able to handle more com-
plex types of propositions (compound propositions and multiply quantified
propositions, especially). The foundation of Predicate Logic is the propo-
sitional calculus. This basic but elementary part of the logic accounts for
compound propositions (conjunctions, conditionals, etc.) whose constituent
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sub-propositions need not be analyzed into predicates and subjects. The rest
of standard Predicate Logic consists of the predicate calculus (with identity).
Here quantifiers are introduced as higher-order function expression operating
on entire propositions that normally involve both predicates and names — in-
cluding pronouns (individual variables). The quantifiers bind those variables.
The propositional calculus is basic here because the function expressions that
connect sub-propositions (propositional connectives) are to be found in the
propositions to which quantifiers are applied. Propositions of identity are
treated as special since there are special restrictions on both the syntax and
semantics of the identity predicate.

5 Pluses and Minuses

Predicate Logic is a very powerful system for analyzing logical reckoning. It
can do all the things that traditional logic could not do or only do poorly. In
particular, it can account for inferences involving singular terms, relationals,
and compound propositions. It provides relatively simple tests for deciding
validity and clear accounts of semantic modelling and of proof. Moreover,
it is equipped with a symbolic algorithm for carrying out much of this work
mechanically — the goal glimpsed by Leibniz and Boole. But in spite of these
advantages it fairs poorly with traditional logic in terms of simplicity and
naturalness. Traditional logic was relatively powerless to account for various
kinds of inferences (especially those involving relationals), but it was both
more natural and simpler than Predicate Logic. It was more natural in the
sense that its account of the logical syntax of propositions was close to that of
natural language. It was simpler in that it required a much smaller number
of kinds of formatives and fewer kinds of rules of inference.

The challenge for any term logician is to build a logic that enjoys the
power of Predicate Logic as well as the simplicity and naturalness of tradi-
tional logic. A Term Logic, such as the one devised by Sommers, aims to
meet that challenge. I want to sketch out very briefly how one might begin to
go about building such a system. We begin with two ideas: Aristotle’s idea
that propositions can be viewed as pairs of copulated terms, and Leibniz,
De Morgan, and Boole’s idea that logical formatives can be seen as signs
of opposition. We begin with a lexicon. Frege’s lexicon consisted of two
parts: formatives and non-formatives. The formatives consisted of proposi-
tional connectives, quantifiers, and a sign for identity. The non-formatives
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consisted of predicates and names. Initially our lexicon will consist of just
the two formatives, plus and minus, and our non-formatives — terms. The
plus here is binary; like addition, it comes between pairs of terms to form a
more complex term (called a dyad). It shares the formal features of addition
as well: it is symmetric, and associative. The minus is unary, like the nega-
tive in arithmetic. Prefixing a minus to a term (whether simple or complex)
yields a new term. Using the plus to symbolize Aristotle’s ‘belongs to some’
and the minus to form negated terms, all the four standard categoricals can
be formulated in this new language. But this language has little expressive
power. As a first step to increasing its power we define two new formatives
in terms of our initial two. We can define a unary plus as the negation of
a negative and a binary minus as the negation of a dyad whose first term
is negated. The binary minus is reflexive and transitive. The systematic
ambiguity of our pluses and minuses matches their systematic ambiguity in
arithmetic. Still the expressive power of the language is limited. To increase
its power further we take advantage of the Scholastics’ idea that logical copu-
lae can be split. Mimicking their procedure, we introduce split versions of our
binary formatives, yielding in each case a pair consisting of a quantifier and
a qualifier. Now any well-formed dyad must consist of either a pair of terms
flanking an unsplit binary formative or a quantified term and a qualified term
(the quantifier and qualifier constituting a split copula).

For this language to match the expressive power of Predicate Logic it must
be able to offer a systematic logical formulation for singular, relational, and
compound propositions. And it can. Keep in mind that the non-formative
lexicon is not divided into general term predicates and singular term names.
The singular /general distinction is semantic and is ignored by this syntactical
analysis. Singular terms are treated on a par with any other term. However,
since we happen to know that a singular term denotes just one thing, we can
take advantage of an idea first encountered by Leibniz and then exploited by
Sommers. We can treat singular subject-terms has having, implicitly, “wild”
quantity, being indifferently either universal or particular. That’s why we
can derive ‘Some senator is a philosopher’ syllogistically from ‘Cicero is a
senator’ and ‘Cicero is a philosopher’. Perhaps more importantly, the wild
quantity of singular subjects relieves us of the need for a special “identity
theory.” Propositions such as ‘Cicero is Tully’ can be treated as straight-
forward categoricals with a tacit wild quantity. The formal features of our
binary plus and our binary minus (both split in this case) guarantee reflexiv-
ity, symmetry, and transitivity. The Laws of Identity, that govern inferences
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involving the special identity relation are unnecessary.

The Port Royal logicians came close to showing how relationals could be
accommodated by a term logic. The problem with relational propositions
for Subject-Predicate Logic is that they have more than one subject, so that
the proposition cannot be parsed into two parts. What Arnauld and the
other Port Royalists recognized was that while any complex term is a dyad
(a pair of copulated terms, or as they said, predicated terms), any dyad is
itself a term that can be copulated, predicationally tied, to any other term.
A favorite example was ‘Invisible God created the visible world’. There
are five simple terms here, but there are four dyads as well. ‘Invisible’ is
predicated of ‘God’, ‘visible’ is predicated of ‘world’, ‘created’ is predicated
of the complex term, the dyad, ‘invisible world’, and that more complex term
is itself predicated of the dyad ‘invisible God’ to yield the entire proposition.
The proposition is still a dyad. Relationals demand dyads nested in dyads.
Our system exploits this idea, adding to it the recognition that in natural
languages such as English or German the logical copula of a dyad using a
simple relational term — a transitive verb — is usually unsplit. For example, in
‘Every boy is kissing some girl’ the two terms ‘kissing’ and ‘girl” are connected
by an unsplit copula (indicated in English by ‘some’ and symbolized by our
unsplit binary plus), while the resulting dyad and ‘boy’ are connected by a
split copula (‘every ...is ...’, symbolized by our split binary minus).

The Stoics, and much later Frege, saw the importance of accounting for
the logic of compound propositions whose ultimate sub-propositions are not
analyzed. Traditionally, while many term logicians simply tried to ignore
unanalyzed propositions, there were some who believed these could be in-
corporated into a logic of terms (e.g., Aristotle) or reduced to it (Leibniz).
Others believed that the logic of terms and the logic of compound proposi-
tions were simply isomorphic (Peirce). Leibniz expressed clearly his desire
to do this.

If, as I hope, I can conceive all propositions as terms, and hypo-
theticals as categoricals, and if I can treat all propositions univer-
sally, this promises a wonderful ease in my symbolism and analysis
of concepts, and will be a discovery of the greatest importance.

(4], p. 66)

He was right about what had to be done (and about its importance for the
project of building a powerful term logic). First, entire propositions must be
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taken as terms, then compound propositions (so-called hypotheticals) must
be construed as categoricals. Each of these tasks is easily done by our theory
of terms and oppositional formatives. As I've said, propositions are simply
dyads (pairs of copulated terms) and dyads are themselves terms. Moreover,
recognizing that conjunctive propositions share the same formal features as
particularly quantified categoricals, and that conditionals share the same for-
mal features as universals, allows us to use the logical copulae already in hand
(symbolized by either split or unsplit versions of our two binary formatives)
to analyze compound propositions on all logical fours with categoricals. As
it happens, Sommers has shown that propositions are special terms in that
they are semantically singular. This makes their logic a special branch of
term logic. Just how this is so is a story for another day, however.

Also a story for another day is how logical reckoning (assessing arguments
for validity, assessing proposition sets for consistency, proving, etc.) turn out
to be essentially matters of algebraic addition/subtraction and the applica-
tion of rules such as the dictum de omni — just as Leibniz and Boole had
invisioned.

6 Predicate-Functor Algebra

In the formal language of Predicate Logic bound variables, the formal ana-
logues of natural language pronouns, are ubiquitous. Natural language propo-
sitions that contain quantifier expressions but no pronouns are uniformly
symbolized with bound individual variables. There is more than just logic at
stake in this contrast. Quine held that pronouns/variables “carry the burden
of reference,” so that one could reveal any speaker’s ontological commitment
by translating his or her propositions into a formal language that brings such
reference carriers to the surface.

At various points in his career Quine produced studies intended to show
just what role bound variables play in Predicate Logic. Ironically, the logic
that resulted was a Term Logic. Quine’s Predicate Functor Logic was meant
to reveal just what the roles of predicates and bound variables were in the
classic Predicate Logic. What QQuine recognized was that a relative clause
(e.g., ‘which is F”, ‘that Gs’, ‘who is H’) can be construed as an abstraction
from a complex sentence, forming a complex general term. For example,
from the sentence ‘Some philosopher formulated the principles of reasoning’
we can form ‘Someone who is a philosopher formulated the principles of
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reasoning’, where the relative clause is a term that captures the content
of the predicate in the sentence. Taking the expression ‘such that’ as the
relative pronoun par excellence, we then get ‘Some x is such that x is a
philosopher and x formulated the principles of reasoning’. Bound variable
are seen as essentially devices for constructing complex terms. The “basic”
use of the bound variable, then, is to isolate from a complex sentence that
makes reference to an individual a term (viz., noun or adjective) that can
be predicated of that individual without loss of information. For the Quine
of Predicate Functor Logic this use of variables is more basic than their use
in quantification. Variables can be eliminated and their work carried out by
functors applied to the predicates that remain. Applying the various functors
(in most versions there are four or five along with what amounts to a modified
Sheffer stroke operating on pairs of terms; the existential quantifier becomes
Quines cropping functor) to predicates permits the permutation, iteration,
and finally elimination of variables. The result is a formal language consisting
of nothing other than terms and functors. This Predicate Funtor Logic can
serve all the purposes of the Predicate Logic. The important point to notice,
of course, is that a logic of terms and functors is nothing more than a version
of Term Logic. It even includes the recognition of wild quantity for singulars
([5], p- 97). Consequently, Predicate Logic is, if Quine is correct, at heart a
Predicate Functor Logic, that is, a Term Logic.

Quine was well aware that most contemporary logicians are uncomfortable
accepting a formal language in which predicates are allowed to stand free
of their arguments. They do this from a natural disinclination to allow
predicates to be names of any sort. They fail to see the proper role of ‘such
that’” phrases as devices for forming terms. Thus few contemporary logicians
are prepared to look for terms in predications.

7 Concluding Remarks

Having outlined Sommers’ Term Logic and then intimated that Quine’s Pred-
icate Functor Logic reveals the terminist heart of Predicate Logic, one still
must be cautious in drawing too many rosy conclusions. There are funda-
mental differences between the way Term Logic views the logic of natural
language and the way Predicate Logic views it. Differences in how natural
language predication is conceived account for most of this. The Predicate
logician must assume that the saturated /unsaturated (complete/incomplete)
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distinction is not up for either analysis or debate. It’s settled when the lexicon
is given. But one can still ask, even at this late date, How is the distinction to
be drawn? Is it semantic (or, perhaps, onto-semantic)? For it certainly is not
syntactic. And even if it is a semantic distinction, one can ask, a la Ramsey,
which term in an atomic proposition is supposed to be incomplete (‘Socrates
is...7 or ‘...is wise’)? This is important. In Predicate Logic there is no tie
binding together the subject-term(s) and the predicate-term. In the absence
of such a logical copula the gap(s) account takes on great importance. For
the features of symmetry and transitivity that play so largely in both tradi-
tional and newer Term Logics, and which are borne of the copulae, have to

be found elsewhere in a logic that achieves predication without copulation.

Appendix

I’d like to append here a few brief remarks regarding the topic of logical
adequacy. It is hardly and exaggeration to say that modern Predicate Logic
was developed as part of the search for mathematical adequacy. The implicit
claim was that this is how reason should work if one is to produce (even-
tually) mathematics. Consequently, the standard Predicate Logic is able to
reveal very little about how we actually reason in everyday life (and so much
the better for logic, thought Frege). By contrast, Sommers’ Term Logic was
developed as part of the search for cognitive adequacy. The implicit claim
here was that this is how reason should work if one is to reason correctly.
Moreover, recognizing that we actually do reason in everyday life in mostly
correct ways, this logic can be used as a model of everyday logical reckoning.
Certain consequences of Sommers’ claims account for some obvious differ-
ences between Predicate Logic and Term Logic. The latter requires a notion
of logical syntax that is similar to the syntax of natural language. The for-
mer has no such requirement. Thus, while formalization into Predicate Logic
is a matter of translation, formalization into Term Logic is little more than
transcription. As well, since Term Logic aims to be cognitively adequate,
it must have simple, perspicuous rules of logical reckoning that are easily
and quickly applicable since most everyday reasoning is relatively fast and
easy. Finally, modern Predicate Logic is unable to provide any principled
account of the general nature of formatives. Sommers, however, empirically
discovered that natural language formatives are always signs of opposition.
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First-order logic is commonly said to have emerged to light seventy-five years
ago with the publication of Hilbert € Ackermann [5] in 1928. The argument
for this claim is strong, and, in its main outlines, indisputable. The earlier
logical systems of Frege and of Whitehead-Russell employed higher-order
quantifiers and variables throughout. Although (with some effort) one can
retrospectively extract from their systems a first-order fragment, such an
enterprise is plainly anachronistic: they themselves display no inclination
to extract such a subsystem, nor do they display any sense that it would be
significant either mathematically or philosophically. In Hilbert € Ackermann,
however, first-order logic is explicitly singled out for study, receiving a forty-
page chapter to itself (almost a third of the entire monograph). Metalogical
questions are posed about this system, most significantly the question of
completeness and the decision problem. In this sense, the publication of

!This note on Hilbert and first-order logic treats a topic more directly relevant to
the theme of the “FOL 75” conference than the talk actually delivered in Berlin, which
will appear elsewhere. §1 below draws heavily from the introductory notes for the Hilbert
lectures of 1917-18, which were written together with Wilfried Sieg, and which will appear
in the forthcoming volume of the Hilbert Edition dealing with logic and arithmetic, 1917—
1934; the Edition, in six volumes, is published by Springer Verlag. A more detailed
examination of the entire series of lecture notes from the period 1917-1922 is to be found
in [11]

89

Hendricks et al. (eds.):
First-Order Logic Revisited
Logos Verlag Berlin (2004), 89-105
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Hilbert € Ackermann was a major turning point, not just for first-order
logic, but for logical studies generally. Nevertheless, a couple of caveats
are in order. The first is a point of chronology. It is clear from Hilbert’s
unpublished lecture notes that already by the spring of 1918 at the latest he
was in possession of substantially the entire conceptual apparatus of Hilbert
& Ackermann, a full decade before the book was formally published; it is
moreover clear that Ackermann, although an important logician in his own
right, and although he is named as Hilbert’s co-author, had almost nothing
to do with the mathematical content of the book: his role was closer to that
of a textual editor. (These lecture notes are soon to be published in the
volume of the Hilbert Edition covering his logical writings from 1917 to the
early 1930s.) The chronological point is important. It means that Hilbert
(and Bernays, and the Hilbert School in Gottingen) were in possession of
the modern, metamathematical conception of logic well before the start of
Hilbert’s research in proof theory, and not as its capstone. (Hilbert did not
begin his investigations into proof theory, in the strict sense of the term, until
the early 1920s.) Secondly, although Hilbert had already by 1918 isolated
first-order logic, his understanding of that system, both in the lectures and
in the published book, is not quite the modern understanding. The central
questions had been posed, and the modern understanding lay just over the
horizon: but it had not yet arrived. Here I wish to expand on these two
points.

1

Let us begin by canvassing what is known about the background of the 1917-
18 lectures on Prinzipien der Mathematik. 1t is usual to divide Hilbert’s work
in foundations into two distinct phases. The first phase lasts from roughly
1899 to about 1904, during which time he was mostly occupied with the ax-
iomatics of geometry and the consistency of arithmetic. The second phase is
taken to begin primarily as a response to Brouwer, Weyl and the paradoxes
roughly in 1922 with the publication of ‘Neubegriindung der Mathematik;’
this phase is mostly occupied with proof theory and the quest for a finitist
consistency proof for arithmetic. During this period Hilbert is held to have
adopted a ‘formalist’ philosophy of mathematics; this second phase culmi-
nates in two co-authored books: Hilbert-Ackermann 1928 [5], and Hilbert-
Bernays 1934 [6] and 1939 [7].
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Hilbert’s research publications on foundational matters do indeed cease
with his Heidelberg talk, ‘Uber die Grundlagen der Logik und der Arithmetik’
(which was delivered in August of 1904 and published in 1905). But the
lecture notes tell a more complex story about the development of his thought.
Hilbert continued to lecture on foundational matters throughout the ‘fallow’
period from 1904 to 1922; he delivered roughly one lecture course every other
year, and in this way kept abreast of the subject. The standard account is
correct, however, that his research can be divided into two phases. But the
break occurs during the summer of 1917, and not in the early 1920s. In the
spring of 1917 he delivered a series of lectures on set theory which contain
only the faintest hints of the new approach; then, in the fall, he embarks on
a series of lectures which launch the modern subject of mathematical logic.
(There is by the way no indication that the changes came about as a reaction
to Brouwer, Weyl, or the paradoxes.)

The spring set theory lectures are for the most part an elegant and pol-
ished presentation of familiar results. But near the end of the lectures (which
finished around August 15) Hilbert remarked without further comment that
‘Next semester I hope to be able to go more deeply into the foundations of
logic.” During the short summer vacation Hilbert, as was his custom, traveled
to Switzerland; there, on September 11, he delivered his lecture ‘Axiomatis-
ches Denken’ to the Swiss Mathematical Society in Ziirich. On this trip he
invited Paul Bernays, a promising young mathematician who had studied in
Gottingen and who had strong philosophical interests, to return to Gottingen
as his assistant in foundations of mathematics. These two events signal the
new turn in his foundational research. A new approach to foundational issues
was to evolve over the next six years and to be presented in a remarkable se-
ries of lecture courses, most of them written up by Bernays. This period saw
the development of axiomatic investigations of logic and arithmetic, the birth
of proof theory, and the beginnings of work on the Entscheidungsproblem.

It is important to observe that (as the very title of the Zirich talk in-
dicates) the new approach was firmly grounded in Hilbert’s earlier work in
axiomatics. He had long viewed the axiomatic method as holding the key to
a systematic organization of any developed mathematical subject. He also
saw it as providing the basis for metamathematical investigations of inde-
pendence and completeness. In particular, the problem of consistency had
been of central importance ever since he turned his attention to the founda-
tions of analysis at the end of the last decade of the 19th century. Hilbert
stressed (for example in his Paris address of 1900) that a rigorous proof of
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consistency was necessary to underwrite the legitimacy of any axiom system
and to establish the existence of its range of objects. This issue occupied
him intermittently until the Heidelberg talk of 1904, in which he proposed
a simultaneous development of logic and arithmetic, and sketched a ‘direct’
syntactic consistency proof for a fragment of arithmetic. His approach was
severely criticized by Poincaré [10], and in the intervening years he had noth-
ing further to say on the matter. At any rate, the lectures given during the
period from 1905 to 1917 do not break new ground, and in particular do not
advance the ‘proof theoretic’ approach of the Heidelberg talk. (Nor do they
embrace a philosophy of ‘formalism.” Indeed, the notes for his Mengenlehre
course in the spring of 1917 and the talk Aziomatisches Denken reveal an in-
clination at least to consider seriously the claims of logicism; though whether
Hilbert was ever in any straightforward sense a logicist is more questionable.)

This interest in logicism was related to his more particular interest in the
work of Whitehead and Russell, which seems to have begun around 1913.
Before the outbreak of the war, Hilbert had planned to invite Russell to
Gottingen, and he discussed type theory briefly in his lectures of 1914-15.
(The exchanges of correspondence between Hilbert and Russell are docu-
mented and examined in [11]; further details about Hilbert’s student Heinrich
Behmann, who seems to have been the principal conduit of Russell’s ideas to
Gottingen, are provided in [8].) Between 1914 and 1917 several members of
the Hilbert school gave lectures on logic and the foundations of mathematics
to the Colloquium of the Géttingen Mathematical Society. In particular, the
meetings during the month of July 1917 were entirely devoted to foundational
questions. On 3 and 10 July Behmann lectured on ‘The Russell-Whitehead
Theory and the Foundations of Arithmetic.” On 17 and 24 July Felix Bern-
stein lectured on ‘The History of Set Theory’, and on 31 July Hilbert himself
reported on his set theory lecture course. The Summer Semester ended on
15 August; Hilbert’s remarks to his class about hoping ‘to be able to explore
a foundation for logic more deeply next semester’ thus fall squarely within
this period, and may possibly have been prompted by Behmann’s report on
the Principia.

There are certainly signs that the Principia, the chief technical advance
since he had last intensively worked on foundations of mathematics, loomed
large in Hilbert’s thought during the summer of 1917, and in particular
when he delivered his lecture Axziomatisches Denken. After discussing the
axiomatic method and the reduction of mathematics to set theory, he suc-
cinctly sets forth the issues that were to be at the heart of the upcoming
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lectures, beginning with a statement of the logicist credo:

Since the examination of consistency is a task that cannot be
avoided, it appears necessary to axiomatize logic itself and to
prove that number theory and set theory are only parts of logic.

This method was prepared long ago (not least by Frege’s pro-
found investigations); it has been most successfully explained by
the acute mathematician and logician Russell. One could regard
the completion of this magnificent Russellian enterprise of the
axiomatization of logic as the crowning achievement of the work
of axiomatization as a whole.

But this completion will require further work. When we consider
the matter more closely we soon recognize that the question of
the consistency for integers and for sets is not one that stands
alone, but that it belongs to a vast domain of difficult episte-
mological questions which have a specifically mathematical tint:
for example (to characterize this domain of questions briefly) the
problem of the solvability in principle of every mathematical ques-
tion, the problem of the subsequent checkability of the results of
a mathematical investigation, the question of a criterion of sim-
plicity for mathematical proofs, the question of the relationship
between content and formalism in mathematics and logic, and
finally the problem of the decidability of a mathematical question
in a finite number of operations. [4, §§39-41]

In retrospect, these brief remarks can be seen as Hilbert’s first public an-
nouncement of the material he was to begin teaching three weeks later.
Hilbert’s core insight was the realization that the techniques of axiomatics
that he had first developed in the work on geometry in the late 1890s, culmi-
nating in the Grundlagen der Geometrie, could be extended to the logic of
Principia and that the latter could provide a foundation for all of mathemat-
ics. The detailed pursuit of that goal required the presentation of a formal
language (for capturing the logical form of informal statements), the use of a
formal calculus (for representing the structure of logical arguments), and the
formulation of ‘logical’ principles (for defining mathematical objects). This
project was to be executed with remarkable focus in the lectures of the winter
semester 1917-18, which began on October 1.
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During this semester Hilbert carried a heavy teaching load. He lectured
on Mondays, 9-11, on ‘The Theory of the Electron,” and then again from
4-6 (with Emmy Noether) on ‘Mathematical Principles.” (No record of the
contents of those classes with Noether appears to have survived.) On Wednes-
days, 4-6, he lectured with Peter Debye on ‘The Structure of Matter.” The
logic lectures came last, on Thursdays, 9-11. He was intensely involved dur-
ing this time in research on the foundations of mathematical physics; the
rigors of wartime had imposed additional burdens. The speed with which his
logical ideas emerge in the lectures is therefore quite remarkable.

Hilbert begins by announcing his intention to talk about the axiomatic
method in geometry, arithmetic, and mechanics; and the first 62 pages of
Bernays’s typescript — ‘Part A,’ fully one-quarter of the total — are devoted
to a recapitulation of Hilbert’s ideas on axiomatics. Most of this material
goes back to the period of his foundational investigation of geometry, and
was familiar territory. There is certainly a thematic appropriateness to his
beginning with the axioms of geometry, for his new material would in effect
demonstrate how the axiomatic techniques he had developed in geometry,
and that had been the leitmotif of his intervening work in physics, could
now be extended to encompass logic. The emphasis throughout Part A is not
on the negative goal of avoiding paradox, but squarely on the programmatic
gains for mathematics from axiomatization, and from what in Aziomatisches
Denken he had called the ‘Tieferlequng der Fundamente.” Hilbert stresses
that the axiomatic method yields deep insights into the structure and in-
terrelationships between the theorems of geometry, and he spends several
lectures illustrating the point, exploring in particular the role played by con-
tinuity assumptions in basic geometry. There is no mention of any ‘crisis
in the foundations of mathematics’ as a motivating factor for his axiomatic
investigations; the disagreements with Weyl and Brouwer still lie a couple of
years in the future. At the end of the discussion of geometry Hilbert suddenly
announces that he has said enough to explain the fundamental ideas of ax-
iomatics. He will not, as originally planned, treat the principles of mechanics,
but will instead direct his attention immediately to the logical foundations
of mathematics.

What follows in Part B of the typescript is an incisive and carefully orga-
nized development of the very core of modern mathematical logic. Systemic
and meta-systemic issues are clearly distinguished; metamathematical ques-
tions about consistency and completeness are crisply formulated. Each step
forward is carefully explained and carefully motivated.
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Part B of the notes is divided into five chapters:

1. The Propositional Calculus;

2. The Predicate Calculus and the Class Calculus;

3. Transition to the Function Calculus;

4. Systematic Presentation of the Function Calculus; and,
5. The Extended Function Calculus.

Here the predicate calculus is just monadic logic; the class calculus is
its semantic, Boolean interpretation in terms of sets. The function calculus
(which was renamed, following a suggestion by Hilbert, the ‘predicate cal-
culus’ in the second edition of [5]) is in essence many-sorted first-order logic
with variables for sentences as well as for functions (i.e. relations); the ex-
tended function calculus is the corresponding second-order system, but with
quantifiers allowed to range, not just over set-theoretical objects, but also
over propositions. Each transition from one section to the next is systemat-
ically argued for, usually by pointing out that the existing calculus, in some
way or other, is in need of augmentation or ‘completion.’

Broadly speaking, the chief accomplishment of these lectures consists in
(1) the presentation of a series of precisely formulated axiomatic calculi,
(2) the formulation and investigation of metalogical questions such as de-
cidability, independence, consistency, and completeness, and finally (3) the
development of arithmetic (including analysis). The most distinctive contri-
bution lies in the metalogical investigations; but the axiomatic calculi in the
tradition of Frege, Peano, Schroder, and Russell are more sharply presented
than by Hilbert’s predecessors, and the sharper formulation is essential to
the metamathematical advances.

For example (and in contrast to *1 of Principia) Hilbert clearly distin-
guishes the axioms from the rules of inference; and where the Principia had
employed the ‘primitive proposition” *1.1: ‘Anything implied by a true ele-
mentary proposition is true,” Hilbert provides both an explicit substitution
rule and modus ponens. This distinction shows a grasp of the purely syntactic
character of derivations, and is fundamental for the later metamathematical
results, because it made possible rigorous proofs by induction on derivations.
(Of course, that grasp goes back to his Heidelberg talk of 1904.) Likewise,
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the quantificational axioms and rules of inference he presents in the lectures
are new, and considerably more perspicuous than the treatment in Principia.

The most innovative part of the lectures is the investigation of the various
metalogical questions that Hilbert had adumbrated in Ziirich. But there are
some gaps and oddities of presentation that most likely reflect the speed with
which the new ideas were being developed. For example, he had long been in
possession of a decidability proof for propositional logic; it is odd that he does
not mention the decision problem in the present lectures, although he states
and proves the normal form theorem for the propositional calculus, and thus
had in hand the tools for a decidability proof. Likewise, he briefly treats some
independence results in the propositional calculus (using techniques that go
back to his lectures in 1905), but does not work out the details. He devotes
considerably more attention to the problem of consistency, providing first a
consistency proof for the twelve axioms of his algebraic version of proposi-
tional logic. He furnishes a two-element model: all atomic propositions are
interpreted as 0 or 1; ‘or’ is interpreted as the minimum, ‘and’ as the maxi-
mum, and ‘not’ as 1-X. He observes that all twelve axioms are satisfied in this
model, and are therefore consistent. Later in the lectures he provides a proof
of the consistency of the function calculus. He divides the proof into two parts
and considers first the propositional sub-system of the function calculus. He
has here to deal with a stock of formulas generated by axioms and rules of
inference; in order to establish the conclusion that the stock of formulas thus
generated cannot contain a formula and its negation, he argues by induction
on derivations. Hilbert uses the same two-valued model as before and shows
that the five propositional axioms all have the value 0, and that the two
rules of inference preserve this property. He then extends this interpretation
to the quantificational part of the function calculus, showing likewise that
the derivable formulas all have value 0; since their negations have value 1,
not every formula is derivable, and the system is consistent. In a footnote
immediately after this proof he observes: ‘One should not overestimate the
significance of this result. We do not yet have any guarantee that with the
symbolic introduction of contentually unobjectionable presuppositions the
system of provable formulas remains free of contradiction.” So consistency
proofs for expanded axiom systems, in particular for those requiring infinite
models, will still have to be given.

Hilbert’s treatment of completeness in the lectures is roundabout, and
it is natural to conjecture that he was still working his way to an appro-
priate formulation. Indeed, the lecture notes appear to employ the word
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‘Vollstandigkeit’ in four distinct senses.

Early in the lectures, Hilbert appears to speak of ‘completeness’ in an
informal, quasi-empirical sense, either meaning (1) ‘capturing all traditional
logical inferences’ or meaning (2) ‘being adequate to the analysis of a par-
ticular subject matter.” It is not until quite late in the typescript that he
states a formal criterion of completeness and provides a completeness proof
for the propositional fragment of the function calculus. The discussion of
propositional logic lay several weeks in the past; but in those earlier discus-
sions there is no hint of the new, formal sense of completeness. The proof
establishes what today is called (3) the Post completeness (or syntactic com-
pleteness) of propositional logic: the axiom system is said to be complete in
this sense, if the addition of a previously unprovable formula to the axioms
always results in an inconsistent system. (The similarity of this criterion to
Hilbert’s axiom of completeness in geometry should be evident: both criteria
intuitively say that it is impossible to add any further elements to the sys-
tem.) Hilbert’s proof first establishes a lemma: a formula (‘Ausdruck’) is a
provable propositional formula (‘logische Aussagen-Formel’) if and only if it
is the sum of simple products, each of which contains a sentence-letter and
its negation. Using this lemma, Hilbert is then able to establish easily the
syntactic completeness of his axioms. But in the course of establishing the
lemma he also proves a semantic result: every provable propositional formula
is identically 0, thus establishing the system’s soundness (and consistency).
The converse of soundness is proved in a footnote; this establishes, from our
perspective, (4) the semantic completeness of the system as well.

Hilbert in these lectures does not explicitly define a semantic notion of
completeness. It is only a few months later, that Bernays provides this notion
and a direct formulation of the semantic completeness theorem in his Habil-
itation. Hilbert appears to treat the result, formulated in the footnote, as
not especially significant. He outlines an argument that the function calculus
is not Post-complete, but notes that a rigorous proof remains to be found;
the proof, along the lines sketched by Hilbert, was provided by Ackermann
in [Hilbert € Ackermann, pp. 66-68]. Hilbert in the 1917-18 lectures does
not even state the problem of the semantic completeness for the function
calculus. That problem seems to have been first explicitly formulated as an
open problem in [Hilbert & Ackermann, p. 28], and then of course solved
by Godel in his dissertation. — Many of the loose ends of the 1917-18 lec-
tures were tidied up in the summer of 1918 in the unpublished Habilitation
thesis of Paul Bernays, which was submitted in July, 1918, and provided
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a metalogical analysis of the propositional logic of Principia Mathematica.
Although Bernays had had no experience of logical research before coming
to Gottingen as Hilbert’s assistant, the thesis contains several important ad-
vances. He provides a sharper formulation than Hilbert had done of the
semantic completeness theorem (‘Every valid formula is provable and con-
versely’); a careful, model-theoretic investigation of the independence and
dependence of various groups of axioms; and an investigation of ways in
which axioms can be replaced by rules of inference.

The similarity of the topics covered in the 1917-18 lectures to [5] is clear
enough. It has often been assumed that Hilbert €/ Ackermann represents
the culmination of years of collective research into logic by the members of
the Hilbert school. But in fact virtually the whole of Hilbert & Ackermann,
from §10 of Chapter One onwards, is taken, usually verbatim, from Part B
of Bernays’s 1917-18 typescript. (§§1-9 of Chapter One are similarly taken
from Bernays’s typescript of the lectures from the Winter Semester 1920.)
The most important divergences between the two texts are the following.

Chapter One, §§12-13 (of the first edition of Hilbert & Ackermann): The
discussion of the completeness and consistency of the propositional calcu-
lus has been repositioned, sharpened, and expanded, showing the influence
of Bernays’s [1] (which is cited), and distinguishing two formal conceptions
of completeness (now known as semantic and Post completeness). Curi-
ously, the formulation of semantic completeness is less perspicuous than in
Bernays’s uncited Habilitation. In the 1917-18 lectures this material had
come in the middle of the discussion of the function calculus, and was ap-
parently presented when Hilbert first formulated the argument; in the book
it has been moved forward to a point where it more naturally belongs.

Chapter Two, §2: The blending of the propositional calculus with the
predicate calculus has been shortened and simplified.

Chapter Three, §5: The axiom system for the function calculus, and
in particular the axioms and inference rules for the quantifiers, have been
streamlined; credit for this improvement is given to Bernays.

Chapter Three, §9: The lecture notes announce and sketch on p. 156
a proof that the function calculus is not Post complete, but remark paren-
thetically that ‘to be sure, a strict formal proof that this formula cannot
be derived from the axioms remains to be found.” Ackermann supplies the
missing details (and takes credit in a footnote). The problem of the semantic
completeness of the function calculus is in addition now explicitly stated as
an open problem; cf. Section 4.3.
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Chapter Three, §§11-12: Two new sections, on the Entscheidungsproblem
and on special cases of the Lowenheim-Skolem results, report on work done
after the lecture notes and published elsewhere by Ackermann, Behmann,
Bernays, Lowenheim, Schonfinkel, and Skolem.

Chapter Four, §85, 8, and especially 9: The discussion of the theory of
types and the axiom of reducibility has become sharper and more focused.
It should be noted that the critical attitude was already hinted at in the
1917-18 lectures, and explicitly formulated in the 1920 lectures.

It will be seen from this list that Ackermann’s only new mathematical
contribution to Hilbert € Ackermann consists in supplying the details for the
proof of the Post incompleteness of the function calculus; otherwise his role
seems to have been more that of textual editor than of co-author.

But to return to the lectures. At the end of the discussion of first-order
logic (p. 188 of the typescript), Hilbert makes the important remark that this
system is adequate for the formalization of the inferences found in ordinary
mathematics:

The basic discussion of the logical calculus could cease here if we
had no other end in view for this calculus than the formalization
of logical inference. But we cannot be satisfied with this applica-
tion of symbolic logic. Not only do we want to be able to develop
individual theories from their principles in a purely formal way,
but we also want to investigate the foundations of the mathemat-
ical theories themselves and examine how they are related to logic
and how far they can be built up from purely logical operations
and concept formations; and for this purpose the logical calculus
is to serve us as a tool.

Hilbert accordingly turns to an examination of higher-order logic, pointing
out that the widening of the function calculus enables one to formalize the
axiom of complete induction, and to give the usual second-order definition
of identity; more importantly, it permits also a Frege-style definition of the
natural numbers as properties of predicates. Remarking that it is more nat-
ural for a mathematician to think of numbers as properties of sets than as
properties of predicates, he enters into a careful examination of the relation-
ship between sets and (co-extensive) predicates, and between sets of sets and
predicates of predicates, showing that the basic concepts of set theory can
be translated into the language of the extended function calculus.
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Of course, this unrestrained approach is not without its risks, and the rest
of the lectures are a dialectical working out of the technical consequences of
the paradoxes. Hilbert first gives a careful exposition of three paradoxes
(Russell’s, the Liar, and Richard’s), showing how each can be derived in his
formal system. He traces the error to a logical vicious circle; the circle, he
argues, is to be avoided by adopting (in effect) ramified type theory with
Russell’s axiom of reducibility, which can then be used to establish the be-
ginnings of Dedekind’s theory of real numbers (and, in particular, the least
upper bound principle).

The notes end with the remark (p. 246):

Thus it is clear that the introduction of the axiom of reducibility
is the appropriate means to turn the calculus of levels into a
system out of which the foundations for higher mathematics can
be developed.

2

Hilbert thus already in 1917-18 was firmly in possession of the basic apparatus
of modern mathematical logic: subject to a few refinements of the sort found
in Bernays’s Habilitation, he had isolated and formalized the system of first-
order logic, distinguished it from higher-order systems, and posed the central
metalogical questions. Nevertheless, it would be quite mistaken to attribute
to Hilbert a fully modern understanding of first-order logic; and here we
must be careful not to import into his lecture notes a conception that to be
sure grew out of his logical investigations, but that only emerged some two
decades later, and that depended on further technical advances at the hands
of other researchers.

Indeed, it is important to observe that Hilbert was neither the only nor
even the first logician to note the existence of what we today call ‘first-order
logic.” Such a discovery was made at least four (or possibly five) times,
and each of these discoveries seems to have been independent of the others:
certainly each was put to a different use.

The first clear distinction between first-order and higher-order quantifi-
cation antedates Hilbert’s lectures by more than 30 years. In the remarkable
paper in which C. S. Peirce introduced his existential and universal quanti-
fiers [9] he also distinguishes extremely clearly both between sentential and
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quantificational logic, and (following medieval precedent) between quantifi-
cation over objects and quantification over predicates. (The latter he calls
‘second-intentional logic.”) He uses his second-intentional logic to define in
the usual way the relation of identity: one object is identical to another just
in case exactly the same predicates apply to each. Peirce’s distinction was
the clearest and most explicit drawing of the boundaries until the time of
Hilbert: in this regard, far clearer than Frege or Russell. However, Peirce
did not develop anything resembling an axiomatized formal system, still less
subject it to metamathematical study; nor did he explore the relationship
of higher-order logic to the paradoxes, or the suitability of its use in ax-
iomatic set theory. The technical tools for these investigations were not yet
to hand; and Peirce, for all his insight, was in no position to put his prescient
distinction to its modern use.

Likewise, Hermann Weyl, as early as his 1909 Habilitation thesis (pub-
lished as [14]) can be seen, at least in retrospect, as having isolated the basic
idea of first-order logic. One of his aims was to scrutinize the notion of de-
finability in set theory in the light of Richard’s Paradox, and in particular
to make precise Zermelo’s notion of ‘definite statement’; his proposal was in
effect that ‘definite statements’ were those that could be generated out of a
stock of basic properties by first-order principles. Weyl expanded these ideas
in the opening pages of Das Kontinuum (1918), arguing for a predicative
grounding of analysis. In contrast both to Peirce and to Hilbert we find in
Weyl an explicit drawing of connections between higher-order logic, the para-
doxes, and axiomatic set theory, and also a sceptical stance towards higher-
order systems. — Although Weyl had been a doctoral student of Hilbert’s, it
seems unlikely that Weyl’s work on logic and predicativity exerted any direct
influence on Hilbert’s 1917-18 lectures. Weyl’s name is not mentioned, and
in any case Das Kontinuum was not published until 1918; as for the 1909
Habilitation, its treatment of first-order logic is sketchy and hard to follow.
In neither text does Weyl possess a perspicuous quantificational notation,
or draw a clear-cut distinction between sentential, first-order, and higher-
order systems; nor does he present formal calculi or pose metamathematical
questions about them. Although there are undoubtedly similarities in the
conception of first-order quantification, the technical projects are quite dif-
ferent; perhaps more importantly, the entire thrust of Weyl’s 1918 approach
— the banishment of certain forms of mathematical inference because of wor-
ries about paradox — finds no echo in Hilbert’s lectures. On the contrary,
Hilbert’s goal is to present in axiomatic form full ramified type theory. For
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him as for Russell this was the core system out of which mathematics was to
be developed. If one is searching for intellectual influences, Russell (who fig-
ures explicitly in the lecture notes) is the more obvious candidate. It is true
that Russell did not isolate a first-order subsystem of the logic of Principia
Mathematica; but Russell (building on Frege) of course possessed the idea
of the universe striated into types or orders, with a range of objects form-
ing the base type. Hilbert’s lectures show him systematically building up to
type theory, one careful step at a time, beginning with the simplest calculi,
and gradually adding more power. He was well aware that the paradoxes
and the complexities of the axiom of reducibility arise only when one admits
quantification of higher type; it was a natural step for him, as he built up
his logical calculi, to pause to study first-order quantificational logic, and
only later to proceed to the more elaborate details of the full system. In
addition, as we saw, he explicitly noted that the first-order system was ad-
equate to the purposes of formalizing mathematical inference: so he had
ample reason to linger. Where Weyl is interested in distinguishing legitimate
from illegitimate forms of mathematical reasoning, Hilbert is concerned with
building formal axiomatic systems and subjecting them to metamathemati-
cal scrutiny; where Weyl is sceptical towards higher-order and impredicative
systems, Hilbert still in [5, p. 113] says that ‘the introduction of the axiom of
reducibility is the appropriate means to shape the calculus of types [Stufen)]
into a system with whose help the inferences of higher mathematics can be
won. A complete construction of the foundations of mathematics with the
help of the calculus of types has been given by Whitehead and Russell.’
These points can be put another way. For Hilbert, both in 1917 and
1928, logic in its fullest sense encompassed ramified type theory; he spent
a good deal of effort exploring the relationships between set theory and the
theory of (higher-order) predication, and seems to have regarded both as
falling properly within the ambit of logic. First-order logic he regarded as an
important subsystem — as it were, a way-station on the path to his ultimate
goal. (Recall that, in the terminology of Hilbert € Ackermann, first-order
logic is called the ‘restricted’ function calculus.) This seems to have been
the prevailing mainstream view throughout the 1920s. To be sure, there
were some questioning voices, notably those of Weyl and of Skolem, who
in [12] urged a reliance on first-order logic, at least for the purposes of for-
malizing axiomatic set theory. (Skolem’s use of first-order logic to make
precise Zermelo’s axiom of separation is reminiscent of [14], but appears to
have been independently arrived at.) But neither went so far as to reject
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higher-order logic altogether. The situation only began to change in the
1930s, as a result of two technical advances. To sketch them briefly: first,
the Godel completeness and incompleteness theorems made it clear that, al-
though first-order logic can be formalized completely, type theory cannot:
in other words, if one was interested in formalizing mathematical theories
(as Hilbert and his followers certainly were) first-order logic offered distinct
proof-theoretical advantages. Secondly, first-order formulations of set theory
(at the hands of Bernays, Gddel, Quine, and others) gained widespread ac-
ceptance and popularity. These technical advances gave new impetus to the
philosophically-based scepticism about higher-order systems, and by the end
of the 1930s the attitude had begun to emerge that logic, stricto sensu, was
to be identified, for all practical purposes, with first-order logic; higher-order
logic, in contrast, was set theory in disguise, and as such belonged to the
realm of mathematics.

This train of thought about first-order logic is familiar; my present point
is that it stands in a complicated relationship to Hilbert. Indeed, this little
episode shows the perils of attempting to assign a specific date to the birth
of such a complex organism as first-order logic. At a minimum, one must be
careful not to confuse several distinct developments: (1) the drawing of a clear
distinction between first-order and higher-order logic; (2) the elaboration of
formal calculi for various systems of logic; (3) the subjection of these calculi
to metamathematical study; (4) the observation that first-order logic suffices
for the formalization of ordinary mathematical inference; (5) the observation
that higher-order logic, because of its relationship to the paradoxes, is in
some sense less trustworthy than first-order logic; (6) the technical discovery
that higher-order logic is metamathematically less well-behaved than first-
order; and, (7) the philosophical argument that logic is to be identified with
first-order logic, and that set theory in contrast is to be considered a branch
of mathematics. Speaking very roughly, we can say that Peirce, in 1885, was
the first to accomplish (1). Hilbert can be credited with (1), (2), (3) and
(4). Weyl and Skolem are principally occupied with point (5), but also had
independently accomplished (1). Point (7) only became an attractive option
after the work of Gédel (6), which in turn grew out of (3), but which then gave
renewed energy to point (5). Within this entire development, which spans
fully half a century, Hilbert’s lectures play a pivotal role, both introducing
first-order logic in its modern guise, and proposing a research program that
was in time to lead to a conception of first-order logic that displaced his own;
but even the Hilbert lectures are far from the whole of the story, and in that
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sense one should perhaps resist the temptation to pin a specific date to the
emergence of first-order logic.

[10]
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1 Introduction

Publication of the book “Grundziige der theoretischen Logik” by Hilbert
and Ackermann in 1928 [7] is properly considered the birthday of first-order
predicate logic, as celebrated on the conference “FOL 75”. Reading [7] is
rather pleasing: one has Aussagen (propositions) that may be richtig or
falsch (right of false); as an example of a false proposition one has “Schnee
is schwarz” (snow is black). “...ist schon” (...is beautiful) is an example
of a predicate. But we may ask: is the proposition “the snow is black”
always absolutely false? (Come to Prague center in winter!) And isn’t being
beautiful a matter of degree, so that it is more true about one thing (person,
..) than about another one? We meet vagueness; and vague propositions
need a comparative notion of truth. We are lead to fuzzy logic as a particular
kind of many-valued logic; more precisely to fuzzy logic in the narrow sense,
i.e. a formal logical system in distinction to what is called fuzzy logic in
the broad sense, which is just almost everything concerning fuzziness. (This
distinction was made by founder of the notion of a fuzzy set — Lotfi Zadeh.)
In [1] T formulated a basic fuzzy propositional logic BL and its first order
version BLY, with the real unit interval [0,1] as its standard set of truth
degrees, any continuous t-norm * as its truth function of conjunction and its
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residuum —, as its truth function of implication. Fixing a particular con-
tinuous ¢t-norm * one gets the corresponding propositional logic PC(x) and
predicate logic PCV(x). There are three most important continuous ¢-norms:
Lukasiewicz #;, Godel *¢, product *p. (If there is no danger of misunder-
standing, we write just L for both %, and PC(x.), similarly for G,II; we
write LV for PCV(%,) etc.)

The reader may find details in [1] or, as a survey, in [6] or [5]. In particular,
a standard interpretation of a predicate language is a structure

M = (M7 (TP)Ppredicate (mC)C constant)

where M # () is a crisp set and for each n-ary predicate P,rp : M™ — [0, 1] is
a fuzzy relation; mg € M. One defines, for each formula ¢ of predicate logic,
each continuous t-norm * and each evaluation v of object variables by ele-
ments of M, the truth value |||}, in a natural Tarskian style. For ¢ closed,
the v is superfluous; we write just ||p]|3,;. We restrict ourselves to closed for-
mulas. For each % we have four important sets of formulas: 1-tautologies,
1-satisfiable formulas, positive tautologies and positively satisfiable formulas.

ITAUT (x) = {p| [|¢|lzg = 1 for all M}
1SAT (x) = {¢| |l¢llpa = 1 for some M}
posTAUT (x) = {¢| ||¢|la > 0 for all M}

posSAT (x) = {¢| |l¢llm > 0 for some M}.

If K is a non-empty class of continuous ¢-norms, then 1-TAUT(K) is the
intersection of all 1-TAUT(x) for all x in IC, 1-SAT(K) is the union of all
1-SAT (%), similarly for posTAUT(K), posSAT(K). In particular, a formula
is a (standard) 1-tautology of BL if ¢ € 1-TAUT(K), K being the set of all
continuous t-norms, etc.

Note in passing that BL (BLV) has also a general semantics with so-
called BL-algebras as algebras of truth functions on a general domain; each
continuous t-norm determines a standard BL-algebra on [0, 1]. One has a
natural notion of 1-TAUT(L), L being an arbitrary BL-algebra and the
axiomatic system of BLV is complete with respect to 1-tautologies over arbi-
trary linearly ordered BL-algebras (general BL-tautologies). Similarly, one
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has general semantics for LV, GV and IIV. This semantic is not considered in
the present paper; we restrict ourselves to standard semantics.

The complexity of sets of (standard) tautologies and (standard) satisfi-
able formulas of our fuzzy logic was studied in my previous papers with the
title “fuzzy logic and arithmetical hierarchy” (see e.g. [9] for arithmetical
hierarchy) very important results were obtained by Montagna. (See below.)

Main results of this paper concern arithmetical complexity of sets of for-
mulas related to continuous ¢-norms different from the three famous ones. To
be more precise let us briefly recall a basic fact on those t-norms (Mostert-
Shields representation see e.g. [1].) Let % be an arbitrary fixed continuous
t-norm.

The set E of its idempotents is closed; its complement is the union of
a countable system of non-overlapping open intervals. On the closure of
such an interval, * is isomorphic either to Lukasiewicz t-norm or to product
t-norm.

Define: x begins with L if there is an idempotent 0 < e < 1 such that x
on [0, e] is isomorphic with L on [0, 1]. Similarly for beginning with II.

Fact: The following are equivalent for each continuous ¢-norm :

(1) % is not L, and * does not begin with L;

(2) its negation is Godel negation (=)0 =1, (—)x = 0 for = > 0.

Define: * begins with G if there is an idempotent 0 < e < 1 such that
all elements of [0, ¢] are idempotents and there is a non-idempotent element
above e.

Caution: There are continuous t-norms having no beginning of this kind,
e.g. if positive idempotents are numbers 1/n,n positive natural.

2 Main results
The results contained in [1, 3, 8] are as follows:

Theorem 1. The set of 1-tautologies is X1 -complete for GV, lls-complete for
LN, non-arithmetical for IIV and BLN. The set of 1-satisfiable formulas is
[Ty -complete for GV and LN, non-arithmetical for 1IV and BLY. The set of
positive tautologies of LN is ¥1-complete and the set of positively satisfiable
formulas of IN is ¥1-complete.

Montagna generalized my construction showing that the set of 1-satisfi-
able formulas of IIV is not arithmetical and constructed a sentence W of BLY
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and a translation associating with each sentence ® of arithmetic a sentence
®° of BLY such that the following lemma.

Lemma 1. /8] Let K be a set of continuous t-norms containing the product
t-norm. Then, for each arithmetical ®,

(i) if ® is true in the standard model N then ¥ — ®Y is a I-tautology of
K and U&®° is a 1-satisfiable formula of K.

(11) if ® is false in N then (¥ — @) is not a positive tautology of K and
V&P is not positively satisfiable.

An easy checking shows that the assumption that IC contains the product
t-norm can be replaced by assuming that K contains a ¢t-norm whose first
component is product. This gives us the following

Theorem 2. If K is a class of continuous t-norms containing a t-norm
whose first component is product then the sets 1-TAUT(K), 1-SAT(K), pos-
TAUT(K), pos-SAT(K) are all non-arithmetical.

In particular K may contain all continuous ¢-norms (BLY), or a single
element which is product t-norm or a t-norm whose first component is prod-
uct.

Now let us study continuous t-norm * beginning with C, C being L,II or
G; for simplicity assume that the first positive idempotent is % This can
always be always be achieved up to an isomorphism. Furthermore, we may
assume without loss of generality that the isomorphism of the restriction of
* to [0, 3] and C on [0, 1] is just the mapping sending z to 2z. Let us say that

* begins well with C.

Definition 1. Let h be the following mapping of [0, 1] onto itself: h(x) = 2x
fOT’ x S %7 h(.lf) =1 fOT T € [%7 1] Let M = (M7 (TP)Ppredicatea (mc)cconstant)
be a fuzzy structure of the language in question. Then h(M) is the structure
(M, (r'p) P pred., (Me)cconst.) where for each P (n-ary) and each tuple ay, ... a,
€ M, rp(ay,...,a,) = h(rp(a,...,a,)). Further, let M /2 be the structure
(M, (rp/2)p pred., (Me)ceonst.) where (rp/2)(aq, ... an) =1p(a,...,a,)/2.

Lemma 2. Let x begin well with C. Then h is a homomorphism of the struc-
ture ([0,1],%,—,0,1) onto ([0,1],C,—¢,0,1) preserving infinite joins and
meets. Consequently, for each sentence o,
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(1) hlllelirn) = llellfo:

(2) llellfa = hllellgs):

Proof: Clearly h commutes with x and with finite and infinite joins and
meets. We check — . If z < y then h(z) < h(y) and h(x —, y) = h(x) —¢
h(y) = 1. Assume £ > 2 > y and recall that & is an isomorphism of [0, 5]
with * to [0,1] with C; thus h(x —. y) = h(xz) —¢ h(y) by the definition of
residuum. Next let # > § > y; then # —, y = y and h(z) —¢ h(y) =1 —¢
h(y) = h(y), thus again h(z —. y) = h(z) —¢ h(y). Finally let z > y > 1,
then z — y, > 2. h(z =, y) =1=1—¢ 1 = h(z) —=¢ h(y).

The rest follows by induction on complexity of formulas.

Theorem 3. Let x begin with C, C being £, G or II. Then ¢ is a positive
tautology of = iff it is a positive tautology of C. Moreover, ¢ is positively
x-satisfiable iff ¢ is positively C-satisfiable. In symbols: posTAUT (x) =
posTAUT(C), posSAT (x) = posSAT(C).

Proof: This is immediate from the preceding lemma which shows that
there is an M with ||¢||3; = 0 iff there is an M with ||¢]||$; = 0, and the same
for # 0.

Lemma 3. Let x begin with C, C being L or G (nothing is claimed about I1!)
For each (standard) structure M there is a structure M’ such that for each

¥s

el =1 iff ol = 1.

(You may say that the C-structure M is elementarily 1-equivalent to the x-
structure M'.)

Proof: Recall that if T"is C-consistent and T' F (3z)p(z) then T+p(c) is C-
consistent (¢ a new witnessing constant, see [1] 5.4.17 observing that the proof
works also for BLY and other logics). Let T = Th(M) = {¢|l|l¢|l$s = 1}; ¢
is any closed formula possibly containing names of elements of M. Let ToT
be a consistent extension of 7" witnessing all existential closed formulas.

Recall that for C being L or G we know that each consistent theory (over
CV) has a standard C-model (for G see the proof of [1] 5.3.3; for L see [1]
5.4.24).

Let M; be a standard C-model of T'. Let f(z) = £ for z < 1, f(1) = 1.

2
Make M; to a s-structure M’ (with the C-component on [0, 3]) and with the
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same domain as M by defining r} (a1,...) = f(r}*(a1,...)) for all P and
ai, . ... Show by induction on the complexity of closed T-formulas ¢,

leliae = F(lellia,)-

This is evident for atoms and connectives (since [0,3) U {1} is a C-
subalgebra of [0, 1],) and for V (since f preserves infinite meets); similarly for
1(32)¥||$y, < 1. For ||(3z)v[|§;, = 1 use witnessing: there is a ¢ such that

[4(c)||$, = 1. In particular, if |¢||§; = 1 then [|¢]|§, = 1 and [j¢][jp = 1.

Theorem 4. (1) posSAT(G) = 1SAT(G).
(2) For x beginning by G, 1SAT (x) = 1SAT(G).
(3) Similarly for x beginning by L, 1SAT (x) = 1SAT (L).

Proof: (1) Clearly 1SAT(G) C posSAT(G). Conversely if 0 < r =
lol|§r < 1 for some M then taking a one-one increasing mapping of [0, 1]
onto itself produce an isomorphic copy M’ of M such that |||y = 3. Then
apply the homomorphism h from Definition 1 and observe that it is a homo-
morphism of the G-structure M’ to the G-structure h(M') sending 3 to 1.
Thus ||90||5(M/) =L

(2) 1SAT (%) C 1SAT(G) by Lemma 2; 1SAT(G) C 1SAT(*) by Lemma
3. Similarly for (3).

Corollary 1. If x begins with G then

posSAT (x) = posSAT(G) = 1SAT(G) = 1SAT (%)

Lemma 4. If x has Gddel negation (i.e. x does not begin with Lukasiewicz)
then for each p, o is x-positively satisfiable iff =— is x-1-satisfiable; and
18 a *x-positive tautology iff = is a *-1-tautology. Let ¢~ result from o by
replacing each atom by its double negation. ¢ is a Boolean tautology iff o™
15 a 1-tautology of x. @ is not a Boolean tautology iff ¢~ is not a positive
tautology of x. (Evident.)

Lemma 5. If * begins with L then for each p, ¢ is a 1-tautology of L iff
== 1s a 1-tautology of x; similarly for 1-satisfiability.

Proof: By our Lemma 2, ¢ is a 1-tautology of L iff ¢ is a [3, 1]-tautology
of * (for each M, |l¢[l31 € [3,1]) iff = is a 1-tautology of *. Similarly for
satisfiability.

The following theorem collects results of arithmetical complexity not
stated till now
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Theorem 5. (1) posTAUT(G) is ¥q-complete, posSAT(G) is I1;-complete.
(2) If % begins with G then 1SAT(x) = posSAT(x) is Ily-complete,
posT AUT (%) is ¥1-complete and 1T AUT () is 3q-hard.
(3) If * begins with L then posT AUT (x) is ¥1-complete, posSAT is 3a-
complete, 1SAT is ¥1-complete and 1T AUT is Ily-hard.

Proof: (1) posTAUT is in ¥; by Lemma 4 and is ¥;-hard by the same
Lemma. posSAT = 1SAT by Theorem 4 (1) and hence is II;-complete.

(2) By Corollary 1, 1SAT(x) = posSAT(x) = 1SAT(G), hence is II;-
complete; posT AUT (x) = posT AUT(G) by Theorem 3, hence I -complete,
and 1TAUT (x) is ¥y-hard by Lemma 4.

(3) posTAUT is ¥1-complete and posSAT is ¥y-complete by Theorem 3.
1-SAT is IIy-complete by Theorem 4; 1T'AUT is II,-hard by Lemma 5.

The results are summarized in Table 1, where L& means any t-norm
beginning by Lukasiewicz, similarly for G®, Il & . N A stands for “not arith-
metical”.

3 Calculi with the A-projection

1-TAUT | 1-SAT posTAUT | posSAT
BL | NA NA NA NA
L [T5-comp. | II;-comp. | ¥1-comp. | Xg-comp.
G Y1-comp. | II;-comp. | Xj-comp. | II;-comp.
IT NA NA NA NA
L@ | Ils-hard | IIy-comp. | ¥i-comp. | Xg-comp.
G | ¥i-hard | IIi-comp. | ¥i-comp. | IIj-comp.
Il | NA NA NA NA
Tab.

Finally, let us discuss our logics extended by the unary connective A (Baaz’s
delta.) Recall that the truth function of the A-connection (denoted also by
A) satisfies Al =1, Ax =0 for x < 1 (Ag says “p is absolutely true”).
First we modify the construction showing that tautologicity /satisfiability
of the product logic is not arithmetical to work in LVa. Let ¥ be the finite
conjunction of axioms saying that zero, successor, addition and multiplication
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are crisp and satisfy a sufficiently rich finite fragment of arithmetic and let
U be a unary predicate satisfying (use () for zero in arithmetic)

U®) =-U®), (V2)(U(z) = ==U()),
(Vo) (U(z) = (U(z + 1)&U(x + 1)),
(Vz,y)(z <y — (Ulx) = Uly))),

(V2)~AU ().

Lemma 6. Let x be Lukasiewicz t-norm or a continuous t-norm beginning
with Lukasiewicz. Then for each arithmetical ®,

(i) If ® is true in the standard model N then AV — & is a I-tautology
of PCYa(x) (predicate calculus over x with Baaz’s A) and AV&D is
1-satisfiable in PCVa(x);

(ii) If ® is false in the standard model then AV — ® is not a positive
tautology and AV&®D is not positively satisfiable (w.r.t. PCVa(%)).

Theorem 6. Let x be as above (beginning by Lukasiewicz or just Lukasie-
wicz). Then the sets ITAUT, 1SAT, posT AUT, posSAT of PCVa(x) are

not arithmetical.

Possibly the construction can be modified to show the non-arithmeticity
of the four sets in question w.r.t. PCV () for each continuous ¢-norm differ-
ent from Godel t-norm. For Godel t-norm the sets appear to be of the same
complexity as they are Godel logic without A; but this has to be checked.
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What is the True Algebra of First-Order
Logic?

Jaakko Hintikka
hintikka@bu.edu
Boston University

Things are no longer as they used to be in the good (or bad) old times.
We used to teach our students that the rock bottom of all logic is the received
first-order logic, alias quantification theory or lower predicate calculus. This
logic is a part of the logics of Frege and of the Principia Mathematica and
was extracted from them and made the basic layer of logic by Hilbert and
Ackermann [6]. Even after the deaths of Quine and Dreben, there undoubt-
edly still are people who believe that the received first-order logic is the basic
logic. By now it has nevertheless turned out that the usual first-order logic
that goes back to Frege and Russell (as a part of their more comprehensive
logic of quantification independent of the type level of quantifiers) does not
fulfill its job description. (See here [8].) An important part of the semantics
of quantifiers is their use in representing the relations of actual dependence
and independence between variables by means of the relations of formal de-
pendence and independence between the quantifiers to which the variables
are bound. Now in the received notation for quantifiers such dependencies
among quantifiers are represented by the nesting of their syntactical scopes.
But such nesting cannot represent all possible patterns of dependence and
independence. It is among other things transitive and antisymmetric, and
hence cannot capture many interesting dependence patterns, for instance
mutual dependence.

This defect is corrected by adding to the notation of first-order logic a
slash / which exempts a quantifier, say (Qsy), from being dependent on
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another quantifier, say (Q1x), in whose syntactic scope it occurs. This dec-
laration of independence is expressed by writing (Q2y) as (Q2y/Q1x). (This
notation may be complemented by other conventions.) This amended no-
tation implements what is called independence-friendly (IF) logic. It is the
engine of the change I referred to above. Its semantics can be obtained
from the well-known game-theoretical semantics for the ordinary first-order
logic by allowing the move mandated by (Q2y/@1) to be informationally
independent of ((;z) in the usual game-theoretical sense of informational
independence.

This notion of independence can — and should — also be applied to game
moves associated with propositional connectives. It is understood that this is
done in a full-fledged IF first-order logic. One might therefore look away from
quantifiers and ask what kind of prepositional logic might be obtained by
allowing independencies between truth functional correctives. There might
be more than one way of doing so, but what is obtained can most naturally
be considered as a part of the study of partiality logics. (See [16].) They are
not without interest, but they do not seem to yield very much new that would
be of general theoretical interest, especially if we concentrate on what can be
said about when propositions are true rather than not false. This is perhaps
to be expected. For, while the dependencies between quantifiers express
important real relations between their variables, the dependencies between
the moves associated with propositional connectives do not in general have
an equally interesting interpretation.

More interesting structures are obtained by first noting the behavior of
negation in IF logic. This behavior is in fact surprising. Perfectly classical
game rules for negation turn out to yield a concept of negation which does
not obey the law of excluded middle. Does this mean that IF logic should be
called “nonclassical”? No, it should be taken to mean instead that tertium
non datur is not an integral part of the classical conception of logic. From this
point of view it is merely an accident that the law of excluded middle holds in
the fragment of IF logic that the received first-order logic is. From a purely
abstract logical point of view it is but another accident that the primary
notion of negation that we employ in ordinary language is the contradictory
negation that satisfies the principle of excluded middle.

This does not mean that we cannot incorporate the contradictory nega-
tion that obeys the law of excluded middle in our logical notation and study
it. Such an extension of IF logic is necessary for its applicability, e.g. the
negation employed in ordinary language is in most cases obviously intended
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to be the contradictory one. In order to understand our actual Sprachlogik,
we therefore have to study logics which have two different negations, both the
one ~ that results from the classical rules for negation in game-theoretical
semantics and the contradictory negation —. (See here [9, 7].) Since there
cannot be any game rules that are more classical than the classical ones, con-
tradictory negation cannot be introduced by any rules for semantical games.
Without radically changing or extending IF logic, contradictory negation can
only be introduced by a stipulation as to what it means for an entire closed
sentence to be negated. If no further notions are introduced, — can therefore
occur only sentence-initially.

The logic that will be studied here is therefore what is sometimes called
extended IF first-order logic. It is simply IF first-order logic with a sentence-
initial contradictory negation — added to is vocabulary. Its semantics is the
same as for IF first-order logic, except for a metalogical rule that says that .S
is true if and only if S is not true, where the italicized metalogical negation
has to be taken to be the contradictory one.

Since in propositional logic the components of sentences are themselves
sentences (closed formulas without free variables), the contradictory negation
can there be used without restrictions.

The distinction between the two negations means that we have corre-
sponding difference between two conditionals in our hands. The conditional
(A D B) that goes together with ~ is equivalent with

(~AV B) 1)
while the one (A — B) that goes together with — equals
(mAV B). (2)
Furthermore, we have two equivalences amounting respectively to
(A&B) V (~A&~B) (3)

and
(A&B) vV (—\A&—\B) (4)

By resorting to what might be called substitutional interpretation (see
[7, 10, 9]), the extended IF first-order logic can be extended further so as to
enable — to occur within the scope of quantifiers. For instance

(V&)= Fz] (5)
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is interpreted by saying that it is true if and only if all sentences of the form
—F[b] are true, where b is a name of a member of the domain of individuals.
This presupposes of course that there is a name available in the language in
question for each member of the domain. The availability of names is not the
essential nonelementary assumption here, however. What is nonelementary
is the need of considering the (possibly infinite) domain as closed completed
totality in our truth-conditions. No such appeals to closed infinite totalities
of individuals is needed in the game-theoretical semantics for IF logic.

By using a mixture of game-theoretical and substitutional interpretation,
one can obviously interpret sentences where — occurs without any unusual
restrictions. However, in this paper such substitutional or mixed interpreta-
tions will not be discussed, unless indicated in so many words. The need of
considering closed infinite totalities makes an IF logic supplemented by the
unlimited use of contradictory negation surprisingly strong. A measure of
this surprise is that such a logic is as strong as the entire second-order logic.
(See [7].)

In this paper, the propositional part of extended IF logic will receive
special attention. What kind of structure is formed by the propositional
part of extended IF first-order logic? For the purpose, let us first note that
all the usual laws of propositional logic connecting ~, & and V hold, except
for those depending on the necessary truth of sentences of the form (SV~5).
Moreover, the following laws hold:

—~(AV B) <> (-~AV -~B) (6)
—~(A&B) + (-~A&—~DB) (7)
i~ A & A (8)

What kind of logic do we obtain in this way? Let us first consider this
logic purely algebraically. What kind of algebraic structure do we have? Now
-, & and V form a Boolean algebra. But ~ introduces an additional element.
Since ~A equals —(—~A), we can think of this additional structure as being
introduced by the operator —~. Now (6), (7) show that this is in fact an
operator in Tarski’s sense. Hence all of Tarski’s and Jénsson’s results apply.
(See [11, 12].) In particular, it follows that any extended IF first-order logic
has a representation theorem. In Tarski’s and Joénsson’s words, “roughly
speaking every such algebra is isomorphic to an algebra formed by a field
of sets with the usual set-theoretical operations, and with [the additional]
operators defined as images under certain relations between elements of the
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universal set (the largest set) of this field of sets, the notion of image under a
relation being a generalization of the notion of the image under a function.”
[11, p. 372]

Perhaps even more roughly, it follows that every extended IF logic admits
of an interpretation in set-theoretical terms where =, & and V correspond to
the usual Boolean operations or sets.

Tarski and Jénsson prove their representation theorem by first proving an
extension theorem which also applies to extended IF first-order logics. It says
that every Boolean algebra with operators can be imbedded in a complete
atomistic Boolean algebra with an additional relational structure.

Tarski’s and Jonsson’s results enable us to treat extended IF logic as if it
were an algebra of sets. For instance, we can consider measures defined on
such an algebra. We will not avail ourselves of this possibility in this paper,
however. Meanwhile (8) shows (in conjunction with (6)—(7)) that even more
can be said here. Not only is the extended IF logic a Boolean algebra with
an operator. It is a closure algebra. In other words, the structure of an
extended IF first-order logic is a topology. We will call it IF topology. Hence
all the results by Tarski, McKinsey and Jénsson on closure algebras apply to
it. Moreover, many of the questions that can be asked about topologies in
general can be asked about it. (See here [13, 14, 15].)

This provides an answer to the title question of this paper. The true
algebra of logic is not a Boolean algebra but a closure algebra. Hence gen-
eral topology is an eminently suitable framework for metalogic. Conversely,
general topology thus turns out to be a useful tool for foundational studies
in logic and mathematics in general.

Here only some of the most fundamental features of the IF topology will
be listed.

i) The sentences of the received first-order logic correspond to open sets.

ii) The same sentences also correspond to closed sets, and are the only
closed ones.

iii) The IF topology is compact.
iv) The IF topology has a countable base.

v) If A and B are disjoint sets in an IF topological space, then there are
open sets U and V such that AC U, BC V.
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The other properties of the IF topology remain to be investigated.

The compactness of IF topology (in the sense of general topology) has
to be distinguished from the compactness of the extended IF logic in the
logical sense. In the latter sense, even though IF first-order logic is compact,
the extended IF logic is not. An example showing this noncompactness is
obtained by noting that in IF logic you can formulate a sentence S that says
that the domain is infinite. The following formula will do the trick:

(V) (Vy) (3z/vy) Bu/Ve)((z # 2)&(u # y)&((z = y) & (2 =u))  (9)

assuming that the domain is not empty. Hence —.S says that the domain is
finite. Hence the following set of formulas is not satisfiable even though all
its finite subsets are:

{_'Syxl F T, X1 F T3,T1 F Ty, ...
co Lo F XT3, Ty F Xy, ..., T3 F Ty, T3 F Ty ...} (10)

This apparently minor observation might turn out to be consequential.
For, as von Neumann [18, pp. 233-234] emphasizes, in a noncompact space
“a number of properties which are equivalent in compact spaces are not
equivalent any longer”. For instance, the continuity of a function does not
imply the continuity of its inverse. Furthermore, noncompactness causes
difficulties in the theory of operators on the spaces in question. What we
have found is that IF topological space is still compact even though extended
IF logic is not.

There is nevertheless more structure to extended IF logic than the usual
topological one (or perhaps structure of a different kind). In order to see
what this extra structure is, one might use the possibilities opened by Tarski’s
representation theorem. This theorem enables us to discuss an extended IF
logic in analogy with set-theoretical structures. In this analogy, disjunction,
conjunction and contradictory negation have their obvious geometrical (set-
theoretical) counterparts in set union, set intersection and complementation.
But what is the geometrical counterpart to the strong (dual) negation ~? In
order to answer this question, we may recall that Jaakko Hintikka [10] has
shown that in the special case of Hilbert spaces the strong negation corre-
sponds to orthocomplementation. Now orthocomplementation does not have
a priori any counterpart in most logical spaces. However, we can turn the
tables here and to propose to consider strong negation in general as imple-
menting a generalization of the notion of orthogonality. On this suggestion,
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which we will adopt as our working definition, the sets corresponding to A
and B are orthogonal if and only if it is the case that (A D ~B) or in other
words if and only if (~A V ~B).

This might at first sight look like a purely nominal extension of the no-
tion of orthogonality. Its usefulness depends on to what extent this notion
captures the characteristic behavior of the received notion of orthogonality.
In order to see how it does so, let us examine some of the properties of the
newly defined notion. Some of these properties are brought out by further
defined notions. If we have a notion of orthogonality, we can define the di-
mensionality of a logical space as the largest number of pairwise orthogonal
elements in it. Thus we can define and say that our logical space had d
dimensions if and only if there are By, Bo, ..., By such that

(i) =~B; (i=1,2,...,d)
(i) ~B:V~B; (i #3j, i,j =1,2,...,d)
(iii) for any sentence A, =((~AV ~By)&(~AV ~By)& ... &(~AV By))

Here (i) says that the sentences (“vectors”) spanning the space are not “null
vectors”, (ii) says that they are orthogonal to each other, and (iii) says that
no element A is orthogonal to all of them. The condition (iii) can also be
written

(ﬁNA&—\NBl) V (—\NA&—!NBQ) V...V (—\NA&—!NBd) (11)
If we substitute here for A the sentence (A V —A), we obtain from (9)
—~B{V-~By V...V -~By (12)

But if (12) is true, then any A is equivalent with

(A&—~By) V (A&—~Bs) V ...V (A&—~~By) (13)

This can be considered as a coordinate representation of A with the conjunc-
tions (A&—~DB;) as the different components of A in the coordinate system
(B1, Bs, ..., By). The components of A, viz. (A&—~B;), are mutually or-
thogonal if (ii) is assumed. However, it can be seen that the “coordinate
representation” (13) is independent of (ii). Hence the “coordinate system”
By, By, ..., By need not be orthogonal.
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One obvious but nevertheless noteworthy observation here is that disjunc-
tion or, set-theoretically speaking, set union behaves like vector addition. For
the coordinate representation of (D V Dy) is

(D1 v Dy)&e—~B)) (14)
7
which equals
J((D1&~~B;) v (Dake~~By)) (15)
(2
Hence the coordinates of the union of two propositions are obtained by adding
to each other their coordinates one by one.

Since Tarski’s representation theorem establishes complete additivity, the
notion of dimension can also be extended to infinite-dimensional spaces.

This suffices to show that the extension of the notion of orthogonality by
means of the notion of strong negation captures some of the characteristic
properties of orthogonality.

These observations lead to further problems. As is well known, Brouwer
has characterized the dimension of a class recursively in set-theoretical terms.
(See here e.g. [1].) According to his definition, a topological space has d
dimensions if and only if any two disjoint closed sets A, B in it can be
separated by a set of dimension at most d — 1, in the sense that there is a
closed subset C' whose complement is the sum of two disjoint open sets Cf,
(5 one of which contains A and the other B. The problem now is whether
the notion of dimension can be related to Brouwer’s. For this purpose, our
definition of dimension must first be extended from coordinate systems to
arbitrary sets.

It needs to be added that the algebraic structure formed by extended
IF formulas with one free variable has to be studied separately. The reason
is pointed out above. When contradictory negation is prefixed to an open
formula, it does no admit of a game-theoretical interpretation, but instead
has to be independent substitutionally.

These observations have significant repercussions for the philosophy of
logic and mathematics. For one thing, it shows that there is no clear bound-
ary between logical and geometrical concepts. More generally, it calls into
question whether any meaningful distinction can be made between logical
and nonlogical concepts.

Further perspectives are opened by a comparison between the algebraic
structure we have reached and other related structures. Boolean algebras
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with operators include suitable modal logics, algebraically viewed. In partic-
ular, closure algebras correspond to the modal logic known as S4. This modal
logic has a number of interesting interpretations. It is arguably the propo-
sitional part of epistemic logic (logic of knowledge). This is philosophically
interesting in that game-theoretical semantics involves an epistemic element
in the form of players’ information sets, which codify certain aspects of their
knowledge. However, it might appear prima facie that we have not taken
this epistemic element into account. The relationship between extended IF
logic and S4 nevertheless suggests that this impression is not correct and
that we have after all managed tacitly to take into account the epistemic
(informational) ideas needed here.

Even more interestingly, propositional S4 is known to be tantamount to
intuitionistic propositional logic in Heyting’s formulation, in the sense that
each of them is interpretable in the other. (This was first pointed out in
[3, (1933)].) Hence extended prepositional IF logic is in the same sense
tantamount to intuitionistic propositional logic. It has been asked in the
literature, “What kind of logic is IF logic?” (See [2].) If we want to use
only logics familiar from earlier discussions, the shortest (but admittedly
somewhat over-simplified) answer therefore is: intuitionistic logic. This may
not be an entirely surprising result in view of the failure of tertium non
datur in IF logic, for this failure is often considered the most important
distinguishing mark of intuitionistic logic. The possibility of considering
IF first-order logic as a kind of intuitionistic logic also helps to illustrate
the sense in which IF logic is elementary in contradistinction to logics using
unrestricted contradictory negation which violate the law of excluded middle.
The logics relying on the substitutional interpretation of quantifiers which
were mentioned above are cases in point.

An explanation is perhaps needed here. It is usually thought and said that
before the expressive resources of the ordinary first-order logic are extended,
it is equivalent with the slash-free part of IF logic. This is nevertheless
true only on the assumption that atomic sentences obey the law of excluded
middle. If they do not, unextended IF first-order logic is weaker than the
received one. It is in this sense that it is nearly equivalent with intuitionistic
logic.

This relationship between IF logic and intuitionistic logic can of course
be proved directly. The translation rules between extended IF logic and
intuitionistic logic are complicated by the fact that in the former there are
two negations but in the latter only one. However, even this discrepancy
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becomes natural when it is recalled that contradictory negation can only
occur sentence-initially. Hence in a natural correspondence an intuitionistic
negation prefixed to a negation-free formula can be taken to be paired with
~ , whereas what looks like a double negation will be paired with —~ .

[ will leave the details of a proof of the [F-intuitionism connection for the
reader to work out as an exercise.

This connection cannot be extended to the entire first-order logic in any
simple manner. However, the reason is not any inadequacy of IF logic but
Heyting’s treatment of quantifiers which does not do justice to their interplay
with tacit or explicit epistemic operators.

The insight into a connection between extended IF logic and intuitionistic
logic opens an interesting further perspective. According to the original
intuitionists, the main logical principle that creates the unacceptable strength
of classical mathematics is the unlimited use of tertium non datur. This is
analogous with what was found earlier in this paper, viz. that by which we
can create an extremely strong logic on the first-order level simply by starting
from extended IF logic and then additionally allowing arbitrary occurrences
of contradictory negation. Indeed, the result is a first-order logic that is as
strong as the conventional second-order logic. This goes a long way toward
vindicating Brouwer’s emphasis on tertium non datur as the source of the
excessive strength of classical mathematics.

The connection between intuitionistic logic and extended IF logic poses
intriguing further questions. Intuitionistic logic is generally thought of as
being weaker than the received first-order logic. This is in an agreement
with the fact that fewer formulas are logically true according to intuitionistic
logicians than the logical truths of the received first-order logic. But at
the same time some of the most crucial mathematical concepts, concepts
that could not be captured by means of the received first-order logic, can be
defined with the help of IF logic. Among these concepts there are the notions
of equicardinality and topological continuity. What is then to be said of such
concepts from and intuitionistic point of view?

This question is but a special case of a larger complex of problems which
is at the same time a complex of opportunities. Using IF logic as our
Archimedean point, we can investigate by means of explicit logic what can
and what cannot be done in intuitionistic logic and intuitionistic mathemat-
ics.

Thus after 75 years of the Hilbert-Ackermann first-order logic and after
73 years of its antithesis Heyting’s intuitionistic logic, the two are ripe to be
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synthesized into IF first-order logic.
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The famous text of Hilbert and Ackermann, Grundzige der Theoretis-
chen Logik [13], appeared first in 1928, but it was closely based on Hilbert’s
lectures in Gottingen in the period 1917-1922. In section iii.3 (‘Preliminary
Orientation on the Use of the Predicate Calculus’) we find the following
passage:

We begin with the sentence ... “If there is a son, then there (1)
is a father.” The symbolic rendering of this assertion in the
predicate calculus is

... A proof of this statement is possible only if we analyze con-
ceptually (begrifflich zerlegen) the meanings of the two predi-
cates which occur.

This passage is interesting because it tells us something about what Hilbert
thought logic is for.

One of the chief tasks of the history of ideas is to recreate the agendas
of leading researchers from past generations. With mathematics there is
a particular problem: A mathematical fact, once discovered, has its own
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identity and takes on its own life. Later mathematicians construct their own
proofs of it and use it in contexts that its first discoverer never imagined. The
fact itself carries no traces of how people first came to it. For this reason the
body of theorems proved by the logicians of the first half of the twentieth
century can be a misleading guide to the contexts in which they proved them.

Hilbert’s example above is not a deep contribution to mathematical logic,
but it does raise questions about his agenda. For example in his independence
proofs in geometry [9] in 1899 he had shown that certain axioms A are not
logically derivable from certain other axioms By, ..., B,. But he had never
stopped to ask whether this is just a fact about the surface forms of the
axioms, so that A might become derivable from the other axioms if we first
made some conceptual analyses. Patricia Blanchette has claimed that this
was Frege’s chief difficulty with Hilbert’s independence proofs. Thus [1] p.
336:

[For Frege| The fact that knowledge of the members of [a set  (2)
of thoughts] ¥ suffices to ground knowledge of [a thought] « is
entirely compatible with the independence, in Hilbert’s sense,

of the sentence expressing a from those expressing the members

of . This will be the case whenever ... the epistemological
dependence turns on analysis of the constituent concepts of the
thoughts in question.

(Blanchette is discussing the correspondence [10], [4] between Hilbert and
Frege in 1900.) On this account, Hilbert’s agenda in 1899 missed a crucial
point that Frege noticed. By 1928 Hilbert had noticed it too, whether or not
he learned it from Frege.

I think this account is wrong. There clearly are differences between Frege
and Hilbert-1899, and between Hilbert-1899 and Hilbert-1928. But they
have nothing to do with the role of conceptual analysis; on this there is no
reason to think that Hilbert’s views changed. There is plenty of evidence that
in 1900 he and Frege had no disagreement about the relationship between
conceptual analysis and logical inference in geometry.

I will discuss first the 1928 text, and then Frege’s views in his debate with
Hilbert (including his 1906 paper [7] responding to Korselt). Finally T will
sketch a certain paradigm for mathematical work. Hilbert, Frege and Tarski
(before the Second World War) all shared this paradigm, and many of their
opinions fall neatly into place within it. Along the way I discuss a recent
paper of Jamie Tappenden [17] on Frege’s notion of logical independence; I
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think Tappenden has misreported what Frege says, but it gives us an excuse
to put flesh on some of Frege’s abstract remarks.

The word ‘system’ will appear in many of the quotations below. During
this period it had two main meanings: (1) a system of axioms, i.e. a theory,
(2) a system of things, i.e. a structure. It would be wise not to confuse these.

My warm thanks and appreciation to the organisers and my fellow par-
ticipants in ‘First Order Logic 75’ at the Humboldt University, Berlin in
September 2003. I thank Patricia Blanchette and Jamie Tappenden for cor-
rections and comments.

1 What did Hilbert and Ackermann have in mind?

The passage quoted from Hilbert and Ackermann above refers back to a
remark in an earlier section ([13] iii.1):

“If there is a son, then there is a father,” is certainly a logi- (3)
cally self-evident [logisch selbstversténdliche] assertion, and we
may demand of any satisfactory logical calculus that it make
obvious [in Evidenz setzt| this self-evidence, in the sense that
the asserted connection will be seen, by means of the symbolic
representation, to be a consequence of simple logical principles.

(I thank William Ewald for confirming that this and the next quotation
from the 1928 edition of [13] both correspond almost verbatim to material in
Hilbert’s Gottingen lectures.) There are some problems with this passage.

First, the example is not entirely convincing. Are Hilbert and Ackermann
claiming that it is self-evident that every son has a father? Apparently so,
from the analysis that they give for S(z) (“x is a son”) later in iii.3:

In the concept “son” is contained the property “male,” on the (4)
one hand, and, on the other, the relation of child to parents;

in the concept “father,” the relation to wife and child.

Accordingly, if we introduce for “x is male” the symbol M (z)

and render the predicate “z and y are the parents of z” (or

more exactly, “z and y as husband and wife have z as their
child”) by the symbol C'(x,y, z), then we define S(x) by

M(z) & (Fu)(Ev)C(u,v, ).
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This is surely a mistake. There is nothing conceptually wrong in talking
about a mother having a biological son without the intervention of a father.
I don’t know if it has ever happened, but in the present state of genetic
engineering it probably will have done by the time you read this. If the
example is about legal fathers and sons, then it is even less convincing.

That shows only that Hilbert and Ackermann chose a bad example. Curi-
ously the example is very old; it was a stock-in-trade of the medieval western
logicians, who took it from Boethius [2] Book 3, 1198A4. The usual medieval
version was the other way round: If there is a father then there is a son. (We
should congratulate the twelfth century Introductiones Montane Minores [16]
p. 68 for noticing that this requires that sons include daughters—most of the
medievals missed this.) The best logicians analysed the example in pretty
much the same way as Hilbert and Ackermann did, and added that the re-
sulting proof is not an aristotelian syllogism but a ‘topic’.

The second problem is a little subtler. According to Hilbert and Acker-
mann, if S and C' have the meanings above, then

Va(S(z) «+ (Eu)(Ev)C(u,v,x)) (5)

is a conceptual truth. But what is the domain that the quantifiers (Fu) and
(E'v) range over? A son can outlive his parents, so it should include past as
well as present humans.

We find an answer to this question in the second edition of [13]. Discussing
the application of first-order logic to sentences that express facts about a
particular subject matter, Hilbert and Ackermann comment (iii.11):

When interpreting the formulas as regards content, we must (6)
bear in mind that the individual variables no longer refer, in
general, to a domain of individuals which is left indeterminate;
rather, the latter is usually more or less definitely determined

by the nature of the premises, so that the individual members

of the domain may perhaps be the integers, the real numbers,

the points in a plane, or any other things whatsoever.

Nothing corresponds to this text in the first edition. But the treatment of
natural numbers in iii.3 of the first edition is entirely in line with (6), so that
it seems the second edition makes explicit an idea that was implicit in the
first. (Hilbert was hardly active in 1938; he died in 1943. I think we can
assume that the new material in the 1938 edition bears the voice of Paul
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Bernays, who was a very reliable expositor of Hilbert’s ideas and sometimes
had a clearer vision than Hilbert himself. But below I will keep to the fiction
that Hilbert made these changes.)

The quotation (6) is also close to what Tarski says in [18], published
in Polish two years before the second edition of [13]; see for example his
treatment of the Universe of Discourse in chapter 4. Presumably when the
subject is human relationships, one should take the domain to consist of all
human beings at any time.

The connection between (6) and logical inference runs as follows. If a first-
order sentence is deducible by a formal proof, then it is true when interpreted
in any (nonempty) domain. Section iii.5 of the second edition of [13] explicitly
sets up the logical calculus so as to ensure this, though no soundness theorem
is stated. Again one guesses that the same idea is below the surface in the
first edition; it peeps up briefly in the comments on the ‘Individuenbereich’
in iii.9. In any case, if a sentence is true when interpreted in any domain,
then in particular it is true when interpreted in the domain that is ‘more or
less definitely determined by the nature of the premises’. Hence the sentence

(Ex)[M (2)&(Eu)(Ev)C(u, v, 2)] = (Ex)(Ey)(E2)C(x,y,2),  (7)

which has a formal proof in first-order logic, is true when M and C are
interpreted as previously in the domain of human beings.

Recall that Hilbert and Ackermann’s problem was to prove ‘If there is a
son, then there is a father’. This sentence is symbolised as

But instead of proving this sentence, Hilbert and Ackermann prove (7). How
does this solve the original problem?
To plug the gap, they first observe that

S(z) has the same meaning as M (z)&(Eu)(Ev)C(u,v, )) 9)

Here they use a symbol for ‘has the same meaning as’ which they introduced
in 1.2, explaining there that it is not one of the logical symbols. From (9)
they deduce

(Ex)S(z) = (Ez)(Eu)(Ev)C(u,v, x) (10)

and the rest is plain sailing.
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By modern practice (or indeed Frege’s) this is rather sloppy. The status
of (9) needs to be made clear. Today we would make it a formal definition,
together with a similar definition for F'(z):

Va(S(z) > M(z) A FJudvC(u,v,x)), (11)
Va(F(z) < Jy32C(x,y, 2)).

One can deduce (8) logically from these two definitions (11) together with
(7).

We are not quite finished with the Hilbert-Ackermann example. In (3)
they claimed that (8) is logically self-evident; so why do they want a proof
of it? Why not adopt it as an axiom about family relationships? As Tarski
says ([18], p. 93f of original, §39 of English translations):

[When| we decide to select a certain system of primitive terms (12)
and axioms ... it may be desirable to get along with as few of
them as possible ...

Since Hilbert and Ackermann have nothing to say about this, I leave it till
the final section below.

2 Axiomatic theories and models

Hilbert and Ackermann might seem to contradict themselves when they say
first that the domain of individuals ‘is usually more or less definitely de-
termined by the nature of the premises’, and then add that the individual
members of the domain ‘may perhaps be ... any other thing’. But this is
an ungenerous reading of their text. They must mean that while a given set
of premises determines a particular domain of individuals, different sets of
premises could include anything whatever in the domains that they deter-
mine.

But then how can Hilbert and Ackermann claim that the domain of a

model of a set of first-order sentences is ‘more or less definitely determined
by’ the first-order sentences? They can’t. Hilbert was already clear about
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this in his correspondence with Frege ([10] 29 December 1899):

In other words, each and every theory can always be applied (13)
to infinitely many systems of basic elements. For one merely
has to apply a univocal and reversible one-to-one transforma-
tion and stipulate that the axioms for the transformed things
be correspondingly similar. ... The totality of assertions of a
theory of electricity does of course hold of every other system
of things substituted in place of the concepts magnetism, elec-
tricity, ... [sic] just as long as the required axioms are fulfilled.

Hilbert is certainly right about this. So doesn’t it explicitly refute his later
claim that the premises determine the domain?

A closer reading shows that in both 1899 and 1938 Hilbert has in mind
a set of formal axioms written down as a set of premises for reasoning about
a particular subject-matter. To this extent his formal sentences are not in
an uninterpreted formal language; they are meaningful statements about
a determinate topic. It’s this subject matter, not the syntactic form of the
sentences, that determines the domain of individuals. A model theorist today
would explain that Hilbert’s axioms have an ntended model.

Hilbert seems not to have had the modern notion of a model of a set
of axioms. Two other notions take its place in different contexts. The first
he explains as follows. Here he is talking about a system of axioms that
presumably already has an intended subject matter ([10] 29 December 1899).

If T think of my points as some system or other of things, (14)
e.g. the system of love, of law, or of chimney sweeps ... [sic|

and then conceive of all my axioms as relations between these

things, then my theorems, e.g. the Pythagorean one, will hold

of these things as well.

Hilbert says not that the axioms can be true of structures made up of any
individuals; he says that if we think of the axioms as statements about these
structures, then (under appropriate conditions) they will be true. The inter-
pretation is a matter of our intentions, our thoughts.

The second notion appears when Hilbert (Bernays?) discusses consistency
and validity of a set of axioms, for example in iii.5 of the second edition of
[13]. Here instead of interpreting the primitive symbols, he replaces them by
names or predicates, in general from another language. In model theory we
call the result not a model of the axioms but an interpretation of them.
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Hilbert’s language in both 1899 and 1938 is again close to Tarski’s in 1936
[18]. Tarski requires that a set of axioms for a deductive theory should be
meaningful and evidently true (see §32 of 1936, §36 of the English). Tarski
realises (as Hilbert seems not to) that this account is nonsensical when ap-
plied to axiomatic theories like group theory, where we have no particular
group in mind. He admits that his treatment is inadequate here, but offers
no repairs ([18] §33 of original, §38 of English translation).

Admittedly, sometimes we develop a deductive theory without (15)
ascribing a definite meaning to its primitive terms, thus dealing
with the latter as with variables; under such circumstances we
say that we treat the theory as a FORMAL SYSTEM. But
this kind of situation (which was not taken into account in our
general characterization of deductive theories ...) arises only
if several interpretations for the axiom system of this theory
are available to us, that is, if we are concerned with several
ways of ascribing concrete meaning to the terms occurring in
the theory, but we do not desire to give preference in advance
to any one of these ways.

By the mid 1950s model theory was well equipped to describe how axioms
for groups work. In [14] I trace the steps which led to the breakdown, during
the 1940s, of the standard approach to axiom systems before that date. Basi-
cally, the model theorists (Mal’tsev, Tarski, Abraham Robinson) had started
to prove results that it was difficult to state in the old framework without
tiresome ad hoc adjustments. In reading what Hilbert and Tarski said before
the mid century we should beware of the anachronism of supposing that they
were talking model theory.

In later editions of the English translation of [18] the word ‘interpreta-
tions’ in (15) was expanded to ‘models or interpretations’. This is correct
in the modern use of the word ‘model’. But it is wrong as Tarski defined
‘model” in [18]; in fact that is part of the point Tarski is making here.

3 Frege on conceptual analysis

As Blanchette rightly mentions, for Frege an inference is primarily between
thoughts and only derivatively between sentences expressing the thoughts.
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She also says ([1] p. 325):

Because each thought is generally expressible by a number of (16)
different sentences, there is much more to the relation of prov-

ability than is evidenced by the relation of derivability. Where

pis a thought and s a sentence expressing it, II a set of thoughts

and Y a set of sentences expressing II: The derivability of s

from > guarantees that p is a consequence of II, but the fact

that s is not derivable from ¥ is no guarantee that p is not a
consequence of II. For s’s nonderivability from ¥ is entirely
compatible with the existence of some s and ¥’ expressing p

and II, respectively, such that s’ is derivable from X'.

Frege doesn’t say this in the passages she cites. Did he believe it?

On page 210 of Logic in Mathematics [8], Frege addresses this issue in
the case where s’ and ¥/ differ from s and ¥ by using a definition of some
concept occurring in the thoughts p, I1. He distinguishes two cases.

(1) We construct a sense out of its constituents and introduce (17)
an entirely new sign to express this sense.

For example this case would arise if Hilbert and Ackermann had first proved
(7) with M and C having the meanings assigned to them, and then introduced
S(x) as an abbreviation of M (x)&(Eu)(Ev)C(u,v,x). In this case (8) would
express the same thought as (7) by stipulation. But then we should be
allowed to use the definition of .S in deductions, otherwise what would be the
point of the definition? So presumably (8) is no less provable than (7).

The second case is where

(2) We have a simple sign with a long established use. We (18)
believe that we can give a logical analysis of its sense.

what we should here like to call a definition is really to be
regarded as an axiom.

This is the case discussed by Hilbert and Ackermann. We analyse ‘son” and
‘father’, and we see (‘by an immediate insight’, as Frege puts it) that the
definitions of these concepts in terms of M and C' are true. In this case it is
not at all clear to me why Frege should regard (8) and (7) as expressing the
same thoughts, since the two definitions (11), which are needed to get from
one of (7) and (8) to the other, express significant thoughts and not just a
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notational convenience. But the key point in this case is that Frege regards
the conceptual analysis not as providing new sentences s’ and Y’ to express
the same thoughts as before, but as supplying a new premise in the form an
axiom expressing a relation between concepts.

On the previous page of [8], Frege suggests that a conceptual analysis can
‘reduce the number of axioms’, and waits a page before admitting that it will
normally add a new axiom as well. (Again compare Tarski’s (12).)

Blanchette’s claim (2) is about the conceptual analysis of concepts that
we already have, so (18) applies rather than (17). The only remark of Frege
about conceptual analysis that she cites ([1] p. 324) from the geometric work
of 1900-1906 is the third sentence of the following passage from Frege’s an-
swer to Korselt ([7] p. 303):

The real importance of a definition lies in its logical construc- (19)
tion out of primitive elements. And for that reason we should

not do without it, not even in a case like this. The insight it

permits into the logical structure is not only valuable in itself,

but also is a condition for insight into the logical linkage of

truths. A definition is a constituent of the system of a science.

As soon as the stipulation it makes is accepted, the explained

sign becomes known and the proposition explaining it becomes

an assertion. The self-evident truth it contains will now appear

in the system as a premise of inferences.

Here he says ‘stipulation’, and the preceding half-page makes it clear that
he is talking about new concepts being introduced as abbreviations of longer
phrases. So here (17) applies—there is no reference to analysis of existing
concepts. The ‘insight into the logical linkage of truths’ is presumably the
insight given by a well-chosen notation—something that writers on mathe-
matics have often commented on.
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Another passage from the reply to Korselt is relevant ([7] p. 423):

We must first ask what is here to be understood by ‘indepen- (20)
dence’ ... If we take the words “point” and “straight line” in
Hilbert’s so-called Axiom II.1 in the proper Euclidean sense,
and similarly the words “lie” and “between,” then we obtain
a proposition that has a sense, and we can acknowledge the
thought expressed therein as a real axiom. Let us designate it
by “[I1.1]”. Let [I1.2] emerge in a similar way from Hilbert’s
I1.2. Now if one has acknowledged [II.1] as true, one has
grasped the sense of the words “point,” “straight line,” “lie,”
“between”; and from this the truth of [I1.2] immediately fol-
lows, so that one will be unable to avoid acknowledging the
latter as well. Thus one could call [I1.2] dependent upon [II.1].
Of course, we do not have an inference here; and it seems inex-
pedient to use the word “dependent” in this way, even though
linguistically it might be possible.

Frege seems to be saying here that one could speak of an epistemological
‘dependence’ between two axioms, but he finds this an inexpedient use of the
word. Presumably he would allow us to call [I1.2] dependent on [II.1] if the
conceptual relations between ‘point’ etc. that are used in reaching [I1.2] were
stated explicitly as axioms and [I1.2] was deduced from them together with
[II.1]. But it might be that [I1.2] is already a statement of these relations, so
[I1.2] makes a satisfactory axiom itself.

From Frege’s writings of the period 1899-1906, (19) is the only passage
that Blanchette cites as evidence of Frege’s interest in conceptual analysis.
In context it is part of an attack on Hilbert’s notion of definitions, and not
a request for conceptual analyses of ‘point’ etc. The fact that in the whole
correspondence with Hilbert and the sixty-odd pages of [6] and [7] Frege never
once says that he finds Hilbert’s independence proofs unacceptable because
they ignore the possibilities of conceptual analysis is one strong argument
against Blanchette’s thesis. Another is Frege’s own account of how he would
like to see independence proofs carried out. We turn to this.

4 Frege’s independence proofs

Frege finishes his response to Korselt [7] by sketching how he thinks a proof of
the independence of a geometric axiom from other geometric axioms should
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go. First he defines what he means by ‘dependent’ (p. 423f).

Let © be a group of true thoughts. Let a thought G follow (21)
from one or several of the thoughts of this group by means of
a logical inference such that apart from the laws of logic, no
proposition not belonging to €2 is used. Let us now form a
new group of thoughts by adding the thought G to the group
Q. Call what we have just performed a logical step. Now
if through a sequence of such steps, where every step takes
the result of the preceding one as its basis, we can reach a
group of thoughts that contains the thought A, then we call A
dependent upon group €2. If this is not possible, then we call
A independent of €). The latter will always occur when A is
false.

In particular dependence can never rely on any conceptual analysis that is
not already included as a thought in €2. As we saw, conceptual analysis gives
us new consequences only by adding a new thought to the group €2, and here
Frege forbids us to do that.

Frege remarks that in order to show that A is not in this sense a conse-
quence of €2, we need some facts about consequences. One fact that we can
call on is (p. 426)

If the thought G follows from the thoughts A, B, C' by a logical (22)

inference, then G is true.

(Recall that for Frege a logical inference must have true premises.) Facts of
this type won’t allow us to prove the independence of a true conclusion.

So Frege proposes a further law. Suppose we choose a logically perfect
language £ in which  and A are expressible, say by sentences > and s
(to follow Blanchette’s notation). Suppose that in the language £ we can
choose, for each ‘word” w occurring in ¥ or s, a corresponding ‘word’ f(w)
of the same grammatical form, in such a way that f is one-to-one. Suppose
also that f(w) = w whenever w is a word ‘whose reference belongs to logic’
(deren Bedeutungen der Logik angehoren). Let ¥’ and s’ be the result of
replacing each occurrence of a word w in ¥ and s by an occurrence of the
word f(w). Since L is logically perfect, ¥’ and s’ will express a set of thoughts
and a thought. Suppose we can do all this in such a way that the thoughts
expressed by ¥/ are true and the thought expressed by s’ is false. Then as
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noted in (22), there is no inference from ¥’ to s'. It follows that there is no
inference from X to s either, since otherwise the steps in the proof would
translate into the steps of a proof of s’ from >'.

Several things in this account are unclear. Frege himself notes that in
order to use this method one should first define ‘logical inference’ and what
concepts ‘belong to logic’, and then one should tidy up the account of the
further law above.

Let me add another thing to tidy up. Frege seems to assume that one
could never get a false independence proof by choosing the wrong language
L. This is perplexing. Suppose for example that 2 consists of three thoughts,
which we shall express by sentence letters p,q,r, and A is a thought which
we express by the sentence letter s. Then in £ the inference from  to A
becomes

p,g,r F s (23)

and we easily show by Frege’s method that this inference is invalid, regardless
of what €2 and A were.

We are in the dark about how Frege would block this. Since Frege says
nothing about it, I suspect he has in mind a solution that doesn’t use any
radically new ideas. One possibility is that Frege believes something along
the following lines:

If sentences S and T in logically perfect languages express the (24)
same thought, then one can set up a bijection 3 between some
components of S and some components of 7', in such a way that

(1) if two components are related by 3, then either they are
synonymous words, or one of them is a compound expression

and the other is a word that by stipulation means the same as

the compound expression, and (2) both S and 7" are built up

in the same way from the components related by .

If he believes this, then all that’s needed to repair the ‘further law’ above is
a requirement that all stipulative abbreviations have to be expanded before
the map f is found. But for myself I am out of sympathy with Frege’s talk
of ‘thoughts’, so I leave it there.
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5 Did Frege’s views on independence change?

According to Tappenden [17] p. 283:

Prior to 1906, Frege takes “independence” to involve assuming (25)
an axiom to be false. Frege himself defines “independence” this
way in the correspondence of 1899-1900, and this definition
also informs the discussion of independence in the Grundlagen
. sixteen years earlier. When Frege turns, in 1906, to sketch
how he has come to think “independence” should properly be
defined to carry out independence arguments among thoughts,
he defines it differently: A thought 7' is independent of others
Q) if there is no sequence of logical steps leading from €2 to T.

So according to Tappenden, Frege has two different ‘notions of independence’
(Tappenden’s phrase); we can call them the pre-1906 notion and the 1906
notion.

It seems to me that Tappenden’s statement about the correspondence of
1899-1900 is false; Frege makes no reference to assumptions anywhere in this
correspondence. On page 273 Tappenden [17] attributes to Frege (writing to
Liebmann in 1900) a definition of independence, and it does refer to what
“can be assumed”. But Tappenden introduced these three words himself;
Frege’s original says nothing about assumptions.

True, there is a difference between the definition Frege sent to Liebmann
and the one he gave in 1906. To Liebmann he said ([5] 29 July 1900)

The independence of an axiom A from other axioms is the (26)
freedom from contradiction of the negation of A together with
the other axioms.

In other words, if the other axioms are Bi,..., B,, then to say that A is
independent of By, ..., B, is to say that there is no logical proof of

(FA)AByA ... ABy) = (X A—X) (27)

for any statement y. The definition in 1906 says that A is independent of
By, ..., B, if there is no logical proof of

(BiA...AB,) — A (28)

These two definitions are equivalent in the sense that it takes only a small
amount of propositional logic to deduce either definition from the other.
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Any argument that established independence in one sense would count as
establishing independence in the other sense too.

So Tappenden has given no evidence that Frege is using different notions
of independence in 1900 and in 1906. But Tappenden also refers to a passage
of the Grundlagen of 1884. I quote Tappenden again ([17] p. 273):

Whatever “conceptual thought” is, independence as Frege un- (29)
derstands it [in the Grundlagen] involves showing that a set
consisting of several axioms plus the negation of another can

be used in reasoning without turning up contradictions. Also

... he says directly that the fact that “it is possible to deny

any of the axioms” of Euclidean geometry “shows (zeigt) that

the axioms of geometry are independent of one another and of

the primitive laws of logic ...”.

Here is what Frege says in the place Tappenden is referring to ([3] §14):

Empirical propositions hold good of what is physically or psy- (30)
chologically actual, the truths of geometry govern all that is
spatially intuitable, whether actual or product of our fancy.
... Conceptual thought alone can after a fashion shake off [the
yoke of intuition], when it assumes [annimt], say, a space of four
dimensions or positive curvature. To study such conceptions is
not useless by any means; but it is to leave the ground of intu-
ition entirely behind. ... For purposes of conceptual thought
we can always assume [annehmen]| the contrary of some one or
other [diesem oder jenem] of the geometrical axioms, without
entangling ourselves [mit sich selbst verwickelt] in any self-
contradictions when we proceed to our deductions, despite the
conflict between our assumptions and our intuition. The fact
that this is possible shows that the axioms of geometry are
independent of one another and of the primitive laws of logic,
and consequently are synthetic.

Frege admittedly needs some interpretation here. But straight away we note
two mathematical points that Tappenden’s statement (29) misconstrues.
First, Frege doesn’t say that the axioms of geometry are independent of
one another. How could he? It depends on what set of axioms one chooses.
The phrase ‘the axioms of geometry’ in his last sentence must refer back to
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the ‘some one or other of the geometrical axioms’ in the preceding sentence,
which Tappenden has mistranslated as ‘any of the axioms’. Frege is only
claiming that this method for proving independence works in the cases where
it works.

Second, the fact that it is possible to deny an axiom A can’t conceivably
establish anything about the independence of A. Words are cheap; anybody
can deny anything. It’s equally hopeless to try to establish the independence
of A by denying it ‘without turning up contradictions’. So Frege can’t have
meant what (29) ascribes to him. What Frege must have meant—from the
logical facts of the case—is that if we adopt the negation of A, together
with the other axioms, we can’t deduce a contradiction from them. What he
actually says is more ambiguous and metaphorical than this, to the effect that
adopting the negation of A together with the other axioms won’t ‘entangle
us’ with contradictions.

This second point is important. If we want to prove that A is independent
of By, ..., B, along the lines Frege is discussing, we shall need to prove that
the assumption of = A together with By, ..., B, never leads to a contradiction.
It is quite obvious that we could never prove such a thing just by assuming
these propositions and failing to deduce a contradiction. Something else is
needed.

And before we examine Frege’s text to see what that something else is,
we should note that the question whether = A together with By, ..., B, leads
to a contradiction has nothing to do with whether any human being happens
to assume any of them. We can’t make a contradictory set consistent, or vice
versa, just by not thinking about it. So Frege’s brief reference to ‘assuming’
must be a turn of phrase and nothing essential to his argument.

It’s time to look at the earlier parts of Frege’s text quoted above. Frege
notes that the truths of geometry are true propositions about the space of our
geometrical intuitions, let me call it intuitive space. We can safely assume
that the truths that Frege has in mind either include or imply the statement

The number of dimensions is three. (31)

Then he speaks of ‘assuming a space of four dimensions’. If a mathematical
colleague asked me to ‘assume a space of four dimensions’, my first guess
would be that he wanted me to think of an example of such a space. Like
most mathematicians I would think first of euclidean 4-space R*; any serious
European geometer in the 1880s would have been familiar with this space,
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though not in this notation. (I think in this context ‘takes’ is a more idiomatic
rendering of ‘annimt’ than Austin’s ‘assumes’; but ‘assumes’ will do.)

Frege is right that we can’t work out the properties of R* by any kind of
mental inspection or intuition. We have to reason algebraically, abstractly, or
as Frege puts it, by using ‘conceptual thought’. Conceptual thought shows
for example that the standard axioms of vector spaces (which again were
familiar at the time, though not under that name) hold in R*. Presumably
they also hold in intuitive space, though Frege thinks we establish this by
intuition.

Since R* has four dimensions, the following statement about it is also
true:

—(The number of dimensions is three). (32)

Here (32) both is and isn’t the negation of (31). Syntactically it is the
negation; but it doesn’t express the negation of what (31) expresses, because
(31) expressed a truth about intuitive space and (32) expresses a truth about
R*. Because (32) and the vector space axioms are all of them true statements
about R, they form a syntactically consistent set. This establishes that (31)
is independent of the vector space axioms. Frege’s passage (30) is pretty
clearly about examples like this.

Is this a different notion of independence from that in 19067 Plainly
not; it establishes independence in the 1906 sense. Is it a different method
for proving independence? Again I think not. Let Q be the vector space
axioms as true propositions about intuitive space, and let A be (31) as a true
proposition about intuitive space. Now take the language used to express
2 and A, and add to it a corresponding set of concepts and terms that
are about R* instead of intuitive space. Replace each geometric expression
in the statements of 2 and A by their counterparts; this turns §2 into the
true statement that R* obeys the vector space axioms, and A into the false
statement that R?* is three-dimensional. Ergo.

For emphasis let me repeat that ‘assuming a four-dimensional space’
doesn’t involve assuming a false proposition. It does involve accepting a true
proposition that is syntactically identical to the negation of a true proposi-
tion about something else. As Frege says in his letter of 6 January 1900 to
Hilbert [4],

Only the wording is the same; the thought-content is different (33)
in each different geometry.
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Hence Tappenden’s concerns in [17] about arguments from false assumptions
are beside the point. They have nothing to do with Frege’s views on inde-
pendence, at any date.

We should mention Frege’s doubt, expressed to Hilbert [4] and Liebmann
[5] in 1900, about whether it would be possible to prove the mutual indepen-
dence of the axioms of euclidean geometry by this method. He is reserved
about the reasons for his doubt, but his statement to Liebmann does give
some clues. His worry is that it might be impossible to find a structure in
which (a statement syntactically the same as) A is false while (statements
syntactically the same as) Bj,..., B, are true, even if there is no logical
proof of A from By, ..., B,, because the form of By, ..., B, might impose a
‘Beschrankung’ that rules out the required countermodels. In modern terms,
he might have had in mind a second-order completeness axiom that rules
out models with nonstandard elements. It would have been very interesting
to know more, because Frege could have been feeling his way towards the
question whether semantic entailment in the Tarski sense necessarily implies
syntactic entailment. (Today we know that it can’t in second-order logic,
because the set of valid sentences of second-order logic is not computably
enumerable. But in 1900 Gdodel was still thirty-one years in the future.)

6 The broader picture

Frege, Hilbert and Tarski were all deeply interested in the question how one
should formulate mathematical theorems, with a view both to rigour and
to fruitful research. All three adopted essentially the same paradigm, which
Tarski ([18] §36 of the English version) traced back to Pascal [15]; though
Tarski himself became reticent about this paradigm after the Second World
War. Today the paradigm is largely forgotten, and so we easily misconstrue
remarks that refer to it. Hilbert spoke of the paradigm in terms of ‘theories’
and ‘axiomatic thought’ [10], while Tarski wrote of ‘deductive theories’ and
‘deductive method’ [18]. Frege sometimes used the expression ‘system of a
science’.

(a) The primitives. We assume we know what subject matter we intend
to discuss. The first step is to decide what objects we want to talk about
(this will determine the domain of individuals, cf. Hilbert and Ackermann (6)
above), and what concepts we need in order to talk about them. We adopt
expressions for these concepts; Pascal and Tarski call these expressions prim-
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itive. The meanings of the primitive expressions should be self-explanatory
(Tarski: They should ‘seem to us to be immediately understandable’). Frege
([4] 6 January 1900) invites Hilbert to agree with him that it is unacceptable
to leave the primitive concepts only partly specified (nicht fertig) in hopes
of clarifying them as the work proceeds. (Frege adds that he had thought he
was alone in this opinion.)

(b) The axioms. The second step is to write down self-evident truths
that relate these concepts; all three logicians describe the sentences express-
ing these truths as azioms. (Hilbert: These concepts and the stated relations
between them form the ‘framework of concepts’ for our theory.)

In [10] 29 December 1899, Hilbert says ‘As soon as I posit an axiom, it
is available and “true” ’. This is absurd; no wonder Frege objected. Hilbert
was more circumspect in later writings. But the position is complicated by
the fact that Hilbert wanted to include physical theories under the head
of axiomatic theories. ‘Self-evidence’ is not a criterion commonly used for
choosing basic principles in physics.

(c) Internal work. All three logicians, and Pascal too, draw a distinc-
tion between work within the theory and work that changes the theory. Thus
for example Pascal says he is going to discuss how we prove truths, but not
how we discover them. Introducing my own terminology here, let me dis-
tinguish between internal work within the theory and external work on the
theory.

Work within the theory is severely constrained. We are allowed to do
just two things. As Pascal puts it, we are allowed first to use terms whose
meaning has been clearly stated, and second to assert propositions that we
deduce from truths already known. That’s all. The processes are cumulative;
a definition can use terms introduced by earlier definitions and be justified by
propositions already proved, and a proof can use terms already introduced
and be proved from propositions already proved. Pascal also requires that
each proof should be ‘conforme aux regles qu’on connait’.

Frege and Tarski bring this up to date: We are allowed only to intro-
duce new terms or concepts by definition, and to introduce new propositions
by sequences of steps in a formal deductive calculus; the deductive calculus
would be what today we would count as a logic of finite order, not neces-
sarily first order. Hilbert is less explicit, at least in [11]. His programme for
metamathematics requires that it should in principle be possible to formalise
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any mathematical argument in a suitable calculus (‘Everything that previ-

ously made up mathematics is to be rigorously formalized’, [12]). But he

clearly feels that the threats to rigour come more from choice of inappropri-

ate axioms than from unacceptable inference steps. Hence his concern with

the consistency of the axioms of arithmetic and set theory. Both Tarski and

Hilbert experiment with rules of logic that have infinitely many premises.
Frege’s (17) above is about definitions internal to a theory.

(d) Deepening the theory. So we settle down to prove theorems.
Inevitably we find that the concepts we first wrote down are too crude; to
carry the proof through we need to analyse one of them. Or maybe we have
a proof, but we see a way of doing it better, using different concepts and
axioms. Either way, alteration of the primitives or the axioms is not an
allowed operation within the theory; so at this point we step outside the
theory and revise it. Hilbert [11] describes this kind of reconstruction of the
theory as ‘deepening of the foundations’.

A common feature of deepenings is that we introduce new concepts and
define one of the primitives of our theory in terms of them. This is the
situation that Frege describes at (18), and it is also the situation of Hilbert
and Ackermann (1). It leaves us with three choices. The first is to stick with
our original primitives and abandon the deepening; the second is to add the
new concepts as primitives and include the definition of the old primitive
as a new axiom; the third is to add the new concepts as primitives, strike
out the old primitive and then introduce the old primitive by a definition
as described under (c) above. Frege [8] takes a strong stand against the
third option: It implies that we could have added the original primitive by
stipulation, contradicting the fact that the primitive term already had a sense
attached to it.

Whether we prefer the second or the third option, there remains the first.
This brings us back to the question at the end of section 1 above: What
do Hilbert and Ackermann gain by adding primitives M and C' and defining
S and F' in terms of them, rather than simply adding (8) as a new axiom?
One can show that the two definitions (11) have no more consequences than
(8) in the original primitives S and F', so there is no real gain in theorems.
In such questions I suppose one has to follow one’s nose. But I think we
can say a bit more. Suppose that our theory is going to be developed with
further axioms. The definitions (11) will allow us to replace S and F' by
other primitives in any sentence, precisely because they are definitions. So
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they allow us to derive new statements using S and F' from axioms using
other primitives. The statement (8) is not a definition, so it allows us to
get new information in terms of S and F' only when these terms occur in
suitable contexts. Hence, broadly speaking, an added definition is a better
investment than a new axiom of another form.

This is the wrong place to pursue such thoughts further. But it’s the right
place to point out a likely misunderstanding on Hilbert’s part. Suppose we
follow the second option described above, and add (11) as new axioms. Then
the definitions have the function of stating a relationship between the prim-
itives. Hilbert seems to have thought it was safe to generalise this idea, and
consider any axiom as a definition; after all, any axiom states a relationship
between the primitives. Ideas of this kind seem to be one component of his
confused notion of definitions in 1899/1900; Frege was merciless.

(e) Dependence and independence. Already Pascal mentions the
question of determining what is and what is not derivable from the axioms
of a theory. This is an external question, but Pascal notes that at least
when something is derivable, a proof within the theory will demonstrate
this. Pascal has no suggestions on how to demonstrate underivability.

We have seen that this question mattered to Frege and Hilbert, and any-
body familiar with Tarski’s work on logical consequence [19] knows that it
mattered to him too. Hilbert’s most distinctive contribution was to show
that one can sometimes prove underivability by a purely syntactic argument.
This was a central theme of his metamathematics, but it came some years
later than his debate with Frege. In [4] 6 January 1900, Frege was still able
to say

What means do we have for proving that certain properties (34)
or requirements ... do not contradict one another? The only

way I know of is to present an object that has all of these
properties, to exhibit a case where all these requirements are

fulfilled. Surely it is impossible to prove consistency in any

other way.

Apart from Hilbert’s syntactic breakthrough, all three logicians had just
the one method for showing that a meaningful sentence A is not logically
derivable from meaningful sentences Bi, ..., B,. The method was to find a
set of meaningful sentences A’, Bi, ..., B., that are syntactically isomorphic
to A, By, ..., B, and equal in their logical expressions, such that A’ is false
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and Bj,..., B] are true. Today we would say that this establishes that A
is not a semantic consequence of By, ..., B,, and hence it is not a syntactic
consequence in any sound proof calculus.

From this point onwards there are some significant differences. Hilbert
in 1899/1900 is happy if A, By, ..., B/, are syntactically the same sentences
as A, By, ..., B, but reinterpreted. We saw that Frege toyed with the same
possibility in [3] §14. But Frege had a very strong antipathy to using the
same symbols in different meanings on different occasions, and by the time
he came to write [7] in 1906 he made it explicit that A’ etc. should be distinct
from A etc. (To be precise, he required the symbols in A’ etc. to be in the
same language as those in A etc. but with different senses.)

Frege’s later insistence on using different symbols might have been pro-
voked in part by Hilbert’s idea that one could switch the meaning of a symbol
just by having different thoughts in connection with it (see (14) above), and
Korselt’s unclarity about how ‘interpretations’ are made. If we reckon that
the non-validity of By A ... A B, — A establishes the underivability of A
from By, ..., B,, then Hilbert (Bernays?) in 1938 ([13] iii.5 of the second
edition) goes with Frege and makes substitutions in A, By,..., B, to find
suitable A’, By, ..., B}, though without Frege’s unnecessary requirement that
the substitutions are one-to-one.

Tarski’s account of semantic consequence in [18] and [19] also agrees with
Frege in that Tarski substitutes new expressions for the non-logical expres-
sions. But here he diverges onto a new track: The substituted expressions
are variables, and the replacement concepts need not be in a language at all.
Rather they are objects, and Tarski’s requirement is that some assignment of
these objects to the new variables satisfies the relevant formulas. Also Tarski
drops Frege’s requirement that the substitutions should be one-to-one.

Why did Frege require the substitution to be one-to-one? He was thinking
syntactically: If the sentences on both sides are syntactically isomorphic,
then any valid proof using the first group sentences will translate into a valid
proof using the second. If the substitution wasn’t one-to-one, this might no
longer be true, because some rules of proof require that certain symbols are
distinct.

Finally, Tarski would have to disagree with Hilbert and Ackermann about
(8). For him, (8) is not a logical truth at all, because we can find interpreta-
tions of S and F' that make it false. The fact that S and F' are definitional
abbreviations as in (11) is neither here nor there. So he could hardly have
described (8) as ‘logically self-evident’, even though it is only a notational
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variant of ‘If there is a son then there is a father’ (3). As far as I can see,
this is a purely terminological difference between Tarski and Hilbert. Tarski
wishes to restrict ‘logical consequence’ to consequence internally within a
deductive theory, whereas Hilbert reads it more broadly. The term ‘logical
consequence’ doesn’t have a long enough pedigree for it to make sense to ask
which of them was right. In fact one is hard pressed to find any occurrences
of this precise phrase before Tarski’s 1936 paper.

As we saw in our discussion of (23), Frege’s position on the issue is unclear.
Possibly he would have relaxed Tarski’s position by requiring us to expand all
stipulative definitions before making the substitutions; this would increase
the number of logical consequences by including (8), for example.
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1 Introduction

Axiomatisations of first—order logic (henceforth FOL) are given by means of
a finite list of axioms or axiom schemes, each of which represents an infinite
set of actual formulae. This latter set is either derived by means of a rule
of substitution into an actual axiom or by properly instantiating the axiom
scheme, putting actual formulae in place of the metavariables. Either way,
the presentation rests on an understanding of how one properly replaces for-
mulae (or terms) by other formulae (terms). Though any of these operations
can be rigorously defined, we shall ask whether the grammar of FOL actually
suggests a notion of replacement to begin with. The ideas behind this derive
from [5], where we scrutinize the notion of substitution in linguistic theory
and the role it plays in structural linguistics as well as modern logic. One of
the underpinnings of this research was the assumption that there is no inde-
pendent notion of substitution — substitution is canonically defined on the
basis of the grammar and the analyses it provides for linguistic expressions.
The outcome for FOL is that substitution is simply string replacement of one
constituent by another. This substitution is also simpler than the standard
one. This result raises the question why substitution (and not even general
substitution, which allows for a change of bound variables, as in A-terms) is
chosen for FOL. For with some extra effort it can be seen that this makes
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no real difference for the axiomatization. While changing to string substi-
tution seems like an unnecessary complication, the present result vindicates
to a certain extent the instinctive mistrust of a novice in FOL against using
a variable in the same formula both free and bound. And it may help in
understanding why these difficulties exist.

2 Motivation

Consider the following sentence
Achilles is faster than the tortoise.

Suppose we replace fast by wise, good or bad. Then we expect to find the
following.

Achilles is wiser than the tortoise.
Achilles is better than the tortoise.
Achilles is worse than the tortoise.

Thus, we do not get *wiseer, *gooder, nor *bader. So, in none of these cases
the substitution is mere string substitution. As for the first, the fact that we
have one e rather than two is due to a general writing convention. In the case
of good the stem changes its form in the comparative. In the case of bad, it is
both the stem and the comparative morpheme that change form. So, we find
that sometimes the thing that we put into the hole (‘filler’) changes form,
that sometimes only the container changes form, and sometimes both. The
explanation is as follows. We analyze the comparative form as a combination
of stem plus comparative suffix. We can represent this as o e v, where o is a
binary symbol of combination. Here ¢ and ~ are not necessarily strings but
they can be more complex. In this case, however, they are strings. Moreover,
e can be something else than mere string concatenation. In the present case,
the actual form of o e~y sometimes is the concatenation of o and vy (fast”er),
sometimes the concatenation with one e removed (wise™r). Or o is changed
before concatenation, or it is v that changes, or even both.

Each string has a term associated with it, a so—called analysis, of which
the string is a representative. The term defines the string uniquely, but
the relation between terms and strings may be many-to—one. If it is one—
to—one, the language is said to be uniquely readable. This is a property
that logical languages are required to have. While both stem and suffix are
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generally considered to be strings, this is in actual fact only a simplification
(see [5]). On a more abstract level of analysis, however, the situation is simply
as follows. The ‘container’ has an analysis s(x) in which there is a hole z
(which may contain several occurrences of x). The filler has the analysis t
which we put in place of x and obtain s(t). The term s(t) both determines
the form of the expression (the string) and the meaning. Substitution is the
replacement of t by a different term u, giving s(u) in place of s(t).

Logical languages are man made. Therefore we do not expect the patho-
logical examples of natural languages to exist. In particular, we expect that
the objects that we manipulate are simply strings, and that the operation
that forms constituents is simply concatenation. This is the case in proposi-
tional logic. For example, look at

((pOA (~p01))~p0)
We can think of this string as being obtained from
((pOA (= ))-p0)

by inserting the string p01. If we substitute something else for p01, we just
replace the string occurrence of p01 by whatever substitutes it. Similarly,
replacing one or two occurrences of pO by another variable is simply string
replacement.

We notice here right away that in addition to the official definition there
exist ‘dialects’ of logical languages obtained by changing more or less dras-
tically the strings that represent a formula (not to speak of the famous Be-
griffsschrift of [2]). For example, brackets are often dropped, variables are
denoted by metavariables, and more function symbols are added. While lo-
gicians abstract from these changes and deal with the strings as imperfect
representatives (in place of the correct ones), we shall treat these strings as
objects in their own right. The approach is thus not normative, it is descrip-
tive. It is not our aim to prescribe which strings constitute the language, we
are interested in what happens if they are one way or another.

3 Sign Systems

Definition 1. A sign is a triple 0 = (e,c, m), where e is the exponent of
o, ¢ its category, and m its meaning. A language is a set of signs.
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A signature is a function €2: F' — N for an arbitrary set F' of function
symbols. A (partial) Q-algebra is a pair 2 = (A,Z), where A is a set and
for every f € F, Z(f) is a partial Q(f)—ary function on A.

Definition 2. A grammar consists of
1. a finite set F' of modes,
2. a signature : F — N,

3. for every f € F, partial Q(f)-ary functions f¢ on E, 7 on C, f* on
M

A grammar G is a grammar for A C ExCxM if the functions (f¢, f7, f*),
f € F, generate A from the empty set.

[5] introduces a few more conditions on grammars. One is that functions
are not allowed to destroy material of the exponents, the second that all
functions are computable. A third condition is that the categories are dis-
tribution classes. These requirements need comment. First, the requirement
of computability derives from the notion of compositionality; if we under-
stand the meaning of a complex expression by applying a certain function
to the meaning of its parts then we cannot strictly speaking understand the
meaning of a complex expression if it is derived using a noncomputable func-
tion. This is awkward and we cannot go into the ramifications of this, but it
has certainly been a concern in the foundation of mathematics (for example
in intuitionism and constructivism). We shall not insist on computability.
However, the other constraints shall be met.

To give an example, let A be the set of pairs (¥, T, n), where ¥ € {0, 1}*
is a binary sequence and n is the number that Z represents in binary. This set
can be generated from the zeroary functions fy := (0,7,0) and f; := (1,7, 1)
and two unary functions, fo and fs.

fo({(Z,T,)n)) = (2°0,T,2n)
fs({(Z, T)n)) ={(2"1,T,2n+ 1)

So, put F:= {fo, f1, f2, f3}, Q1 fo, fr = 0; fa, fs = 1.
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4 A Grammar for Generating the Exponents

We first deal with the morphology of predicate logic. The exponents of
signs are also called (well-formed) expressions (wfes). Predicate logic is
given by its well-formed expressions and their meanings. We assume that
the expressions are strings and that the only operation to form complex
expressions is concatenation (and no blank is inserted). It turns out that
there is a context free grammar generating the wfes.

For concreteness’ sake, there will be a unary predicate symbol p, a binary
function symbol + and a binary relation symbol =. The exponents must be
strings over a finite alphabet A. Thus, it is not possible to assume an infinite
supply of primitive symbols. So we put

A = {_|7-)7+7v7 (7)707 17p7X7=}

A variable is a sequence x@, where @ is a binary sequence (a decimal repre-
sentation would be just as fine, but changes nothing in principle).

Definition 3. A context free grammar is a quadruple (S, N, A, R), where
S is the start symbol, N the set of nonterminals, A the alphabet and
R the set of rules.

A is as above, N = {<variable>, <term>, <formula>}, S = <formula>.
Here is now the set of rules.

<variable> ::= x| <variable>"0 | <variable>"1

<term> = <variable> | ("<term>"+"<term>")

<formula> ::=p~ (" <term>") | ("<term>"="<term>")
| ("=" <formula>")

| (* <formula>""-"<formula>")
| (V" <variable>") " <formula>

—

A context is a pair C' = (i, usy) of strings. If ¥/ is a string, then C()
U Yus. Let ¥ = w4ty be a string. We say that ¢/ is a substring of ¥, and say
that C' = (i, Uz) is an occurrence of in Z. Given a CFG G = (S, N, A, R),
if there is a derivation Y ={ @; Xu, and ¢ is an X -string, we say that the
occurrence (i1, us) of ¢ in Z is a constituent occurrence (of category
X). The distribution classes are the following sets (where S is the start
symbol of G).

DlStg(ZJj = {<ﬁl,ﬁg> . (HX € N)(S :>Z< ’17:1X17:2 and X :>E g)}
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If ¥ and i are X—strings, then they define the same distribution class. The
converse need not hold. If the converse holds, the grammar is called bal-
anced.

The grammar above is balanced. This grammar defines in total 3 dif-
ferent distribution classes: that of variables, of terms and of formulae. And
they correspond exactly to the nonterminals used above. This contrasts with
predicate logic as defined in textbooks, where only terms and formulae are
recognized. The category of a variable is motivated on purely distributional
grounds: only a variable can occur right after V. Indeed, it is generally as-
sumed that a variable has no occurrence after a quantifier, so that substitu-
tion will not touch it. The grammar speaks a slightly different language: the
variable occurs as a wvariable, but not as a term. And term substitution tar-
gets exclusively the term occurrences. (Often, variable substitutions are also
considered, known as ‘replacement of bound variables’ or ‘a—conversion’.)

5 A Grammar for FOL

Now we shall propose a grammar for FOL in the sense of our earlier definition.
Put £ := A* and C = {v,7,p}. A structure is defined as usual, except
that we fix the underlying domain to be a cardinal number. This makes the
class of models of bounded cardinality a set. Clearly, every ordinary structure
has an isomorphic structure of that kind so that we do not loose anything.
Let N be the set of natural numbers. A valuation in a structure 901 is a
function from N to the carrier set of 9. A model is a pair (I, B), where
M is a structure and S a valuation. An index is a function from models
to truth values. (The set of truth values is as usual {0,1}.) A point is a
function from models to elements of the carrier set. H is the set of indices
over countable models, P the set of points over countable models. Then

M =NUPUH

(These three sets correspond to the three categories v, 7 and ¢.) For a
number m, let m(m) be the point such that 7(m)((9, 3)) = F(m). If p and
q are points, p + ¢ is defined on M = (M, Z) by

(p+q)((M, B)) = Z(+)(p((M, B)), ¢({M, B)))
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Further, (= (p,q))((M, 8)) := 1 iff p((M, 5)) = q((M, 8)). We assume the
following functions on truth values:

- =01
01 0 } 1
110 1 1
Then we put
(=i)((M, B)) == —(((M, 5)))
(i = J)((M, B)) = i((M, 5)) — j({(M, 5))
Finally,

A(n, ) (M, ) :==1« forall B’ ~, B:i((M, 3)) =

We propose a zeroary mode Z, unary modes N, E, T, Q and binary modes X,
P, G, C.

L&y
X X
S 3

8

T+, T+ q)
T =A_‘A)7907 ( b, q )>
T ),90, >
CETYY), 00— )
(7, v,n >a<y790, i) = (VT Y, 0, A(n, i)

The grammar just defined is called PRED. Notice that the functions so
defined are not computable. However, this is a deficit of predicate logic in
general.

W RIR A
RIS

QR
= =
~— —
Il

X OLO6O UV mMm=Z2N
N N N~ —
BN
5
.
\/\/?/
|

6 Substitution

We shall consider three types of substitution. String substitution is standard
in propositional logic. We decompose the string ¥ = C(¥), then replacing the
occurrence C of ¢ by 2'is C(Z). This substitution however is a substitution
that replaces proper occurrences of a subexpression only. It is not indiscrim-
inate string substitution. We denote it by "¢/z7 (for the case of replacing a
variable by a term, but the notation is analogously used in other cases).
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The second type we find for example in [8]. We call it standard substi-
tution, since it is the most widely used.

_ t ity=ux,
t/=ly . y else.
[t/2]f () = f([t/x]so,s ..., [t/x]S$n_1)
[t/z]r(5) =r(t/z]so, ... [t/T]sn-1)
t/z](~p) = (Aft/x]e)
[t/x]OcxD = ([t/z]x=[t/z]x)
(Vy) x if y =z,
[t/x](Vy)x =< (Y t/xz]x if y not in ¢ or x not free in Y,
V) x else.

This is basically a substitution that replaces free occurrences of x by t. The
third type, called general substitution in [7], executes a renaming of bound
variables in the last clause of the definition above whenever y is free in ¢ and
t actually occurs free in xy. We denote by {t/x}y the result of applying the
generalized substitution to ¢. (To make this into a function, y has to be
chosen according to a fixed procedure, for example, choosing the smallest
binary sequence possible.) Notice right away that these operations are only
substitutions of variables by terms. Occasionally, however, authors do look
at substitutions of predicates by predicates (see for example [4], 155-162).
Given a grammar, substitution is defined as follows. Call a structure
term a well-formed term over the signature. Given a structure term, we
can compute the sign that it denotes — if it denotes a sign at all. For, as
some operations may be partial, some structure terms fail to denote signs;
when they do denote a sign, however, it is unique. Structure terms can con-
tain variables. (If they don’t they are called constant.) Structure terms
shall be written in Polish Notation. (This is an arbitrary choice of no signif-
icance.) For example, PTNZTEZ is a structure term, which defines the sign
(x0+x1,7,m(2) + m(3)). Not all structure terms denote a sign. If they do,
they are called definite. PTNZEZ is a structure term but not definite.

Definition 4. Let s, t, t' be structure terms, and let s contain a single
occurrence of . Denote by [t/x]s the substitution of t for the occurrence of x
ins. [t'/x]s is said to be the result of substituting the occurrence of t named
by x by t' in s.

Definition 5. Let o and T be signs. We say that 7 is a part of o under
the analysis s if there is a constant term t and a term w with a single
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occurrence of a free variable, x, such that [t/zlu = s, and s unfolds to o and
t unfolds to T.

In predicate logic as defined above, the notion of part is straightforward.
A part always is a certain subexpression. Substitution is the replacement of
such subexpressions by others. Moreover, it is substitution of variables by
variables, of terms by terms, and of formulae by formulae.

Theorem 1. The substitution defined by the grammar PRED is string sub-
stitution of a variable by a variable, of a term by a term, and of a formula
by a formula.

The operation might perhaps better be called replacement to avoid colli-
sion with the ordinary substitution of predicate logic, but we wish to contend
that what we call here substitution is the linguistically appropriate one. To
wit, the substitution we obtain on the level of exponents goes as follows. (We
omit some obvious clauses.)

“t/x U = [t/z]d, if @ is a term
'—t/x_‘(“ﬂ’“g’“) = (A—lm'_t/l‘—'gﬁ)
Tt/ (V)Y = (V) ey

(The first line means that if ¢ is a string denoting a term, then the substi-
tution is simply ordinary substitution on terms. We shall sometimes use u
to remind ourselves that the object in question is a string. ¢ and x are also
strings but we did not write ¢ or Z, for example.)

In particular, the operation "t/z7 does not care about the distinction
between free and bound variables. There is a similar substitution of formulae
by formulae, which once again is simple string replacement, and an operation
of variable replacement. The latter changes all occurrences of a variable
(including the ones in the quantifier prefixes), again disregarding free and
bound occurrences.

Substitution also figures in what is known as Leibniz’ Principle. Let L
be a logic, here identified with its set of tautologies.

Definition 6. A logic L is Letbnizian with respect to a sign grammar iff
for any two structure terms t and u, t* = u* iff for all s containing at most
x free:

1. [t/x]s is a sign iff [u/x]s is.
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2. If [t/x]s is a formula, [t/z]s® € L iff u/z|s® € L.

This is a formalization of the informal statement saying that two things
have equal meaning iff they can be substituted for each other in all contexts.
Notice that this definition is relative to the grammar and not just the lan-
guage. This is so since it relies on the notion of substitution, which is not
available in a language, only in a grammar.

Proposition 1. Every predicate logic with identity is Leibnizian with respect
to PRED.

Proof. Suppose that ¢ and 1 are formulae with different meaning. Then
without loss of generality there is a model in which ¢ is true and v is false.
Therefore (p+)) ¢ L, but (p+p) € L. Consider the terms t, u such that
t° = ¢ and u® = 1. Then put s := Ctz. We have

[t/z]s = (o)
u/z]s = ()

This shows the claim for formulae. Let terms ¢t and u be given. If their mean-
ing is different, then (t=u) ¢ L but (t=t) € L. Let t and u be structure terms
with exponents ¢ and u. Then put s := Gtx. Similarly with variables.

The above proof works in the presence of a predicate. If the signature is
empty, the theorem holds since there are no formulae anyway. Consider the
following strengthening of Leibniz’ Principle: For all structure terms t and
u, and for all s such that [t/x]s and [u/z|s are formulae:

CGtuClt/z|s[u/x]s* € L

This means that for terms s, ¢ (where ¢(s) results from replacing some ap-
propriate variable z in ¢ by s — whatever substitution is actually used) the
following holds.

((s=t)+(p(s)»p(t))) € L

However, string substitution does not satisfy this property. Neither does
standard substitution. Put ¢(z) := (vx0) (7(2=x0)). The following is not
valid in predicate logic.

(Vx) (Vx0) ((x=x0)-=((~(vx0) (x=x0))=+(~(vx0) (x0=x0)))

Notice that generalized substitution satisfies the stronger version. However,
Leibniz’ Principle as defined above is about synonymy. It is clear that if t and
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u are synonymous, then so are [t/x]s and [u/z]s. It follows from Proposition 1
that the rules

(s=t) O, (=)
(p(s/z)=p(t/x)) (p(x/p)2¢(X /p))

are admissible, where p(s/x) and ¢(x/p) are short for substitution of s for
every occurrence of « and substitution of x for the proposition (meta)variable
p. For all three substitutions, predicate logics admit the above rules.

7 Uniqueness of the Analysis

We have presented a grammar which makes any predicate logic Leibnizian.
The substitution it defines is string substitution. The question is whether
there are grammars for which the corresponding substitution on the level of
terms is either standard or generalized substitution. First, notice that the
meaning of a formula depends on the meaning of those well-formed formulae
which have been used to build it. It follows that if x is a subformula on
whose meaning the meaning of ¢ depends, then y or an equivalent formula
must actually be part of p. Unfortunately, the converse need not hold. ¢
may be built using formulae that do not appear in it, and these might be
formulae on whose meaning its meaning does not even depend. This is not an
absurd statement. [1] makes that point clearly: the meaning of the formula
(V) ¢(x), x free, depends on more than just its subformulae. Its truth cannot
be assessed by looking at the truth of the subformulae alone as in classical
logic (though its meaning can be so found). Instead the entire model must be
inspected. We may see this as a reflex of the fact that this formula actually
contains all substitution instances as subformulae to begin with. Here is how.
Let us add a ternary mode Y. For terms u, variables 7, and formulae 2" let

Y(@,7, 7) = 7|/ 3]

where Z'[/Z] denotes the result of replacing all free occurrences of & by
y. The interpretation of that function is also straightforward. Let m be a
number, ¢ an index and p a point.

Y (p,m, 0)((M, 6)) = (M, Blp({MN, B))/m]))

where B[p((9, 5))/m] is different from /5 only in assigning the value of p on
(9, 5) to the number m. (If p is the meaning of the term ¢, p((N, B)) is
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nothing but the denotation of ¢ in the model.) For completeness’ sake we
remark that

X R ifa=71b=v,c=9p
Y'(a,b,¢) = { undefined else.

This fully defines the operation of the mode Y on signs. Notice that Yzzu
denotes the same sign as u. So, structure terms are no longer unique for
formulae. Now, let r be the structure term for x, t the structure term for ¢
and u some (!) structure term for p. Then

Yeu® = [t/x]e, Yo' = o

Thus, with s := Yzru we have a structure term such that standard substi-
tution is nothing but substitution in the grammar sense. Yet, the proposed
solution has a defect: it makes formulae into subformulae that have no string
occurrence in it. For example, ¢(y) is a subformula of ¢(z) and vice versa.
This is unacceptable.

It is clear that there are many grammars that generate predicate logic.
Even if we exclude pathological cases and require, say, that the grammar
is context free, there are infinitely many solutions. Let us therefore try to
elaborate which further assumptions on the grammar make it unique. The
sign based grammar PRED is unique on the following assumptions. The
datum is pairs of well-formed expressions combined with their meanings.

[a] We assume that the exponents are strings over the alphabet, and that
the modes can only concatenate them, possibly adding syncategore-
matic symbols.

[b] We assume that the system is monotectonic (or unambigous): every
well-formed expression has a unique structure term.

[c] We assume that for every substring that is a well-formed expression
of some type, that occurrence is the exponent of some subterm of the
structure term. This is called transparency.

[d] Any two well-formed expressions have the same category iff they have
the same distribution.

By [a] and [c] we get that every well-formed expression is composed from
its immediate subexpressions. For example, (vx0) (x=x0) has as its imme-
diate subexpressions x0 and (x=x0). Hence, the additional brackets as well
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as V are syncategorematic. Moreover, it makes x a subexpression of x0,
which is a subexpression of x01, and so on. Notice that by transparency
substitution can be formulated as mere string replacement, since ‘accidental’
occurrences of subterms cannot be mistaken for proper ones (as would be
pO-pl in pApO-pl, when brackets are dropped). [b] is put in to make sure
that there are no two modes that operate in the same way on signs. [d]
ensures that we do not create more categories than absolutely necessary. By
distributional analysis we get in fact three categories: variables (only they
appear right after V), terms and formulae.

It is interesting to note that different results obtain if the morphology is
different. Suppose we drop brackets in conjunctive expressions as we do with
additive terms, writing @AxA® in place of (pA(xA®)). Then the resulting
language is no longer transparent. The string (x=x0)A(x0=x1)A(x1=10)
has two different overlapping well-formed substrings, (x=x0)A(x0=x1) and
(x0=x1)A(x1=x10). But not both of them can be part of one and the same
analysis, because of [a]. Of course, the ambiguity is spurious: we may choose
either analysis. On either analysis we get the same result. (As a note of
clarification: here we do not view the omission of brackets as an abbreviatory
convention, but we take strings without brackets as genuine, well-formed
expressions in their own right. We are analyzing, so to speak, the actual
usage of predicate logic rather than the official norm.)

Now, there are other conventions as well. The brackets around an equa-
tion are always omitted. One also assumes that - is the strongest symbol,
and brackets are dropped from (-p). Outer brackets are always dropped.
However, notice that while x=x0Ax0=x1 is unambigous, its negation is to be
written = (x=x0Ax0=x1) rather than -x=x0Ax0=x1. All this only concerns the
manipulation of the exponents of the grammar that generates this language.
Substitution, however, remains the same operation on the level of structure
terms, only that it projects differently onto the exponents (= wfes).

8 Axiomatization

The relevance of substitution is seen when we turn to axiomatization. There
are two kinds of axiomatizations. The first uses an inbuilt rule of substitu-
tion, the second specifies axiom schemes, using metavariables for formulae.
In propositional logics both approaches are possible, while FOL can use in-
ternal substitution only with respect to terms, since there are no variables for
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formulae. However, we should be aware of the fact that the employment of
axiom schemes relies on a correct understanding of what is substituted and
how. This includes a proper understanding of the morphology of the actual
language. Let us give an example. In propositional logics substitution is
taken to be replacement of occurrences of a (meta)variable by a string. Yet,
this works only in the transparent case. If we do not write brackets matters
are different. For example, replacing p0 in pOAp1 by the disjunction p01vp11
will make it necessary to insert brackets, so that we get (pOvp11)Ap1l and
not p01vp11Apl. On the other hand, if we have to substitute p01Ap11 for pO,
no insertion of brackets is needed. This shows clearly that substitution may
require syntactic analysis. Instead, one should think of the strings as repre-
sentatives of structure terms, and metavariables as proxy for structure term
variables. For example, (=((Vx)@=+(=¢))) is proxy for QCXzzQz, where x
is a variable for a structure term for variables, z a variable for a structure
term for formulae. Given the grammar there is no question of what function
substitution actually is, since it is universally and unequivocally determined
at the level of structure terms. If, say, we instantiate z to ENZ and z to
GENZEZ then the structure term becomes

QCXENZGENZEZQGENZEZ

Its exponent is (7 ((vx01) (x01=x1)-+(~(x01=x1)))).

The first task we set ourselves is to axiomatize predicate logic using string
substitution, denoted here by "t/x7. Recall that predicate logic has three
kinds of axioms. The first set is the propositional axioms, for example

(o (h=2x) ) =2 ()= (p=x)))

These rules are unproblematic. The given axioms can be instantiated by
substituting any given structure term for formulae for the variables for terms

x,y and z in
CCxCyzCCrxyCxz

So these axioms are completely schematic. Likewise the rule

(p=x)
X

The next set are the axioms for equality: reflexivity, transitivity and sym-
metry, and the rule of replacement of equals:

(mp)

(vx) (vx0) (x=x0-(p (x)-+p(x0)))
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These axioms are the exponents of concrete structure terms. (This is enough
given [2] and (gen) below.)
Finally, the following need to be added.

[1] (V) () =+ (Vo) o=+ (Va) 1))
2] (V) o[t/ ]p)
(3] (p=(Vx) ) (z not free in )

and the rule
2

(gen> (VI’)QO

Notice that [1] and the rule (gen) present no problem. [2] and [3] present two
problems: they have side side conditions and they involve explicit substitu-
tions.

Suppose that we change to the substitution "¢/z™.

Definition 7. Call a formula regimented if there is no subformula which
contains a variable both free and bound.

Lemma 1. Suppose that (Vx)p is regimented. Then "t/x ¢ = [t/z]p.
The following is relatively straightforward to prove.

Proposition 2. Let ¢ be regimented. If ¢ is provable in FOL, it has a proof
using only regimented formulae.

We replace the set of axioms by the following:
[i] (V) (p=) = (Vo) = (V) )))
[ii] ((Vax)@="t/x7p) ((Vx) e regimented)
[iii] (p=(Va)) (x not free in )
[iv] ((Vx)e=(Vy)Ty/x79) (y not free in o, z not bound in )

Thus, we have effectively restricted only the second axiom. We are guaran-
teed only to derive the regimented formulae. That is why we have added
the formula [iv]. The axiomatization is complete. For suppose that ¢ con-
tains a subformula containing a variable bound which occurs free outside of



170 SUBSTITUTION IN FOL

it. Then we can do a suitable replacement of that bound variable and get a
formula ¢’. The two are equivalent in predicate logic. ¢’ is regimented, and
¢ can be derived from it using [iv]. It is certainly valid, since under the given
conditions it is identical to

(V) o= (V) [y /] )

Notice that the axiomatization is not entirely algebraic. There are side
conditions on the formulae and we have made use of explicit substitutions.
The question arises whether using a different notion of substitution can make
a difference here. This would mean to present a schematic axiomatization in
which we use metavariables for variables, for terms and for formulae. Clearly,
this is feasible, by simply listing them. This is the way in which the axiom-
atization of first—order logic is standardly taken. The set is decidable but
infinite. The question is whether a finite subset is enough. Suppose for
simplicity that we have no function symbols. Then we only need to worry
about variables and formulae. It is known that substitution can be defined
by quantification. In view of a result of [6] it is impossible to reduce the
list to a finite one. Interestingly, [9] show that adding explicit substitution
functions (of variables by variables) does not improve the situation.

We remark here only that if we use general substitution, the axiom [2]
becomes

(V) g {t/a )

without side conditions. Yet, the axiom [3] still needs the side condition x is
not free in . Thus, none of the substitutions actually substantially simplifies
the task of axiomatizing FOL.

9 Conclusion

The point of this paper was to argue that the grammar of FOL virtually
forces us to assume a particular kind of substitution. The general question
concerning this is: why is this a concern? And why should the logician care?
To answer the second question first: we have shown that string substitution
is actually no more and no less suited for the purpose than is standard sub-
stitution, but it is easier to use. The real complications do not arise from
substitution, they arise from FOL itself. To answer the first question: in an
artifical language we can make arbitrary decisions, but in a natural language
we cannot. Still, in reasoning within natural language we wish to do the very
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same as we did for predicate logic: formulate the rules of reasoning within
language. The Stoics used expressions like the first or the second as variables
for sentences, something which does not require great care in formulation.
But when it comes to syllogisms, matters are less straightforward. Consider
modus barbara (see [3]):

Every man is mortal.
Every priest is a man.
Every priest is mortal.

It arises in the same way from insertion into a schematic expression:

Every P is Q.
Every R is P.
Every R is Q.

Yet, when we turn to other languages, the substitution will necessitate chang-
es. In Latin and French, the predicative adjective agrees in gender with
the subject. Although we wish to consider the agreement patterns to be
inessential, still it is important to set up the system in such a way that they
really are taken care of. In other words, we wish to set up a grammar for
French and Latin in such a way that it provides a schematic expression of the
kind that does the agreement automatically. Otherwise the logical schemata
need to make up for that (for example by devising different schemata for
different genders).
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1 Introduction: The Semantics of Natural Language

In this paper we develop a new formal system of logic, which consists of
syntactic rules, derivation rules and a model-theoretic semantics. We then
make some meta-logical inquiries into the nature of this system, comparing
it with the first-order predicate calculus or logic (FOL).

Our formal system is based on an analysis of the semantics of natural
language sentences, an analysis which departs in several basic respects from
the semantic analyses one finds in the literature. All these use some version
of FOL to analyze the semantic structure of natural language sentences; the
semantic structure of these sentences, so it is assumed, can be transparently
represented by their translation into some version of FOL. By contrast, we
think that some semantic features of some natural language sentences cannot
be captured by means of FOL, and that one distorts the semantic structure
of these sentences if one tries to represent it by such translations.

This alternative analysis of natural language semantics, together with a
criticism of the analysis suggested by FOL, are developed in detail in Ben-
Yami’s Logic & Natural Language (Ashgate, 2004). We shall mention some
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of this book’s central claims below, but — given the purpose and space of
this paper — we shall not attempt to justify them here. We have to refer the
reader to this book for the full justification and development of these claims.

This semantic analysis, which is the basis of our formal system, should
also serve to clarify what we tried to achieve by this system’s development,
and what we did not. Usually, when one develops a new formal system of
logic, one does that in order to capture some inferences that hitherto one
could not capture, and frequently could not even express, in existing formal
systems. This was not our purpose. Rather, we tried to show that the
alternative analysis of the semantics of natural language can serve as the
basis for a formal system which is as powerful as some version of FOL, in
a sense to be made precise below. We wanted to show that one need not
abandon the semantic structure of natural language if one wants to apply a
deductive system of FOL’s power.

With this in mind we can proceed to a concise presentation of some of
the semantic claims made in Logic € Natural Language.

FOL distinguishes two kinds of expression which are not variables or log-
ical constants: predicates on the one hand and individual constants (and
possibly other closed terms as well) on the other. Individual constants trans-
late the proper-names and other singular referring phrases or expressions of
natural language, and can thus be said to refer to or designate particulars.
Accordingly, FOL can be said to recognize only one kind of referring expres-
sions: singular ones (but see the discussion of many-sorted logic below).

Natural language, by contrast, contains plural referring expressions as
well. These include plural pronouns (in English, ‘we’; ‘you’, ‘they’ and their
declined forms), plural demonstratives (‘these’, ‘those’), plural definite de-
scriptions (e.g., ‘my children’; ‘the students’), some phrases that resemble
both definite descriptions and proper-names (‘the Knights of the Round Ta-
ble’, ‘the Simpsons’), and conjunctions and disjunctions of singular and plu-
ral referring expressions (e.g., ‘Peter and/or Jane’, ‘Mary and the children’).
Such expressions may have other, non-referential uses as well; but they can
all be used to refer to several particulars.

The italicized words and phrases below are examples of the referential
use of expressions of these kinds:

We saw the Simpsons in the supermarket. These are my books.
My children are asleep. Peter and Jane should soon be here.
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What is involved in plural reference, vis-a-vis singular reference, is straight-
forward. Whatever is achieved in referring to a single person or thing can be
achieved with respect to several persons or things, and we then have plural
reference.

When we talk about plural reference we mean referring to more than
a single person or thing. We do not mean referring to a set with many
members, to a complex individual, or to any other variation on these ideas.
We mean achieving with relation to more than a single thing what is achieved
by reference to a single one.

The great majority of existing attempts to translate sentences that con-
tain plural referring expressions into FOL are reductive, in the sense of trying
to analyze such expressions either as singular referring ones, or as involving
an implicit structure that contains referring expressions of the singular kind
only. But these analyses can be shown to be either mistaken or at least im-
plausible. Moreover, they are not motivated by any linguistic phenomenon,
but by the unjustified conviction that FOL must be capable of translating the
relevant sentences. Yet FOL cannot adequately represent the semantics of
natural language sentences containing plural referring expressions precisely
because it lacks such expressions. (Again, for the full development and jus-
tification of these claims, and of some of the following, see Logic & Natural
Language.)

Now, the careful analysis of the functioning of common nouns in natu-
ral language shows, that in many cases, common nouns in quantified noun
phrases are plural referring expressions. For instance, in ‘Some children are
asleep’, ‘children’ is used to refer to children. Similarly, in ‘John met several
members of my college’, ‘members of my college’ is used to refer to persons,
several of which John met. (N.B.: It refers not to those met by John, but to
all members of my college.)

This is in marked contrast with the way FOL translates these expressions.
Common nouns are taken to be predicative not only when they function as
grammatical predicates, but when they appear in the grammatical subject
position as well. Already Frege, and as early as in his Begriffsschrift (§12),
has translated the subjects in the four Aristotelian quantified sentences by
predicates, and several times in his later writings he argued for this analysis.

Let us demonstrate the difference between the two approaches by one
standard example. The sentence

(1) All philosophers are wise
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is translated into FOL by the sentence
Vz(Philosopher (z) — Wise (x))

That is, the expression ‘philosophers’ is seen as contributing to the meaning of
the natural language sentence in the same way that ‘wise’ does: they are both
predicative; they are both used to say something about particulars referred
to in some other way. By contrast, on our analysis, ‘philosophers’ in (1) is
not predicative but referential; it is used to specify which are the particulars
about which something is said (in this case, the philosophers). The same
applies to the use of ‘philosophers’ in the sentences ‘Some/Seven /Many /Most
philosophers are wise’.

The fact that his calculus did not contain plural referring expressions
forced Frege to introduce quantification into it in a way that is far different
from the way it functions in natural language. For Frege, and in FOL gener-
ally, quantifiers are operators that operate on sentential functions; they are
second-order concepts. This is not the way quantifiers function in natural
language, as we shall now explain.

When we quantify, we refer to a plurality of particulars, and say that spe-
cific quantities of them are such-and-such; quantification involves reference
to a plurality. Natural language accomplishes this kind of reference by means
of plural referring expressions, which designate the plurality, or pluralities,
about which something is being said. And by using different expressions,
natural language can refer to different pluralities. By contrast, since FOL
uses concepts only as predicates, it has no plural referring expressions. The
plurality about which something is said by its sentences has to be presup-
posed, and different sentences cannot specify different pluralities (but see
again the notes on many-sorted logic below). In natural language, plural-
ities are introduced and specified by means of plural referring expressions;
in FOL, a plurality, which is unspecified by the sentence, is introduced by
presupposing a domain of discourse.

In order to speak of pluralities natural language sentences presuppose no
domain of discourse, in the technical sense in which this concept is used in
predicate logic semantics. A domain of discourse is a necessary component
of the semantics of FOL, which has no parallel in the semantics of natural
language. The idea of a domain of discourse may have important applications
for formal systems, and we shall use it ourselves in that context below. But
one distorts the semantics of natural language if one insists on finding a
domain there.
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This semantic difference results in a syntactic one as well. If the plurality
is referred to by some plural referring expression, the quantifier has to be re-
lated in some syntactic way to the plural referring expression that indicates
the plurality of which a quantified claim is made. Consequently, in natural
language the quantifier is attached to a noun that is used to refer to a plu-
rality, and together they form a noun phrase. However, if no expression is
used to refer to a plurality, but the plurality is presupposed by the quantified
construction, then the quantifier does not have to be attached to any specific
component of the quantified sentence. Consequently, in FOL the quantifier
operates on a sentential function.

This alternative semantic analysis of natural language can explain many
features of language that create difficulties for attempts to analyze it by
means of some version of FOL (including versions that use generalized quan-
tifiers). Among other things, it explains away several alleged ambiguities of
the copula; it explains some semantic features of natural kind terms and of
empty concepts; it yields a natural classification of quantifiers (classifying
‘many’ and ‘most’, but not ‘more’, as belonging to the same family as ‘every’
and ‘some’); it explains the semantic need for some linguistic devices like an
affirmative and negative copulas, active versus passive voice, etc.; and more

(ct. [1]).

Although in Logic € Natural Language a consistent deductive system
for natural language sentences was developed on the basis of this semantic
analysis, no attempt was there made to develop a rich artificial language,
with rigorous rules for wffs, derivation rules and a model-theoretic semantics.
This, as was said above, is our main purpose in this paper, to which we shall
now proceed. In doing this we shall also demonstrate that the new analysis
can be used as a basis for a formal system which resembles FOL in its power.

A note is in order here on the use of universal and existential sentences
below. When we use such sentences in our proofs, we adopt the conventions
customary in mathematics. In particular, we use ‘Every A is B’ as short for
‘If anything is A, then it is B’. This is meant to enable a more fluent reading.
Since we use these conventions consistently, the differences between this way
of using sentences and the way they are commonly used in natural language
should not bother us.
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2 The Definitions of Our System

This part includes our definitions of a formal language and of a formula. It
also includes our definitions of truth in a model and our deductive system.

2.1 Some basic definitions

Definition 1 (Formal Language). A formal language L is a disjoint union
of nine sets: P — a set of one-place predicates, one of which is the predicate
Thing; R — a set of relation-signs or many-place predicates (to every one of
which we assign a natural number n > 1, called its number of places); S — a
denumerable set, whose members are called singular referring expressions (or:
SREs); A = {a,ay,as,...} — the set of anaphors; {1,2,3,...} — the set of
indices; {A,V, -, —} — the set of sentence-connectives; { every, some} — the
set of quantifiers; {is, isn’t} — affirmative and negative copulas; {),(,), (,, }
— parenthesis and comma. The members of L are its signs.

Note: In order to fully determine a language L, it is enough to determine
P, R and S; the rest of the constituents are the same for all languages.

As we shall explain below, one-place predicates function in our system also
as plural referring expressions, as common nouns do in natural language.
One might claim that the name ‘predicates’ is not appropriate for such ex-
pressions; ‘concept-letters’ might have been more suitable. However, since
these expressions function also as predicates, and since the term ‘n-place
predicate’ will be convenient to use as a collective name for both one-place
and many-place predicates, we shall continue using this terminology in what
follows.

We shall also see that the extension of Thing in every model will be the
whole universe. We have added such a predicate to our system in order to
obtain formulas that refer to the whole domain. As we shall see, this will help
us translate formulas from FOL to our system. It should be noted, however,
that there is no internal need for such a predicate in our formal system, and
that the system can be developed without it, as indeed is the case with the
related system developed in [1].

Definition 2 (Quantified Noun-Phrase, Noun-Phrase). If P is a
one-place predicate, then every P and some P are quantified noun-phrases
(QNP). If v is a QNP or an SRE, then « is a noun-phrase (NP).
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In natural language there are quantified noun-phrases that contain a
defining clause of some sort; for instance, ‘every man who owns a Jaguar’,
as used in ‘Every man who owns a Jaguar is rich’. Quantified noun-phrases
composed in this manner are not dealt with in the present paper, and are
not represented in the formal system developed below. We limit the sys-
tem developed here to QNPs in which the referring expression is a simple
(non-composed) one-place predicate.

The use of anaphors in our system resembles their use in natural lan-
guage. As we shall see below, anaphors in our system will always relate to
(an occurrence of) a noun-phrase, and their meaning will be determined with
relation to that noun-phrase. The relation ‘being anaphoric on’ is syntacti-
cally defined as follows:

Definition 3 (Anaphors of a Noun-Phrase). Let ¢ be a string of signs.
An occurrence o of an anaphor in ¢ is anaphoric on an occurrence t of an
NP 6 in @ if the following conditions hold: t is to the left of a; the same index
k appears in parenthesis both immediately to the left of t and immediately to
the left of ; the string (k) does not occur immediately to the left of any sign
that is not an anaphor between t and . In this case, we may also say that
« s an anaphor of ¢, and that t is the source of «.

Example: In the string (((1)sq, (2) every P) is R) — (((2)a, (1)a) is L),
the first (i.e. the leftmost) occurrence of a is anaphoric on the occurrence of
every P ; the second — on the occurrence of s;.

In natural language, a given relation can be represented in various forms: the
sentences ‘John kissed Mary’ and ‘Mary was kissed by John’, for instance,
represent the same relation, as do the sentences ‘John gave this book to
Mary’, ‘This book was given by John to Mary’, ‘To Mary was this book
given by John’, etc. We call such variations transpositions. To represent
these in our system, we use the following definition:

Definition 4 (Transpositions). Let R be an n-place predicate, n > 1,
and let T be a non-trivial permutation (i.e., not the identity permutation) of
{1,...,n}. Then the string R((1),...,7(n)) is a transposition of R. (The
symbol T here does not belong to our formal language; it belongs to the meta-
language.) Thus, if R is a 3-place predicate, its transpositions are R(1,3,2),
R(2,1,3), etc.
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Note: For the sake of convenience, we shall sometimes refer to R as
R(r(1),...,7(n)), where 7 is the identity permutation.

Note: If ¢ is an occurrence of a certain sign, or string of signs, in a string ¢,
and « is a sign, or a string of signs, then we write ¢[t/a] to denote the string
that is the product of replacing ¢t with a in ¢. In case several occurrences
t1,...,t, are replaced by a,...,a,, we write: @[t;/ay, ..., t,/a,]. Some-
times we would like to replace all occurrences of a certain sign (or string of
signs) « in a string ¢ by another sign or string 8. To refer to the product of
such a replacement we write: ¢[a/f].

Note: If « is a sign, or a string of signs, that occurs in a string ¢, then, in
order to emphasize the fact that ¢ contains «, we shall sometimes refer to ¢

as p(a).

2.2 Formulas

Our formation rules are somewhat more complex than those of FOL. We
shall first give a brief sketch of these rules, and several examples of formu-
las together with the English sentences they translate. Only then shall we
proceed to give the exact definition of a formula.

Our atomic formulas include strings of the form: (sq,...,s,) is R, which
are meant to express a relation between n individuals, and: (sq,...,s,) isn’t
R, which are meant to deny such a relation. We allow the forming of new
formulas from given ones by means of sentence connective in the usual man-
ner.

Another thing we allow is the replacement of some occurrences of an
SRE by anaphors of another occurrence of the same SRE. Thus, for in-
stance, since (s, s) is L is a formula, ((1)s,(1)a) is L is also a formula. The
first of these two can translate ‘John loves John’; the second — ‘John loves
himself’. Anaphors are written with indices to their left, to indicate their
being anaphoric on a certain occurrence of an NP.

Under certain conditions, we also allow the replacement of an SRE by a
QNP. We thus have formulas such as (every M, s) is L (which can translate
‘Every man loves John’), ((1) every M, (1)a) is L (‘Every man loves himself’)
and also (every M, some W) is L (‘Every man loves some women’).

Let us now turn to the exact definitions. We shall start with a definition
of atomic formula, and proceed by induction.
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Definition 5 (Atomic Formula). A string of signs ¢ in a language L is
an atomic formula if it is of one of the following forms: si is sg; $1 isn’t So;
(S1,---,8n) 18 R; (S1,...,8n) isn't R, where sy,...,s, are SREs and R is an
n-place predicate (n > 1) or a transposition of such a predicate.

Definition 6 (#¢). Let ¢ be a (finite) sequence. # is the length of . If p
s a string of signs in a language L, then #p is the number of sign-occurrences

m Q.
Definition 7 (Formula, Sub-Formula, Main QNP). Let ¢ be a string
of signs in a language L.

1. If #p < 3, then ¢ is a formula iff it is an atomic formula.

2. Assume that #p = n, and that for any string 1 for which #¢ < n, it
is determined whether 1 is a formula.

Define: Let & and v be strings of signs in L such that #6,#y < n.
Then:

(i) 6 is a sub-formula of ¢ if the following conditions hold: 1 is a
formula; #6 < #1; 6 is contained in ¥ as a string; o itself is a
formula, or the product of one or more of the following operations
on a formula: substitution of anaphors (with indices to their left)
for SREs, addition of indices in parenthesis to the left of some NP
occurrences, substitution of NPs for other NP occurrences.

(ii) An NP occurrence t in 1 is distributed in v if there is no sub-
formula of ¢ that contains both t and all its anaphors.

Now, ¢ is a formula iff one of the following conditions holds:

(a) ¢ is an atomic formula.

(b) There are formulas o and B such that: #a, #6 < n; a, do not
contain anaphors of SRE occurrences; ¢ € {—(a), (a) V (), (a) A

(8), (a) — (B)}-

(c) There is a formula 1 and an index k such that: #¢ < n;ci,...,c,
are occurrences of an SRE s in 1), ordered from left to right; none
of c1, ..., ¢, has an index in parenthesis to the left of it; the string
(k) does not occur between ¢ and c,; if (k) occurs to the right of
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¢, and is immediately followed by an anaphor, then this anaphor
has a source that lies to the right of ¢, ; as,...,a, are anaphors;

@ is Pler/(k)s, caf(k)ag, ..., cn/(k)ay].

(d) There is a formula 1, an SRE s and a QNP qP such that: #¢ <
n; c 1s a distributed occurrence of s in ; Y does not contain
distributed occurrences of QNPs to the left of ¢; other than ¢, no
SRE occurrence in ¢ has anaphors; ¢ is ¥[c/qP]. In this case,
the occurrence of qP that replaced ¢ is called the main QNP in .

Note: We shall sometimes omit parenthesis, where this is unlikely to cause
confusion. For instance, we shall refer to ((a) A (5)) A () as a A B A7; to
(s) is P as s is P; and to (every Q) is P as every Q is P.

Theorem 1 (Induction on Formulas). Let A be a set of formulas in a
language L and assume that A satisfies the following conditions:

1. All the atomic formulas of L are members of A.

2. If a, B € A do not contain anaphors of SRE occurrences, then —(«),
(@) A (B), (a) vV (B), (@) — (B) € A.

3. If ¢ € A and ¢ is the product of substituting anaphors for SRE occur-
rences in Y as described in section 2c of the formula definition, then
p € A.

4. If o(qP) is a formula in which an occurrence t of qP is the main (QNP,
then: if A contains every formula of the form plt/s], where s is an
SRE, then ¢ € A.

Then, A contains all the formulas in L.

To prove this theorem, one can prove, by induction on #¢, that for any
finite string ¢, if ¢ is a formula, then ¢ € A. We shall not give such a proof
here.

2.3 Models, truth in a model

As we have already mentioned, our system is based upon the analysis of
common nouns, in some of their uses, as referring expressions. The noun
‘whale’; for instance, is used referentially in sentences like ‘Every whale is a
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mammal’. ‘Whale’ refers here to whales; it does not refer to a set of whales,
but to the whales themselves.

Now, for a referring expression to fulfill its task, there have to be some
thing or things to which it can refer. For instance, if there are no whales, then
‘whales’ in the previous example cannot fulfill its semantic task. To exclude
such failures of reference, we require that the extension of any one-place pred-
icate be non-empty. This requirement guarantees that every component of
our system fulfills its semantic task. It can be compared with the requirement
in FOL, that any referring expression (i.e. any closed term; e.g., individual
constants) be interpreted as designating some individual. This last demand,
like the one stated above, excludes failures of reference. And while it yields
the result that Jz(x = s) is true in every model in FOL, our demand con-
cerning the extensions of predicates gives the same status to formulas of the
form some P is P.

Definition 8 (Model). A model for a language L is an ordered pair
m = (M, o) such that:

1. M, the universe of m, is a non-empty set.
2. o, the interpretation function, is a function such that:

(a) The domain of o is the set of all SREs, predicates and predicate-
transpositions of L.

(b) If s is a singular referring expression, then o(s) € M.

(¢) o(Thing) = M.

(d) If P is a one-place predicate, then o(P) is a non-empty subset of
M.

(e) If R is an n-place predicate, n > 1, then o(R) C M™.

(f) If R is an n-place predicate, n > 1, and 7 is a non trivial permu-
tation of {1,...,n}, then

o(R(t(1),...,7(n))) = {{xrq)s - Trm)) (@1, - .., Tn) € O(R)}.

Note: in order to fully determine a model, it is enough to determine M and
o(a) for all SREs and predicates a.

It may be claimed that our requirement concerning the extensions of one-
place predicates is more than is really needed: the extension of a predi-
cate should be non-empty only if this predicate is used referentially, but in
‘Fvery S is P’, for instance, P is not used in this way.
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Our system would have been closer to natural language had we taken the
following road: instead of excluding models that assign the empty set to some
one-place predicates, we could have allowed them, and say that a formula
containing a QNP of the form ¢P expresses a (true or false) proposition only
in models in which ¢(P) is non-empty. This alternative approach may also
be necessary if we would like to deal with quantified noun-phrases containing
a defining clause, such as ‘every man who owns a Jaguar’. It seems that
the extension of ‘man who owns a Jaguar’ should be the set of all things
that are both men and own a Jaguar. And requiring every two extensions
to have a member in common seems to seriously limit our notion of model.
The alternative approach would, however, result in a much more complicated
system, and since we do not treat composed quantified noun-phrases to begin
with, we shall stick to our original requirement: the extension of one-place
predicates should never be empty.

Definition 9 (The Characteristic SRE). For every Language L, let cy,
be a new sign, not in L. L* is defined as the language L U cy, in which cr, is
an SRE. cp, is the characteristic SRE of L.

The above notion will be used in the definition of truth in a model. The
idea is the following. Given a model m for L and a predicate P, we shall
look at all the enrichments m’ of m to the language L* that interpret cj,
as a member of the extension of P. These enrichments, which we shall call
o(P)-enrichments, will enable us to define the truth-conditions of quantified
formulas: a formula ¢(¢P), in which an occurrence t of ¢P is the main QNP,
will be true in m iff ¢[t/cy] is true in ¢ of the o(P)-enrichments of m. Let
us now give the exact definitions.

Definition 10 (Enrichment, Restriction).  Let Ly, Ly be formal lan-
guages, and assume L1 C Lyt Let my = (My,01) and my = (My,09) be
models for Ly, Lo respectively. msy is an enrichment of my to Lo if the fol-
lowing conditions hold: My = Ms; o1 C oy (i.e., for every predicate or SRE
a in Ly, oo(a) = o1(a)). mq, in this case, is a restriction of my to L.

Definition 11 (A-enrichment). Let m = (M, o) be a model for a language
L, and let A C M. An enrichment m’ = (M',o') of m to L* is an A-
enrichment of m if o’(c) € A.

'We assume here that for every n, each n-place predicate of L; is an n-place predicate
of Lo, each SRE of L is an SRE of Lo, etc.
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Note: In order to determine a specific A-enrichment m’ of m, it is enough
to choose a member o € A and define o'(cz) = a.

Definition 12 (Truth-conditions of Atomic Formulas). Let ¢ be an
atomic formula in a language L, and let m = (M, o) be a model for L. The
relation m |= ¢ (¢ is true in m) is defined as follows:

1. If s1, sy are SREs, then: m = [s14s so] iff o(s1) = o(s2);
m = [s1 isnt so| iff o(s1) # o(s2).

2. If R is an n-place predicate ( n > 1) or a transposition of such a
predicate, and s1,...,S, are SREs, then:
m = [(s1,...,8,) is R] iff (0(s1),...,0(sn)) € 0(R);
m = [(s1,...,8,) isn't R] iff (o(s1),...,0(sn)) & o(R).

Definition 13 (Truth-conditions of Formulas). Let ¢ be a finite se-
quence, Let L be any language in which ¢ is a formula, and let m = (M, o)
be a model for L. The relation m |= ¢ is defined by induction on #p:

1. If #p < 3, then ¢ is an atomic formula in L, and its truth-conditions
in m are defined as in definition 12.

2. Let n = #p, and assume that for any k < n, if ¢ is a string of length
k, L' is a language in which v is a formula, and m’ is a model for L',
then it is already determined whether m' |= 1. Let L be a language in
which ¢ is a formula.

(a) If ¢ is an atomic formula, then its truth-conditions in any model
for L are as in definition 12.

(b) If a and B are formulas in L that do not contain anaphors of
SRE occurrences, then: m = —(a) iff m = a; m = [(«) A (5)]
fm b aadm =m0V (B)] Ffm i aorm 5
m = [(a) — (B)] iff it is not the case that m = a and m = [.

(¢) If ¢ is the product of substituting anaphors for SRE occurrences
in a formula i as in section 2c of the formula definition, then
m = o iff m .

(d) If p(qP) is a formula that contains no anaphors of SRE occur-

rences, and in which an occurrence t of qP is the main (NP,
then:
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i. If q is every, then: m |= p(every P) iff:

for every o(P)-enrichment m' of m, m’ |= ¢[t/c].
ii. If q is some, then: m |= @(some P) iff:

for some o(P)-enrichment m' of m, m’ = ¢[t/cy].

Note: If m |= ¢, we also say that m satisfies ¢, and that ¢ holds in m.

The only two quantifiers treated in our system are ‘every’ and ‘some’. It
should be noted, however, that our definition of the truth-conditions of
quantified formulas can easily be extended to treat other quantifiers as well.
Our basic idea was, that ¢(¢P) is true in m iff ¢[t/cr] is true in ¢ o(P)-
enrichments of m. And this remains true for quantifiers such as ‘seven’, ‘at
least three’ and ‘most’. Our analysis of quantification gives a uniform ac-
count of all these quantifiers, as can be expected in view of the syntactic
similarities between them in natural language. Such a uniform analysis is
not available if we use standard versions of FOL as a tool for the analysis
of natural language. As is well known, these versions cannot incorporate
quantifiers such as ‘most’, which require restricted or binary quantification
(cf. [1, section 6.4]; [4]).

Definition 14 (Theory). A theory T in a language L is a set of formulas
m L.

Definition 15 (Model of a Theory). Let T be a theory in a language L.
m is a model of T if it is a model for L and m |= ¢ for all ¢ € T. In that
case, we may also say that m satisfies T', etc.

Definition 16 (Entailment). A theory T entails a formula ¢ if ¢ is true
in every model of T. In this case, we write: T |= .

2.4 Deduction

We shall use a natural deduction system. Our way of writing proofs resembles
the one found in Lemmon [5] and in Newton-Smith [6].

Definition 17 (Proof). Let L be a formal language. A proof in L is a finite
sequence of 4-tuples of the form {(a, (k), ¢, J), called the lines of the proof,
where:
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(a)

(b)

(c)
(d)

a is a finite (possibly empty) set of natural numbers, all of which are
smaller than or equal to k. Lines (o, (K'),¢', J') in the proof for which
k" € a will be called the lines on which the k-th line relies. The formulas
@' in such lines will be called the formulas on which the k-th line relies.

k, the line’s number, is a natural number. The first line in a proof has
k=1, the second — k = 2, etc.

© 1s a formula in L.

J, the justification of the k-th line, is written in accordance with one
of the following rules.

The following derivation rules allow the beginning of a proof and the
addition of lines to a given proof. In fact, these rules complete definition 17
to a precise definition of proof, by induction on the number of lines.

For the sake of convenience, we occasionally drop the parenthesis ‘(, )’ or
commas when referring to lines in a proof. Also, instead of writing the set of
lines on which a certain line relies, we sometimes write the members of this
set. In case this set is empty, we may not write anything. Another convenient
convention is the following: a proof containing a single line is identified with
that line.

17.1

17.2

17.3

17.4

(Premise). If ¢ is a formula in L, then (1(1)@ Premise) is a proof.
Also, if D is a proof of length k — 1 (i.e., it has exactly k — 1 lines),
then we may add to D the line: (k(k)p Premise) (that is: the addition
of such a line to D gives a proof).

(Thing Introduction). If s is an SRE, then ((1)s is Thing Th I} is
a proof. Also, if D is a proof of length k — 1, then we may add to D
the line: ((k)s is Thing Th I).

(Identity Introduction). If s is an SRE, then ((1)s is s Id I) is a
proof.  Also, if D is a proof of length k — 1, then we may
add to D the line ((k)s is s Id I).

(Identity Elimination). Let D be a proof of length k — 1. Assume
that s and s’ are SREs, and that D includes the line: {(a(i)s is §'J;).
Assume also that D includes a line of the form (B(j)¢J;), where ¢ con-
tains the occurrences cq,...,c, of s (p may contain other occurrences
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17.5

17.6

17.7

17.8

17.9
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of s as well).
Then we may add to D the line (aUB(k)p[c1/s, ..., c,/s'| Id E,i,j).2

(Propositional Calculus Rules). We allow the usual propositional
calculus derivation rules for formulas that do not contain anaphors of
SRE occurrences. We shall give only two examples here:

— Introduction. Let D be a proof of length k — 1. If D con-
tains the lines (i(i)p Premise ); (5(j)vJ), where ¢ and ¢ do not con-
tain anaphors of SRE occurrences, then we may add to D the line

(B\{i} (K)o — b — L,i,j).

V Elimination. Let D be a proof of length k—1. Assume that D con-
tains the lines (a(i)p V ¥J;);  (j(j)e Premise ); (B8(1)dJ;);
(m(m)yp Premise ); (y(n)dJ,), where ¢ and 1y do not contain anaphors
of SRE occurrences, j & v and m & 5. Then we may add to D the line

(BUNNG;mP) Va(k)d vV E,i,j,1,m,n).

(Transposition). Let D be a proof of length k — 1, and let T and
¢ be any permutations of {1,...,n}. Assume that D contains the
line (a(i)(srq), - .- 8rm)) 95 R(T(1),...,7(n))J) , where s1,...,s, are
SREs. Then we may add to D the line

(a(k)(set), - - - Semy) 05 R(E(L), ..., &(n)) Tr,i).

(Negative-Copula Introduction). Let D be a proof of length k —
1. Let R be an n-place predicate ( m > 1) or a transposition of
such a predicate, and let s1,...,s, be SREs. If D contains the line
(a(i)=((s1,...,8n) is R)J), then we may add to D the line
(a(k)(S1,...,8) tsn't RNC I,73).

(Negative-Copula Elimination). Let D be a proof of length
k — 1. Let R be an n-place predicate ( n > 1) or a transposition of
such a predicate, and let si,...,s, be SREs. If D contains the line
(a(i)(81,...,8,) tsn’t R J), then we may add to D the line
(a(k)=((s1,.--,8n) s RYNC E,1).

(Anaphors Introduction). Let D be a proof of length k—1. Assume
that D contains the line {(a(i)J). If v is the product of substituting

2Tt is not hard to show that substituting SRE occurrences for SREs in a formula gives
a formula. Therefore, ¢[c1/s,..., ¢, /8] is a formula.
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anaphors for SRE occurrences in 1 as in section 2c¢ of the formula
definition, then we may add to D the line (a(k)pA I,1).

17.10 (Anaphors Elimination). Let D be a proof of length k—1. Assume
that D contains the line (a(i)pJ). If ¢ is the product of substituting

anaphors for SRE occurrences in a formula 1 as in section 2c¢ of the
formula definition, then we may add to D the line (a(k)VA E,1).

17.11 (every Introduction). Let p(every P) be a formula in which an oc-
currence t of every P is the main QNP, and assume that ¢ does not
contain s. Let D be a proof of length k—1, and assume that D includes
the lines (i(i)s is P Premise); (B(j)plt/s]J). Also assume that 5 does
not contain any number different than i of a line in which s occurs.
Then, we may add to D the line (G\{i}(k)p(every P) every I,i,7).

17.12 (every Elimination). Let ¢(every P) be a formula in which an oc-
currence t of every P is the main QNP, and let s be any SRE. Let
D be a proof of length k — 1, and assume that D includes the lines
(a(i)p(every P)J;); (B(j)s is PJ;). Then, we may add to D the line
(aU B(k)plt/s] every E,i, 7).

17.13 (some Introduction). Let p(some P) be a formula in which an oc-
currence t of some P is the main QNP. Let D be a proof of length k—1,
and assume that D includes the lines (a(i)p[t/s]J:); (B(j)s is PJj,),
where s is an SRE. Then we may add to D the line
(a U B(k)p(some P) some 1,1,7).

17.14 (some Elimination). Let ¢(some P) be a formula in which an oc-
currence t of some P is the main QNP. Assume that @ does not con-
tain the SRE s, and that ¢ is a formula that does not contain s.
Let D be a proof of length k — 1, and assume that D includes the
lines (a(i)p(some P)J;); (j(j)s is P Premise); (k(k)p|t/s] Premise);
(B(L) ;). Also assume that j, k & «, and that B does not contain any
number, other than j and k, of a line in which s occurs. Then we may
add to D the line ((a U B)\{7, k}(m)p some E.i,j, k).

17.15 (Referential Import). Let p(every P) be a formula in which an oc-
currence t of every P is the main QNP. Let D be a proof of length k—1,
and assume that D includes the line (a(i)p(every P)J). Then we may
add to D the line {(a(k)plt/some P] RI,q).
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Referential Import captures the referential use of one-place predicates in
our system. With it the list of derivation rules of our system was concluded.

Definition 18 (Tp(«)). If v is a set of numbers of lines in a proof D, then
Tp(«) is the set of all formulas that appear in D in lines whose numbers
belong to a.

Definition 19 (Provability of Formulas). Let T be a theory in a language
L, and let ¢ be a formula in L. ¢ is provable from T in L, if there is a
proof D in L such that:

1. The last line in D is of the form: {(a, (k), ¢, J).

2. Tp(a) €T (in other words: the last line of D relies only on members

of T).
D, in this case, is called a proof of ¢ from T'.

Definition 20 (Provability of Theories). Let Ty, T, be theories in a lan-
guage L. Ty is provable from Ty iof Ty = ¢ for any ¢ € Ts. In this case we
write: Ty F Ty,

3 Some Examples of Formalization and Proofs

We shall now give a few examples of proofs in our formal system, so that
the reader gets a feel of it. These examples will also supply us with an
opportunity to comment on some of the characteristics of our system, mainly

in relation to other formal systems.
Consider first the following inference (Contrariety):

Every philosopher is wise; hence, it’s not the case that every
philosopher isn’t wise.

These sentences translate into our system as:
every S is P; —( every S isn’t P)

And the inference can be proved as follows:
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1 (1) every S isn't P Premise

2 (2) every S is P Premise

2 (3) some S is P RI,2

4 (4) sis S Premise

5 (5) sis P Premise

1,4 (6) s isn’t P every E, 1,4

1,4 (7) (s is P) NC E,6

1,4,5 (8) (sis P) A\ =(s is P) NI,5,7

4,5 (9) —(every S isn’t P) -1,1,8

2 (10) —(every S isn’t P) some E,3,4,5,9

Secondly, let us translate and prove the following inference (Darii):

Some philosophers are Athenians; every Athenian is Greek; hence,
some philosophers are Greek.

Its translation:
some S s M; every M is P; some S is P

And its proof:

1 (1) some S is M Premise

2 (2) every M is P Premise

3 (3) s is S Premise

4 (4) sis M Premise

2.4 (5) sis P every E,2,4
2,3,4 (6) some S is P some I,5,3

1,2 (7) some S is P some F,1,3,4,6

As the reader would have noticed, these two inferences are part of the valid
inferences of Aristotelian logic: the first belongs to the Square of Opposition,
the second to the Syllogisms. All the other valid inferences of Aristotelian
logic can also be proved in our system (cf. [1, chap. 10]). Our system thus
contains Aristotelian logic. By contrast, on any acceptable translation of
the four Aristotelian sentences (every/some S is/isn’t P) into FOL, some of
these inferences turn out invalid (unless some ad hoc axioms are added to the
calculus; see below). We think this demonstrates the fact that the analysis of
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the semantics of natural language on which our system is constructed is more
adequate than what a similar analysis, using only the semantic categories
of FOL, can supply. A formal system whose verdict on natural language
inferences coincides with what logicians considered valid for more than two
millennia obviously has a desirable feature.

On the other hand, unlike Aristotelian logic, our system can also prove
inferences that involve multiply quantified sentences. For instance:

Some women are loved by every man; hence, every man loves
some women.

Notice that these sentences use both the passive and the active form of
the same verb. This is translated into our system as a relation-sign and its
transposition. If we translate ‘a loves 0" as (a,b) is L, then ‘b is loved by
a’ should be translated as (b,a) is L(2,1). The former sentences are thus
translated as:

(some W, every M) is L(2,1); (every M, some W) is L.

Let us now prove this inference:

1 (1) (some W, every M) is L(2,1) Premise

2 (2) sy is W Premise

3 (3) (s1, every M) is L(2,1) Premise

4 (4) So is M Premise

3,4 (5) (s1,89) is L(2,1) every E,3,4
3,4 (6) (s2,81) is L Tr,5

2,3,4 (7) (s2, some W) is L some I,6,2

2,3 (8) (every M, some W) is L every 1,7,4

1 (9) (every M, some W) is L some E,1,2,3,8

Moreover, we can prove in our system inferences that involve sentences
with anaphors of quantified noun phrases, a capacity which greatly increases
our system’s power. We shall give one simple example:

Every man loves every man; hence, every man loves himself.

Its translation:
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(every M, every M) is L; ((1) every M, (1)a) is L.

And its proof:

1 (1) (every M, every M) is L Premise

2 (2) sis M Premise

1,2 (3) (s, every M) is L every E,1,2
1,2 (4) (s,s) is L every E,3,2
1,2 (5) ((1)s, (1)a) is L Al4

1 (6) (1) every M, (1)a) is L every 1,5,2

These examples demonstrate the nature and power of our system.

4 Many-sorted Logic

Our formal system resembles in some ways many-sorted logic. We shall
therefore pause to discuss the relation between the two.

In many-sorted logic, different sorts of variables are used, each sort having
its own domain. For instance, one occasionally uses x1,xs, x5 etc. to range
over particulars; eq, eq, e3 etc. to range over events; ty,ts,t3 etc. to range
over times; and so on. Since in this case the variables determine the sort of
pluralities about which something is said, and since different sorts of variables
may determine different sorts of pluralities, it seems many-sorted logic can
be considered a kind of logic with plural referring expressions, namely its
variables.

Yet a significant logical distinction between many-sorted logic and our
formal system (and natural language) still remains. In our system, one-place
predicate letters can be used both as referring expressions and as predicates
(correspondingly, in natural language some concept-words are used both as
referring expressions and as one-place predicates). Consider, for instance,
the two sentences:

Some Athenians are philosophers.
Every philosopher is wise.

‘Philosophers’ is used as a predicate in the first sentence and referentially in
the second. These sentences translate into our system as, respectively:

some A is P
every P is W
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Consequently, one can derive in our system the formula some A is W from
these two formulas by means of syntactic derivation rules.

By contrast, many-sorted logic would either use, like ordinary one-sorted
logic, the same variable when translating both sentences — in which case it
would not mirror our use of different plural referring expressions in the two
sentence; or it may use different variables in the two translations, e.g.:

E'.Tlpl’l
Vyi Wys.

Here x; and y; are variables of different sorts. But in this latter case, as can
be seen, the syntactic relation between the predicate P in the first formula,
and the variable y; in the second, is lost. Consequently, one cannot derive
in this case by means of syntactic derivation rules the translation of natural
language’s ‘Some Athenians are wise’ (3x;Wxy) from these two formulas.
This is obviously an undesirable result.

To avoid this result, one may use, for instance, the same letters both as
variables and as one-place predicate letters. Each one-place predicate will
then be interpreted as designating its own domain of discourse. Appropriate
syntactic derivation rules could then be introduced (which, although proba-
bly more complex than the usual ones, may be rather similar to those of our
system).

But additional modifications of many-sorted logic should also be intro-
duced. For instance, predicate letters in formulas of many-sorted logic usually
combine with variables of specific sorts in order to form well formed formulas
(see [2, pp. 295ft]). However, in order to translate both ‘Every philosopher
is wise’ and ‘Some Athenians are wise’, the predicate W should combine
both with the variable P and the variable A. Similarly, individual constants,
which correspond in ordinary many-sorted logic to sorts, should not be clas-
sified into sorts in the modified version, in order to translate sentences like
‘Socrates is an Athenian’ and ‘Socrates is a philosopher’. Moreover, in or-
der to distinguish between sentences like, say, ‘Every philosopher loves some
philosopher’ and ‘Every philosopher is loved by some philosopher’; several
variable letters should be assigned, as usual, to each sort or predicate let-
ter. If we use upper case letters for predicates, indexed lower case letters for
variables, these sentences would be translated as, respectively:

Vp13pe Loves (p1, p2)
Vp13dpe Loves (p2>p1)-
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This contrasts with our system, which uses no variables (or anaphors) for
such sentences:

(every P, some P) is L
(every P, some P) is L(2,1)

As can also be seen, natural language’s need for a distinction between active
and passive voice, or some such linguistic device, which is preserved in our
formal system, is lost in many-sorted logic, in its modified form as well.
The same applies to the need for a distinction between an affirmative and a
negative copula.

So many-sorted logic should be significantly modified to resemble our
formal system, and even then some important distinctions would still remain.

Indeed, many-sorted logic, even in its usual form, can be shown to parallel
our system in its deductive power, in the sense that this will be shown below
for FOL. In fact, this follows immediately from the proofs that shall be
given below, together with the fact that many-sorted logic can be reduced to
one-sorted logic (see [2, pp. 296ff]). But remember that our purpose in the
development of a new formal system was not to capture some new forms of
inference, but to show that an alternative analysis of the semantics of natural
language can serve as the basis for a formal system similar in its power to
FOL. Consequently, we do not consider the fact that our system is similar
in its power to FOL, on any of its versions — e.g., many-sorted logic — as a
drawback, but rather as an advantage.

5 Properties of Our Formal System

In this part we shall prove some of the properties of our system. Our main
goal will be to show that the system’s deductive power is comparable to that
of FOL. To be more precise, we shall prove that our system is equivalent
to FOL, supplemented by all axioms of the form dzPx, which we shall call
axioms of existential import. The set of all these axioms will be called EI
We shall correlate models in our system with models of EI in FOL, and
define a translation of formulas in FOL into our system. We will prove this
translation to be one-to-one, and to cover all the formulas in our system in the
following sense: each of these formulas is both deductively and semantically
equivalent to a translation of some formula of FOL. We shall also prove that
the translation preserves truth in a model, entailment and provability. The
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existence of such a translation, together with the completeness of FOL will
entail the completeness of our system.
Let us now turn to the exact definitions and proofs.

5.1 Some basic results

This section contains some elementary lemmas and theorems that will be
used in the proofs below. Some of these results will be stated without proof.

Given a formula ¢ and a model m, we can change some of the SREs in
@. If the new SREs are interpreted by m in exactly the same way as the old
ones, the replacement should not affect the truth of ¢ in m. It should not
matter even if the new SREs belong to a language richer than the one we
started with, as long as we enrich m accordingly. This is, more or less, the
content of the following lemma. Its somewhat complex formulation is meant
to enable an easier proof by induction.

Lemma 1. Let ¢ be a formula in a language L, and assume that ¢ contains
the occurrences ci,...,c, of SREs s1,...,s, respectively (si1,...,S, not nec-
essarily different). Let s),...,s!, and s{,...,s! be SREs, some (or all) of
which may not belong to L (sy,...,s.,s],...,s! not necessarily different).
Let m' = (M',0') be a model for a language L' that contains LU{s}, ..., s},
and let m" = (M",0") be a model for a language L" that contains L U
{sf,...,s'}. Assume that m’ and m” coincide with m in L (that is: M’ =
M" =M, and o'(a)) = 0" () = o(«) for any a € dom (o) ).
!/

If m' interprets s\,...,s, as m interprets si,...,s, (i.e. o'(si) = o(s;)
"

for every i), and m" interprets s{,...,s! as m interprets si,...,S,, then:

r n

m b Qe /Sh- s a/s,] = m = pler /s, eafsL).

It is obvious that lemma 1 is true: from the definition of truth in a model
it can be seen that SREs contribute to the truth of ¢ in a given model only
through the way in which they are interpreted in that model; and if two SREs
are assigned the same object, then they ought to have the same contribution
to the truth of .

Theorem 2 (Agreement of Models and their Enrichments). Let m;
be a model for Ly, and let ms be an enrichment of my to Lo. If ¢ is a formula
in Ly (and therefore, also in Ls), then: my = ¢ <= my |= .

The following theorem shows that the reliance on ¢y, in the definition of
truth in a model is not necessary; in order to define the truth-conditions of
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a quantified formula ¢, we could use any SRE of L that does not occur in ¢.
The notion of o(P)-enrichment can be replaced by that of o(P)-change:

Definition 21 (A-s-Change). Let m = (M, o) be a model for a language
L, let s be an SRE in L, and let A C M. A model m' = (M',o") for L is an
A-s-change of m if the following conditions hold:

1. M'=M.
2. d'(s) € A.

3. For any o € dom (0)\{s}, o'(a) = o(a).

Note: In order to fully determine an A-s-change m’ of m, it is sufficient to
choose any a € A, and define ¢'(s) to be a .

Theorem 3 (Truth-conditions of Quantified Formulas). Let ¢(qP) be
a formula in a language L, and assume that an occurrence t of qP 1is the
main QNP in ¢. Let m = (M, o) be a model for L, and let s be an SRE not
0CCUrTing 1n Q.

1. If q is every, then: m |= p(every P) iff: for every o(P)-s-change m' of
m, m' |= ¢[t/s].

2. 1If q is some, then: m = @(some P) iff: for some o(P)-s-change m' of
m, m’ |= ¢[t/s].

The following two theorems follow immediately from lemma 1 and theo-
rem 2, respectively.

Theorem 4 (Interchangeability of Identicals). Let ¢ be a formula in a
language L, and let m = (M, o) be a model for L. Assume that ¢ contains

the occurrences ¢y, .. .,c, of an SRE s (and maybe some other occurrences of
that SRE as well). If m = ¢ and m = [s is §'], then m |= ple1 /s, ... en/S].

Theorem 5 (Agreement of Models and Their A-s-changes). Let m
be a model for a language L, let A C M, and let m’ be an A-s-change of m.
If ¢ is a formula (in L) that does not contain s, then: m' = ¢ <= m = .

The following lemma says, roughly, that any proof can be replaced by a
proof in which no premise appears twice.
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Lemma 2. Let D be a proof in our system, and assume that the last line in
D is (a(n)pJ). Then there exists a proof D' of ¢ from Tp(«) in which no
premise appears more than once (i.e. if (i(i)y) Premise) and (j(j)y Premise)
are both lines of D', then i = j). Moreover, we can assume that for any line

(B(1)J;) in D, there ezists a line (§'(i" ) J!) in D' such that Tp(B) = TH(B').

This lemma follows from the following fact: whenever one of our inference
rules allows us to rely on a given premise, it places no restriction on the place
(the line-number) of that premise in the proof. Therefore, the need to write
a premise that already appears in the proof never arises.

Lemma 3 (Concatenation of Proofs). Let Dy, Dy be proofs in a language
L, and assume that Dy does not contain the same premise twice. Assume
that the last line of Dy is (B(k)J). Also assume that the last line of Dy is
(a(n)pJ"), where Tp,(a)) C {¢} (that is: Dy is a proof of ¢ from 1, which
is the formula in the last line of Dy). Then, there exists a proof D in L such
that:

1. The first # Dy lines of D are exactly those of D1, in the same order.

2. The last line of D is (8'(m)pJ"), where ' = if Tp,(a) = {W} (i.e.
if the last line of Dy indeed relied on 1)) and ' =0 if Tp,(a) = 0 (i.e.
if Dy is a proof of ¢ from ().

D is called the concatenation of Dy and Do, and we write: D = (Dy, Dy).

We shall not give a precise proof of this lemma. The idea is the following;:
we start with Dq, and apply to it the rules applied in Ds, one by one. If, in
doing that, if we have to rely on ¢, we rely on the last line of Ds.

Lemma 4. Let 1,1 be formulas in a language L. If1)' & 1), then there exists
a proof D that has a last line of the form (a(n)yJ), where Tp(a) =)'

The following lemma asserts that we can replace a premise in a proof
with a stronger premise, without significantly changing the rest of the proof.

Lemma 5. Let D be a proof in our system, and assume that no premise
appears in D twice. Also assume that D includes the line: (i(1)y) Premise ).
Let 4’ be a formula such that ' & 1. Then there exists a proof D' such that:

1. For any j < i, the j-th lines of D and D' are identical.
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2. The i-th line of D' is (i(i)y)’ Premise ).
3. D' includes a line of the form (i(k)Jy).

4. For any j > i, if D includes the line (a(j)eJ), then D" includes a line
(/(3")pd"), where Tp/(o) = Tp(a) up to the replacement of ¥ with ¢’
(that is: in case ¢ € Tp(a), we do not have the above equality, but
instead: Tp/(o/) = (Tp(a)\{v}) U{Y'}. Otherwise — we have equality).

A line that stands in the above relation to (a(j)pJ) will be called a
twin of (a(j)eJ).

This lemma can be proved by induction on #D. We shall not give such
a proof here.

Theorem 6 (Provability of Theories is Transitive). Let 11,75, T3 be
theories in a language L. If Ty = Ty and Ty = Ty, then T} = Tj.

This theorem follows from the fact that any proof uses only a finite num-
ber of premises, and from the following three lemmas, that hold for any ¢;,
¥; and ¢, and can be proved using our previous results:

1. If o1 F o and @s F 3, then ¢ F 3.
2. P11 AL Ao .
3. o1 F, oo e, on Yy, then: o1 Ao A E UYL AL A Yy

5.2 Soundness

Theorem 7 (Soundness). Let T' be a Theory in a language L, and let ¢
be a formula in L. If Tt ¢, then T' = .

Proof: To prove the theorem, it is convenient to prove the following propo-
sition by induction on n: let D be a proof of length n. If the last line in D
is (a(n)pJ), then Tp(a) = ¢.

The induction base is trivial. Assume now that the proposition holds for
any k < n. To complete the proof, we need to check each of the possibilities
for the justification of the n-th line in D , and prove that Th(«) |= ¢ in each
of them. We give the case of some E as an example.

If the last line is justified by some E, then D includes lines of the forms
{a(i)p(some P)JY; (j(j)s is P Premise ); (k(k)[t/s] Premise ); (B(1)dJ)),
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where: 1(some P) is a formula in which an occurrence ¢ of some P is the
main QNP; neither ¢)(some P) nor ¢ contains s; 7, k € a; 8 does not contain
any number, other than 7 and k, of a line in which s occurs. Also, the
last line in D is ((a U B)\{j, k}(n)d some E,i,j,k,1). Let m be a model
of Tp((aw U B)\{j,k}). We shall prove that m = §. Since j,k ¢ «a, we
have Tp(a) € Tp((a U B)\{Jj.k}). Therefore: m = Tp(a), and by the
induction hypothesis: m = 1(some P). Since 1 does not contain s, it
follows, by theorem 3, that there exists a o(P)-s-change m’ of m such that
m' | Y[t/s]. m/, as a o(P)-s-change, also satisfies s is P. That is: m/
satisfies the formulas in lines j and k, or, in other words: m' = Tp({i,7}).
Now, since Tp(B\{j,k}) C Tp((a U B)\{j, k}), we have: m = Tp(5\{7,7}).
And since none of the formulas in T (8\{4, j}) contains s ( 3 does not contain
any number, other than j and k, of a line in which s occurs), we have:
m' E Tp(B\{i,j}) (this follows from m = Tp(B\{i,j}), by theorem 5).
Therefore: m’ = Tp(5). From the induction hypothesis it now follows that
m’ = 0. And since 6 does not contain s, it follows (by theorem 5) that
m = 6.

[

5.3 The version of FOL that will be used below

We shall use a version of FOL with identity, without function signs, and
without open formulas. The version of FOL to be defined and used below
can be proved to be equivalent to standard versions found in the literature.
This section contains the definitions of the relevant terms. Most of these
terms were also used in defining our formal system. When we use a term
below, we shall take care to specify, in cases where confusion might arise,
whether it refers to FOL or to our system.

Definition 22 (Formal Language). A formal language L is a disjoint
union of eight sets: P — a set of one-place predicates; R — a set of relation-
signs or many-place predicates (to every one of which we assign a natural
number n > 1, called its number of places); {=} — the identity sign; S
— a denumerable set of individual constants; {z1,xs,...} — a denumerable
set of variables; {—, A,V,—} — connectives; {V,3} - quantifiers; {), (} -
parenthesis.

Note: We use the notation ¢l /] for FOL in the same way we use it for
our system.
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Definition 23 (Formula).
1. Any string of the form: Rsy...s, or: s; = So, where sy,...,s, are
individual constants, and R — an n-place predicate, is a formula. Strings
of these forms are also called atomic formulas.

2. If a, B are formulas, then so are =(«), (o) A(B), (@) V(B), (o) — (B).

3. If ¥ is a formula that contains an individual constant s and x is a
variable that does not occur in 1, then Yx(¢[s/x]) and Jx(Y[s/z]) are
formulas.

4. Nothing else is a formula.

Note: When referring to formulas, we shall sometimes omit parenthesis, for
the sake of convenience.

The definition of truth in a model that will be used below is close to the
one we use in our system. We begin by introducing the notion of character-
istic constant:

Definition 24 (Characteristic Constant). For every Language L, let cy,
be a new sign, not in L. L* is defined as the language L U {cr}, in which ¢,
15 an individual constant. cy, is the characteristic constant of L.

Definition 25 (Model). Let L be a formal language. A model for L is an
ordered pair m = (M, o) such that: M, the universe of m, is a non-empty
set; o, the interpretation function, is a function such that:

1. The domain of o is the set of all constants and predicates of L.
2. If s is a constant, then o(s) € M.
3. If R is an n-place predicate, then o(R) C M™.

Enrichment and restriction of a model are defined as in our system (def-
inition 10 above).

Definition 26 (Truth in a Model). 1. Ifsy,...,s, are individual con-
stants and R an n-place predicate in a language L, and m = (M, o)
— a model for L, then: m = [Rsy...s,] iff (0(s1),...,0(sn)) € 0(R);
m = [s1 = so] iff 0(s1) = o(s2).
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2. If a and B are formulas in a language L, and m = (M,o) — a model
for L, then: m = —a iff m = a ;mE[aAf]iff m = a and m = B;
mElaVp]iffmEaormlpEf;mlpEla— flif mE aand

3. Let 1) be a formula in a language L, and let m = (M, o) be a model
for L, assume that 1 contains the individual constant s and does not
contain the variable x. Then: m = Yz (¢Y[s/z]) iff m' = Y[s/cL] for
every enrichment m' of m to L*; m |= Jz(Y[s/x]) iff m' |=[s/cL] for
at least one enrichment m’ of m to L*.

In section 5.1, we explained that the truth-conditions of quantified for-
mulas in the system we defined can be determined without reference to ¢,
(by what we called A-s-changes). A similar theorem holds for FOL. First,
we define:

Definition 27 (s-Change). Let m = (M, o) be a model for a language L
in FOL, let s be an individual constant in L. A model m' = (M’ o’} for L
1s an s-change of m if the following conditions hold:

1. M'=M.
2. For any a € dom (0)\{s}, o'(a) = o(a).

Note: In order to fully determine an s-change m’ of m, it is sufficient to
choose any 8 € M, and define ¢’(s) to be f.

Theorem 8 (Truth-conditions of Quantified Formulas). Let qrp[s/x]
be a formula in a language L in FOL. Let m = (M, o) be a model for L, and
let s be an SRE not occurring in .

1. If q is VY, then: m |= Vap(x) iff:

for every s-change m’ of m, m' = plz/s].

2. If q is 3, then: m |= Jxp(x) iff:

for some s-change m' of m, m' = [z/s].
We shall not prove this theorem here.

Definition 28 (Theory). A Theory in a language L in FOL is a set of
formulas in L.
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Model of a theory and entailment are defined as in section 2.3 above
(definitions 15, 16).

Definition 29 (Proof). Let L be a formal language. A proof in L is a finite
sequence of 4-tuples of the form {(a, (k),p,J), called the lines of the proof,
where:

a. « is a finite (possibly empty) set of natural numbers, all of which are
smaller than or equal to k. Lines (o, (k'),¢', J') in the proof for which
k" € a will be called the lines on which the k-th line relies. The formulas
" in such lines will be called the formulas on which the k-th line relies.

b. k, the line’s number, is a natural number. The first line in a proof has
k =1, the second — k = 2, etc.

c. ¢ 1s a formula in L.

d. J, the justification of the k-th line, is written in accordance with one
of the following rules.

29.1 Premise. If  is a formula in L, then (1(1)¢ Premise) is a proof.
Also, if D 1is a proof of length k — 1, then we may add to D the
line: (k(k)yp Premise).

29.2 Identity Introduction. If s is an indiwidual constant, then
((1)s = s Id I) is a proof. Also, if D is a proof of length k — 1,
then we may add to it the line ((k)s = s Id I).

29.3 Identity Elimination. Let D be a proof of length k—1. Assume
that s and s’ are individual constants, and that D includes the
line (a(i)s = §'J;). Assume also that D includes a line (5(j)pJ;),
where ¢ contains the occurrences cy, ..., c, of s (and maybe other
occurrences of s as well). Then, we may add to D the line

(aUBk)pler/s',... cn/s'] Id E, 1, ).
29.4 Propositional Calculus Rules. We allow the usual introduc-
tion and elimination rules for each connective. (The rules are sim-

ilar to the ones we formulated for formulas with no SRE-anaphors
in our system.)

29.5 V Introduction. Let D be a proof of length k — 1, and assume
that D includes the line (a(i)y(s)J), where s is an individual
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constant and 1 does not contain the variable x. Assume also that
a does not contain any number of a line in which s occurs. Then,
we may add to D the line (a(k)Vx(y[s/x])V I,1).

29.6 V Elimination. Let D be a proof of length k — 1, and assume
that D includes the line (a(i)Vx(y[s'/x])J), where ¢ is a formula
containing an individual constant s'. If s is an individual constant,
then we may add to D the line (a(k)y[s'/s|V E,1i).

29.7 4 Introduction. Let D be a proof of length k — 1, and assume
that D includes the line (a(i)[s'/s]J), where s and s’ are indi-
vidual constants, and 1 does not contain the variable x. Then, we
may add to D the line {(a(k)3x([s'/x])3 I,1).

29.8 4 Elimination. Let D be a proof of length k — 1, and assume
that D includes the lines {(a(i)3x(¢Y[s/z])J;); (j(7)¥(s) Premise);
(B(k)dJg). Assume also that j & «, that § does not contain s,
and that 8 does not contain any number, other than j, of a line
wn which s occurs. Then we may add to D the line

(U B\{j}(m)d 3 E,i,j, k).

Provability is defined as in our system (section 2.4 above); we also use
the notation Tp(«) as defined there.
We state the following two theorems without proof:

Theorem 9 (Soundness and Completeness of FOL). Let L be a formal
language in FOL. Let T be a theory in L and ¢ a formula in L. Then:
TEep<—=TkF .

5.4 Translation from FOL to our system

Definition 30 (Correlate of a Formal Language). Let L be a formal lan-
guage in our system. The correlate of L in FOL, L,, is the formal language
that satisfies the following conditions:

1. The individual constants of L, are the SREs of L.
2. (a) The predicates of L, are those of L, excluding Thing.
(b) If a predicate is n-place in L, then it is n-place in L.

Note: Given a language L, there is exactly one language L, that satisfies
the above conditions.
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Definition 31 (Translation of Formulas). Let L be a formal language in
our system, and let ¢ be a formula in L, (in FOL). The translation pu of
formulas from L, to L is defined by induction on formulas in L,. First, we
arrange the variables of L, in an infinite list, in which each variable appears
infinitely many times. (This list will enable us to make p injective. It will be
used in theorem 10 below.) Now:

1. The translation of atomic formulas is defined as follows:

(a) If ¢ is s; = s9, where s; and sy are individual constants, then
() is s1 is Sa.

(b) Let R be an n-place predicate (m > 1) in L. If ¢ is Rsy ... sy,
then u(p) is (s1,...,5,) s R.

2. If a, B are formulas in Ly, then: p(—a) is —u(a); pula A B) is p(a) A
w(B); plaev B) s p(e) V u(B); pla — B) 1s pla) — p(B).

3. If p(s) is a formula that contains an individual constant s, and x a
variable that does not occur in @, then:

(a) u(Vxpls/x]) is ((I) every Thing is Thing) A (u(e)[s/(1)a]), where
[ is the least index not occurring in p(p) such that z is on the I-th
place in the above mentioned list.

(b) w(3zp[s/z]) is ((I) some Thing is Thing) A (u(v)[s/(1)a]), where

[ is as above.

Theorem 10 (The Translation p is Injective). Let L be a formal lan-
guage in our system, and let ¢ be a formula in L. If v is a formula (in L)

such that p(v) = p(p), then ¥ is ¢.

To see that the theorem is true, we note that in each of the stages in the
definition of p , u(p) determines . A precise proof can be given by induction

on #p.

Theorem 11 (u(p) Does Not Contain SRE-Anaphors). If ¢ is a for-
mula in Ly, then p(p) does not contain anaphors of SRE occurrences.

The theorem is not hard to prove by induction on formulas in L.

As we already mentioned, universal quantification in FOL lacks existential
import. Therefore, in order for the translations of formulas to be equivalent
to the formulas they translate, we need to complement FOL with axioms of
ezistential tmport. We define:
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Definition 32 (El ). Let L be a formal language in our system. Then EI(L;)
(in short: El) is the set of all formulas in L, that have the form: JxPx, where
x 18 a variable and P is a one-place predicate.

Theorem 12 (u(El) is Provable). Let L be a formal language in our sys-
tem. If T is a theory in L, then T + p(El).

Proof: It is sufficient to prove that () b u(El). Let ¢ € El. Then ¢ is of
the form 3z Pz, and p(yp) is: ((1) some Thing is Thing )A(({)a is P). That
this formula is provable from () follows from the existence of the following
proof:

1 (1) s is P Premise
(2) every P is P every 1,1,1
(3) some P is P RI,2
(4) d is Thing ThlI
5 (5) dis P Premise
5 (6) (d is Thing ) A (d is P) ANI1,4,5
5 (7) (()d is Thing ) A ((I)a is P) Al6
5 (8) ((l)some Thing is Thing ) A ((I)a is P) some I,4,7
(9) ((l)some Thing is Thing ) A ((I)a is P) some E,3,5,5,8

Definition 33 (Correlate of a Model). Let L be a formal language in our
system, and let m = (M, o) be a model of EI(L,). The correlate of m in our
system, p(m), is the model for L defined by: pu(m) = (M, po), where:

1. For any individual constant s in L, uo(s) = o(s).
2. po(Thing) = M.
3. For any other n-place predicate R in L (n > 1), uo(R) = o(R).

Note: The above definition indeed determines a model for L; the require-
ment that o(P) # () for all one-place predicates is fulfilled since m is a model

of El .

Theorem 13 (The Restriction of 1 to Models is a Bijection). Let L
be a formal language in our system. Let A be the set of all models of EI(L,),
and let B be the set of all models for L. Then, the restriction of u to A is a
bijection from A to B.
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Proof: |4 is injective: if my = (M, 01), mg = (Msy,09) are models of
El such that pu(m;) = p(ms), then oy(Thing) = My = My = o9(Thing),
and also: o1(a) = poy(a) = pos(a) = oz(a) for any predicate or individual
constant « in L\{Thing}. Therefore: m; = mo.
p|a is onto B: if m = (M, o) is a model for L, then u(m’) = m, where
= (M’,0’) is the model for L, determined by: M’ = M; ¢'(a) = o(«) for
all predicates and individual constants o in L.
|

Theorem 14 (Truth under p). Let L be a formal language in our system,
and let ¢ be a formula in L.. If m = (M, o) is a model of EI(L,), then:

m = <= p(m) E ulp).

Proof: By induction on formulas in L.

1. Atomic formulas: m |= [s1 = $2] <= 0(s1) = 0(s2) <= po(s1) =
po(s2) <= p(m) [= [s1 is 2] <= p(m) |= p(s1 = s2).
mE[Rsy...s,] <= (0(s1),...,0(s,)) € 0(R) <
(uo(s1), ..., 1uo(sp)) € po(R) <= u(m) = [(s1,...,8,) is R] <
p(m) |= p(Rsy ... sn)

2. If the theorem holds for a and 3, then:

mE[aANf] <= mE aand m £ f < p(m) = pla) and
pu(m) E p(B) <= (since p(a), p(5) do not contain anaphors of SRE

occurrences) u(m) = [p(a) A p(B)] <= p(m) = pla A p).
The proofs for -, oV g and o« — [ are similar.

3. If ¢(s) is a formula that contains an individual constant s, and x a
variable that does not occur in ¢, then:
m = Vxo[s/r] <= every s-change m’ of m satisfies ¢(s) <= (by the
induction hypothesis) for every s-change m’ of m, u(m') = ( (s))
<= (since the set of o(Thing)-s-changes of p(m) is {u(m’)}m’ is an
s-change of m) for every o(Thing)-s-change (u(m)) of p(m),
(1(m))" = pulp(s)) <= for every o(Thing)-s-change (u(m))" of p(m),
(u(m)) E [(s is Thing) A pu(p(s))] <= for every o(Thing)-s-change
(u(m)) of p(m), (u(m)y b= [((1)s is Thing) A p()ls/(Da]] <
p(m) = [((I) every Thing is Thing) A p(e)[s/(1)a]] <=
p(m) = p(Veels/x])
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4. The proof for Jxp[s/x] is similar.
|

Theorem 15 (Entailment under u). Let L be a formal language (in our
system), let T be a theory in L., and let ¢ be a formula in L. If u(T) =

w(p), then T UEl = .

Proof: Assume that u(7) = p(p). Let m be a model for TU El. m is a
model of El that satisfies 7. Therefore, by theorem 14: pu(m) | p(7T), and
it follows that pu(m) E u(e). Now, by theorem 14, it follows that m = .
Therefore: TUEl = .

|

Theorem 16 (Provability under u). Let ¢ be a formula in a language
L., and let T be a theory in L. If Tt @, then u(T) = p(p).

Proof: The idea behind the proof is the following: given a proof in FOL,
our inference rules enable us to reconstruct it in our system.

In order to prove the theorem precisely, we prove the following proposition
by induction on n: Let D be a proof of length n in L,. If the last line in D

is (a(n)pdy), then u(Tp(a)) = p(e).

1. If n = 1, then « is either {n} or @, and the justification J, is either
Premise, or Id I respectively. In either case, one application of Premise
or Id I proves pu(yp) from u(Th(a)).

2. Assume that the above proposition is true for any k& < n.

(a) If the last line of D is justified by Premise or Id I, then the proof
is as above.

(b) If the last line of D is justified by — Introduction, then D con-
tains the lines (i(i)yy Premise); (B(j)weJ;), and the last line in
D is (B\{i}(n)yy — o —> 1,i,j). We shall show that
w(Tp(B\{i})) F p(yr — ). By the induction hypothesis,
w(Tp(B)) F u(wg). Therefore, there exists a proof D', in our
system, the last line of which is (y(k)u(t)s)J), where Tp/(y) C

w(Tp(B)).
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Now, if D’ includes a line of the form (i(i)u(v1) Premise), we can
proceed as follows: we can assume that no formula appears in D’
as a premise in two different lines (see lemma 2). We can now add
to D’ the line (yY\{i}(k + 1)u(vh1) — p(vhe) — I,4,k).> Since
w()1) does not appear in D' as a primise in any line other than

i, we have: pu(¢1) & p(Tp (y\{i})). And since T () € u(Tn(P))
and line ¢ of D is (i(i)yy Premise), it follows that Tp(y\{i}) C

u(Tp(B\{i})). Therefore: u(Tp(B\{i})) b [u(tn) — p(2)]. In
other words: pu(Tp(6\{i})) b w1y — 1), as we wanted to
prove.

In case D" does not include a line of the form (i(:)u(v1) Premise
we have pu(¢1) & u(Tp (7)), and therefore Tp/(v) € u(To(B\{i})).
It follows that: u(Tph(B\{i})) F p(v2), and hence: u(Tp(B\{i})) -
[u(h1) — p(2)]. That is: p(Tp(B\{i})) by — ¢2).

The proofs for the cases in which the last line of D is justified
by some other propositional calculus derivation rule are similar to
the one above, and will not be detailed here.

If the last line of D is justified by V Introduction, then D in-
cludes a line of the form (a(i)y(s)J;), where s is an individual
constant, ¥ does not contain the variable x, and o does not con-
tain any number of a line in which s occurs. Also, the last line
in D is (a(n)Vx(y[s/x])V 1,i). We shall prove that pu(Tp(a)) F
u(Vz(y[s/x])) or, in other words, that:

w(Tp(a)) = [((1) every Thing is Thing) A p(v)[s/(l)all.

We should note that since o does not contain numbers of lines in
which s occurs, none of the formulas in Tp(a) contains s. And
since for any formula d, p(d) contains exactly the same SREs/in-
dividual constants as § does (this is easily proved by induction on
formulas in L), none of the formulas in u(7Tp(«)) contains s.

By the induction hypothesis, pu(Tp(a)) = wu(w(s)). Therefore,
there exists a proof D', in our system, the last line of which is
(v(k)u(¥)J), where Tp/(y) € p(Tp(a)). It will be sufficient to
prove that Tp/(y) & [((1) every Thing is Thing) A u(¢)[s/(1)al].
To prove this, we add to D’ the following lines:

>7
)

3The — Introduction rule requires that the formulas involved will not contain
anaphors of SRE occurrences. This condition is fulfilled, since no u(+) contains such
anaphors (see theorem 10).
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k+1 (k+1) sis Thing Premise
yU{k+1} (E+2) (sis Thing ) A p(v) AN Tk k+1
yU{k+1} (E+3) ((I)s is Thing) A u(y)[s/(D)a] Al k+2
0l (k+4) ((l)every Thing is Thing) A pu(1)[s/(1)a]

every I.k+1,k+3

(The every Introduction rule requires that v U {k + 1} will not
contain any number, other than k£ + 1, of a line in which s occurs.
This requirement is fulfilled here, since Tp/(v) € u(Tp(«)) and
none of the formulas in p(7p(«)) contains s.)

The proof that results from the addition of the above lines to D’
is a proof of u(Vz(y[s/z])) from u(Tp(w)).

If the last line of proof D is justified by V Elimination, then D
includes a line (a(i)Vz(y[s'/x])J;) , and the last line in D is
(a(n)y[s'/s]V E,i). We shall prove that u(Tp(«)) F p(i[s'/s]).
By the induction hypothesis: u(Tp(a)) b u(Ve(1]s'/z])). That is:
u(To() - [((1) every Thing is Thing ) A u(w)[s'/(al].
Therefore, there exists a proof D', whose last line is:

(v(k)((1) every Thing is Thing) N u(¥)[s'/(1)a]J), such that
Tp(7) C ul(Tp(0)).

We can add to D’ the following lines:

(k+1) sis Thing ThlI
v (k+2) ((D)sis Thing) A w()[s'/(l)a] every E, k,k+ 1
v (k+3) (sis Thing) A u()[s'/s] AE k+2
v (k+4) u@)]s'/s] NEE+3

The proof we got shows that u(Tp(«)) F u(e)[s’/s]. Now, since
wu()[s'/s] is in fact p(v[s’/s]) (this can by proved by induction
on formulas in L), we have: u(Tp(a)) F u(1[s'/s]), as required.

If the last line of D is justified by 3 introduction, then D includes
a line: (a(i)y[s'/s]J;), and its last line is (a(n)3Jz(y[s'/x])T I,1).
We shall prove that pu(7p(«)) b w(3z([s'/z])). By the induc-
tion hypothesis: u(Tp(«)) = wp(1]s’/s]). Therefore, there ex-
ists a proof D', whose last line is: (y(k)u(¢)[s'/s])J), such that

Tor(v) € (Tp(a)).
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We now add to D’ the following lines:

(k+1) s is Thing Thl
Y (k+2) (s is Thing) A p([s'/s]) ANk k+1

The formula in the last line above is, in fact: (s is Thing) A
(u()[s'/s]). We can therefore add the following lines:

Y (k+3) ((D)s is Thing) A (u()[s'/(D)a]) AT, k+2
ol (k+4) ((1) some Thing is Thing) A (u(y)[s'/(1)a])
some I.k+1,k+3

The proof we thus get is a proof of pu(Jz(y[s'/x])) from u(Tp()).

If the last line of D is justified by 3 FElimination, then D in-
cludes lines of the forms: (a(i)3x(¢¥[s/x])J;); (j(7)¥(s) Premise);
(B(k)dJx), where j € a, 0 does not contain s, and [ does not
contain any number, other than j, of a line in which s occurs.
The last line in D is ((a U B)\{j}(n)d03 E,1, j, k). We shall prove
that w(Tp((c U B)\{j})) F w(d). By the induction hypothesis:
w(Tp(a)) B p(3z(y[s/x])), that is: u(Tp(a)) F ((I) some Thing
is Thing) A (u(¥)[s/(D)a]), and also: u(Tp(B)) b u(d). If Tp(a)
contains 1(s), then, since j € «, a contains some other number
j" of a line in D, in which ¢ (s) appears as a premise. There-
fore, if we omit j from U 3, Tp(a U ) will remain unchanged.
That is: Tp((aU B)\{j}) = Tp(a U B). And since u(d) is prov-
able from p(7Tp(B)), which is a subset of Tph(a U f), we have:
Tp((aUB)\{j}) = Tp(aUpB) F u(d), as required.

Assume now that ¥ (s) € Tp(a). Since: p(Tp(a)) F [((I) some
Thing is Thing) A p()[s/(D)a]], and: uw(Tp(B)) F p(d), there ex-
ists a proof D', whose last two lines are:

m o (k) ((I) some Thing is Thing) A p(¥)[s/(D)a]  Jy
Yo (k+1)  pd) Ja

where Tp/(71) € u(Tp(e)) and Tp/(72) € u(Tn(B)).*

4To construct such a proof, we can start with a proof of u(d) from u(Tp(B)), and
‘insert’, so to speak, a proof of ((1) some Thing is Thing) A (u(¥)[s/(1)a]) from p(Tp())
between the last line of the proof we started with and the rest of that proof.
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If u(v) € Tpr(7y2), then the above proof shows that T (2)\{(¢)}
= Tpr(v2) F p(5). We also have:

T (2)\Mu()} € (T (B)\ ()} <

w(To(B\{7}) € m(To((aU B)\5}))-
Therefore: pu(Th((aU B)\{j})) F 1(d), as required.
Assume that pu(y)) € Tp/(7y2). Then, D' contains a line of the form
(m(m)pu(1p(s)) Premise) (it is not hard to show that every line in a
proof, on which another line relies, is a premise). Since T/ (72) C
w(Tp(B)), Tpr(2) contains no formula, other than p(v), in which
s occurs. Also, since Tp/(v1) C u(Tp(«)), ¥(s) € Tp(a), and p is
injective (theorem 10) we have: u(v(s)) € Tp/(71). We proceed
as follows: By lemma 2, we can assume that no premise appears
in D’ twice. By lemma 5, since [((I)s is Thing) A pu(10)[s/(1)a]] -
w((s)),’ there is a proof D” that includes lines of the forms:

m  (m) ((I)s is Thing) A p(v)[s/(l)al Premise
i (p)  (() some Thing is Thing) A (u(¥)[s/(D)a]) Ji
v (g) w) %

where T (7)) and T (74) are identical with T/ (1) and T (y2)
(respectively) up to the replacement of (1)) by ((I) some Thing
is Thing) A (u(¥)[s/(l)a]). By lemma 2, we can assume that D"
does not contain the same premise twice. 4 does not contain any
number, other than m, of a line in which s occurs.® Also, v, does
not contain m.” We now add to D" the following lines:

q+1 (¢+1) s is Thing Premise
(i Uv)\{g+1,m} (q+2) () some E,p,m,q+1,q

Call the resulting proof D"”. We have Tpm ((v; U)\{q+1,m}) F
w(9). Tt is now sufficient to show that T ((v;U~s)\{q+1,m}) C

5The proof requires one application of AE, and one application of A E.

5Tpi(vy2) contains no formula, other than (1), in which s occurs. And given the rela-
tion between T (v4) and Tpr (y2), it follows that Th(+4) does not contain any formula,
other than ((I)s is Thing) A pu(v)[s/(1)a], in which s occurs. And that formula appears as
a premise in D" only in line m.

"Tpr(yy) is identical with Tp/(v1) up to the replacement of p(y) by
((1) some Thing is Thing) A (u(¥)[s/(D)a]). And Tp/(v1) did not contain u(v)).
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W(To((@UBN(})). Assume that x € Tow((+, U5\ {g+1,m}).
Then x € Tpr(v1U73) = Tor (V1 U73) = Tpr(71) UTr (73). Also,
siice ;c ¢ Tpn({a + 1,m}), x # ((I)s is Thing) A p(¥)[s/(D)a].
Therefore:

X € (Tor(1) U Tom()\{()s is Thing ) A u()[s/(Dal}. And
since T (v;) and Tpr(v4) are identical to Tp/(y1) and Tp(72)
up to the replacement of u(v) by ((I) some Thing is Thing) A
(1(¥)[s/(Dal), it follows that x € (Tp/(y1) U Tpr(72))\{n(¥)} C
[1(Tp(a)) U w(To(B)\{n()} = u(Tp(a) U Tp(B)\{u(¥)} =
w(Tp(aU B)\{u)} € uw(To((aU B)\{j}))-

Therefore, we have
Tom((, Urs\{k +2,m}) € u(Tp((a U B\ ), as required.

5.5 Paraphrases

In this section we show that every formula ¢ in our system is both seman-
tically and deductively equivalent to a formula (*, which is the translation
of some formula ¢, of FOL. We first correlate, with each formula, a set of
paraphrases:

Definition 34 (Paraphrases). Let L be a formal language in our system,
and let ¢ be a formula in L. The paraphrases of ¢ are defined by induction
on formulas:

1. Atomic formulas: if si,...,s, are SREs and R is an n-place pred-
icate (n > 1), then: the only paraphrase of sy is sy is itself; The
only paraphrase of sy isn’t sy is: —(sy is $3); the only paraphrase of
(S1,...,8n) is R is itself; the only paraphrase of (s1,...,$,) isn’t R is:
—((S1,.-.,8n) is R).

2. If a and B are formulas that do not contain anaphors of SRE occur-
rences, then: the paraphrases of —a are all the formulas of the form
—(a/), where o is a paraphrase of «. Similarly, the paraphrases of
a A B are the formulas of the form o' A 5" (where & and ' are para-
phrases of a and [ respectively); those of aV 5 are the formulas of the
form o' Vv B'; and those of a« — [ are the formulas o/ — ['.
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3. If ¢ results from the substitution of anaphors for SRE occurrences in
a formula v, as in section 2-c of the formula definition, then the para-
phrases of ¢ are those of 1.

4. Let p(qP) be a formula in which an occurrence t of the QNP qP is the
main QNP. Let s be an SRE not occurring in ¢, and let 1p = p[t/s].

(1) If q is every: the paraphrases of p(every P) are all the formulas of
the form: ((1) every Thing is Thing) AN(((D)a is P) — ¢'[s/(l)a)),
where ¢’ is a paraphrase of 1 and [ is an index that does not occur
in .

(i1) If q is some: the paraphrases of ¢(some P) are the formulas of the
form: ((1) some Thing is Thing) A(((1)a is P)AY'[s/(1)a]), where

Y and | are as above.

Theorem 17 (Every Formula Has a Paraphrase that Translates a
Formula of FOL). Let L be a formal language in our system. If a is a
formula in L, then there exist a paraphrase o of o and formula o, in L,
such that o/ is p(ay).

Proof: by induction on formulas in L.

1. Atomic formulas: the (only) paraphrase of s; is so is itself, and it
is p(sy = s9); the paraphrase of sy isn’t sy is —(s; is s2), and it is
p(—(s1 = sg)); the paraphrase of (sq,...,s,) is R is itself, and it is
p(Rsy ... s,); the paraphrase of (sq,...,,) isn’t Ris =((s1,...,8,) is
R), and it is pu(—Rsy ... sp).

2. If o, # do not contain anaphors of SRE occurrences, and o = p(a,) and
p" = u(B,) are paraphrases of o and [ respectively, then: p(—a,) =
—p(ar) = ('), and this formula is a paraphrase of —«. Similarly,
ploar A Br) = plag) A p(Br) = (&) A (f), and this formula is a
paraphrase of a A 8. The proofs for oV f and a« — 3 are similar.

3. If ¢ is the product of substituting anaphors for SRE occurrences in ¢, as
in section 2¢ of the formula definition, and ¢’ = u(v,) is a paraphrase
of 1, then it is also a paraphrase of .

4. Let ¢(¢P) be a formula in which an occurrence ¢ of ¢P is the main
QNP, and assume that the theorem holds for any formula of the form
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©[t/s], where s is an SRE. Let ¢ be ¢[t/s], where s is an SRE that
does not occur in ¢ (we thus have ¢(qP) = ¥[s/qP]). Assume that
V' = p(v,) is a paraphrase of 1.

(1)

q is every: p(Vx((Ps — v,)[s/x])) =
every Thing is Thing) A (,u(f(’s — ¥o)[s/(Da]) =

l)

l) every Thing is Thing) A ((u(Ps) — u(vz))[s/(1)a]

l) every Thing is Thing) A (((s is P) — u(¢r))]

levery Thing is Thing) A (((D)a is P) — u(¢y)[s
(D) every Thing is Thing)A((()a is P) — ¢'[s/(I)

formula is a paraphrase of ¢(every P).

If
((
((
((
((

(ii) The proof for the case in which ¢ is some is similar.

Lemma 6 (Paraphrases Do Not Contain SRE-Anaphors). Let ¢ be a
formula in a language L. If ¢ is a paraphrase of @, then ¢’ does not contain
any anaphors of SRE occurrences.

This lemma can be easily proved by induction on formulas in L.
It will be convenient to correlate with each formula in our system a unique
paraphrase ¢’ which translates some formula of FOL.

Definition 35 (¢*). Let L be a formal language in our system. With each
formula ¢ in L, we correlate a paraphrase ¢* of ¢, which is the translation

of some formula in L, .8

Theorem 18 (Equivalence of ¢ and ¢*). Let ¢ a formula in a language
L wn our system. Then:

(1) ¢ and ¢* are semantically equivalent. That is: m = ¢ <= m | ¢*
for any model m for L.

(2) ¢ and ¢* are deductively equivalent. That is: ¢ = ¢* and ¢* F .

8In case L is denumerable, we can arrange its formulas in lexicographic order, and
define ¢* as the first paraphrase of ¢ that translates some formula in L,. Otherwise, we
can use the axiom of choice.
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Proof: (1) follows from (2) and the soundness of our deductive system
(theorem 7): If p F ¢* and ¢* I ¢, then ¢ = ¢* and ¢* |= . That is: every
model of {¢} satisfies ¢*, and every model of {¢*} satisfies ¢.

It remains to prove (2). We shall prove the following proposition by
induction on #¢:
(3) Let ¢ be a string. If ¢ is a formula in a language L (in our system), and
¢’ is any paraphrase of o, then o F ¢’ and ¢’ F ¢.

1. If #¢ < 3, then ¢ is an atomic formula in L. If ¢ is s; is s9, then
¢ = ¢ and (3) holds trivially. If ¢ is s isn’t s9, then o' is =1(s1 is s9).
To see that (3) holds in this case, one needs only to apply the rules NC'

E and NC I The proofs for (sq,...,s,) is R and (s1,...,8,) isnt R
are similar.

2. Let #¢ = n, and assume that (3) holds for any string ¢ for which
#1 < n.

(a) If  is atomic, the proof is as above.

(b) Assume that ¢ € {-a,a A f,aV f,a — B}, where o and 3
contain no anaphors of SRE occurrences. We shall prove (3) for
aV B (The proofs for a A 8, ma and @ — [ are similar). By
definition 34, (aV ) is &’ A ', where o/ and /3’ are paraphrases
of @ and S respectively. By theorem 6, o/ and 8’ do not contain
anaphors of SRE occurrences. Since, by the induction hypothesis,
«a and [ are deductively equivalent to o and [’ respectively, we
have: a b o/, g+ p'. It follows that a - o/ VvV 8 and o' VvV .
Therefore, it is not hard to prove that a vV S+ o' Vv ' . That is:
aV B F (aVpB). The proof for (aV ) F vV (3 is similar.

(c) Let ¢ be the product of substituting anaphors for SRE occurrences
in a formula ¢ as in section 2c of the formula definition. If (3)
holds for 1, then it obviously holds for ¢; for ¢ is deductively
equivalent to ¢ (to show this, one can apply the rules A I and A
FE), and they both have the same paraphrases.

(d) Let ¢(¢P) be a formula in which an occurrence t of gP is the main
QNP. Let ¢ be ¢[t/s], where s is an SRE that does not occur in
. We thus have ¢(qP) = ¢[s/qP].

i. If g is every, then ¢’ is of the form:
((1) every Thing is Thing) A (((1)a is P) — ¢'[s/(1)a])
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where v’ is a paraphrase of ¢). We first show that

(p(every P)) F p(every P).

Since (¢(every P))’ contains no anaphors of SRE occurrences
(lemma 6), we have he following proof:

1 (1) ((1) every Thing is Thing)
A((Da is P) — ¢'[s/(l)a]) Premise

2 (2) sis P Premise
(3) s is Thing Th 1

1 (4) ((1)s is Thing) A (((D)a is P) — ¢'[s/(l)a))
every ;1,3

1 (5) (s is Thing) A ((s is P) — 1) AE 4
1 (6) (sis P) — ¢/ N E)b
1,2 (1) — E,2,6

Now from the induction hypothesis it follows that ' F ).
And according to lemmas 4, 2 and 3, we can add lines to the
above proof until we get:

1,2 (k) (G I
And since v is @[t/s], we can add the line:
1 (k+1) ¢(every P) every 1,2,k

It remains to prove that ¢(every P) F (p(every P)).
Since v is @[t/s]|, we have the following proof:

1 (1) o(every P) Premise
2 (2) s is Thing Premise
3 (3) sis P Premise
1,3 (4) P every E,1,3

Now, from the induction hypothesis it follows that ¢ F /.
And according to lemmas 4, 2 and 3, we can add lines to the
above proof until we get:

L3 k) ¢ J
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We continue the proof:

1 (k+1) (sis P) — — 1,3,k
1,2 (k+2) (sis Thing) A ((s is P) — ') A I,2,k+1
1,2 (k+3) (()s is Thing) A (((D)a is P) — ¢'[s/(1)a])
AL k+2
1 (k+4) ((I) every Thing is Thing)A
((Da s P) — ¢['s/(l)a])  every I,2,k+ 3

From the existence of the above proof it follows that
o(every P) F (p(every P)).

If g is some, then (¢(some P))" is of the form:

((1) some Thing is Thing) A (((1)a is P) A{'[s/(l)a]), where
Y’ is a paraphrase of ¢». We first prove that (¢(some P))' +
@(some P). Since (¢(some P))" contains no anaphors of SRE
occurrences, we have the following proof:

1 (1) (1) some Thing is Thing)

A(((D)a is P) ANY'[s/(1)a)) Premise
2 (2) s is Thing Premise
3 (3) ((1)s is Thing) A (((Da is P) A w’[s/]gl)a])'
3 (4) (s is Thing) A ((s is P) A)') AE3
3 (5) (s is P) N/ N E 4
3 (6) sis P N E5
3 () o A E5

From the induction hypothesis it follows, as before, that ¢’ -
1. And according to lemmas 4, 2 and 3, we can add lines to
the above proof until we get:

3 (k) ¥ i
Since 1 is @[t/s], we can apply some I, and add the following
lines to the proof:

3 (k+1) ©(some P) some I,6,k
1 (k+2) ©(some P) some F,1,2,3,k+1
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It follows that (¢(some P))" = ¢(some P).
[t remains to prove that ¢(some P) F (p(some P))’. We start
with the following proof:

1 (1) o(some P) Premise
2 (2) s is P Premise
3 (3) Y Premise

From the induction hypothesis it follows that ¢ 1/, and we
can add lines to the above proof until we get:

3 (k) (e Jy
We proceed:

2,3 (k+1) (sis P)AY/ A 1,2k
(k+2) sis Thing ThlI
2,3 (k+3) (sis Thing) A ((s is P) N¢)')
ALKk+1k+2
2,3 (k+4) (()s is Thing) A (((D)a is P) ANY'[s/(l)a])
AL k+3
2,3 (k+5) ((I) some Thing is Thing)
A((Da is P) A4'[s/(1)a])
some I, k+2,k+4
1 (k+6) ((I) some Thing is Thing)
A(((Da is P) A'[s/(D)a])
some E,1,2,3,k+5

It follows that ¢(some P) b (p(some P)), as we wanted to
prove.

Definition 36 (7*). Let L be a formal language in our system. If T is a
theory in L, then T* is {p*|¢ € T'}.

Theorem 19 (Invariance of Entailment and Provability
under o — «*). Let T be a theory in a language L, and let ¢ be a formula
win L. Then:
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1. TEp=T" Ey¢*

2. ThpeT"F ¢

Proof: 1. Assume that T' = ¢. Let m be a model of T*. If ¢» € T, then
m = 1*, and by theorem 18: m = 1. We therefore have: m = T, and it
follows that m = ¢. Therefore, by theorem 18: m | ¢*.

The proof for T* = ¢* = T' |= ¢ is similar.

2. Assume that T F ¢. Then there exists a proof D of ¢ from T. By
lemma 2, we can assume that no premise appears in D twice. Let (a(n)pJ)
be the last line in D , and let Tp(a) = {¢1,..., 00} CT.

Since (by theorem 18) ¢} = ¢y, we have: {¢7,..., o5} F{e1, 05, ..., 05}
And since ¢} F o, we have: {¢f,..., 05} F {¢1,02,¢5, ..., 05} We con-
tinue by induction and get: {¢i,...,¢5} F {¢1,...,0n}. We also have:
{¢1,...,0n} F ¢, and since provability for theories is transitive (theorem 6),
we get: {©3,...,p5} F . Theorem 18 ensures that ¢ - ¢*. And from the
transitivity of - for theories: {¢7,..., @5} F ¢*. Now, since ¢}, ..., o5 € T*,
it follows that 7™ I ¢*. The proof for T - ¢* = T' I ¢ is similar.

[

5.6 The equivalence between our system and FOL+-EI

Theorem 20 (Equivalence). Let L be a formal language in our system,
let F" be the set of all formulas in L, and F; the set of all formulas in L. pu,
as a mapping from Fy to F, has the following properties:

(1) w is injective.

(2) w covers F' in the following sense: for each formula ¢ € F there exists a
formula ¢* € p(Fy) that is both semantically and deductively equivalent
to ¢ (that is: @ and ¢* are true in exactly the same models, and they
are provable from each other). Also, if T C F, ¢ € F, and T* =
{a*|a € T}, then:

(a) T Y= T Ey*
(b) TH¢Y <= Tk ¢

(3) wu preserves entailment and provability: for each theory T, C Fy and
formula @, € Fy:
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(a) To UEl = ¢r <= u(Tx) = 1(en)
(b) Tr UEIE @ <= p(T5)  p(eor).

Proof: (1) is theorem 10. (2) immediately follows from theorems 18 and
19. It remains to prove (3). Let T, C F and let ¢, € F,. We have:
w(Ty) E w(pr) = (by theorem 15) T, UEl = .
= (by the completeness of the predicate calculus) T, UElIF ¢,
= (by theorem 16) p(7: UEIl) F p(pr) = u(Tr) U u(El F pu(er)
— (by theorem 12 and the transitivity of provability) u(7y) F p(vx)
= (since our system is sound) p(7;) = p(pz). The required equivalences
follow.
[

Theorem 21 (Completeness). Let T be a theory in a language L, and let
¢ be a formula in L. If T = ¢, then T+ .

Proof: Let F and F, be as in theorem 20. We have: 7% C pu(F;) and
©* € u(Fy). Therefore, there exist T, C Fy and ¢, € F, such that u(7,) =
T* and p(er) = ¢*. Now, by theorem 20, and by the completeness of the
predicate calculus, we get: T | ¢ = T* = ¢ = w(Ty) = pler) =
T.UEl E ¢, =T, UEIF o, = u(T) F pler) =T F¢* = TF .
[

Compactness is a consequence of completeness:

Theorem 22 (Compactness). Let T be a theory in a language L. Then,
T has a model iff every finite Ty C T has a model.

Proof: If T has a model m, then m is a model of any finite subset of T
Conversely, assume that every finite subset T} of T" has a model. If T" does not
have a model, then T' = [s isn’t s], and from the completeness of our system
we get: T F [s isn’t s]. Now, since any proof uses only a finite number of
premises, there exists a finite 73 C T such that T} & [s isnt s|. Since our
deductive system is sound, we have: T; |= [s isn't s|. Therefore: T} is a finite
subset of T that does not have a model. A contradiction.

[ |
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6 Conclusion

An overview of the paper is due in this place. We started by describing, in
brief outline, a new semantic analysis of natural language, according to which
common nouns in noun phrases are often plural referring expressions, and
not — pace Frege — logical predicates. We then described, again in outline,
the implications of this analysis for the analysis of quantification in natural
language.

This introductory discussion lead to the development of a new formal
system, built on the basis of the mentioned semantic analysis of natural
language. This system, unlike FOL but similarly to natural language, uses
concept-letters both as plural referring expressions and as predicates; it com-
bines quantifiers with concept-letters to form noun phrases, which occupy
in sentences the same place as singular referring expressions do; the way
anaphors are used in it is closer to the way anaphors are used in natural
language than to that in which variables are used in FOL; and more. We
have also compared and contrasted our system with many-sorted logic.

We defined formulas, derivation rules and models for our system, and
proved it to be sound. We then turned to inquire its relation to FOL. For
that purpose, we added to FOL a set of axioms, EI . On the other hand, while
developing our system, we had introduced, having these future inquiries in
mind, a special predicate to our system, Thing, to which any interpretation
function assigns the whole domain. We correlated models in our system with
models of El in FOL. Relying on all this, we showed how to translate formulas
of FOL into our system, and proved the translation to have the following
properties: first, it is one-to-one. Secondly, it covers all the formulas in
our system in the following sense: every formula is both semantically and
deductively equivalent to a translation of some formula of FOL. Thirdly,
the translation preserves truth in a model, entailment, and provability. The
completeness and compactness of our system followed immediately.

Our system can be proved to be sound, complete and compact even with-
out the predicate Thing; this, however, was not done here.

Accordingly, we have demonstrated that the new analysis of the semantics
of natural language can be used as a basis for the construction of a power-
ful formal system, sound and complete, which parallels FOL, in the sense
specified above. We have thus accomplished what we set out to do in this
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paper.?
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1 Introduction

In this and related work, we study relativity theory, or theory of space-time,
as a theory of first-order logic. It is important for our approach that we work
in the framework of (mathematical) logic and within that in (many-sorted)
first-order logic (FOL). The reasons for the latter choice can be found in, e.g.,
[2, Appendix], [3], [22], [23].? The aims of our project are summarized in the
introduction of [2] available on the Internet (cf. also [3], [1]), here we briefly
mention only aims (i) and (ii) below; (i) to do work on the logical foundation
of space-time theories, and (ii) to elaborate a logic based conceptual analysis
of relativity theories. For both of these goals, we want to start out with the so-
called observational (in the sense of, e.g., Reichenbach [19]) or “bottom-up”
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present introduction, “we” occasionally refers to the larger project and occasionally to the
present paper only.
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versions of (kinematics of) relativity theories as opposed to the “monolithic”,
theoretically oriented “top-down” approaches. Of course, in due time we
arrive at the theoretical versions, too, e.g., in [13], but by that time they will
be well motivated, cf. e.g., [13], [14].

First we build up (the kinematics of) special relativity theory in FOL
obtaining the finitely axiomatized FOL-theory Specrel. We put emphasis on
making the axioms of Specrel streamlined, transparent, and intuitively con-
vincing. Then we elaborate a conceptual analysis of special relativity, its
variants, and its generalizations. This analysis is based on the FOL axiom
system Specrel, on variants and fragments of Specrel and their generaliza-
tions. Among other things, we analyze Specrel both from the logical point
of view (model theory, proof theory, “reverse mathematics” etc.) and from
the physico-philosophical relativity theoretic point of view. Much of this is
done in [2], [13], [1], [4]. As a natural continuation, we also experiment with
generalizing Specrel in the direction of general relativity.

The first two steps in this generalization are (I) and (IT) below. (I) We
extend Specrel to accommodate accelerated observers, which, via Einstein’s
equivalence principle, enables us to discuss some features of gravity. E.g.,
the Twin Paradox and the Tower Paradox (gravity slows time down) become
provable in the accelerated observers version Acc(Specrel) of Specrel, cf. e.g.,
[3]. (II) As a second step in this direction, we make Acc(Specrel) local, where
local is understood in the sense of general relativity. We do this via the
so-called method of localization which can be applied basically to any ver-
sion of Specrel and Acc(Specrel). The localized versions of these theories are
also built up in FOL (we make special efforts to ensure this) for method-
ological reasons mentioned earlier. Since localization turns out to be such a
general procedure, we can denote the thus obtained theories as Loc(Specrel),
Loc(Acc(Specrel)) etc.?

It is explained in the classic textbook [17, pp.163-5] on general relativity
that by suitably combining accelerated observers and localization one can
safely move towards general relativity by starting out from special relativity,
cf. e.g., Box 6.1 on p.164 therein. This motivates our study of the FOL-theory
Loc(Acc(Specrel)) and its variants. The investigation of Loc(Acc(Specrel)) is
analogous with that of Specrel, i.e. after introducing the theory and proving
theorems about its basic properties comes a fine-scale conceptual analysis

3S0, Loc(-) can be regarded as some kind of a general “operator” applicable to theories
which are variants of Specrel.
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both from the logic point of view and from the relativity-theoretic point of
view.

In the present paper we concentrate on illustrating the process of localiza-
tion, i.e. step (II) towards general relativity mentioned above. To make the
essential ideas stand out more, we concentrate on describing Loc(Specrel),
since extending the localization procedure from Specrel to Acc(Specrel) goes
the natural way. All the same, we would like to emphasize that the FOL-
theory which brings us closer to having a FOL-based version of general rela-
tivity is Loc(Acc(Specrel)) and not Loc(Specrel) in itself. But if we keep this
fact in mind, it is more useful to study the method and effects of localization
first on the example of Loc(Specrel). For Acc(Specrel) and the definition of
Loc(Acc(Specrel)) we refer to [3] available on the net. Besides the research
school represented here, localization was used for moving towards general
relativity in, e.g., Latzer [11], and Buseman [6].

Here, we introduce the theory Loc(Specrel) and prove some theorems
about it. E.g., it turns out that already a small fragment of Loc(Specrel)
proves distinguished predictions of relativity theory in the local setting. For
lack of space the present paper gives only a small sample from the theory.
More on Loc(Specrel) can be found in [14] where Loc(Specrel) is called par-
tial domain relativity theory and is denoted as LocStd. Cf. also [3]. Here,
a formal definition of Loc(Specrel) is given in §2 above Theorem 3, where
Loc(Specrel) is denoted as LocRel. Its fragments and versions are denoted
as LocRel™, LocRel; etc.

In passing we note that the process of localization is related to that of
relativization used in areas of logic related to algebraic logic, cf. e.g., [3], [5]
or the volume [16], [18].

Intuitively, Loc(Specrel) is obtained from Specrel in two steps. These are:
(A) We relax the condition in Specrel that all events “seen” by one observer
are “seen” by the others. This is implemented by permitting observers not
to put any event to points of their coordinate-systems too far from the ori-
gin (of the coordinate-system). I.e. we allow observers to use subsets of
their coordinate-systems for coordinatizing events instead of using the whole
coordinate-system. (B) Axioms of Specrel are rephrased in the local spirit
(in the topological sense) which is something like the following: If Axi is an
axiom of Specrel, then instead of Axi we say that for each point p of space-
time (whatever this may mean) there is a small enough open neighborhood
D of p such that Axi is true in D.

Latzer [11] pointed out a problem with (this kind of) localization of special
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relativity, as follows. In studying global theories like Specrel, one can rely on
the so-called Alexandrov-Zeeman type theorems, e.g., in the style followed in
the book of Goldblatt [9], or in [1], [4]. Because of their just mentioned use-
fulness, the Alexandrov-Zeeman theorems have been thoroughly generalized
in various directions, cf. e.g., [3], [12], [10]. Latzer [11, p.237 lines 8-12, p.255
lines 5-8] writes that some kind of a generalization of the Alexandrov-Zeeman
type theorems to the local approach to relativity would be needed for study-
ing local versions of relativity, hence for moving towards general relativity.
However, Lester [12, p.929] points out that the Alexandrov-Zeeman theorem
does not generalize to the local setting. This fact slowed down progress with
the logical analysis of local relativity theories. We address this problem in
Theorems 1 and 2 way below. Namely, we prove two theorems in fragments
of Loc(Specrel), which can be regarded as Alexandrov-Zeeman type results in
the local setting. To illustrate their usefulness in analyzing local relativity,
we state a theorem to the effect that a quite small fragment of Loc(Specrel)
already proves the nonexistence of faster-than-light observers (NoFTL) in the
local sense, cf. Theorems 3-5 in this connection.* This is proved via Theo-
rems 1 and 2. In related work we also use our localized Alexandrov-Zeeman
type results for establishing various distinguished predictions of local relativ-
ity, e.g., predicting the behavior of fast moving clocks, meter-rods, etc. We
also indicate some of the global peculiarities of the localized theory, cf. [14].

2 The FOL-theory Loc(Specrel) of localized relativity

In this paper we will deal with kinematics of relativity, i.e. we will deal
with motion of bodies (e.g., of test-particles). The motivation for our choice
of vocabulary (for special relativity and its generalizations) is summarized
as follows. We will represent motion as changing spatial location in time.
To do so, we will have reference-frames for coordinatizing events and, for
simplicity, we will associate reference-frames with special bodies which we
will call observers. There will be another special kind of bodies which we
will call photons. For coordinatizing events we will use an arbitrary ordered
field in place of the field of the real numbers. Thus the elements of this field

4This can be interpreted as follows. In Theorems 1 and 2 we propose a kind of solution
to the problem (mentioned, e.g., by Latzer) of extending the Alexandrov-Zeeman style
approach to local versions of relativity theory. Then by Theorems 3-5 and ones in [14] we
illustrate that this solution really works, in some sense.
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will be the “quantities” which we will use for marking time and space.

Let us fix a natural number n > 1. n will be the number of space-time
dimensions. In most works n = 4, i.e. one has 3 space dimensions and one
time dimension.

Motivated by the above, our first-order language contains the following
symbols:

e unary relation symbols B, Ob, Ph, F (for bodies, observers, photons, and
quantities, i.e. elements of the field, respectively),

e binary function symbols +, - and a binary relation symbol < (for the
field-operations and ordering on F),

e a 2 + n-ary relation symbol W (for coordinatizing events, i.e. for the
world-view relation).

We will read “B(x), Ob(z),Ph(z),F(x)” as “z is a body”, “x is an ob-
server”, “x is a photon”, “z is a field-element”, and we will read
“W(z,y,21,22,...,2,)" as “observer x sees (or observes) the body y at time
21 at spatial location (zs, ..., z,)”. This “seeing” or “observing” has nothing
to do with seeing via photons or observing via experiments, it simply means
that, according to x’s coordinate-system or reference frame, y is present at
coordinates (z1, ..., 2,).

The following axiom will always be assumed and will be part of every
axiom system we propose, without mentioning.

AxFrame Ob U Ph C B, + and - are binary operations on F, < is a
binary relation on F, and (F,+,-, <) is a Euclidean ordered field, i.e.
an ordered field in which positive elements have square roots.

In pure first-order logic the above axiom would look like (Ob(z) V Ph(z)) —
B(z) etc. We do not write out the purely first-order logic translations of our
axioms since they are straightforward to obtain.

Let M be a model of AxFrame. Let F = (F, +, ) denote the field reduct
of M. We will use the following notation and terminology:

—,/,0,1 are the usual field operations. "F denotes the set of all n-tuples
of elements of F. If a is an n-tuple, then we will assume that a = (a4, ..., a,),
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i.e. a; denotes the i-th member of the n-tuple a (for 0 < i < n). We will
use the vector-space structure of "F. l.e. if p,q € "F and A € F, then
p+q,—p,Ap € "F, and 0 = (0,...,0) is the null vector. Let p € "F. Then
pt := p1 denotes the time component of p and ps := (0,ps, ..., p,) denotes
the space component of p. |p| := p? + ...+ p? is the (square of the) length of
p. The (square of the) speed of p is defined as speed(p) := |ps|/p? if p; # 0,
speed(p) := oo otherwise. Here we require that co ¢ F. We extend the
ordering < on F to an ordering on F U {oo} in the usual way, i.e. (Vx € F)
r < 00.

Let g,v € "F,v # 0. The (straight) line going through ¢ and ¢ + v is
{q+ Av: X € F}. The set of lines is then

Lines:={{g+X N:A€F}:que™F,uv#0}.
If 7 is a subset of a line and has at least two elements, then
speed (/) := speed(p — ¢) for some (and then for all) p,q € ¢,p # q.
We say that a line ¢ is slower than A € TF iff speed({) < A.
|| is the binary relation of parallelism on the set Lines, i.e.
e e (Gpee)3,del)p—q=p—4¢ #0.
Coll is the ternary relation of collinearity on "F, i.e.
Coll(p, q, 1) & (3¢ € Lines) {p,q,7} C L.

Let q,u,v € "F, =Coll(q, g+u, g+v). The plane that contains ¢, ¢+u, g+v
is {qg+ A u+puv : A\ u€F}. The set of planes is then
Planes := {{q¢+ u+pv : A p€F} : qu,v€™F, =Coll(q,q+ u,q +v)}.

TF:={N€F : XA >0} is the set of positive elements of F.

The (open) ball with center p € "F and radius € € *F is

S(p,e):={q€"F : [p—ql <}

A set N C "F is a neighborhood of p € "F iff (3 € TF) S(p,e) C N. A set
D C "F is open iff (Vp € D)(3e € TF) S(p,e) C D.

A := ("F, Coll) is the n-dimensional affine structure over the field F. A
can be extended to an n-dimensional projective structure P = (P"F, PColl)
over F in the usual way, i.e. as follows: The relation of parallelism || is an
equivalence relation on the set Lines. For every ¢ € Lines let £*° denote the
equivalence class of ¢ under the relation ||. Intuitively ¢*° is the point of line
¢ at infinity. For every P € Planes let P> := {{> : ( € Lines, ¢ C P}.
Intuitively P> is the line in plane P at infinity. The set of points of the
projective structure is defined as

P"F :="FU{{>* : (€ Lines}.
The set of (projective) lines is defined as
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PLines := { U {{*} : ( € Lines} U{P>* : P € Planes }.
Finally, the ternary relation PColl of collinearity on P™F is defined as
PColl(a, b, c) & (3¢ € PLines) {a,b,c} C ¢.
By the above, the n-dimensional projective structure
P = (P"F, PColl)

over the field F has been defined. We note that the affine structure A is a
strong sub-model of the projective structure P.

An A-collineation is an automorphism of the affine structure A. In other
words, an A-collineation is a permutation of "F that takes lines onto lines.
A P-collineation is an automorphism of the projective structure P.

"F is the coordinate-system (of each observer) and we will refer to its
elements as coordinate-points.
The life-line, or the trace of a body b in observer m’s coordinate-system,
or as seen by m, is the set of coordinate-points at which m sees b:
tr,(b) :={p€"™F : W(m,b,p) }.
The set of bodies observer m sees at a given coordinate-point p € "F is the
event happening for m at p:
evi(p) :=={be B : W(m,b,p) }.

The coordinate-domain of observer m is the set of the coordinate-points p
where m sees non-empty events:

cd(m) :={p€"F : ev,,(p) #0}.°

The world-view transformation between the coordinate-systems of observers
m and k is defined as:

for = {(p,q) €"F x"F : ev,,(p) =evi(q) # 0}.

Note that f,,, is a binary relation. f,,; will turn out to be an injective
partial function assuming axiom Ax3Ob below, cf. Proposition 1.

Sev,,(p) = 0 does not mean that space-time would be empty at point p (as seen by

m). Instead, it means that observer m does not use point p for coordinatization. L.e. the
world-view function ev,,, : "F — Events is partial. Part of the explanation of this meaning
of ev,,(p) = 0 is that our bodies are only potential bodies. Hence b € ev,,(p) means that,
potentially, a body b could be present at point p for m. Hence ev,,(p) = 0 implies that
nothing could be present, even in principle, at p for m.
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If R C A x B is a binary relation, then Dom(R) and Rng(R) denote
the domain and range of R, respectively, i.e. Dom(R) := {a € A : (3b €
B) {a,b) € R} and Rng(R) :={b€ B : (a € A) (a,b) € R}.

o~

Now everything is ready to state further axioms.

AxLine The traces of observers and photons are subsets of lines, but they
must be restrictions of lines to the coordinate-domain (or empty), i.e.

(Vm € Ob)(Vk € Ob U Ph)(3¢ € Lines)
(trn(k) =¢Ncd(m) or tr,(k)=0).

The above axiom motivates the definition: if m € Ob and ¢ € Lines, then /¢
is called an observer line for m iff (3k € Ob) tr,, (k) = £ Ncd(m); and £ is
called a photon line for m iff (3ph € Ph) tr,,(ph) = ¢ N cd(m).

Ax3JOb Each point in the coordinate-domain has a neighborhood and a
“speed threshold” A such that each line slower than A\ that intersects
the neighborhood is an observer line, i.e.

(Vm € Ob)(Vp € cd(m))(3e, A € TF)(V{ € Lines)
((speed(ﬁ) <A AN LNS(pe)#0) —  (is an observer line for m)

AxOpen (Vm,k € Ob)(Dom(f,,x) is an open subset of "F).

AxOpen implies that cd(m) is an open set for every observer m since
cd(m) = Dom(f,m)-

The theorem below says that, locally, the world-view transformations are
P-collineations in models of AxLine, Ax3JOb, AxOpen. This, we think,
is a rather strong Alexandrov-Zeeman type theorem. For the Alexandrov-
Zeeman theorem cf. Goldblatt [9] or Lester [12] or [4] in the present volume.
It says that any bijection from "F to "F that takes lines of speed 1 onto lines
of speed 1 is an A-collineation if we assume that F is the field of reals and
n = 4. Lester shows in [12, p.929] that this statement does not hold for
partial injections in place of bijections.%

6The theorem on p.929 of Lester [12] and the discussion preceding it are strongly rele-
vant to our Theorems 1 and 2 herein. The general relativistic generalization of Zeeman’s
theorem in Malament [15] is also relevant. Cf. also Guts [10, §26].
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As usual, functions are binary relations. Thus P-collineations are binary
relations. We say that the binary relations R and R’ agree on a set D iff
RN (D x Rng(R)) = R'N (D x Rng(R')).

Theorem 1. Assume AxLine, Ax3Ob, AxOpen. Then (i), (ii) below
hold.

(i) For everym,k € Ob andp € Dom(f,,x) there is a unique P-collineation,
denoted by CP , that agrees with f,,;, on some neighborhood of p.

mk’

(ii) For every m,k € Ob and (p,q) € fr the P-collineations C°, and C{
are inverses of each other.

The proof of Theorem 1 is in §3.

By item (i) of the above theorem, the world-view transformations preserve
Coll and —Coll locally in models of AxLine, Ax3Ob, AxOpen.

Conjecture 1. Theorem 1 above remains true if we omit the assumption
that our ordered field is FEuclidean. Furthermore, the proof given in §8 works
for the non-Euclidean case if we use cubes instead of balls in the proof.

Question 1 Does Theorem 1 above remain true if we replace the assumption

Ax30Db by the weaker Ax3Ob™ below?

Ax30Ob™ For each point p in the coordinate-domain there is a “speed thresh-
old” A such that each line slower than A that passes through point p is
an observer line, i.e.

(Vm € Ob)(Vp € cd(m))(3X € TF)(VL € Lines)
((speed(f) <A AN pel) — [isan observer line for m).

If we replace AxOpen by the much stronger AxFull below, then Ax3Ob
can be replaced by AxdOb™ in Theorem 1. Beyond that, the world-view
transformations will turn out to be A-collineations in models of AxLine,
Ax30b™, AxFull.

AxFull below is a typical example of a potential assumption which does
not have the status of an axiom in the present work. It is a typical postulate
which distinguishes special relativity from our more general theories studied
herein and in [3]. We formulate AxFull to make it sure that we do not
assume it in our generalized theories, not even by chance or even implicitly.
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AxFull (Vm, k € Ob) Dom(f,,) = "F.

Roughly speaking, AxFull says that every observer sees all the events and
sees something everywhere in his coordinate-system. From the point of view
of general relativity theory, AxFull is a too strong assumption, therefore we
will not include AxFull in our localized relativity theories.

In Theorem 1 above, P-collineation cannot be replaced by A-collineation,
see [14]. We get A-collineation, however, if we add axioms about photons.
Notice that so far, nothing has been used about photons. We will assume
that the photon traces form an “upright” cone, called light-cone, at each
point, however the angle (or “openness” or “width”) of the light-cone may
differ from point to point. We are going to formalize this, the result of which
will be axiom AxPh below. We note that, assuming AxLine, AxPh is
equivalent with (x) below.

(x) (Ym € Ob)(¥p € cd(m))(3X € TF)
(V0 € Lines) [pe ¢ — (¢ is a photon line for m <> speed({) = \)].

Therefore we could have stated Theorem 2 below here without introducing
any further definitions and axioms.

The set of (spatial) directions dir is defined as
dir:={de"F : d, =0, |d =1}.

Assume m € Ob, b € B, d € dir. We say that b moves in direction d as
seen by m iff  (Vp,q € trpy(b))(IAEF) [ps—qs = Ad A (pe > q — A > 0)].

The speed of a body b as seen by an observer m is speed,, (b) := speed(tr,, (b))
if tr,,(b) is a subset of a line and it has at least two elements, otherwise
speed,,(b) is undefined. Note that speed,,(b) = co is possible. Furthermore,
assuming AxLine and AxOpen, for any h € Ob U Ph, speed,,(h) is defined
or tr,,(h) = 0. Whenever we use speed,,(b) in an axiom, we will assume that
the axiom states the existence of speed,,(b), too. Cf. e.g., AxIstr below.

Assume m € Ob, b € B and speed,,(b) is defined. We note the following.
If speed,,(b) € TF, then b moves in exactly one direction; if speed,,(b) = oo,
then b moves in exactly two directions, i.e. b moves both in d and —d for
some direction d; and if speed,,(b) = 0, then b moves in every direction as
seen by m.
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Ax3Ph From any point p € cd(m) in any direction there is a photon moving
in that direction, i.e.

(Vm € Ob)(Vp € cd(m))(Vd € dir)(3ph € Ph)
<p € tr,(ph) A (ph moves in direction d as seen by m))

AxIstr below abbreviates Axiom of Isotropy.

AxIstr The speed of light is direction-independent at each point
p € cd(m), i.e.
(VYm € Ob)(Vph, ph’ € Ph)
(tr(ph) Ntr,(ph') #0  —  speed,,(ph) = speed,,(ph")).

AxFin The speed of each photon is nonzero and finite, i.e.
(Vm € Ob)(Vph € Ph) (0 < speed,,(ph) < oo or tr,(ph) =0).

AxPh := Ax3JPh A AxIstr A AxFin.

In effect, the photon traces that cross a given p € cd(m) show an
“upright” cone-like shape, called light-cone. Notice that the speed of
light—the angle of the light-cone—may differ from point to point.

We note that assuming AxLine, AxOpen, AxPh, the speed of light is
constant locally, i.e. (Ym € Ob)(Vp € cd(m))(3e, A € TF)(Vph € Ph)
(trm(ph) N S(p,e) #0  —  speed,,(ph) = \).
The theorem below says that, locally, the world-view transformations are
A-collineations in models of AxLine, Ax3JOb, AxOpen, AxPh.

Theorem 2. Assume AxLine, Ax3dOb, AxOpen, AxPh. Then for every
m,k € Ob and p € Dom(f,.x) there is a unique A-collineation that agrees
with f., on some neighborhood of p.

The proof of Theorem 2 is in §3.

By the above theorem, the f,,;’s preserve parallelism, Coll and —Coll lo-
cally under certain assumptions.

If, in Theorem 2, n > 2 and we replace the assumption AxOpen by
the much stronger AxFull, the assumption Ax3dOb becomes superfluous.
Moreover, the world-view transformations are A-collineations in models of
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AxLine, AxFull, AxPh if n > 2 by the proof of the Alexandrov-Zeeman
theorem. Despite of this fact, the assumption Ax3Ob cannot be omitted
from Theorem 2 even if n > 2 is assumed. This is so because the Alexandrov-
Zeeman theorem does not generalize to the local approach pursued herein,
as it is shown in Lester [12, p.929].

Question 2 Does Theorem 2 above remain true if we replace the assumption

Ax30Db by the much weaker Ax3Ob™ " below?

Ax3JOb™ ™ Each line of speed 0 that intersects the coordinate-domain is an
observer line, i.e.
(Vm € Ob) (V¢ € Lines)
<(speed(€) =0 A £Ncd(m) # D) — /¢ is an observer line for m).

We note that, in Theorem 1, Ax3Ob cannot be replaced by Ax3Ob™ .
We conjecture that the assumption Ax3Ob can be replaced by Ax3Ob™ in
Theorem 2.

Finally, we are going to state theorems concerning faster than light ob-
servers. To this end we introduce further axioms.

AxSelf Observers can see themselves only on the time-axis, i.e.
(Vm € Ob) tr,,(m) C {(t,0,...,0) : t € F}.

There may be points on the time-axis where an observer can see noth-
ing. Intuitively, such a point may be after the “Big Crunch”; or for
an observer falling into a Schwarzschild black hole, it may be the point
(measured by his own clock, i.e. his proper time) where his life-line
intersects the singularity.

Assume k, h € Ob. Then we say that k is a brother of h iff
(Vm € Ob) tr,,,(k) = tr,(h).

AxEvent If m sees an event happening to k, some brother of £ sees it, too,

(Vm, k € Ob)(Vp € tr,(k))(3h € Ob)
[l is a brother of k& and p € Dom(f,,4)].



JUDIT X. MADARASZ ISTVAN NEMETI CSABA TOKE 237

Intuitive motivation for AxEvent above: Consider the life-line of Earth
in general relativity. It is an infinitely long spiral. Therefore we cannot
approximate the world-view of Earth by a single, long inertial frame (such
does not exist).” On the other hand, we can hope for approximating the
world-view of Earth by an infinite sequence of relatively small (hence also
“short”) inertial frames. Formally, this amounts to decomposing Earth to
infinitely many observers whose body part is the same, namely Earth, but
whose coordinate-domains correspond to different bounded pieces of Earth’s
history, so to speak. These versions “... Earth_,, Earth_;, Earthy, Earthy,
Earth,,...” of Earth will be brothers in our sense with different, small,
coordinate-domains. The union of these domains covers the whole life-line
of Earth. This is why in our AxEvent above we had to talk about some
brother h of k instead of k itself.

Our axiom system LocRel, roughly speaking, consists of all axioms in-
troduced so far, except AxFull. We note that LocRel is a concretely speci-
fied version of the axiom system Loc(Specrel) promised in the introduction.®
LocRel excludes faster than light observers if n > 2 by Theorem 3 below.

LocRel := {AxLine, Ax30b, AxOpen,
Ax3Ph, AxIstr, AxFin, AxSelf, AxEvent}.

FTL abbreviates “faster than light”. Let k,m € Ob. We call k£ FTL w.r.t.
m iff there is a ph € Ph such that k£ and ph move in the same direction as
seen by m, they meet, i.e. tr,, (k) Ntr,,(ph) # 0, and speed,, (k) > speed,,(ph).
noFTL abbreviates the formula saying that no observer k can move faster

than light relative to any other observer, i.e. it abbreviates the formula
—(3Im, k € Ob)[k FTL w.r.t. m].

Theorem 3. LocRel \ {AxFin} | noFTL ifn > 2.

The proof of Theorem 3 is in §3.

"In general relativity, it is the so-called local inertial frames (LIF’s) that correspond,
roughly, to the world-views of inertial observers in our present local version of relativity,
cf. Rindler [20] for LIF’s and their such role.

8To be precise, LocRel is a streamlined, slightly generalized version of the result
Loc(Specrel) of applying the localization procedure Loc(-), described in the introduction,
to Specrel mechanically. As illustrated in [2], general procedures like Loc(-) are always
meant to be applied in this way: we first apply the procedure Loc(-) “mechanically” and
then streamline the thus obtained theory.
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For n = 2, FTL observers do become possible even in models of axiom system
Specrel mentioned in the introduction.

We are going to replace axiom AxIstr in LocRel by the much weaker
AxP1 below.

AxP1 The speed of light is unique and well-defined in each direction at each
point p € cd(m). In particular, it does not depend on the movement of
the source: photons are unlike bullets. Basically, this is the first-order
logic formalization of Friedman’s principle (P1) in [8, p.159],

(Vm € Ob)(Vph, ph’ € Ph)

ph and ph’ move in the same direction as seen by m  —
(speed,,,(ph) = speed,,(ph’) or tr,,(ph) Ntr,(ph') = (Z)))
Let the axiom system LocRel™ be obtained from LocRel by replacing
AxlIstr by AxP1, i.e.
LocRel™ := {AxLine, Ax30b, AxOpen,
Ax3Ph, AxP1, AxFin, AxSelf, AxEvent}.
Question 3 Assume n > 2. Does LocRel™ = noFTL hold?

Let LocRel™™ be obtained from LocRel™ by replacing Ax3Ob by
Ax3Ob™ . The following theorem is due to Gergely Székely [21].

Theorem 4. LocRel™~ U {AxFull} & noFTL ifn € {3,4}.

We will weaken-and-strengthen Ax3Ob in LocRel™ to requiring that
the observer-traces “fill” the light-cones. The thus obtained axiom system
will exclude FTL observers if n > 2.

AxOb There are observers on lines which are slower than light, i.e.

(Vm € Ob)(Vph € Ph,p € tr,,(ph))(¥0 < X\ < speed,,(ph))(3k € Ob)
[p € trp,(k), speed,,(k) =\, and ph, k move in the same direction
as seen by m).

Let LocRelj be obtained from LocRel™ by replacing Ax3Ob by
AxOb, i.e.
LocRel; := {AxLine, AxOb, AxOpen,
Ax3Ph, AxP1, AxFin, AxSelf, AxEvent}.
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Theorem 5. LocRel; = noFTL ifn > 2.

The proof of Theorem 5 is in §3.

The assumption AxFin cannot be omitted from LocRel; in the above the-
orem.

3 Proofs

The proof of Theorem 1 is based on Desargues’ theorem and on Proposi-
tions 1, 2 below.

f A — B denotes that f is a function from A to B, i.e. Dom(f) = A
and Rng(f) C B.

f: A - B denotes that f is a partial function from A to B; this means
that f is a function Dom(f) C A and Rng(f) C B.

Proposition 1. Assume Ax30b™.
Then for every m,k € Ob, f,,;, : "F — "F is an injective partial function.

Proof: Assume the assumptions. Due to the definition of the world-view
transformation, it is enough to prove that for every m € Ob and distinct
p,q € cd(m), ev,,(p) # evin(q). Let m € Ob and p,q € cd(m), p # q. Let
¢ € Lines and k € Ob be such that p € ¢, ¢ € ¢, and tr,,(k) = {Ncd(m). They
exist by Ax3JOb™. Now, k € ev,,(p) but k & ev,,(¢). Thus ev,,(p) # evm(q).

QED (Prop.1)

In the remaining part of the present paper we use the following notation
and definitions.

o If a,b € "F with a # b, then ab denotes the unique element of Lines
that contains a and b.

o Ifa,b € P'F with a # b, then Pab denotes the unique element of PLines
that contains a and b.

e Bw is the ternary relation of strict betweenness on "F, i.e. Bw(p, q,r)
iff p,q,r are distinct collinear points and ¢ is between p and r. This
can be formalized as
Bw(p,q.r) & (EXETF)(g=p+Alr—p) A A<]D).
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e If a,b € "F, then [a, b] denotes the closed segment determined by a and
b,ie. [a,b]:={ce™F : Bw(a,c,b) V c€{a,b}}.

e Points p,q,r, s € "F are coplanar iff (3P € Planes)p,q,r,s € P.

e P € Planes is a vertical plane iff (3¢ € Lines)({ C P A speed(f) = 0).

Next we recall Desargues’ theorem from the literature, cf. e.g., Gold-
blatt [9]. To do so we need the following definitions:

Consider the projective structure P = (P™F, PColl). A triangle is a triple
of non-collinear points from P"™F. These points are the wertices, and the
(projective) lines connecting two of the vertices are the sides of the triangle.

Triangles o', b, ¢ and a”,b", " are centrally perspective iff there is p €
P"F such that PColl(p,a’,a”), PColl(p,b',b") and PColl(p,c, "), see Fig.1.
Triangles a/,b', ¢ and a”,b",c" are axially perspective iff there are a,b,c €

centrally D Desargues’ theorem:
perspective :
triangles:

axially
perspective
triangles:

b/

Figure 1: Desargues’ theorem

P"F such that PColl(a,b,c), PColl(a,t, ), PColl(a,b”, "), PColl(b,d, ),
PColl(b,a”, "), PColl(c,a’, '), and PColl(c,a”, "), see Fig.1.

Desargues’ Theorem Two triangles are centrally perspective if and only if
they are azxially perspective. Cf. Fig.1.
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Definition: Let f : A -2+ A be a partial function and let R be a ternary
relation on A. We say that f preserves R on a set H ifft H C Dom(f) and
(Vz,y,z € H)[R(z,y,z) — R(f(x), f(y), f(2))]. Furthermore, f preserves
R (or f is R-preserving) iff f preserves R on Dom(f).

Proposition 2. Let f : "F - "F be a partial function. Assume f preserves
Coll and —Coll, and Dom(f) is a ball.

Then there is a unique PColl-preserving function g : P"F — P™F extend-
ing [ (f C g).° Furthermore, this unique g is injective.

Question Does ¢ in Prop.2 above preserve =PColl?

Proof of Prop.2: Assume f : "F — "F satisfies the assumptions.

Let L := {¢ € PLines : £ N Dom(f) # 0}. For every ¢ € L there is a
unique element of PLines that contains the f-image of £. We will denote this
unique element of PLines by f (/).

Definition: Lines 1, ly, {3 are concurrent iff 1 N4y N5 # (.

Claim: For any distinct and concurrent ¢4, 05, (3 € L, the lines f(¢1), f({2),
f(¢3) are distinct and concurrent.

Proof: Assume (1,/5, 03 € L are distinct and concurrent. Since f preserves
—Coll, the lines f(¢1), f(£2), f(¢3) are distinct. It remains to prove that they
are concurrent. We will prove this by Desargues’ theorem.

Let a’,a” € ¢; N Dom(f), ¥/,b" € €y N Dom(f), ¢, € £3 N Dom(f) be
distinct points such that a',b', ¢ and a”,b"”,¢” are triangles and the points
of intersection of the corresponding sides of these triangles are in Dom(f),
see Fig.2. It is explained in the caption of Fig.2 why such triangles exist.
These triangles are centrally perspective. Thus, by Desargues’ theorem, they
are axially perspective, i.e. the points of intersection of the corresponding
sides are collinear. Since f preserves Coll and —Coll, f(a'), f(b'), f(¢) and
fla”), f(b"), f(¢") are axially perspective triangles. But then, by Desargues’
theorem, they are centrally perspective. Thus the lines f(¢1), f(¢2) and f({3)
are concurrent. QED (Claim)

We are going to define a function g : P"F — P"F. Let p € P"F. By the
above claim, there is a unique p’ € P"F such that (V¢ € L)(p e ¢ — p' €

9In particular, Dom(g) = P"F.
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points of intersection
of the corresponding sides

Figure 2: Let ¢ € ¢1 N ¥¢3 N ¢3. Choose triangle a, V', ¢ arbitrarily. Choose a”,b”
such that Bw(a’,a”,q) and Bw(b”,V',q). Then o'’ N a”b” is a point in Dom(f).

Choose ¢’ so “close” to ¢ that a’d Na’c¢” and b’ Nb'¢" are points in Dom(f).

f(£)). We define g(p) to be this unique p’. Clearly, g extends f. Note that
g is the unique P"F — P"F function with the property

(Veel)(pel — glp) € f(0)). (1)

If ¢ : P"F — P"F is a PColl-preserving function extending f, then ¢’ satisfies
(1) above, hence ¢’ = g.

It remains to prove that g preserves PColl and that ¢ is injective.

To prove that g is injective let a,b € P"F be distinct points. Since g
extends f and f preserves —Coll, g is injective on Dom(f). Thus, there is
¢ € Dom(f) such that g(a) # g(c) # g(b). Fix such a ¢. By (1), g(a),g(c) €
f(Pac) and g(b),g(c) € f(Pbc). But f(Pac), f(Pbc) are distinct because
Pac, Pbc were such and f preserves —Coll. Hence g(a) # g(b).

We will use Desargues’ theorem to prove that g preserves PColl. By (1),
g preserves collinearity on elements of L, i.e. for any ¢ € L and a,b,c € ¢,
PColl(g(a), g(b), g(c).

To prove that g preserves PColl, let a, b, ¢ € P"F be such that PColl(a, b, ¢).
We can assume that a, b, ¢ are distinct. Let a’,V/, ¢ € Dom(f) and ", 0", " €
Dom(f) be triangles such that the corresponding sides meet in a, b, ¢, respec-
tively, see Fig.3. It is explained in the caption of Fig.3 why such triangles
exist. The two triangles are axially perspective. By Desargues’ theorem,
they are centrally perspective. Furthermore, the lines connecting the corre-
sponding vertices are in L. Therefore, since g preserves =Coll on Dom(f) and
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Figure 3: Let ¢1, /s, /3 € L be non-concurrent lines such that a € ¢y, b € {5, c € I3
and pairwise they meet in Dom(f). Let ¢ € {1 Ny, a' € boNls, b € 1 NLs.
Then d/,b', ¢ is a triangle in Dom(f). The triangle a”,b”, ¢’ in Dom(f) is obtained
analogously by using ¢}, £,, ¢4 distinct from £y, {5, (3.

g preserves PColl on elements of L, g(a'),g(b'),g(c') and g(a”), g(b"), g(c")
are centrally perspectivive triangles and the corresponding sides meet in
g(a),g(b), g(c), respectively. But then, by Desargues’ theorem, the two tri-
angles are axially perspective, which means that PColl(g(a), g(b), g(c)).
QED (Prop.2)

Proof of Theorem 1:

Assume AxLine, AxJOb, AxOpen. Recall that the world-view transfor-
mations (f,,x) are injective partial functions by Proposition 1. Furthermore,
for every m, k € Ob, f,,; and f;,, are inverses of each other. We will use these
facts tacitly throughout the present proof.

Notation: Assume m,k € Ob. Then for every a € f,., a, denotes the
first component of a, while a; denotes the second component of a, i.e. a =
(@, ay). Furthermore, if a,, € Dom(f,,x), then a; denotes f,x(a,,) and if
ar € Rng(f,.r) = Dom(fy,,), then a,, denotes f,,(ax).

Claim 1: Assume m,k € Ob and a,b € f,,;, a # b. Then (i), (ii) below hold.

(1) (amby, is an observer line for m) < (axby is an observer line for k).
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(ii) f,nx preserves Coll and =Coll between three points if the line determined by
two of the points is an observer line. Formally: Assume a,,b,, is an observer
line for m. Then for every c € f,,

Coll(@p, b, ¢) < Coll(ay, by, cx), or equivalently ¢, € apb, < ¢ € agbg.

We omit the easy proof.

Claim 2: The world-view transformations preserve Coll locally, i.e. for every
m,k € Ob and p € Dom(f,.x), there is a ball S with center p such that f,,
preserves Coll on S.

Proof: Let m,k € Ob. To prove that f,,; preserves Coll locally, let p €
Dom(f,,x). We need a ball with center p such that f,,; preserves Coll on that
ball.

Let £, A € TF be such that S := S(p,e) C Dom(f,,;) and any line slower
than A that intersects S is an observer line for m. Such ¢, A exist by Ax3dOb
and AxOpen.

Let S’ be a ball with center p such that S’ is a proper subset of S. For
any H C "F, the “vertical cylinder” ¢(H) of H is defined as
c(H)={qe™F : (IreH)qgs=rs}.

Let S” C S’ be a ball with center p such that S” is small enough to satisfy
(%) below. See Figure 4.

(¥) Any line that intersects both S” and ¢(S”) \ S’ is slower than A.

Let X :=(S\S)Ne(S), XT:={qeX : ¢>p},and X :={qge X :
QG <Pt}

We will use Desargues’ theorem and Claim 1 to prove that f,,;, preserves
Coll on S”. Let apm,bm,cn € S” be such that Coll(ap,, by, ). We will
prove that Coll(ag, by, cx). We can assume that a,,, by, ¢, are distinct. Let
al O co€ Xt C Sandall,bl cl € X~ CS be triangles such that the
corresponding sides meet in ay,, by, ¢, respectively, and b),b" N cl is a
point in S, see Fig.4. It is explained in the caption of Fig.4 why such triangles
exist.

By () above, all the sides and the lines connecting the corresponding
vertices of these triangles are slower than A. Thus all these lines are observer
lines for m. Furthermore, these triangles are axially perspective. By Desar-
gues’ theorem, they are centrally perspective. Moreover, a. al N0, b/ Nc, cl
is a point in S. Therefore, by Claim 1 (ii), a}, by, ¢}, and a}, by, ¢} are centrally
perspective triangles and the corresponding sides of these triangles meet in
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Figure 4: Choose c,,,b), € X* such that Bw(a,,c,,b,) and b,c,, Necybl, is a

m° Um m?’ - m

point in X . The latter can be achieved by choosing ¢/, and b/, “close” to each
other. Let al, be by, Nepbl,. Choose ¢, b € X~ such that Bw(ap, b, ),
bl Nepbll is a point in X, anbl, # anbl,, bmch, # bmch, and cpbl, # bl
Let a), be byl N eyby,. Then, by Bw(am, d,,b,) and Bw(anm, b, ), c,cr N
b),bl is a point in S.
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ag, by, cx, respectively. By Desargues’ theorem, we conclude Coll(ag, by, cx).
QED (Claim 2)

Claim 3: Assume m,k € Ob, a,b,¢,d € .k, d &€ {a,b,c} and apdy,, bpdy,
¢md,, are observer lines for m. Then
Gy by Cy dpy are coplanar < ay, by, ¢, di. are coplanar.

Proof: Assume m, k,a,b, ¢, d satisfy the assumptions. By Claim 1 (i), it is
enough to prove one direction of “<” in the present claim. We will prove,
e.g., the “<” direction. Assume ay, by, ¢k, di are coplanar. Let S C Dom(fy,,)
be a ball with center dj, such that fy,, preserves Coll on S. S exists by Claim
2. See the left hand side of Figure 5. Let aj, € S N agdy, b, € S N bdy

Claim 3 ag Claim 4
observer Casen =2 Case n > 2
lines observer
_— lines

frm preserves Coll on S
and on observer lines fmi preserves Coll on S

Figure 5: Tllustrations for the proofs of Claims 3,4.

and ¢, € S N ¢dy, be such that Coll(ay,b),c,) and dy & {a}, b, ¢}, cf.
Fig.5. Clearly, d,, & {a,,,b.,,c,}. Since fy,, preserves Coll on S, we have
Coll(al,, b, c..). By Claim 1 (ii), a,, € amndn, b, € bynd,, and ¢, € cdy,
since andy,, bndy,, c¢nd, are observer lines. Therefore a,,,b,,, cm,d,, are
coplanar. QED (Claim 3)

Claim 4: Assume m, k € Ob and S is a ball such that f,,;, preserves Coll on
S. Then f,,, preserves —Coll on S.
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Proof: Assume m, k, S satisfy the assumptions. Let a,,, b, ¢, € S be such
that —Coll(ay,, by, ¢m). We want to prove —Coll(ag, by, cx). We distinguish
two cases, the case of n = 2 and the case of n > 2. See the right hand side
of Fig.5.

Case of n = 2: Assume n = 2. Let a,, € a;,¢,, NS and b, € by,c, NS be
such that ¢, & {a,,, b, } and a/ b is an observer line for m. a, b exist by

m-m

Ax30b. Clearly, =Coll(a,,,b.., ¢y). Then, by Claim 1 (ii), =Coll(a}, b}, cx)

since a),b/, is an observer line. By —Coll(a}, b}, ¢x) and the assumption that
fk preserves Coll on S, we have =Coll(ay, by, cx).

Case of n > 2: Assume n > 2. Let a,, € a;yc,,NS, b, € byc,,NS and d,,, € S
be such that a! b, cpn,d, are not coplanar and a) d,,, b d,., c,d, are

m? - m)

observer lines for m, cf. Fig.5. a/,, b, d,, exist by Ax3Ob. Then, by Claim 3,
we have that a}, by, ¢k, di, are not coplanar. But then —Coll(ay, b}, ¢). By this
and by the assumption that f,,; preserves Coll on S, we have —Coll(ag, by, ).

QED (Claim 4)

Let m, k € Ob, p € f,,; be fixed until the proof is complete. Furthermore,
let a ball S with center p,, be fixed such that f,,; preserves Coll on S. S
exists by Claim 2. Then f,,; preserves —Coll on S by Claim 4.

Now, by Prop.2, there is a unique PColl-preserving P"F — P™F function
that agrees with f,,,; on S. Denote this function by g. ¢ is injective by Prop.2.
We will prove that ¢ is a P-collineation.

Claim 5: Assume H C Dom(f,,;) is an open set and g agrees with f,,;, on H.
Assume e € f,,; and £, ¢’ are observer lines for m such that /N ¢ = {e,,} and
(NH#QD#0CNH. Thene € g.

Proof: Note that for any line ¢ and open set H, we have

((NH#() = (N H is an infinite set). Now, assume H, e, (, ' satisfy the

assumptions. Let a,,,b,, € HN/{ and ¢,,,d,, € H N ¢ be distinct points, cf.

the left hand side of Figure 6. Then, by Claim 1 (ii), axby N cxd = {ex}.

g takes a,, by, Cn, diy tO ay, b, ci, di, respectively, by the assumption that g

agrees with f,,,, on H. Since g preserves PColl, it takes e,, to ex. Thus e € g.
QED (Claim 5)

Let ¢(S) :=={q€"F : (Ir € S) gs = rs } be the “vertical cylinder” of S, cf.
the right hand side of Fig.6.
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Claim 5 Claim 6
observer
lines
Em
H it dn
Qm Cm,
¢ v

Figure 6: Tllustrations for proofs of Claims 5,6.

Claim 6: g agrees with f,,; on ¢(S) N Dom(f,.x), i.e. for every e € fu,
em €¢(S) = e€yg.

Proof: Let e € f,; be such that e,, € ¢(S). By Ax3Ob, there are two
observer lines £, ¢’ for m such that they meet in e, and both of them intersect
S, cf. the right hand side of Fig.6. Then, by Claim 5 and by the fact that g
agrees with f,,;, on S, we have e € g. QED (Claim 6)

Let a ball S;, with center p, and X\ € TF be fixed until the proof is complete
such that

e f.,, preserves Coll on Sj, and

e cach line slower than A that intersects S is an observer line for &.

Such Sy, exists by Ax30Ob and Claim 2.

Claim 7: Assume e € f,,; is such that ey # py and speed(erpr) < A. Then
e€yg.

Proof: Assume e satisfies the assumptions. See Figure 7. Let ¢,, € S be
such that p,, # ¢, and speed(p,,gn) = 0. Note that p,,g,n C ¢(S) and, by
Ax3ODb, p,.q,, is an observer line for m. Choose a; € prqr N Sk such that
ar # pr and speed(egay) < A. speed(erar) < A can be achieved by choosing
ap “very close” to pg.
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coordinate-system of k coordinate-system of m

€k

€m

lines slower am c(5)
than \
S
Sk dm
Pm
observer

Tk lines

Figure 7: Tllustration for the proof of Claim 7.

Now, by our choice of S, and A, both egay, erpr are observer lines for k.
Thus, by Claim 1 (i), e,,a,, and e,,p,, are observer lines for m. Furthermore,
by Claim 1 (ii), am € pm@m-

Assume e, € ppm@m. Then e, € ¢(S). Thus, by Claim 6, e € g.

Assume e, € pnqm. Then the two observer lines e,,a,,, €npm meet in e,
and both of them intersect the open set ¢(S) N Dom(f,.x). But g agrees with
fok on this open set by Claim 6. Therefore, by Claim 5, e € g. QED (Claim 7)

g~ ! denotes the inverse of g. We note that g~! : P"F — P"F is a partial
function.

Claim 8: S;, C Rng(g) and f,,, and ¢! agree on S, i.e.
(e €fr Nex €S;) = e€g.

Proof: Assume e € f,,,, and e, € Si.. Let lines £, ¢’ be slower than \ such that
(N0 = {p} and ey is in the plane determined by ¢, ¢'. See the left hand side
of Figure 8.
If e, € LUV, then e € g by Claim 7. So we can assume e, & £ U /(. Let
ay, by, ¢, di, be distinct points such that a, by € ¢, ¢, d, € ¢/ and
arCr N bkdk = {ek}
Note that, by our choice of S, and Claim 4, f;,, preserves Coll and —Coll on
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Claim 8 Claim 9
lines slower

Sk q € P"F

Ck

Figure 8: Nlustrations for the proofs of Claims 8,9

Si.. Thus

A Con N by, = {em }
By Claim 7, g takes a.,, by, Cn, dpy 10 ag, by, i, di., respectively. Since g pre-
serves PColl, g takes e, to e, i.e. € € g. QED (Claim 8)

Claim 9: g is surjective, i.e. Rng(g) = P"F. Hence g is a bijection.

Proof: Let g € P"F. Let ay, b, cx, di. € Sk be distinct points such that
Pakbk N Pckdk = {q},
cf. the right hand side of Figure 8. Note that the points ag, by, ¢, dp are
coplanar and the lines agby, cpdy are distinct. Since f;,, preserves Coll and
=Coll on Sk, am,bm,cm,d,, are coplanar and the lines a,,b,, and c,,d,, are
distinct. But then there is r € P™F such that
Pa,,by, N Pepdy, = {r}.

By Claim 8, g takes a,,, bm, Cim, diy tO ag, by, c, di respectively. Since g pre-
serves PColl it takes r to ¢. Thus ¢ € Rng(g). QED (Claim 9)

Claim 10: g is a P-collineation.
Proof: By Claim 9, g : P"F — P"F is a PColl-preserving bijection. But any

PColl-preserving bijection f : P"F — P"F is a P-collineation.
QED (Claim 10)
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Claim 11: Assume ¢’ is a P-collineation and S’ is a neighborhood of p,,, and
g’ agrees with f,,;, on S’. Then ¢’ = g.

Proof: Assume ¢, S’ satisfy the assumptions. Let S” be a ball with center
Pm such that S” C SN S’. Then both g, ¢ agree with f,,;, on S”, and f,,;

preserves Coll and —Coll on S”. But then, by the “uniqueness” part of Prop.2,
g=4d. QED (Claim 11)

At this point, item (i) of the theorem has been proven. Item (ii) of the
theorem follows from Claims 8, 10 above and from item (i) of the theorem.
QED (Theorem 1)

Definition: Assume Ax3Ph, AxIstr. Assume m € Ob and p € cd(m). Then
there is a unique A € TF U {0, 00} such that

(Vph € Ph)(p € tr,,(ph) — speed,,(ph) = \).

This unique A is called the speed of light at p for m.

Proof of Theorem 2: Assume the assumptions. Recall that the f,,,’s are
injective partial functions by Proposition 1.

Let m,k € Ob and p € Dom(f,,;) be fixed. Let g be a P-collineation and
let S be a ball with center p such that f,,; agrees with g on S. Such g and S
exist by Theorem 1. Note that S C Dom(f,,x) C cd(m). We will prove that
the restriction of ¢ to ™F is an A-collineation.

Claim 1: Assume z,y € Dom(f,,;), * # y. Then
(zy is a photon line for m) < (fr(2)fmk(y) is a photon line for k).
Here we omit the easy proof. If one wants to obtain a proof, one has to use

AxLine.

Claim 2: Assume h € Ob, ¢ € Lines and = € ¢ Ncd(h) # 0. Let n be the
speed of light at x for h. Then
speed({) =n < (¢ is a photon line for h).

Here we omit the easy proof. If one wants to obtain a proof one has to use
AxLine and AxJPh.

Let A be the speed of light at p for m. By AxFin, A € *F.
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Definition: We call the elements of P"F \ "F infinite points and the elements
of "F finite points.

Recall that if ¢ € Lines, then ¢ € P"F is “the point of ¢ at infinity”.
Claim 3: Assume ¢ € Lines is such that p € ¢ and speed(¢) = A\. Then g({>)
is an infinite point.

Proof: Assume /¢ satisfies the assumptions. Let a,b,c € S be such that a & ¢,

coordinate-system of m: coordinate-system of k:

\gOO

Figure 9: Illustration for the proof of Claim 3.

speed(pa) = A\, b # a, ab || ¢, ¢ € ¢ and ¢ # p. See Figure 9. Then
speed(ab) = A, too. Since the speed of light is A at p for m, pc and pa are
photon lines for m, by Claim 2. Since pa is a photon line, the speed of light
at a is speed(pa) = A for m. Thus, since speed(ab) = A, ab is a photon line
for m by Claim 2. Note that a,b, ¢, p are coplanar and no three of them are
collinear.

Let o/, V', c,p’ be the f,,, images of a,b,c, p, respectively. See Figure 9.
Recall that f,,; agrees with a P-collineation on S. Thus o', ', ¢, p" are copla-
nar and no three of them are collinear since a,b, c,p are such. By Claim
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1, p'd,p'd’, 'l are photon lines for k since pc, pa, ab are photon lines for m.
Thus the speed of light is the same at p" and @’ for k, which is speed(p’a’); the
speed of light at p’ is speed(p’c’); and the speed of light at o’ is speed(a’t’).
Hence speed(p'c’) = speed(a’t’). But then, p'c’ || a't/. Now, since g preserves
PColl and agrees with f,,; on S, it takes Ppc N Pab = {{*} to Pp'c¢’ N Pa'V'.
Hence g takes £*° to an infinite point. QED (Claim 2)

Claim 4: g takes infinite points to infinite points.
Proof: Let q be an infinite point. Then ¢ = ¢* for some ¢ € Lines with

p € £. Let such an /¢ be fixed. Let P be a vertical plane that contains /.
See Figure 10. Let (1,5 be lines of speed A such that ¢; N ¢y = {p} and

speed (/1) = speed(f2) = A

Figure 10: Ilustration for the proof of Claim 4.

01,05 C P. Then, since £ (3° (5° € P>, we have PColl(¢>° (3, (5°). But
then PColl(g(€>), g(45°), g(¢5°)). By Claim 3, g(¢5°) and ¢g(¢3°) are infinite
points. Furthermore, they are distinct. Since no projective line contains two

infinite points and a finite point, we conclude that g(¢°°) is an infinite point.
QED (Claim 4)

Claim 5: g N ("F x "F) is an A-collineation.
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Proof: Since g is a P-collineation it is enough to prove that g N ("F x "F) is
a permutation. By Claim 4, it is enough to prove that g takes finite points
to finite points since ¢ is a permutation on P"F. g takes p to a finite point,
i.e. to f,k(p). To prove that g takes finite points to finite points let ¢ be a
finite point, p # ¢. Since g preserves PColl, we have PColl(g(p), 9(q), 9(pg™)).
Since g(pg®™) is an infinite point and g(p) is a finite point, we conclude that
g(q) is a finite point. QED (Claim 5)

By this the “existence” part of our theorem has been proven. The
“uniqueness” part of the theorem follows from Theorem 1 and from the fact

that any A-collineation can be extended to a P-collineation.
QED (Theorem 2)

We will use Lemma 1 in the proof of Theorem 3.

Lemma 1. Assume LocRel \ {AxIstr, AxFin}. If there is an observer
trace in a plane passing through a point, then there is a photon trace in the
plane passing through the point.

Formally: Assume m,k € Ob and p € tr,, (k) C P € Planes. Then there
is a ph € Ph such that p € tr,,(ph) C P.

Proof: Assume m,k € Ob and p € tr,,,(k) C P € Planes. f,; is an injective
partial function by Proposition 1. We can assume p € Dom(f,,x) since, by
AxEvent, k has a brother h such that p € Dom(f,,,). Let p’ := f,.x(p). By
Theorem 1, there are a P-collineation g and balls S,S’ with centers p,p/,
respectively, such that f,,; agrees with g on S and f,,, agrees with ¢~* on 5,
where g~! denotes the inverse of g. Let such g, S, S be fixed. See Figure 11.
By AxLine and S C Dom(f,x) C cd(m), £NS = tr,(k) NS, for some
¢ € Lines. Thus there is ¢ € tr,, (k) NS such that p # ¢. Let such a g be
fixed and let r € S N P be such that p,q,r are non-collinear points. Let
¢ and 7’ be the f,,; images of ¢ and r, respectively. The P-collineation
g takes p,q,r to p',q,r’, respectively. Thus p’, ¢, are non-collinear, too.
Let P’ be the plane that contains p',¢,7. We have p', ¢ € tri(k) since
p,q € trp(k). By AxSelf, speed(p'q’) = 0. Thus P is a vertical plane.
Hence, by Ax3Ph, there is a photon ph such that p’ € tri(ph) C P’. Let
such a ph be fixed. Let a’ € triy(ph) N S" be such that a’ # p’. Such an d
exists by AxLine. Let a := fy,,(a’). Since g~! agrees with fy,,, on S’ it takes
a’ to a. Since P-collineation g~! takes p’, ¢, 7, a’ to p,q,r,a, respectively, we
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coordinate-system of m coordinate-system of k

koo P

Figure 11: Ilustration for the proof of Lemma 1.

conclude that p,q,r, a are coplanar, i.e. a € P. Furthermore, a,p € tr,,(ph)
since da’,p’ € try(ph). But then, by AxLine, tr,,(ph) C P.
QED (Lemma 1)

Proof of Theorem 3: Assume n > 2 and LocRel \ {AxFin}. Assume
there is an FTL observer, i.e. there are k,m € Ob such that k is FTL w.r.t.
m. Let such m, k be fixed. Then there is p € tr,, (k) such that

speed,,(k) > (speed of light at p for m). Let such a p be fixed and let A be
the speed of light at p for m. Let P be a plane such that tr,,(k) C P and

(V¢ € Lines)(¢ C P — speed({) > \). (2)

See Figure 12. Such a plane exists since speed,,(k) > A and n > 2. Now, by
Lemma 1, there is a photon ph such that p € tr,,(ph) C P. For this ph € Ph,
by (2), we have speed,,(ph) > A. This contradicts the fact that the speed of
light at p for m is A.

QED (Theorem 3)

Now, we turn to the proof of our last “noFTL” theorem, Theorem 5.
Propositions 3-6 and Lemmas 2-4 below are needed for the proof of this
theorem.

Proposition 3. Assume AxLine, Ax3dPh, AxFin.
Then for every m, k € Ob, f,,;, : "F — "F is an injective partial function.
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lines of speed A
photon lines

Figure 12: Ilustration for the proof of Theorem 3.

Outline of proof: The proof of the proposition is similar to that of Propo-
sition 1. Instead of observer m in that proof one has to use a photon to

obtain a proof for the present proposition.
QED (Prop.3)

Ax3Ob* below is a weaker version of Ax30b.

Ax3Ob™* For every vertical plane P, each point in the coordinate-domain
has a neighborhood and a “speed threshold” A such that each line in
plane P slower than A and intersecting the neighborhood is an observer
line, i.e.

(Vm € Ob)(V vertical plane P)(Vp € cd(m))(3e, A € TF)
(V0 € Lines) ((E C P A speed({) <X A LN S(p,e) #0) —

¢ is an observer line for m)

Proposition 4. LocRel; \ {AxSelf, AxEvent} = Ax3Ob*.
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Proof:

Claim 1: Assume P is a vertical plane, p € P, S’ is a ball with center p,
A € TF, and ¢ is a line such that p € £ C P and \ < speed(¢). Then there is
a ball § C S’ with center p such that each line ¢’ in plane P slower than A
and intersecting S meets ¢ within S” (i.e. 0 (N C S").

Proof: Assume P, \, p, S’, ¢ satisfy the assumptions. Let a,b € £ NS’ be such
that Bw(a, p,b). See the left hand side of Figure 13. Let ¢,, ., ¢y, £} be lines
in P of speed A such that {a} = ¢, N ¢, and {b} = ¢, N {,. Let S be a ball
with center p such that circle S N P is inside the parallelogram determined
by Lo, ll, by, £}, i.e. such that SN (€, UL, UL,UL) = 0. This S has the desired

properties, cf. Figure 13. QED (Claim 1)
Claim 1 P Claim 2
Lo, U}, Uy, £ are of speed A
A line
Nb - slower observer
/ than 1jnes

]

S'NnP

Figure 13: Hlustrations for Claims 1 and 2.

Definition: Let ¢ € Lines and d € dir. We say that ¢ is in direction d iff
speed({) =0 or (Ip,q € O)(pr > @ N ps — qs = d).

Now, assume LocRel; \ {AxSelf, AxEvent}.
Claim 2: Assume m € Ob, x € cd(m) and d € dir. Then there is exactly

one photon line for m in direction d passing through z. Let ¢ be this photon
line. Then 0 < speed(f) < oo and any line slower than speed(¢) in direction
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d passing through x is an observer line for m. See the right hand side of
Figure 13.

We omit the easy proof.

To prove that Ax3Ob™* holds, let m € Ob, let P be a vertical plane and
p € cd(m). We need a ball S with center p and a “speed threshold” A such
that each line in plane P slower than A and intersecting S is an observer line
for m. We can assume that p € P. Let d € dir be such that each line in P
is in direction d or —d. Let {1, /5 be photon lines for m passing through p in
directions d, —d, respectively. (1, s exist by Claim 2. speed(/;),speed({s) €
*F by Claim 2. Furthermore, ¢;,f5 C P. Let A\ € TF be such that A <
speed(/;),speed({s) and let S" C cd(m) be a ball with center p. By Claim 1,
there is a ball § C S’ with center p such that any line in P slower than \
and intersecting S meets both ¢; and ¢, within S’. Let such an S be fixed.

Claim 3: Any photon line ¢ for m in P intersecting S is of speed > .

Proof: Assume /¢ is a line in P slower than A\ and intersecting S. Then ¢ is
in direction d or —d. Assume, e.g., ¢ is in direction d. See Figure 14. By
our choice of S, ) #¢N¥¢; C S Ccd(m). Let ¢ € £N{y. By Claim 2, there
is exactly one photon line in direction d passing through ¢ € cd(m). This
photon line is ¢;. Thus ¢ cannot be a photon line. QED (Claim 3)

slower

than A

Figure 14: Ilustration for the proof of Claim 3.
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Claim 4: Any line in plane P slower than A and intersecting S is an observer
line for m.

Proof: The claim follows from Claims 2 and 3. For completeness we include
a detailed proof. Let ¢ be a line in plane P slower than A and intersecting
S. Let ¢ € /' NS C cd(m). ¢ is in direction d or —d. Assume, e.g., '
is in direction d. Let ¢ be the photon line passing through ¢ in direction
d. ¢ exists by Claim 2. Clearly ¢ C P. By Claim 3, speed(¢) > A. Thus,
speed(¢') < speed(¥). Hence, ¢’ is an observer line by Claim 2.

QED (Prop.4)

Proposition 5. Assume

LocRel; \ {AxSelf, AxEvent} or {AxLine, Ax3Ob*, AxOpen}. Then
for every m,k € Ob, wvertical plane P and p € Dom(f,) N P there is a
netghborhood N of p and a P-collineation that agrees with f,,;. on N N P.

Proof: Assume the assumptions. Then, by Proposition 4, Ax30b™ holds.

Notation: Assume m,k € Ob. Then for every a € f,,, a, denotes the
first component of a, while a;, denotes the second component of a, i.e. a =
(@, ag). Furthermore, if a,, € Dom(f,;), then a; denotes f,x(a,) and if
ar, € Rng(f,.r) = Dom(fy,,), then a,, denotes fy,, (ax).

Let m, k € Ob, a vertical plane P and p,, € Dom(f,,x) N P be fixed until the
proof is complete.

Claim 1: Assume m, k € Ob and a,b € ., a # b. Then (i), (ii) below hold.
(i) (amby, is an observer line for m) < (axby is an observer line for k).

(ii) f, preserves Coll and —Coll between three points if the line determined by
two of the points is an observer line. Formally: Assume a,,b,, is an observer
line for m. Then for every ¢ € f,,

Coll(am, by, cm) < Coll(ay, by, cx), or equivalently ¢, € ab,, < ¢ € apby.

We omit the easy proof.
Claim 2: There is a ball S C Dom(f,,,;) with center p,, such that f,,; preserves
Collon SN P.

Proof: A proof can be obtained from the proof of Claim 2 for the proof of
Theorem 1 (p.244), in the following way: One uses Ax3Ob* in place of
Ax30b. QED (Claim 2)
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Let S C Dom(f,,x) be a ball with center p,, such that f,,; preserves Coll on
SNP.

Claim_3: ;. preserves —Coll on SN P.

Proof: A proof can be obtained from the proof of Claim 4 for the case n = 2
in the proof of Theorem 1 (p.247), in the following way: One uses Ax3Ob*
in place of Ax3O0Db. QED (Claim 3)

Recall that for B € Planes, B® denotes the “line of B at infinity”.

fmr preserves Coll and —Coll on S N P by the choice of S and by Claim
3. Thus, by the proof of Proposition 2, there is a unique PColl-preserving
function ¢ : (P U P*) — P"F that agrees with f,,;, on SN P. Furthermore,
this g is injective. Let g be fixed. By Ax3Ob™, there is a neighborhood of
pm and a “speed threshold” A such that each line in P slower than A and
intersecting the neighborhood is an observer line for m. Let such a A be
fixed.

Claim 4: g agrees with f,,, on the set
{em € Dom(f,,x) NP : speed(ppem) < A}

Proof: Let e,, € Dom(f,,;) N P be such that speed(pe,) < A. Then by the
choice of A\, p,e,, is an observer line for m. Let ¢,, € S N P be such that
—Coll(¢m, Pms €m) and €,q,, is an observer line for m, too. ¢, exists by the
choice of \. See the left hand side of Figure 15. Let a,, € e,p, NS and
bm € ¢gmem NS be such that b, # ¢, and a,, # p,,. Hence pa,, N ¢nb, =
{em}. By Claim 1 (ii), prar N qebr = {ex}. Since g agrees with f,,, on SN P,
it takes pum, @y by G tO Dk, Ak, b, qi, Tespectively. Since g preserves PColl,
it takes e,, to e. QED (Claim 4)

Since g : (PUP>) — P"F preserves PColl, there is () € Planes such that
Rng(g) C Q U Q. Let such a @ be fixed.

Claim 5: Rng(g) = Q U Q. Thus g is a bijection between projective planes
PU P> and Q U Q.

Proof: Let ay,,bm,cm € SN P be such that p,, € {am,bn,cn}t and ppan,
Pmbm, PmCm are distinct lines slower than A. Then by our choice of A\, p,,an,
Pmbm, PmCm are observer lines for m. See the right hand side of Figure 15.
Since g agrees with f,,;, on SN P and Rng(g) C QUQ>, Pprag, Pprbr, Pprcr C
QUE™.
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Claim 4 Claim 5

S NP

Figure 15: Illustration for the proofs of Claims 4 and 5

To prove Rng(g) = QU Q™®, let ¢ € QU Q™. By Claim 3, Ppyax,
Pprbr, Pprcp are distinct. Thus two of these lines do not contain q. We
can assume ¢ € Pppap U Pprbr. Let S” be a ball with center p, such that
S" C Dom(f,,) = Rng(f,.x). S exists by AxOpen. Let dy, e, € prarNS’ and
frs gk € prbe NS’ be such that Pdy fi, N Pergr = {q}. See the right hand side
of Figure 15. By Claim 1, d,,, e € pmam and fi, gm € Pmbm since ppan,,
Pmbm are observer lines. d,,, €, fm, gm are distinct because di, ey, fi, gr Were
such. Let r € P"F be such that {r} = Pd,, f, N Pepgm. By Claim 4, g takes
Ay €ms frns Gm O di, ek, fx, gx, respectively. Since g preserve PColl, it takes r
to ¢. Thus ¢ € Rng(g). QED (Claim 5)

Any PColl preserving bijection between two projective planes can be ex-
tended to a P-collineation, cf. e.g. [7, 4.4.11, p.40]. Thus, there is a P-
collineation f such that f O g. Now, f,,; agrees with such a P-collineation
of SNP.

QED (Prop.5)
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Proposition 6. Assume f is a P-collineation and a,b € "F are such that
(Vp € [a,b])f(p) € "F. Then f takes [a,b] onto [f(a), f(D)].

Outline of proof: Consider the (n + 1)-dimensional vector space "*'F :=
("F.0,+,...) over the field F. Let us introduce an equivalence relation
on the set "™F \ {0} as follows. u,v € ""'F\ {0} are equivalent iff there
exists A € F\ {0} such that u = Av. The set of equivalence classes is called
the projective space associated with the vector space ""'F and is denoted
by FP" according to [7]. We will denote the equivalence class of a vector
0 # v € "MF by [v]. The collinearity relation Pcoll on FP" is defined as
follows. Pcoll([u], [v], [2]) iff 0,u, v,z are coplanar. The following is known
from projective geometry.

Fact 1: Structures P = (P"F, PColl) and (FP", Pcoll) are isomorphic. More-
over, there is a unique isomorphism 7 between the two structures such that

(%) (Vp € "F) i(p) = [(1,p1,p2, - - -, Pu)]-

Let f : FP* — FP" be a function. We say that f is induced by a
bijective linear transformation iff there is a bijective linear transformation A
of the vector space ""'F such that f([v]) = [Av] for all v € "TIF\ {0}. We
say that f is induced by a field automorphism iff there is an automorphism
Y of the field F such that f([v]) = [(¢(v1),¥(va), ..., ¥(vye1))] for all v €

"R ()

From now on we identify P = (P"F, PColl) with (FP", Pcoll) by the unique
isomorphism 7 that satisfies (x) in Fact 1 above, consequently, we treat P"F
and FP™ as they were identical. Then, P"F — P"F functions induced by
bijective linear transformations and the ones induced by automorphisms are
P-collineations. The following is known from projective geometry, cf. [7, 6.3,
p.60].

Fact 2: Any P-collineation is a composition of a P-collineation induced by a
bijective linear transformation and a P-collineation induced by a field auto-
morphism.

Claim 1: Assume f is a P-collineation induced by a field automorphism.
Then f takes "F onto "F and (Va,b € "F) ( f takes [a,b] onto [f(a), f(b)]).
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Proof: Since F is a Euclidean field, any automorphism v of F preserves <,
ie.x <y = ¢(x) < ¥(y). By this fact, one can easily check that the
statement holds. QED (Claim 1)

Claim 2: Assume f is a P-collineation induced by a bijective linear transfor-
mation and a, b € "F are such that (Vp € [a,b]) f(p) € "F. Then f takes [a, b]

onto [f(a), f(b)].
We omit the easy proof.

Now, the proposition follows from Fact 2 and Claims 1 and 2.
QED (Prop.6)

Lemma 2. Assume LocRel; \ {AxSelf, AxEvent}. Assume m,k € Ob.
Then for every { € Lines and p € £ N Dom(f,.x) there is g € £ N Dom(f,.x)
such that p # q and f.x takes [p,q] onto [fr(p), fme(q)].

Proof: The lemma follows from Propositions 5 and 6. QED (Lemma 2)

Lemma 3. Assume LocRely . Then the conclusion of Lemma 1 holds, i.e.
iof there is an observer trace in a plane passing through a point, then there is
a photon trace in the plane passing through the point.

Formally: Assume m,k € Ob and p € tr,,(k) C P € Planes. Then there
is a ph € Ph such that p € tr,,(ph) C P.

Proof: Assume LocRel; . Let m,k € Ob, p € tr,,, (k) and P € Planes be such
that tr,, (k) C P. Then f,, is an injective partial function by Proposition 3.
We can assume p € Dom(f,,;) since, by AxEvent, k has a brother h such
that p € Dom(f,.p).

Let ¢ € P N Dom(f,;) be such that ¢ & tr,,,(k) and f,,; takes [p, q] onto
[tk (D), fmk(q)]. Such a g exists by Lemma 2. See Figure 16. Let p’ and ¢’ be
the f,,; images of p and ¢, respectively. Then p’ € tri(k) and ¢’ & tri(k). Let
P’ be the plane determined by tr.(k) and ¢’. P’ is vertical by AxSelf (and
AxLine, AxOpen).

Let S be a ball with center p’ and let g be a P-collineation such that ¢
agrees with f;,,, on SN P’. They exist by Proposition 5. Let ph € Ph be such
that p’ € try(ph) C P’. Such a ph exists by Ax3Ph. Let o’ € S N try(ph),
Ve SNp,q] and ¢ € try(k) NS be such that p’ & {a’,V/,c'}. Such ', ¢
exist by AxLine and by SN P C Dom(f,x) C cd(m). Let a,b,c be the
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coordinate-system of m coordinate-system of k

kP

Figure 16: Hlustration for the proof of Lemma 3.

fem images of a', V', ¢, respectively. Then p & {a,b,c}, ¢ € tr,(k), b € [p,q|
and a,p € tr,(ph). Since P-collineation g agrees with fy,, on SN P, g
takes p’,d’, V', d to p,a,b, c, respectively. But then p, a, b, ¢ are coplanar since
p,a b, ¢ are such. Thus a € P. But then, by AxLine and a,p € tr,(ph),
we have tr,,(ph) C P. QED (Lemma 3)

Lemma 4. Assume LocRel;. Assume m € Ob, p,a,b € "F are non-
collinear points, p € cd(m), the plane that contains p,a,b is vertical, pa is
an observer line for m and (Bq € [a,b])(pq is a photon line for m).

Then pb is an observer line for m.

Proof: Assume LocRel;. Assume m,p,a, b satisfy the assumptions. Then
pa Ncd(m) = tr,(k), for some k € Ob. Let such a k be fixed. We are in
the coordinate-system of m. Let P be the vertical plane that contains p, a, b.
Let S be a ball with center p such that f,,; agrees with a P-collineation on
SN P. Such an S exists by Proposition 5.

Let ¢,d € SN P be such that Bw(p, ¢,a) and Bw(p, d,b). See Figure 17.
Then

(Aq € [c,d])(pq is a photon line for m). (3)

By AxLine and SN P C Dom(f,.x) C cd(m), p, c € try,(k).
Let us switch over to the coordinate-system of k. Let p/, ¢, d’' be, respec-
tively, the f,,;, images of p,c,d. Since f,,, agrees with a P-collineation on
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coordinate-system of m coordinate-system of k

Figure 17: Ilustration for the proof of Lemma 4.

SNP,p,d,d are non collinear. Furthermore, f,,; takes [c,d] onto [¢/,d'] by
Proposition 6. Therefore, by (3),

(Aq € [¢,d])(p'q is a photon line for k). (4)

Let P’ be the plane that contains p/,d’, . p',cd € tri(k) by p,c € tr, (k).
By AxSelf, speed(p’c’) = 0. Thus P’ is a vertical plane. Let ¢ € Lines be
such that speed({) = oo and ¢ € ¢ C P'. By Ax3Ph, AxP1, AxFin,
there are exactly two photon-lines for k in plane P’ passing through p, cf.
Claim 2 on p.257. Let {1, {5 be these photon lines. speed(/;),speed(¢y) € TF
by AxFin. Let e € /N¢; and f € {N¥ly. Then Bw(e, , f) by AxP1. By (4),
neither ¢; nor ¢y intersects [/, d’]. But then, by AxOb, p'd" is an observer
line for k, cf. Claim 2 on p.257. Thus, pd = pb is an observer line for m, too.

QED (Lemma 4)

Proof of Theorem 5: Assume n > 2 and LocRel;. We will show that if
there is an FTL observer, then there is a photon with infinite speed. This
will contradict AxFin.

Assume there is an FTL observer, i.e. there are m,k € Ob, ph € Ph,
d € dir and p € "F such that k£ and ph move in direction d as seen by m,
p € tr, (k) Ntr,(ph) and speed,, (k) > speed,,(ph). Let such m, k, ph,d,p be
fixed. See Figure 18.

By AxLine and AxOpen, there are unique ¢, /¢, € Lines such that
try, (k) = €. Necd(m) and try,(ph) = fonNed(m). Let such g, £ be fixed. Let
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P/

Figure 18: lustration for the proof of Theorem 5.

P Dbe the plane that contains ¢ and ¢,,. P is vertical since k£ and ph move in
the same direction. Let ¢ € Lines be such that p € £ C P and speed({) = cc.
We will show that ¢ is an observer line for m. Since ¢; is an observer line, we
can assume that ¢ # ). Since k is an FTL observer (w.r.t. m), speed(¢) # 0.
Let a € ¢, and b € ¢ be such that p &€ {a,b} and speed(ab) = 0. Since k
moves faster than ph (as seen by m), {pn N [a,b] = 0. Hence, by AxP1, for
any photon line ¢’ for m that passes through p, we have ¢ N [a,b] = 0. Thus,
by Lemma 4, ¢ = pb is an observer line for m.

Let h € Ob be such that tr,,(h) = ¢Ncd(m). Let P be a plane such that
¢ C P’ and any line contained in P’ has infinite speed. There is such a plane
by n > 2. Clearly, p € trg(h) C P’. By Lemma 3, there is a photon ph’ such
that p € tr,,(ph’) C P’. Then, by AxLine and AxOpen, speed,,(ph’) = oo
for this ph’. But this contradicts AxFin.

QED (Theorem 5)
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1 Introduction

The relationships between modal propositional logic and predicate logic are
tight and diverse. It is well-known that modal propositional logic can be
seen as a fragment of second-order predicate logic [14], and that classical
first-order logic may be viewed as an extension of a ‘minimal’ predicate logic
derived from the multi-modal version of the smallest normal modal logic K
[2].

In this paper, we consider constructive modal and first-order logic with
strong negation ~. We say that a modal logic L satisfies semantical duality
if the modal operators O (“it is necessary that”) and < (“it is possible that”)
are interpreted with respect to the same accessibility relation R. The logic L
satisfies formal (syntactical) duality if ~ OA > O ~Aand ~CA— O~ A
are provable.

In the case of modal logics defined over classical logic, it is quite natural
to assume that O and < are dependent both semantically and formally, that
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is, mutually definable using Boolean negation. This is not the case, if we
consider intuitionistic modal logics. In intuitionistic predicate logic (Qlnt),
the universal and the existential quantifier are not interdefinable by means of
intuitionistic negation —. Since O and < are restricted universal, respectively
existential quantifiers over states (possible words), a natural consideration is
that O and < are independent in intuitionistic modal logic. M. Bozi¢ and
K. Dosen [3] tried to combine semantical and formal duality with intuition-
istic propositional logic as the underlying non-modal base logic. However,
the resulting system lacks the Disjunction Property (DP) and therefore can
hardly be considered as an intuitionistic modal logic.

A.K. Simpson [12] supposes that a genuine intuitionistic propositional
modal logic (I ML) should satisfy the following properties:

1. IML is conservative over intuitionistic propositional logic (IPL);

2. IML contains all substitution instances of theorems of IPL and is closed
under modus ponens;

IML + AV —A yields a system of classical modal logic;
IML has the DP (if - AV B, then - A or - B);

0 and < are independent in IM L (as well as V, A, —, and —);

A AT

There exists an intuitionistically comprehensible explanation of the
meaning of the modalities, relative to which IM L is sound and com-
plete.

Whereas Simpson rejects formal duality, he takes it that semantical duality
should hold. But there are also authors who reject both forms of duality in
IML. V. Sotirov [13] defined the system IKy(O<) using three accessibility
relations: one for interpreting intuitionistic implication, one for O, and an-
other one for &. IM L can be considered as a result of fibring classical modal
logic and intuitionistic logic. In developing the idea of fibring, D. Gabbay 7]
also prefers to consider O and < as semantically independent, and Sotirov’s
approach to IML is also taken as basic in [8]. But even in the absence of
intuitionistic implication, in the context of an (absolutely) positive modal
logic, it has been pointed out by M. Dunn [4] that it is “instructive to con-
sider frames with two accessibility relations R® and R®” so that the relation
between the modal operators required to obtain semantical duality must be
enforced and made explicit by suitable interaction rules.
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Fuhrmann [6] defined modal relevance logics satisfying both formal and
semantical duality, where negation is interpreted using the ‘Routley star’.
This negation is different from Nelson’s strong negation.

The justification for Simpson’s Condition 5 is not given, if we pass from
intuitionistic negation to Nelson’s negation. In Nelson’s constructive logic
with strong negation, the quantifiers are duals, and the De Morgan Laws
hold:

~VrA(z) ¢ dJx~A(x), ~ JzA(z) < Vo~ A(x),

~ (AV B) < (~ AN~ B), ~ (AAB) ¢ (~ AV ~ B).

In fact, formal duality between 0O and < was the main motivation for S. Aka-
ma [1] to introduce a modal extension of Nelson’s three-valued system N3. In
[15] a modal epistemic extension of Nelson’s four-valued logic N4 is defined,
in which formal duality holds but semantical duality fails. On the other
hand, in [10], we have found a natural example of a modal extension of
Nelson’s paraconsistent logic N4, where the modalities are semantically but
not formally dual.

These systematical and historical observations motivate the desire to
study the interrelations between modalities and strong negation. We shall
emphasize that semantical and formal duality are independent of each other,
by defining four axiomatic systems of constructive modal logic with strong
negation. First of all, we shall consider positive constructive logic with and
without semantical duality, systems PK and PK?. Next, we shall add the
strong negation axioms for the non-modal connectives to obtain the modal
logics NK™ and NK?~. To these systems we then add the duality axioms for O
and <, yielding the logics NK and NK?. In each case we prove soundness and
completeness. For the logics without semantical duality we use tri-relational
models (W, <, Rg, Ro,v™,v7), for the remaining logics we use bi-relational
models (W, <, R, v, v7).

In a third step, we shall introduce certain extensions of NK~, NK¢~, and
NK?. These extensions are motivated by considering four translations from
the modal language into the language of QN4, the first-order extension of
Nelson’s four-valued constructive logic with strong negation, see [10]. We
shall observe that the translation for NK? is a faithful embedding into QN4,
returning the system FSK? and that in the remaining cases, the translations
are embeddings. We do not introduce an extension of NK and conjecture that
the corresponding translation faithfully embedds this logic into QN4. In spite
of their transparent axiomatizations, the possible worlds semantics for the
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logics NK™ and NK?~, which lack formal duality, is unsatisfactory, because
the falsification clauses for formulas ¢ A and OA treat them as atoms. The
translation-driven extensions FSK™ and FSK?~ yield perhaps more natural
examples of constructive modal logics with strong negation that fail to satisfy
formal duality. Now the falsification clauses for formulas ¢A and OA are
recursive and the clause for & A refers to an accessibility relation R™, which
means that impossibility is treated as an independent modal operator. In
[10], the multi-modal version of FSK? is referred to as CALCN.

2 Positive constructive modal logic

Define the logic PK in the positive modal language £ := (V, A, —, 0O, <)
with the set of propositional variables Prop via the axioms:

Axioms of intuitionistic positive logic

ODAAOB — O(AAB)

0(A— A)

O(AV B) - CAV OB

= W

and the rules

NP A A—B R A— B A— B
" B " pA—-oB ¥ OA—-OB

By an extension of PK we mean a set of formulas in the language £
containing all PK-theorems and being closed under the three rules of PK. In
this way, a logic is identified with the set of its theorems and A € PK means
that A is a PK-theorem. On the other hand, the relation I'" Fpx A, where
I' is a set of formulae and A a formula, holds iff A can be obtained from
PK-theorems and elements of I' with the help of modus ponens only. We put
Cl(T) :={A| " Fpk A}. Corresponding definitions are assumed for all other
logics considered below. It is clear that any PK-extension is closed under the
replacement rule

A< B
C(A) « C(B)’
i.e., provable equivalence has the congruence properties in all PK-extensions.
A PK-frame is a tuple W = (W, <, Ry, Ro), where <, Ry, R, are binary
relations on the set W such that:




S.P. ODINTSOV  H. WANSING 273

< is reflexive and transitive (i.e., is a quasi-order).

1.
2. S_l OR<> - R<>O S_l.

For a quasi-order (W, <), denote by (W, <)* the set of its cones (the set of
all X C W such that if v € X and v < w, then w € X). A PK-model
M = (W, < Ry, Re,v) is a PK-frame augmented with a valuation function
v: Prop — (W, <)*.

The forcing relation M, t |= A, where t € W, is defined for propositional
variables and positive connectives as in intuitionistic logic and for modalities
as follows:

Mt =0A iff Vu > tVu(uRgv implies M, v = A)
Mt =CA iff Ju(tRou and M,u = A)

A discussion of these forcing conditions can be found in [12]. The notions of
validity on a model, M = A, on a frame, W = A, and of PK-validity, |=pk,
are defined in the usual way.

Lemma 1. (Persistence) For any PK-model M = (W, <, Ry, Ro,v), s,t €
W, and formula A, if s <t, then M, s = A implies M,t = A.

Theorem 1. For any A, A € PK iff Epk A.

The proof can be obtained as a combination of proofs of Theorems 1 and 4
from [3].

The logic PK? is obtained from PK by adding the following axioms stating
an interaction between O and <:!

5. O(A— B) —» (0A — ©OB)
6. (C(A— A)—-0OB)— OB

A PK%frame is a tuple W = (W, <, R), where < and R are binary rela-
tions on the set W such that:

1PK? differs from Dunn’s [4] positive modal logic K. The intention of M. Dunn was
to construct an absolutely positive modal logic; therefore he deleted from the language not
only negation, but also implication, which can be considered as a negative operator wrt the
first argument. The interaction between O and < in K, is captured by the deducibility
statements CAA OB F G(AA B) and O(AV B) F OA Vv OB. Note that if we replace -
by — in these deducibility statements, we obtain (CA A OB) — OG(AAB) € PK? and
O(AV B) — (DA V OB) ¢ PKY.
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1. < is reflexive and transitive.

2. <'oRC Ro <L

A PK%model M = (W, <, R,v) is a PK%frame together with a valuation
function v : Prop — (W, <)*. The forcing relation is defined as above, but
we use the same relation R to define the forcing conditions of OA and of G A.

In the usual way we define the notions of validity on a model and on a frame
and of PK%-validity.

Lemma 2. (Persistence) For any PK*-model M = (W, <, R,v), s,t € W,
and a formula A, if s <t, then M,s = A implies M, 1t = A.

Theorem 2. For any A, A € PK? iff Epya A.

The proof is a modification of the completeness proof for the intuitionistic
modal logic IK (alias Fischer Servi logic FS), see [12, pp. 52, 53]). PK? is
a proper sublogic of the positive fragment of I K. Below we give this proof,
because it seems that PK? has not been considered in the literature yet, and
because the proof reveals how the interrelations between the modalities arise
expressed by Axioms 5 and 6. (We shall omit the index in ‘Fpxa’.)

Proof (of Theorem 2). The soundness of PK? wrt to the considered semantics
can be verified directly. For the completeness proof we shall use the canonical
model method. A set of formulas I is called PK%prime if it contains all PK%-
theorems, is closed under MP and possesses the disjunction property in the
form (if ' - Av B, then I' - A or I' = B). For two sets of formulas I" and
A, the notation I' H A means that

AN...NAF B V...V B,

for some formulas Aq,..., A, € I' and By,...,B,, € A. As usual, we prove
an extension lemma.

Lemma 3. IfT' I/ A, then there exists a PK®-prime set T" such that T C T
and IV t/ A.

We define the canonical PK%“model

Mc — <Wc’ g7 Rc7 UC>
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as follows. ¢ is the family of all PK%prime sets and C is set-inclusion. The
relation I'R°A holds iff 'y C A and A® C T, where

Iy :={A| OA€cT}and A := {CA| A€ A}.

Finally, v°(p) = {T' € W¢ p € T'}. Note that the relation A® C T is
equivalent to At/ {A| CA & T}.

Lemma 4. M€ is a PK-model.

Proof. Tt is enough to check that C! oR¢ C R° C~! Let I'y,I',A € W¢
be such that I' C I'y, 'y € A, and A® C I". We have to construct a set
Ay € Wesuch that I'gR°Ag 2 A. Let us consider the set Aj := AU (I'y)g.
We claim that

Ay i {A] ©A € To}.

Indeed, assume that for some formulas OA,,...,0A4, € 'y and By, ...,
OBy, € Ty, we have
AU{AN...NALEB V...V B,

In this case, for some C' € A,

C— (ALAN...NA,) = (B, V...V By,)) € PKY,
OC — O((ALN...NA,) = (B V...V By)) € PK? by Rule R,
OC = (O(ALA ... ANA,) = O(BL V...V By,)) € PK by Axiom 5.

Since A® C T, we have ©C € I' C Iy, whence

D(Al/\/\An)—)O(Bl\/\/Bm)EF(),
(ODA AN ... ANOA,) = (OB V...V OB, € Iy by Axioms 2 and 4.

Since OA4,...,04, € I'y, also OBy V... VOB, € Iy, and ¢B; € I'y for
some ¢ in view of the disjunction property of 'y, a contradiction.

We have thus proved Aj 1/ {A| CA ¢ I'y}. By the previous lemma, there
exists a PK%prime extension Ag of A with Ag I {A] OA ¢ T'y}. The latter
means that Ay C I'y. Moreover, (I'g)g € A by definition of Aj. Thus, A
is the desired element of W°. ]

Now we prove the canonical model lemma.
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Lemma 5. For any I' € W€ and formula A,
MET EAiff Ael.

The proof is by induction on the structure of formula and we consider only
the cases of modal operators.
0. By definition and induction hypotheses we have the equivalence

MET EOA & VI DT VA(A® C Ty and (Ty)g € A imply A € A).

We have to prove that the right-hand side of this equivalence is equivalent
togA el

If OA € T, then for any I'y O I' and A with (I'g)g € A we shall have
Ae A

Conversely, assume OA ¢ I" and construct I'y D I" and A such that ['y R°A
and A & A.

Lemma 6. The following facts are true for any I' € W¢ and formula A.
1. IfTg A, then A€ TI'.
2. Tog=(C(TU{S(B = B)}))g.

Proof. 1. Assume OA ¢ I" and I'q - A. For some Ay,..., A, € 'y, we have
(AL A...ANA,) = A€ PK? from which we obtain by Rule Ry and Axiom 1

(OAL A ... ADOA,) — OA € PKY,

i.e., OA €T, a contradiction.

2. This item follows from Axiom 6. |

We turn to the proof of the canonical model lemma. If &C' € T' for some
C, we put I'y = I'. Otherwise, let us consider IV = CI(T' U {C(po — po)}).
By Item 2 of the previous lemma, OA ¢ I and we denote by I'y a PK%prime
extension of IV with 'y I/ OA. By Item 1 we have (I'g)g I/ A.

We have defined I'y so that GC' € Iy for some C. Note that

(To)o 7 {B| OB & I'o}.
Otherwise, for some OA;,...,0A4, € ['yand CB; ..., OB, €1y, we have
C— ((ALA...ANA,) = (Bi V...V By,)) € PK,
OC = O((AyN...ANA,) — (B V...V B,,)) € PK? by the rule R,
OC — (O(A1A...ANA,) = O(By V...V By)) € PK? by Axiom 5.
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Thus, O(A1A...NA,) = (B V...V B,,) € I'y. Applying Axioms 2 and
4 we obtain OBy V...V B, € I'y, which means that OB, € I’y for some 1,
a contradiction.

By Lemma 3 there exists A € W such that A D (I'g)5 and

At {A}U{B| OB ¢Ty}.

It is not difficult to see that this is the desired A.
<. By definition and induction hypotheses

METEOA & AT CAand A CT and A € A)

We must prove that the latter statement is equivalent to G A € I". If the right-
hand side of the equivalence holds, from A® C T and A € A we immediately
obtain CA €I

Assume ¢A € I'. Arguing as in the previous item we can show

AUT, i/ {B| ©B ¢T}.

Extend AU Ty to the set A € W€ such that A I/ {B| OB ¢ I'}. We have

obtained A with A € A and I'R°A. [ |
The canonical model lemma immediately implies the conclusion of the
theorem. ]

The semantical characterization of the logics PK and PK? allows one to
obtain the following

Proposition 1. The logics PK and PK? are conservative extensions of the

positive fragment of intuitionistic logic.

3 Adding strong negation

From now on, we will work with the language £ := £* U {~}, where ~ is
a symbol for strong negation. Let For denote the set of all formulas of the
language £, and let

OFor :={0A| A € For} and OFor := {CA| A € For}.

We define four extensions of the logics PK and PK? with strong negation. Let
V be the set of strong negation axioms for non-modal propositional logic, i.e.,
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V = {~~A< A~ (AVB) <+ (~ AN~ B),
~(AAB) <« (~ AV ~B),~(A— B) + (AN~ B)}

and let D :={~0A < & ~A ~CA < O~ A} be the set of duality axioms
for the modalities. We set

NK~ = PK+V
NK™ = PK!+V
NK = NK +D
NK? = NK* +D

A formula is in negation normal form if it contains ~ only in front of
propositional variables. Let 0¢ = & and O¢ = O. The following translation
(+) sends every formula A to a formula in negation normal form, where p €
Prop, o € {V,A\,—} and t € {00, C}:

p =D
~~A = A AoB = Ao
~(AVB) = ~AAN~B ~(AAB) = ~AV~B
~(A=-B) = AAN~B
fA = A ~fA = g~ A

Proposition 2. For any formula A, A <+ A € NK (NK?).

Corollary 1. The logics NK and NK? are closed under the weak replacement

rule
A<+ B ~A+~B

C(A) < C(B)

The axioms of the logics NK~ and NK%~ say nothing about negations
of modal formulas ~ OA and ~ ©A, therefore, analogues of the previous
proposition and corollary do not hold for these logics.

Now we turn to the semantics for the introduced modal logics. The
notions of an NK™-frame and NK-frame coincide with that of a PK-frame.
The notions of an NK? —frame and NK%frame coincide with that of a PK%
frame.
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Models for the logics NK™ and NK?~ have the form M = (W,v",v™),
where W is an NK™-frame, respectively, a NK? -frame and the valuation
functions v+ and v~ are defined on the following sets:

vt Prop — (W, <)t and v~ : PropuUOFor USFor — (W, <)*.

Models for the logics NK and NK? are also obtained by augmenting the
respective frames with two valuation functions v+ and v, but in this case,
these are functions v+, v~ : Prop — (W, <)*.

For NK™, the positive and negative forcing relations M,t =T A and
Mt == A are defined essentially so as for Nelson’s logic with strong negation
in case of propositional variables and positive connectives . For the other
connectives, we set:

MitET~A if MjtE"A

MitE"~A it MitETA

Mt =t OA iff VYu > tVo(uRgv implies M,v =1 A)
Mt =" 0A iff tev (O0A4)

Mt ETOA it Fu(tRou and M,u T A)

Mt~ OA iff tev (OA)

In case of the logic NK, the forcing relations are defined for modalities in
a different way:

Mt =t OA iff Vu > tVo(uRgv implies M, v =1 A)
Mt E"OA it Ju(tRou and M,u =~ A)
Mt ETOCA it Fu(tRou and M,u ET A)
Mt == CA iff Yu > tVu(uRgv implies M, v == A)

For the logic NK?~, forcing relations are defined essentially so as for NK™,
and for NK? essentially so as for NK. The only difference is that both relations
R5 and R are replaced by R.

For each of the four logics defined above, validity on a model, M |= A,
means that M,t =1 A for all £. The validity on a frame and |=-validity,
where L € {NK™,NK?~ NK,NK?}, are defined in the usual way.

Theorem 3. b, A iff =1 A, where L € {NK™,NK*~ NK, NK%}.

All items can be proved via the canonical model method. The main
difference in the construction of canonical models is as follows. We put

vH(p)={T eWpel}and v (p):={ € W ~peTl}



280 CONSTRUCTIVE PREDICATE AND MODAL LOGIC

for the logics NK and NK?; and for NK™ and NK?~, additionally,
v (OA) ={l e W ~OAeTl}and v (CA) ={I' e W ~OCAecT}.
The canonical model lemma also has a different formulation.

Lemma 7. For any I' € W¢ and formula A,
MTEYAWAeED, MSTE Aiff ~Ael.

Comparing the definitions of the positive forcing relations for the logics
NK™, NK%", NK, and NK? with the forcing relation defined for PK and PK?,
we easily obtain the following result.

Proposition 3. 1. NK™ and NK are conservative extensions of PK.
2. NK% and NK? are conservative extensions of PK®.
On the other hand, the definitions of the forcing relations for non-modal

connectives coincide with the forcing relations for Nelson’s logic N4, from
which we obtain

Proposition 4. NK~, NK?~, NK, and NK? conservatively extend N4.

It is not hard to check also that all the logics introduced above possess the
disjunction property and, if strong negation is present, also the constructible
falsity property.

Proposition 5. Let L € {NK~, NK?, NK, NK?, PK, PK?} and let L' €
{NK™, NK%~, NK, NK? }.

1. If L, AV B, thentp A ortp B.
2. [fl_l/ ~ (A/\B), then l_L’ ~ A or |_L’ ~ B.

4 Extensions via first-order translations

In this section, finally, we make use of constructive predicate logic, QN4,
quantified N4. An axiomatization and the relational semantics of QN4 are
presented in [10]. We define two translations from £ into the language of
QN4 containing a unary predicate P for every propositional variable p and
two binary relation symbols Ry and Re. The first translation, tr,, is defined
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&
3
8

p P(z)

~A S ~tr,(A)
AN B 5 try(A) X tr (B), Xe {A,V,—}
OA 5 Wy(Ro(a,y) — try(A))

+
3
8

CA  — FJy(Ro(z,y) Ntry(A))

Table 13.1: The translation tr, into constructive predicate logic.

~D0A |—> y(Ro(x,y) Ay, (~A))
~OA Vy(Rg(z,y) — try(~A))

Table 13.2: The translation tr!, of formulas ~ 0OA and ~ CA.

in Table 13.1. The second translation, tr), is defined like tr,, except for the
translation of formulas ~<A and ~OA, see Table 13.2. In these definitions,
y is a fresh individual variable not used so far in the translation. We also
consider a pair of translations from £ into the language of QN4 containing a
unary predicate P for every propositional variable p and one binary relation
symbol R. The first translation, T}, is defined like tr,, and the second
translation, 77, is defined like 7!, except that in both cases Ry and R are
replaced by R. Whereas translation ¢r/, ensures formal duality, translation
tr, does not:

tr (~ CA) = Vy(Rg(z,y) — tr’y(w A) = tri(o~A)
try(~ CA) =~ Jy(Ro(z,y) Atry(A))
tro(@~ A) = Vy(Rolz,y) = tru(~ A))

Although the duality axioms for the quantifiers are provable in QN4, so that
try(~ OA) is provably equivalent with Vy(~ Re(z,y) Viry(~A)), it is not the
case that an implication (A — B) is provably equivalent with (~ AV B). Also
T! guarantees formal duality, whereas T, does not. Note that the restriction
of T! to L is the standard translation of £* into positive intuitionistic
predicate logic QInt*.

We define three logics FSL, L € {K~, K%~ K?}. The notation ‘FSL’ points
to Fischer Servi’s logic FS, the logic faithfully embedded into QInt by the
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standard translation of the language of intuitionistic modal logic into the
language of QlInt, see [5], [8], [9]. The interaction between O and < in FS can
be captured by Axioms 5 and

7. (CA—0OB) - 0O(A— B)

Note that Axiom 6 is equivalent to a substitution instance of Axiom 7.
The logics FSL are defined as follows:

FSK? = NK? 4 Axiom 7 (instead of Axiom 6)

FSK®™ := NK? 4 Axiom 7 (instead of Axiom 6) +
8. ~OA < O ~A + the impossibility axiom
9. ~OAA~OB & ~O(AV B)
+ the rule (Ry) ~A—>~B/~0A - ~OB

FSK™ := NK™ +
5. ~O0~(A— B)— (0DA—~0O~B)
7. (~0~A—0OB)—U0OA— B)
+ Axiom 9 +
10. ~O0~(AVB)— (~O~AV~0O~B)
+(R3) + (Ry) ~A—~B/~0A— ~0OB

Axiom 7 is added to FSK? to guarantee that FSK is faithfully embedded
into QN4 via the translation 7". Axiom 9 and the rule (R3) of FSK?™ show
that despite of the lack of the second duality axiom ~ CA <> O ~ A, the
strong negation of possibility can be treated as a new impossibility operator.
Axioms 5, 7/, and 10 of FSK™ express the fact that ~ O ~ is a new possibility
operator different from <, which is semantically and formally dual to 0.2 It
can easily be verified that we obtain the following picture:

2Note that we could also define logics ‘dual’ to FSKY™ and FSK™~ by considering ~ O as
a new unnecessity (non-necessity) operator and replacing Axioms 8 and 9 by the axioms

8/ ~OCA+DO~A
9 ~0AV ~0OB + ~0O(AAB)

and, in the case of FSK?~, replacing rule (RZ) by (Rg).



S.P. ODINTSOV  H. WANSING 283

FSK*
NK< FSK*
NK NK?~
NK-

FSK?-frames and models are like NK’frames and models, except that in
addition (as in the case of FS) it is postulated that

Ro < C <oR.

The relational semantics for FSK?~ is inspired by 7,. A FSK -frame is a tri-
relational structure (W, <, R, R™), such that (W, <, R) is a FSK%frame and
R~ CW x W. A FSK* -model M = (W, <, R, R~,v*,v™) is a FSK® -frame
extended by two valuation functions v+, v~ : Prop — (W, <)*. The forcing
relations are defined exactly as the forcing relations for NK~, except that
we now have the following falsification clauses for modal formulas:

Mt~ CA iff Vs >t Vu(sR uor M,ul="A)
Mt =" 0A iff 3s(tRsand M,s =~ A)

In the presence of the impossibility relation R™, the falsification clause for
A is plausible. A state t supports the falsity of G A iff for every possible
expansion s of t and every state u it holds true that either u falsifies A or u
is impossible relative to s.

FSK™-frames and models are essentially the same as FSK? -frames and
models, except that instead of a single relation R there are two relations Ry
and Re, the relation Ry satisfies the same condition as R in FSK? -frames,
the relation Re is as in NK™-frames, < ' oR¢ C Roo <~ ! and we have
the following forcing relations for modal formulas:



284 CONSTRUCTIVE PREDICATE AND MODAL LOGIC

Mt =T 0A iff Vu > tVo(uRgv implies M, v =1 A)
Mt =" 0OA iff Js(tRps and M,s == A)
Mt ETOA iff Ju(tRou and M, u =1 A)
M t== CA iff Vs > tVu(sRYuor M,u =" A)
For each of the logics FSL, validity on a model, M = A, means that
M, t =T A for all t. The validity on a frame and |=gsp-validity are defined
in the usual way.

Theorem 4. For every logic FSL with L € {K~, K% K} we have Fgsp, A
iff FErsr A.

Proof. In each case soundness can be shown directly, and for completeness
we can use canonical models. For FSK? it suffices to show that the canonical
model satisfies (R C) C (C oR®), see [5], [12]. In the case of FSK*™ and
FSK™, the new element in the canonical model is defined as follows:

TR™A iff To € A,

where I'vo = {~A | ~OA € T'}. In the proof of the canonical model lemma,
we have: M T == CA Mt VI" O I' VA(I"R™A or ~A € A). The latter
holds iff ~OA € T'. If ~OA € T, then for every " O I' and any A, if not
IYR~“A, then IV, C A and hence ~A € A.

For the other direction suppose that ~OA € I'. Then ~ A & I' ., and
one can prove [' ¢ I/ ~A. Indeed, assume I' ¢ F ~ A.

This means that there are By, ..., B, such that ~0B;,...,~OB, € T
and ~By A...AN~B, F~ A. Then

~(ByV...VB,) = ~AcFSK* (FSK™)
~O(BLV ...V B,) = ~0OA € FSK* (FSK™) R3
(~OByA...A~OB,) = ~OA € FSKY (FSK™)  Axiom 9

The latter formula together with the assumption leads to a contradiction,

~OCAel.
By the extension lemma, there exists A € W€ with ' o, C A I/~ A. Thus
~A ¢ A and not TR™A. [ |

Corollary 2. The logics FSKY, FSK®™, and FSK~ are closed under the weak

replacement rule
A<+B ~A&~B

C(A) < C(B)
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Proposition 6.

1. FSK™ C {A€ L] Fquatr(A)}
2. NK  C {AeL| Fonatri(A)}
3. FSKY™ C {AeL| Fona Tu(A)}
4. FSK* = {A€ L] Foua TL(A)}

Proof. 1.-3.: By induction on proofs. 4.: It must be shown that 7 is a
faithful embedding. Observe that the translation of £-formulas in negation
normal form into £ that maps every propositional variable p to itself, sends
every negated propositional variable ~p to a fresh propositional variable p/,
and commutes with the positive connectives is a faithful embedding of FSK?
into FS™, positive FS. This suffices to prove the claim, since FS™ is faithfully
embedded by the standard translation, coinciding on negation-free formulas
with 77, into QInt™ = QN4™, positive QN4. |

Open questions

FSK= = {Ac L] Fquatro(A)} ?
NK = {AcL| Fouatri(A)} ?
FSK™ = {AcL| Fona To(A)} 7

The C-directions are proved in the previous proposition. A treatment of the
D-directions is left to future research. The second equality explains why we
did not introduce the new logic FSK.
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Logic is not the whole story

J. A. Robinson

robinson@equinox.shaysnet.com
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When in 1979 I put out a book [6] about my work in the mechanization
of FOL proof procedures, I felt pleased that it had been exactly one hundred
years since Frege published the Begriffschrifft, essentially inventing FOL and
ushering in the modern era of formal logic. His system inspired me to write

6, p. 1]

...the correctness of a piece of reasoning ...does not depend on
what the reasoning is about ...so much as on how the reason-
ing is done; on the pattern of relationships between the various
constituent ideas rather than on the actual ideas themselves.

Since 1879, logicians have developed many such systems of formalized rea-
soning. The many versions or presentations of Frege’s FOL are in several
ways the most attractive of these. FOL is the closest in spirit to the forms of
actual reasoning found in real mathematical proofs and its later semantical
metatheory (due to Tarski) sheds much light on our informal notion of logi-
cal consequence. These formal systems all successfully capture one essential
feature of real mathematical proofs, namely their objective validity or logical
correctness. Unfortunately their success has still left uncaptured what may
well be an even more important feature of mathematical proofs, namely their
epistemological cogency.

The mathematician Saunders Mac Lane [4, p. 377] describes the typical
professional’s view of proof in these words:

proof in mathematics is both a means to understand why some
result holds and a way to achieve precision. ...the test for the
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correctness of a proposed proof is by formal criteria and not by
reference to the subject matter at issue.

He goes on to say why actual proofs are rarely dressed up in fully formal
clothing (p. 378):

...there are good reasons why mathematicians do not usually
present their proofs in fully formal style. It is because proofs are
not only a means to certainty, but also a means to understanding.
Behind each substantial formal proof there lies an idea. The idea
... explains why the result holds.

The great mathematician G.H.Hardy in 1929, the year after the publica-
tion of [2], set forth his own view of proof in a vivid metaphor:

I have myself always thought of a mathematician as in the first in-
stance an observer, a man who gazes at a distant range of moun-
tains and notes down his observations. His object is simply to
distinguish clearly, and notify to others, as many different peaks
as he can. There are some peaks which he can distinguish easily,
while others are less clear. He sees A sharply, while of B he can
obtain only transitory glimpses. At last he makes out a ridge
which leads from A, and following it to its end he discovers that
it culminates in B. B is now fixed in his vision, and from this
point he can proceed to further discoveries. In other cases per-
haps he can distinguish a ridge which vanishes in the distance,
and conjectures that it leads to a peak in the clouds or below
the horizon. But when he sees a peak he believes that it is there
simply because he sees it. If he wishes someone else to see it, he
points to it, either directly or though the chain of summits which
led him to recognise it himself. When his pupil also sees it, the
research, the argument, the proof is finished.

Hardy here is expressing the attitude of most real mathematicians to the
nature and function of mathematical proof. He views a proof as a means of
enabling the mind to see the truth of a proposition, as a device to engineer
understanding and conviction by assembling and advantageously displaying
an array of compelling evidence. The act of proving is a process of mind
manipulation, which takes time to achieve its purpose. What happens to the
assimilator of a successful proof is the expansion of his or her knowledge. A
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person knows something after experiencing a proof which he or she did not
know before. If one goes through a proof of something one already knows,
the effect is often to reinforce one’s knowledge and to help one to understand
familiar facts in a new way.

Hardy is aware that his account is somewhat poetic and fanciful:

...the analogy is a rough one, but I am sure that it is not alto-
gether misleading. If we were to push it to its extreme we should
be led to a rather paradoxical conclusion; that there is, strictly,
no such thing as mathematical proof; that we can, in the last
analysis, do nothing but point; that proofs are what Littlewood
and I call gas, rhetorical flourishes designed to affect psychol-
ogy, pictures on the board in the lecture, devices to stimulate the
imagination of pupils. This is plainly not the whole truth, but
there is a good deal in it. The image gives us a genuine approx-
imation to the processes of mathematical pedagogy on the one
hand and of mathematical discovery on the other; it is only the
very unsophisticated outsider who imagines that mathematicians
make discoveries by turning the handle of some miraculous ma-
chine. Finally the image gives us at any rate a crude picture of
Hilbert’s metamathematical proof, the sort of proof which is a
ground for its conclusion and whose object is to convince.

The reference here to Hilbert is salutary: for Hilbert’s name is somewhat
misleadingly associated with the doctrine that formalization of mathematical
reasoning is the fundamental technique for achieving certainty and setting
mathematics on a sound footing. Hilbert’s own predilection in his lectures
was for crystal-clear, direct, simple explanation of mathematical propositions,
providing so compelling a vision of their truth that a formal proof often
seemed like an almost obvious and natural afterthought [5, p. 103].

In Plato’s dialogue Meno, Socrates anticipates Hardy’s method by con-
ducting a pedagogical demonstration with the help of a (we are assured by
Plato) uneducated and naive servant boy. He enables the boy to see the truth
of the proposition: the lines connecting the midpoints of adjacent sides of
any square form another square having exactly half its area.
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The key step in this process is to suggest that the boy notice the effect of
also connecting the midpoints of opposite sides of the given square.

The large square is thereby seen to be dissected into eight triangles which
are all congruent, hence have the same area. The smaller square whose
vertices are the midpoints of the sides of the larger square contains exactly
four of these triangles. Thus the boy is enabled to see that the area of the
smaller square is exactly half that of the larger sqare.

The Meno example illustrates Hardy’s claim — all that Socrates does is to
point at features of 'what is there’ until the boy comes to see that the propo-
sition is true. In the course of his epistmological journey the boy experiences
what have been called 'mathematical epiphanies’ — Professor Benson’s term
[1] for the sudden revelations by which the mind recognizes a truth. It does
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not affect the Meno demonstration’s significance that Socrates himself has
a special implausible interpretation of this process, that the boy is simply
recalling knowledge which he always had. The significance of the demonstra-
tion is to show how any mind is capable of experiencing these moments of
truth-revelation and how they can be exploited to build knowledge in that
mind.

Hardy’s point is that all proofs, no matter how long or complex they may
be, can be understood as processes similar to the Meno proof process. A
mind is enabled to experience one or more epiphanies which lead to the final
quod erat demonstrandum and make it clear and obvious.

One can appreciate the Hardy view directly by going over proofs one-
self and experiencing them as an organized web of epiphanies taking place
in one’s own consciousness. The subject matter need not be geometrical or
perceptual. It can be more abstract and immaterial, involving, for exam-
ple, computational and numeric intuitions, or intuitions involving mappings
and transformations, and indeed whatever mental constructions are clearly
viewable in the mind’s eye.

Consider Euclid’s simple but wonderfully intuitive proof of the proposi-
tion that there are infinitely many primes. This is not a geometric or spatial
truth, but our understanding of its proof is clear and direct. Its central
epiphany is the fact that no finite set of primes contains them all. To see
why, consider any such set. To find a prime which is not in it, all we need to
do is compute the number — call it P — which is the successor of the product
of all members of the set. Fuvery prime factor of P lies outside the set, since
none of the primes inside the set exactly divides P — each of them will always
leave a remainder of 1.

This proof does of course require some prior knowledge of the number
system: the operations of multiplication, taking the successor, and division;
the definition of primeness; and the concept of a finite set. The intuitions
available to the mind are not only the wired-in perceptual, spatial ones of the
elementary geometry example, but also the learned symbolic, computational
intuitions of arithmetic, of comparing, sorting, and rearranging. Proofs work
only on minds which are already suitably equipped with concepts and facts
on which the new concepts and facts can be built. Crucially, in this example
one has to know that every number is either itself a prime or else is a product
of two or more numbers each of which is prime.

The Meno example is perhaps misleading in that it deals with a mind that
is totally naive — quite empty of all learned knowledge and furnished only
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with the intrinsic, hard-wired perceptual machinery provided by the human
brain’s basic design. Although the primitive mental processes differ in that
some are innate and some are learned, the evocation of them in Hardy-like
epiphanic proof-engineering is the same. They are awakened when needed.

Formal logic does not try to address this amazing epistemological process.
How can we go about developing a theory of proof, which does? Clearly,
the first step is to study the complete proof process in greater depth and
detail, using as data not just tiny, single-epiphany proofs like those earlier
discussed, but the more complex, multi-epiphany proofs of the professional
mathematician. These are informal, but rigorous nevertheless. They are
complex, but with simple individual modules of comprehension. Our minds
are limited in their epiphanic capacity. They can deal with insights of only a
certain restricted size and scope. Anything larger needs to be broken down
(if possible) into some combination of smaller ones. Not all minds are alike in
this respect. No doubt those of Ramanujan or Riemann were well above the
human norm, but even they needed multi-epiphany proofs to see some of the
things that they saw, and in some cases it took them a long time to discover
one. Famously, Riemann never did find a proof for what we all now call
Riemann’s Hypothesis (nor has anyone else) but even so he was convinced of
its truth.

In Hardy’s view, proofs are not in themselves the static written objects
that one finds in books and journals. The book and journals contain only,
so to speak, the scripts or recipes which are to be followed in acting out the
proof so that it can produce its effect on the mind. The proofs themselves
are the performances of these scripts. Studying the real proofs therefore
means that we must watch these performances and try to see what is going
on as they take place. It is not enough to study the written scripts. As
Wittgenstein put it [7, III, 27]:

...pay attention to the patter by means of which we convince
someone of the truth of a mathematical proposition. It tells us
something about the function of this conviction. I mean the pat-
ter by which intuition is awakened.

He later adds;

Do not look at the proof as a procedure that compels you, but as
one that guides you.

He added [7, I1I, 30]
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...in the course of the proof our way of seeing is changed .. our
way of seeing is remodelled.

Wittgenstein is here stressing the Hardy-like pedagogical accompaniments
— the ‘gas’ — which mathematicians use to guide the mind into the succes-
sive required epiphanies. Because we have come to think of proofs only as
structured static texts we tend to think that nothing happens in proofs. We
have not been paying attention to that ‘patter’ or indeed to the effect on the
audience for who the performance is intended.

It is as though we think music exists only in the form of the static scores
written by composers, whereas in fact the music is what happens when the
score 1s performed.

A convenient way to observe proof performances is by introspective ex-
periments. Choose a theorem whose meaning is clear but whose truth is
not. Then take yourself through the experience of a proof of it, while si-
multaneously monitoring the process. There is no need to invent the proof;
just follow and understand it. If all goes well, the truth of the theorem will
have become obvious by the end of the proof. Something happens in one’s
head, and the traversal of the proof is what makes it happen. Ideally, one
should enlist the help of a mathematician who is willing and able to perform
the proof with oneself as audience. This way one avoids the complication of
being both the performer and the observer.

Either way, we follow the proof and try to watch what happens.

Professor Hardy’s metaphor may be too fanciful and flowery for some
tastes. The analogy between natural observation and rational conviction is
nevertheless worth pursuing. What he is saying is that, however you deliver
or communicate a proof, whether it be informally or formally, in writing or in
a spoken lecture, with or without visual aids, the effect of the proof must in
the last analysis be that its reader, or hearer, sees the truth of the proposition
which is being proved. The proof must produce conviction in a human mind.
The better the proof is, the more it will accomplish beyond merely producing
such conviction; it will bring about understanding as well. It will provide not
just a guarantee (that the conclusion is true), but also an explanation why
it is true.

There are some similarities between the way the vision system works and
the way that the more abstract mental processing works which we associate
with mathematical cognition. One of the similarities is its involuntary char-
acter.
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In saying that we see or fail to see that a proposition is true, there lurks
a suggestion that the moment of intellectual acquisition is spontaneous and
involuntary, just as the event of visual acquisition is involuntary. When we
look at a scene, we cannot help seeing what we see. Our brains are processing
the incoming visual information automatically by cascading recognition and
detection signals through neural pathways layer-by-layer back into deeper
brain structures, and our mental picture springs into existence rapidly and
unbidden. Similarly with our other sensory modalities: hearing, touch, pain,
and so on.

It seems clear that physiologically something of the same sort must be
taking place when we follow a mathematical proof, digesting its steps and
letting them register their effects on our state of knowledge. The assent we
give to the successive claims in the proof is not a matter of our will power. We
do not decide to acquiesce in believing what the proof demands we believe.
Our subjective experience of the flow of the proof is as a series of revelations
which happen to us whether we like it or not.

The modern attitude to logical rigor is that it should be totally free of
psychologism — dependence upon subjective considerations, such as intuition
and insight. It was a mistake in earlier times to mix up mental phenomena
with objective, combinatorial, structures of derivations in formal languages
and their set-theoretic semantical interpretations. From this point of view,
people do not or need not exist. Formal proofs are simply certain kinds of
mathematical entity, like integers and holomorphic functions. Whether a cer-
tain object is or is not a (correct) formal proof depends only on its objective
structure, in the same sort of way as whether an entity is a pentagon. Its
effect on the observer, whatever that might mean, is completely irrelevant.
A formal proof is a formal proof is a formal proof.

That is all very well, but the science of logic loses its primary motivation if
we sever all its connections with actual thinking. The point of a formal proof
is that it should at least correspond to, by being an abstract representation
of, a real proof, which in turn might serve to convince somebody of the truth
of its conclusion.

Like the objects in a visual scene, the landmarks of a good, convincing
proof spring out and engage the mind in spite of itself. The mind is a
kind of spectator or camera. Hardy’s metaphor brings out the essential
passiveness of the elemental observations making up a proof, the viewings of
those intervening peaks. We simply see them, or we don’t. The person doing
the proving (and not necessarily for another person; one often undertakes
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to prove something for oneself, silently and in private) needs indeed only to
point, and the person following the proof needs only to look, at the right
things, and the rest is amazingly automatic.

At the level of the underlying flow of information between its neurons, the
brain is clearly a massively parallel asynchronous computing device. Hun-
dreds of billions of neuron-firings take place simultaneously at any given
moment. Each individual neuron can fire — send an output pulse to its im-
mediate successors — hundreds of times per second, asynchronously. It fires
when ready without reference to any sort of central clock.

Events at this level are like the lowest-level switching events or pulses in
the electronic circuits of a computer. In a computer we need to ascend several
conceptual levels above the pulse level to arrive at events and structures
which correspond to cognitively meaningful processes and entities. At these
higher levels we keep track of the changing values of variables, the calling of
subroutines, the evaluation of arguments and the application of functions to
them, and so on.

In the brain, similarly, it is only at higher levels of organization, well
above the elemental level of neuron-firings, that we find cognitively significant
processes and structures. Conscious thought and experience belong to these
higher levels.

It is, incidentally, a curious feature of the design of the brain that con-
scious mental processes are serial in character, despite the fact that the
underlying neural machine which supports them is highly parallel. It may
well be therefore that the unconscious mental processes, if such there be, are
capable of occurring in parallel. Neuroscientists may one day be in a posi-
tion to discover whether this is so. At present the serial nature of conscious
thought is simply an observed fact. Our logics reflect this — many of them
define a formal proof as a linear sequence of formulas, each successive formula
following from earlier (often, much earlier) formulas by a rule of inference.
The systems which define a formal proof as a tree structure are nearer the
mark.

Some intellectual tasks associated with formal logics — such as checking
an alleged formal proof to see if is correct — can actually be performed in
parallel, but not by individual humans. This task does not correspond to
anything we encounter in real proofs. A formal tree-structured proof is made
up of one or more inferences. Each inference is a self-contained construct
consisting of a conclusion and a set of premises. It is correct if and only if
its conclusion follows from its premises by some rule of inference. The proof
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as a whole is a linked complex of such inference steps. Each inference can be
checked for correctness independently of the others, and given enough agents,
all of them can be checked at the same time. Some or all of the premises
of one inference step may be themselves the conclusions of other inference
steps. The entire formal proof has the structure of a tree with sentences as
its nodes. Its inferences are then its various subtrees each consisting of a
node together with the immediate successors of that node. A node without
any immediate successors (a leaf of the tree) is a premise of the proof. It is
considered to be a special case of an inference step, one whose conclusion is
inferred from the empty set of premises. A node which is not the successor
of any node (the root of the tree) is the theorem that is the conclusion of the
proof. Note that there are many different ways to visit each node in the tree
in order to examine, or experience, the inference whose conclusion is that
node. The corresponding linear sequences of formulas are the traces of such
tree-traversals, and none of them is particularly superior to any other.

A Hardy-like proof-journey can be thought of as exhibiting this general
tree pattern, too. What is interesting is that the mind can cope with an
arbitrary ordering of the visits to the inferences: it is not necessary to begin
with the premisses and ‘follow the flow’ of the inferences from premisses to
conclusion, layer by layer. Such a ‘bottom up’ discipline is one option, to be
sure, but only one of many. At the other extreme (‘top down’) one can start
with the theorem and work backwards, seeing that if we could see that its
immediate premisses were true, then we could see that it too must be true,
and so on, backwards through the tree to the ultimate premisses, which can
indeed then be seen to be true directly (assuming the proof works).

Immediacy: a simple example from elementary geometry.
When Wittgenstein said [7, 111, 32]

What interests me is not the immediate realization of a truth,
but the phenomenon of immediate realization,

he was seizing on the central element of the proof process, namely its be-
ing a complex of atomic cognitive acts or events, each an indivisible whole
phenomenologically, and consisting of seeing or recognizing a truth.

What kinds of mental event count as atomic cognitive acts? That is, what
is the difference between immediately recognizing the truth of some proposi-
tion and coming to know its truth in a way that is not immediate? Consider
the following simple geometrical proof in which the difference between what
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is and what is not immediate is not always obvious. In the well-known ‘simi-
lar triangles’ proof of the theorem of Pythagoras we are asked to contemplate
a plane figure consisting of a right-angled triangle ABC whose right angle is
at the vertex C'. On its hypotenuse AB there is a point D such that the line
CD is perpendicular to AB.

A

C B

The following facts are surely immediate:

1 There are three triangles in the figure: ABC, ADC and DBC.
2 Each of these triangles is right-angled.

3 Triangles ABC and ADC' share an angle, namely the one at A.
4 Triangles ABC and DBC' share an angle, namely the one at B.
5 length of AB = length of AD + length of DB.

These are directly observable features. Our knowledge of them is essentially
perceptual. We can hardly avoid (assuming that we actually look) seeing
that these features are present in the figure. It is the initial, hard-wired, spa-
tial feature-recognition layer of our neural cognitive net which, so to speak,
simply detects them.

The following facts are not quite so immediate, but are detected, perhaps,
by the next cognitive layer:

6 Angles ABC and AC'D are equal.

7 Angles BAC and DC'B are equal.
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To account for our being able to see these two secondary facts we have to
suppose that not only the primary facts 1 through 5 are available to the
second layer, but that somehow the pair of triangles ABC and ADC', and
the pair of triangles ABC' and DBC can each be seen as particular cases of
the following general fact about pairs of triangles:

8 Triangles which agree in two of their three angles also agree in the
third.

These facts, 6 through 8, are immediate conclusions from what we can di-
rectly see, rather than things we can actually directly see. They are secondary
rather than primary facts, and they are detected not by the first, but only
by the second, cognitive layer of the brain. Here are some tertiary facts, for
the detection of which a third cognitive layer imports another general item
of knowledge:

9 triangles agreeing in all three of their angles also agree in the ratios of
the lengths of each pair of their corresponding sides

and applies it to triangles ABC and ADC. At this depth of perception the
mind has to be aware that

10 side AC of triangle ADC' corresponds to side AB of triangle ABC
(since angle ADC' = angle ACB)

11 side AD of triangle ADC' corresponds to side AC' of triangle ABC
(since angle ACD = angle ABC)

so that it can appreciate the equality of the ratios
12 (length of AC) / (length of AD) = (length of AB) / (length of AC).
13 (length of BC) / (length of DB) = (length of AB) / (length of BC').

or in other words (multiplying out the denominators — one more cognitive
layer deep?)

14 (length of AC)2 = (length of AB) x (length of AD).

15 (length of BC)2 = (length of AB) x (length of DB).
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Now we are finished with the direct observations of the figure (the data
gathering, as it were) and our minds begin a short flurry of algebraic manip-
ulation. Such manipulation is a combinatorial process whose atomic actions
are transformations of symbolic expressions purporting to preserve their de-
notations. That the transformations actually do this must be every bit as
convincing as are other kinds of direct confrontation with the facts. First,
by adding equations 14 and 15 we get the equation

16 (length of AC)2 + (length of BC')2 = (length of AB) x (length of AD)
+ (length of AB) x (length of DB).

in which we ‘undistribute’ the factor (length of AB) on the right hand side
to obtain the equation:

17 (length of AC)2 + (length of BC')2 = (length of AB) x ((length of
AD) + (length of DB)).

In doing this, we are appealing to the general distributivity principle of
elementary algabra which allows us to replace a term of the form x x y+z x z
by a term of the form = x (y + z) — and vice versa — since both denote the
same number no matter what numbers x, y and z may be. Finally, we recall
what we already have observed, and recorded as fact 5, to conclude that in
17 we can replace the term (length of AD) + (length of DB) by the term
(length of AB) to obtain the equation

18 (length of AC)2 4 (length of BC')2 = (length of AB) x (length of AB)
= (length of AB)2.

The outcome of this Hardy-like journey is that we have come to see that
19 (length of AC)2 + (length of BC')2 = (length of AB)2

which is the Theorem of Pythagoras.

The short symbolic computation is a series of almost immediate cognitive
perceptions. What are involved here are not so much spatial intuitions as
computational intuitions. Here the brain is holistically perceiving, as it were
in a single gestalt, each of a series of elementary actions and their results.
The elementary actions are redez-replacements or rewritings, in which one
expression is substituted for another expression known to be equivalent to it
(that is, to have the same denotation). Such rewritings are the very stuff of
symbolic computation , and in our culture we are equipped by education early
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in life with a repertoire of learned mental ‘recognition demons’ consisting the
corresponding rewriting rules. We memorize the multiplication tables, and as
a result we have built-in calculators based on table look-up. Seven nines are
sixty-three, four twelves are forty-eight, and so on — these are immediate for
most educated people. Someone who regularly uses mathematics will have
mental immediacies which are not so common: but they are learned in the
same way, grooved in by constant repetition and use. Algebraic manipulation
is a typical arena for this slightly more specialized mental skill. Increasingly
specialized and sophisticated immediacies make up mathematical expertise.
There is no obvious limit on what the mind can assimilate and package in
this way. Learned immediacies go a long way to account for the way that a
proof works. The proof needs to have certain immediacies already available
in the mind, and it will build others in the course of its unfolding.

Proofs are quite crucial in the creation of new immediacies. Our brains are
(it seems) hard-wired already at birth or very soon thereafter for recognizing
certain features of the visual field, as indeed they also are for the auditory
and tactile features. The brain develops in early life by acquiring more and
more of these as the child expands its repertoire, by interaction with parents,
teachers and others, and by solo exploration of its environment.

In the similar triangles proof the immediacy of the judgment that the
area of the large triangle is the sum of the areas of the two smaller triangles
springs straight out of the direct perception that the larger triangle consists
of the two smaller triangles placed together. This perception/judgement
generalizes, though, to situations which might not be so simple to experience
directly. We come to see that, in general, if a finite region of the plane is
divided into finitely many disjoint subregions which together exhaust the
whole region, then the area of the whole region is the sum of the areas
of the subregions. We must however be careful. This principle applies to
real space, but not to the abstract model of space as a three-dimensional
mathematical continuum, in view of the so-called Banach-Tarski Theorem
(often also called the Banach-Tarski Paradox) which seems like a shocking
contradiction to the immediacy of our spatial intuition: a sphere of radius
r can be decomposed into a finite number of disjoint pieces in such a way
that the pieces can then be reassembled into two spheres of radius r. At
issue is the precise definition (formalization) of volume (measure) and the
status of the set-theoretic proposition known as the Axiom of Choice. It is
not that our intuition about space is at fault. The problem lies in our model
of space as a continuum and perhaps also in our imperfect understanding of
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the concept of an infinite set. It is interesting to note that we have no direct
intuitions concerning infinite sets, and yet we seem to have strong intuitions
about the concept of infinite sets. For example, it seems extremely obvious
that if an infinite set is the union of two disjoint sets, then at least one of
these must also be infinite. If, however, we are challenged to prove this, it is
not clear how to proceed. Is it not simply a primitive intuition which does
not admit of proof in the usual sense? If it is, how do we know it with such
certainty?

An understanding of real proofs, then, calls for an understanding of the
mind’s ability to learn, store and deploy the thousands of immediacies which
are triggered by the activity of thinking about the various entities we invent
and define for whatever reason. Introspective monitoring of proof experiences
is one way to make progress towards this goal. With the help of modern com-
puters it has been possible take quite extensive and nontrivial mathematical
proofs and formalize them within some formal logic (often in FOL, but higher
order logics have also been used). This is interesting and important work,
but we also need to take the same proofs and perform them in a critical,
self-aware attempt to find out how and why they work epistemologically.
Formalization of a proof is very nearly antagonistic to this: the very act of
formalization removes from the proof not only the meaning of the constituent
nonlogical terms so as to leave exposed only the syntactic structures, but it
also obliterates every remnant of the Wittgensteinian ‘patter’ which largely
determines the pragmatic efficacy of the proof.

There is much work to be done. Let us begin!
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1 Introduction

Both first- and second-order logic (FOL and SOL, respectively) as we use
them today were arguably® created by Frege in his Begriffsschrift — if we
ignore the notational differences. SOL also suggests itself as a natural, and
because of its much greater strength, desirable extension of FOL. But at
least since W. V. Quine’s famous claim that SOL is “set theory in sheep’s
clothing”? it is widely held that SOL is not proper logic — whatever this is
taken to be by different authors — but some kind of mathematics. Even con-
temporary advocates of SOL like Stewart Shapiro point out its mathematical
character, albeit without regarding this as problematic.®> Recent criticisms
focus both on the ontological commitment of SOL, which is believed to be to
the set-theoretic hierarchy, and on the allegedly problematic epistemic status
of the second-order consequence relation.

1See William Ewald’s contribution to this volume, pp. 89 ff., on this question.
2[Quine, 1970], pp. 66-68.
3[Shapiro, 1991], see esp. p. vi-vii and p. 48.
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This paper focuses on the second issue, and investigates the claim that
the second-order consequence relation is intractable because of the incom-
pleteness result for SOL. The opponents’ claim is that SOL cannot be proper
logic since it does not have a complete deductive system. I will argue that the
lack of a completeness theorem, despite being an interesting result, cannot
be held against the status of SOL as a proper logic.

I mainly deal with SOL in this paper. But of course there is an unsur-
veyable manifold of logics that are not complete — a whole range of first-order
modal logics, for instance — to which my argument equally applies (if it holds
for SOL). I will also only consider the classical versions of propositional, first-
and second-order logic, since most of the present discussion concerning SOL
focuses on this case. This is especially true for the incompleteness allegation.
It seems to me, though, that the argument is general enough to carry over
to non-classical versions of these logics as well.

2 The Complaint

The notion of completeness that is the focus for the present discussion, and
that will be my concern here, is sometimes called strong semantic complete-
ness. This kind of completeness is a metatheoretic result that holds (or fails
to hold) between two different consequence relations. The first of these is
deductive consequence. It is usually symbolized as ‘I' = S’ which can loosely
be read as ‘S can be deduced from I'” where ‘S’ is a sentence of the relevant
language and ‘I'" a — possibly empty — class of sentences of the same lan-
guage. This relation is contrasted with that of semantic (or model-theoretic)
consequence. We usually symbolize this as ‘I' = S and read it informally
as ‘All models that make I'" true make S true as well’. If the deductive con-
sequence relation does not hold between any sentences between which the
model-theoretic consequence relation fails to hold, we speak of soundness.
The converse we call completeness.

s
Soundness |} 1 Completeness

IS
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The worry mentioned in the introductory section is directed at the failure
of completeness for SOL: there are model-theoretic validities of SOL that
cannot be derived in its deductive system. If a consequence relation cannot
be tracked by way of the deductive system, the criticism usually continues,
then it cannot be the case that we are dealing with a proper logic. Rarely are
arguments provided as to why this should be the case.* Quine, for example,
raises the incompleteness objection against SOL, but interestingly enough
not in his Philosophy of Logic where he claims SOL is set theory in disguise.
He raises the issue of incompleteness in this book, but only in his objections
against branching quantifiers.® With respect to SOL, it seems, Quine first
mentions incompleteness in a response to Hao Wang.® In neither case does
he provide an argument why the lack of completeness is supposed to show
that we are not dealing with a proper logic.

Perhaps the motivation behind the demand for the completeness of a
proper logic can be reconstructed as follows: Logical consequence is intu-
itively taken to be a semantic notion. The logical consequence relation might
be said to hold between some premises and a conclusion if, and only if, the
truth of the conclusion is guaranteed by the truth of the premises in virtue of
their logical form alone. ‘Logical form’ here can be taken to mean something
like the semantic structure of the sentences (or, if you will, the propositions
they express). It is therefore the formal semantics, i.e. the model theory,
that captures logical consequence. The deductive system merely gives us a
bunch of inference rules. If completeness fails this shows that the deductive
system does not properly capture logical consequence.

Such a position exhibits a preference of model theory over the deductive
system. Let’s call a logician who favours model theory as the right way
to capture logical consequence the model-theorist, and her opponent who
favours the deductive system the proof-theorist.” (Of course I do not suggest
that every actual logician can be put in one of these boxes, let alone exactly
one of them.) Say, the model-theorist claims that in absence of a model
theory it cannot be decided which rules of inference are the logical ones.
Furthermore, she might say that model theory provides the proper analysis

4Jan Wolenski’s contribution to this volume, pp. 369 ff., is one of the rare exceptions.
See also [Wagner, 1987].

5[Quine, 1970], pp. 90-91.

5[Quine, 1986], p. 646.

"[Shapiro, 1991], chapter 2, see esp. p. 35, draws a similar distinction: He discusses the
difference between what he calls the foundational and the semantic conception of logic.
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of the concept of logical consequence and therefore gets close to its very
nature, while the deductive system at best achieves extensional adequacy.
The proof-theorist, on the other hand, could insist that the logical form of
a sentence is exhibited by the logical constants that it contains, and that
these get their meaning from their introduction- and elimination-rules. She
could resist the thought that we need model theory to separate the good, i.e.
logical, introduction- and elimination-rules from the bad ones, and might
claim that, on the contrary, it is not clear how model theory is supposed to
help us in deciding this question. And why shouldn’t one be able to give
a conceptual analysis using a deductive system? Logic, after all, is about
inference, and so are deductive systems.®

All these issues are important, and good arguments have been put forward
on both sides. The above paragraph certainly does not faithfully represent
the complexity of the actual debate, which not only goes beyond the issues
I have mentioned but also far beyond the scope of this paper. That many
other criteria are suggested by both proof- and model-theorists and adopted
to argue for or against SOL and other logics is of course understood, but
will not concern us here. For very little in the sketched arguments and the
whole debate depends on completeness proofs. Crucially, the question of
completeness comes into play only after the other issues have been settled.
This is the point I will examine and develop further in the following sections.

3 Logical Consequence

The unqualified claim that SOL is incomplete needs to be made more pre-
cise. No deductive system is semantically incomplete in and of itself; rather a
deductive system is incomplete with respect to a specified formal semantics.
The deductive system of SOL, for instance, is incomplete with respect to
the standard model-theoretic semantics. In standard model theory a model
consists of a set of objects called the domain and an interpretation function.
This function assigns objects in the domain to names of the language, sub-
sets of the domain to predicate letters, subsets of the Cartesian product of
the domain with itself to binary relation symbols and so on. The first-order
quantifiers range over the domain, while the second-order quantifiers range
over the subsets of the domain in case the quantifier binds a predicate vari-
able, over the subsets of the Cartesian product of the domain with itself in

8See for example [Tennant, 1986].
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case the quantifier binds a binary relation variable etc.

As is well-known, standard semantics is not the only semantics available.
Henkin semantics, for example, specifies a second domain of predicates and
relations for the upper case constants and variables. The second-order quan-
tifiers binding predicate variables, e.g., can be thought of as ranging over
a subset of the powerset of the first-order domain. What is relevant to the
present discussion is that the deductive system of SOL is sound and complete
with respect to a Henkin semantics.” With suitable restrictions on the class
of models even compactness, Lowenheim-Skolem, and Lowenheim-Skolem-
Tarski hold.!® To pick up a thought of Shapiro’s,!! one might think that
standard (as opposed to Henkin) semantics does not provide enough models
to invalidate all sentences of the language of SOL that are not theorems. So
here we have a completeness theorem for SOL. But it would be bizarre to
claim that the incompleteness complaint is thereby refuted.

It is often suggested that, interpreted with a Henkin semantics, SOL is
basically a two-sorted first-order logic. This would also explain the appar-
ent tension between the above mentioned results and Lindstrom’s theorem:
No logic that goes beyond the expressive power of FOL satisfies both the
compactness and the Lowenheim-Skolem theorem.? It is also worth noting
that a feature of SOL gets lost when a Henkin semantics is adopted; the
very feature that attracts many of those who are interested in SOL to it.!?
SOL with standard semantics allows for categorical axiomatizations of certain
mathematical theories, such as arithmetic or real analysis. A mathematical
theory is categorical if, and only if, all of its models are isomorphic. Such
a theory then essentially has just one model, the standard one. First-order
axiomatizations of, for instance, real analysis cannot be categorical since the
Lowenheim-Skolem theorem holds, which directly contradicts categoricity: If
there is an uncountable model, there will be a countable one as well. For the
same reason SOL with Henkin semantics cannot deliver categoricity results.
It seems that the desire to have a complete logic leaves us with one that
deprives us of the possibility of having categorical characterizations of infi-
nite structures. Completeness and categoricity apparently pull in opposite

9[Henkin, 1950].

10[Shapiro, 1991], pp. 88-95.

11[Shapiro, 1998], p. 141, dismisses this view, but also see his fn. 10 on the same page.
12[Lindstrém, 1969)].

13See for example [Shapiro, 1991] and [Shapiro, 1997].
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directions. As desirable as it might seem, one cannot have both.!* (Other
projects in the philosophy and foundation of mathematics which require SOL,
e.g. the Neo-Fregean programme,'® might not depend on standard semantics,
of course.)

I will not take sides here in the debate regarding whether standard or
Henkin semantics is the “right” semantics. Nevertheless, it is important to
realise that Henkin and standard semantics are not the only options available.
Substitutional, game-theoretical, or topological semantics, Boolos’ plural in-
terpretation,'® or even a semantics inspired by Lesniewski recently suggested
by Peter Simons!” surely do not exhaust the alternatives. Further, I con-
tend that the issues concerning completeness and logical consequence are
more likely to be obscured than elucidated by a discussion about “the right
semantics”. (What are the criteria for the “right” semantics? On which in-
dependent, i.e. non-question-begging grounds can we decide? Is the “right”
semantics “right” tout court or is it the “right” one with respect to some
purpose? Is there only one “right” semantics?) A more direct approach is
called for.

So let’s take a step back and reflect on key features we want a proper
logic to have and what its relation to logical consequence is. We want our
logic to be formal. 1 will henceforth use ‘formal system’ (or sometimes even
just ‘system’) in a somewhat unorthodox way. We often use ‘formal system’
as short for ‘formal deductive system’, i.e. a formal language together with
some rules of inference. The meaning I intend is broader: It includes any
axiomatic system as long as it is based on a formal language; in particular it
includes model theory. Whenever I refer to deductive systems in particular
I will explicitly use ‘deductive system’. So we want a logic to be a formal
system in the above sense. The reason for the possibly non-standard usage
will become clear in a moment. It is to be found in a Fregean thought,
made explicit in the short 1882 paper On the Scientific Justification of a

14The relation between and historical significance of categoricity and completeness is
investigated in [Corcoran, 1980] and [Read, 1997].

15See [Wright, 1983], [Hale and Wright, 2001] and [MacBride, 2003].

16Cf.  [Boolos, 1984], [Boolos, 1985], [Boolos, 1994]; for ways to account for rela-
tions along the lines that Boolos suggest for the predicates see [Burgess et al., 1991],
[Hazen, 1997a] and [Hazen, 1997b], and for an alternative way in Boolosian spirit
[Rayo and Yablo, 2001]; investigations into the strength of Boolos’ plural semantics are
[Rayo and Uzquiano, 1999] and [Uzquiano, 2003].

17Cf. [Simons, 1985] and [Simons, 1993], see also [Simons, 1997].
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Begriffsschrift. Frege published this paper in response to criticism directed
at his Begriffsschrift:'® We need a formal symbolic system such that the
content cannot escape the rigorous logical form.!? This thought can certainly
be found in the Begriffsschrift itself already.

I take this thought to be of general importance: We are looking for formal
systems which axiomatize, characterize, or formalize in some other way some
notion, or notions, in such a way as to secure the intended content. These
notions may themselves be pre-theoretic. Our particular concern here are
logical systems, which are those formal systems that capture and formalize
the notion of logical consequence. In this light, one might be tempted to
read the soundness result as: “We will not deduce a sentence from a class of
premises that is not a logical consequence of them” (we will come back to
this later), and the completeness result accordingly as: “We can deduce every
sentence from a class of premises that is a logical consequence of them”. But
this should give us pause. First, logical truths are (by definition) logical con-
sequences of the empty class of premises and hence, by monotonicity, logical
consequences of every class of premises. But certainly a logical truth of FOL
cannot be deduced in the deductive system of propositional logic. Proposi-
tional logic is complete, and is a proper logic if anything is. Yet a logical
truth like ‘(Vz(Fz D Gz) A Fa) D Ga’ escapes its consequence relation. The
solution to this “puzzle” is of course simple?® and leads us to the second
point: As noted above, completeness is a metatheoretic relation that holds
between a deductive system and a formal semantics. So the two consequence
relations we are dealing with are the deductive and the formal-semantic ones.
Let’s assume for the sake of simplicity that the formal semantics is model
theory. So completeness shows that every deductive consequence of a class of
sentences is, in addition, a model-theoretic consequence of those sentences.
But how does logical consequence get into the picture?

Given the broad notion of a formal system as described above it now
seems clear that we are dealing with two formal systems here: the deductive
system and the model theory. If there is a soundness and a completeness proof

18[Frege, 1879].

94Wir bediirfen eines Ganzen von Zeichen, aus dem jede Vieldeutigkeit verbannt ist,
dessen strenger logischer Form der Inhalt nicht entschliipfen kann.” [Frege, 1882], p. 52.

20 Another easy solution that comes to mind is that propositional logic simply lacks
the expressive power that these sentences require. It can therefore not be accused of not
capturing logical truths of predicate logic. That is of course correct. I will say more about
systems with increasing expressive resources in the beginning of section 4.
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we know that this duplication does not matter: Both systems capture the
same consequence relation. If we can derive nothing but logical consequences
of given premises in one system, then this will be the case for the other
system as well. But if completeness fails, we will have to decide which of
the two systems (if any) is the one that captures logical consequence. If one
decides that it is the deductive system, one will hold that the model theory
is defective in the sense that it produces a surfeit of consequences of a set
of sentences which are not actually logical consequences of it. One might
then say that the model theory does not provide an appropriate model of the
logical consequence relation that is specified by the deductive system, and
consequently reject the semantics.?! The failure of completeness, therefore,
does not disqualify the deductive system from capturing logical consequence
and therefore being a proper logic (other features might still have this effect,
of course). If, on the other hand, one has convinced oneself that model theory
is the system that properly codifies logical consequence, one will presumably
think that the right thing to do, when one wants to do logic, is just that,
viz. model theory.?? It is hard to see why the lack of a complete deductive
system should cast doubt on the model-theoretic system as a logic if one has
independent reasons to believe the model theory to properly capture logical
consequence.

So let’s re-assess what the significance of soundness and completeness
proofs is. They show us very important features of the two systems. For ex-
ample, they show that results from the one system can be carried over to the
other. If I prove a theorem of first-order logic, by soundness I know that this
sentence is valid, i.e. it is true in all models. If I provide a model that makes
a sentence false, again by soundness I know that I won’t be able to prove it.
Completeness allows us to make these transitions in the reverse direction. A
model-theoretic argument can establish that a sentence is a consequence of
some other sentences. If completeness holds one knows that there is also a

21 John Etchemendy seems to hold such a view with respect to SOL. In his terminology,
the standard semantics for SOL “overgenerates”. See [Etchemendy, 1990], esp. pp. 158-
159.

22Jon Barwise might have had something like this in mind when he wrote: “Mathemati-
cians often lose patience with logic simply because so many notions from mathematics lie
outside the scope of first-order logic, and they have been told that that is logic. The study
of model-theoretic logics should change that, by finding applications, and by the isolation
of still new concepts that enrich mathematics and logic. [...] There is no going back to
the view that logic is first-order logic.” [Barwise, 1985], p. 23.
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derivation in the deductive system. The reason to prefer a proof to be carried
out in one or the other system might have to do with the time it takes to
carry out the proof or other matters of convenience. George Boolos provides
us with the example of an inference that can be shown to be valid with a
relatively short model-theoretic argument.?® Since all the premises and the
conclusion are first-order, by completeness we know that there has to be a
derivation of it. As it turns out, this derivation would contain more symbols
than particles exist in the known universe. Our incapability to carry out
such a proof seems to be a pretty good reason to prefer the model-theoretic
argument over the derivation, no matter whether one thinks that the true
way to formalize logical consequence lies in a deductive system or in model
theory. Very often it will be more convenient, though, to derive consequences
in the deductive system than to provide a model-theoretic argument. Take
the case of a second-order inference and imagine a logician who thinks that
the standard model theory properly captures the logical consequence rela-
tion. A derivation in the deductive system is, by soundness, as good as a
model-theoretic argument as a means of showing that the conclusion of the
deduction is a logical consequence of its premises. The mere fact that there
are semantic consequences for which there is no derivation in the deductive
system does not throw any doubt on it being a logical consequence (again,
other considerations might well do so).*

I said above that one might be tempted to think that a soundness proof
shows us that one can only derive logical consequences in a deductive system.
It seems quite obvious now that this can only be the case if one already
has established independently that the model-theoretic consequence relation

ZFor details see [Boolos, 1987]. Boolos’ main interest in this paper, though, is that SOL
allows us to carry out the proof on two pages while the first-order proof appears to be
physically impossible. His observation, however, holds for the model-theoretic proof, too.

24 Another way in which the existence of a soundness and completeness proof can be
interesting is pointed out by [Kreisel, 1967], pp. 152-157: We want to capture the pre-
theoretic notion of logical consequence. Now we convince ourselves that any derivation in
the deductive system is licensed by our pre-theoretical notion, and any pre-theoretically
valid inference is valid in the model theory as well. A soundness and completeness proof
then ties all three notions together and shows that they are all equivalent. This is consistent
with what I said above: It first needs to be shown that the pre-theoretic notion is indeed
sandwiched in this way between the deductive system and model theory, and it does not
follow from the impossibility of applying Kreisel’s strategy, e.g. in the case of SOL, that
either system fails to capture logical consequence. The refinements in section 4 will make
this point even clearer.
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embraces only logical consequences. But it provides us with another very
important insight: A soundness proof assures us that the deductive system in
question is consistent, i.e. that we will never be able to prove a contradiction
in it (from no premises) — provided the model theory is consistent. This
certainly is a desirable feature of logic, to say the least.

4 Refining the Picture

The considerations above require refinements in two respects. First, I have
been speaking of the logical consequence relation that is captured by a for-
mal system. It seems better to speak of a part of logical consequence here.
Propositional logic, for example, is a proper subsystem of FOL, yet even if
we had reason to believe that FOL captured all of logical consequence we
would not want to deny the status of a proper logic to propositional logic
just because it fails to capture all of logical consequence. The situation is
more dramatic for someone who does not think that there is no proper logic
stronger than FOL. Second-, third-, fourth-order logic and so on might be
thought to be proper logics. If we thought we could chase all the way up to w
(and beyond?) there might not even be an all-inclusive system that captures
the whole of logical consequence. Modal logics might be considered proper
logics and the various systems might not mix well, especially when the con-
ception of logic is a semantical one. Since my aim here is to stay as neutral
as possible on the question “What is proper logic?” it seems advisable rather
to speak in general of systems that partially formalize logical consequence.

The second refinement that is needed is due to the fact that the actual
process of coming up with a formal system that captures logical consequence
is a bit more complicated than the above picture suggests. For example, it
might well be the case that the attempt to provide a formal system as an
alternative to one that is in use already leads to the discovery of a surprising
mismatch between the original system and the new one. Let’s say we have
two deductive systems, X and Y. X is traditionally thought to capture a
certain class of logical inferences. The new system Y is suggested because it
contains some features which are thought to be advantageous in application;
it might be that it allows for shorter proofs, for example. When the logician
constructs Y she wants to come up with a system that is equivalent to X in
the sense that any sentence is amongst the theorems of X if, and only if, it
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is amongst those of Y.25 Now let’s imagine it turns out that the two formal
systems do not match in that sense. I will consider three ways in which this
could be the case:?® (1) Y is a proper extension of X, i.e. all theorems of X
are theorems of Y, but not the other way around, (2) X is a proper extension
of Y, or (3) the systems contradict each other, i.e. the union of the class of
theorems of X and the class of theorems of Y is inconsistent.?” The reaction
to this as described above is to decide on one of the systems, the one that
properly captures the pre-theoretic notion. Let’s say that in cases (1) and
(2) one would convince oneself that the respective stronger system does not
generate theorems that lie outside the pre-theoretic notion. Now, in the first
case it seems that the natural response would be henceforth to stick to the
new system Y. It formalizes a part of the pre-theoretic consequence relation
that was hitherto unaccounted for. Since X is a subsystem of Y we know
that all the sentences we have proved in the past in X will be theorems of
Y as well. In the second case one would probably try to fix ¥ such that it
captures the missing part of the consequence relation as well.

If we, on the other hand, come to believe that the “extra theorems” of the
respective stronger deductive system are illegitimate in the sense that they lie
outside of what is warranted by the pre-theoretic notion, in case (1) we might
try to weaken Y until it matches X and so does not generate these “extra
theorems” anymore. But (2), here, will be the really interesting case. We
are in the position of having discovered that the old system X allowed us to
prove sentences which on reflection upon the pre-theoretic notion should not
be provable. A likely response is to stick to the new system, Y, in the future
and weaken the old one, X, to see which axioms or rules are responsible
for the “false” theorems. Depending on how well entrenched X was, some
revision of previous results derived in X might be necessary.

Case (3) is equally interesting. One has to find out in this case which of
the two systems really does capture the pre-theoretic notion. And it might

25] restrict myself here and in the following to the theorems of the systems for the sake of
the simplicity of the exposition. The picture extends in the usual way to the consequence
relations.

260ne can of course distinguish at least six relations in which two such systems can
stand to each other: The three I discuss in the following, the case where the systems are
disjoint, and two cases of overlap: in one the union of the systems is consistent, in the
other one it is not. In any case, the resulting situations would be similar in the relevant
respects to the ones I describe.

2"We might differentiate between considering the union and the closure of the union.
This would give us even more cases than mentioned in the previous footnote.
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turn out that it is neither. It seems that a case of type (3) is most likely to
occur when the logician develops the new system because she is unsatisfied
with the old one. She is then most likely to design a formal system directly
due to reflection on the pre-theoretic notions and to be little, if at all, guided
by the old system. In any of these cases, though, the mere mismatch of the
systems is not going to provide one with an answer to the question: Which of
the systems is to be modified or rejected? But it is a valuable indicator that
one has to look out for arguments and that some adjustments are needed in
at least one of the systems.

It is worth emphasising that fit between two systems does not guarantee
that the intended notion is properly captured. The original system might
fail to provide theorems it should have, or have too many. If the new system
is then designed to match the old one, this failure will carry over. The mere
proof that two systems agree on their theorems cannot show that the pre-
theoretic notion is captured unless one has independent reasons already to
believe that one does. Equally, in the case of a mismatch there is certainly no
guarantee that one of the systems is the correct one. Both might be wrong.

I doubt that anyone would have deep objections to my case descriptions.
And if I'm right about the relation between formal semantics and deductive
systems with respect to pre-theoretic notions then the same picture must
hold true in this case as well. Let the X and Y above be a deductive system
and a formal semantics, respectively. (1) then corresponds to a situation in
which we have soundness and incompleteness, as is the case for SOL with
standard semantics, (2) would be completeness, but failure of soundness, (3)
the failure of both. Let’s consider (1), and the case of SOL with standard
semantics, where we decide to favour the model theory. In light of Godel’s
incompleteness theorem there is no hope of coming up with some additional
axiom that will provide us with a deductive system that will allow us to
deduce everything that is given by the standard model-theoretic consequence
relation. But where it works out, we can rely on the standard deductive
system anyhow, since the soundness theorem holds. For the rest we have to
do model theory which — after all — we have assumed is the right place to look
for logical consequence anyway. If, on the other hand, we convince ourselves
that the deductive system properly captures logical consequence, but for some
purposes we require a complete model theory (rather than rejecting model-
theory as a whole), we would go for a Henkin semantics.?® (2) corresponds

28[Shapiro, 1999], p. 51, suggests that Henkin semantics is the right tool to study the
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to SOL with entirely unrestricted Henkin models: completeness holds, but
soundness fails.?’ If we decide to favour the deductive system we will restrict
the class of Henkin models in a way that puts us into the position to prove
soundness. Should we decide that the Henkin semantics captures what we
are after we have to weaken our deductive system. It is, however, hard to
imagine cogent reasons for adopting this last option. Concerning (3) we
again find ourselves in the position where both systems are most clearly up
for discussion; although it has to be said that this, of course, is the case for
all three scenarios.

Failures of match between formal systems which are meant to capture the
same pre-theoretic notion show us that some reconsideration needs to be un-
dertaken. The failure of soundness or completeness is a special and important
case of this, and there are some well-known examples of such investigations
which have given rise to fruitful developments in formal logic. Tarski’s origi-
nal model-theoretic account, for example, arose from his dissatisfaction with
the previous characterizations of the concept of logical consequence.?® This
first account operated with a domain that does not change in cardinality.?!
Hence for an infinite domain, for any n € N any sentence of the language
that expresses "there exist at least n objects' comes out as a logical truth —
a feature usually deemed undesirable. Even worse, for finite domains, which
sentences of this form are logical truths depends on the size of the domain.
Up to the n that is the cardinality of the domain the sentences come out as
logical truths, for greater n they come out as logical falsehoods. This is fixed
in the model theory that we use today, and model theory has grown to be a
very powerful and fruitful area of mathematical logic.

Something similarly exciting happened in the area of modal logic. Saul
Kripke gave possible worlds semantics to a whole range of modal logics, and
C.1. Lewis’ original systems S4 and S5 turned out to be both sound and com-
plete with respect to their respective possible worlds semantics. By having
this semantical tool to hand, many more axiomatic systems could be de-
signed (K, D, T, B, etc.). On the other side of the story, the soundness proof
for Lewis’ other systems failed, leading to the development of a semantics
that includes so-called “impossible worlds”. Again, more axiomatic systems
were developed and “impossible worlds semantics” plays an important role,

deductive system of SOL, for example.
29Cf. [Shapiro, 1991], p. 88.
30 Tarski, 1936].
31Cf. [McGee, 1992].
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e.g., in epistemic logics, some relevant and paraconsistent logics, and formal
semantic theories of information.

Before we conclude, note that it might be the case that the study of for-
mal systems effects our so-called pre-theoretic intuitions.>®> Nothing in the
discussion above hangs on whether pre-theoretic notions are fixed. Should
a pre-theoretic notion change over time, for whatever reason, a new system
is called for to capture the changed content. The old systems might sur-
vive and still codify technical concepts which are not to be identified with
the changed pre-theoretic notions. The point remains the same: Should
metatheoretical studies yield a mismatch between two systems — and one of
those possible mismatches is what we call semantic incompleteness — inde-
pendent arguments have to be provided concerning which of the two systems
is the one that properly captures the pre-theoretic notion, if any. When the
pre-theoretical notion that is to be formalized is that of logical consequence,
incompleteness alone cannot serve as an argument to disqualify a system as
a proper logic, since it does not provide us with a criterion to decide whether
to reject the deductive system of the model theory. Much less is it acceptable
to dismiss both of a pair of formal systems, say the deductive system of SOL
and its standard model theory, on the grounds that they don’t match.

5 Conclusion

I argue above that completeness results can provide insights into properties of
formal systems. This is because soundness and completeness really constitute
equivalence proofs. The failure of equivalence of two systems which are meant
to formalize the same pre-theoretic notion suggests that these systems have
to be investigated again to see what is wrong with at least one of them. But
one will always have to provide independent arguments why a formal system
under discussion does not properly capture (part of) logical consequence.
The mere perfect match of a model theory to a sound deductive system,
i.e. completeness, cannot provide such an argument unless one already has
provided other arguments that show that one of the systems does in fact
properly capture this part of logical consequence.

Imagine, for example, that the standard model theory is not only the

32There is a debate on this under the heading of “normative vs descriptive aspects of
logic”. [Resnik, 1985] argues that pre-theoretic and formal notions eventually reach a
reflective equilibrium.
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right tool to capture logical consequence, but also the only way to give a
conceptual analysis of logical consequence — as briefly mentioned as an op-
tion in the end of section 2. It should therefore be the case that the best
shot a deductive system had was to be extensionally adequate with respect
to the right model theory. Now, if the completeness proof fails, this surely
does not show that the model theory did not properly capture logical conse-
quence. The deductive system on this view is an addition to the conceptual
analysis of logical consequence given by the model theory. The latter is not
to be measured in light of the former. The possible failure of the conceptual
analysis would have to be shown in another way. The same holds mutatis
mutandis if the deductive system is given precedence.

I’'m under no illusion of having shown that SOL is proper logic. What
I have argued for is merely that one cannot draw on the incompleteness of
deductive systems of SOL with respect to standard semantics to show that
either of the systems is not a proper logic. The arguments provided should
be sufficiently unspecific to SOL to hold generally for logical systems which
lack a completeness result. Traditionally, most logics started their formal
career as a deductive or axiomatic system. All that should be required to
get a semantics relative to which a given deductive system is complete is a
sufficiently cunning model-theorist. Whether this semantics answers to the
pre-theoretic notion that was meant to be captured is an entirely different
issue and must be argued for independently. Of course, should it turn out
that it does not capture logical consequence, and the deductive system is
sound and complete with respect to it, so much the worse for the deductive
system. But note that in such a case a completeness theorem, rather than
an incompleteness theorem seals the fate of this system. If the logic starts
out as a model-theoretic one, it is much less clear whether we can find a
complete deductive system for it or a complete axiomatization of it. But the
mere lack of such a system cannot count as showing that the model-theoretic
logic is not a proper logic, especially not if we independently decide that the
model theory properly captures the (part of the) logical consequence relation
we were after.??

33] am indebted to Ross Cameron, Daniel Cohnitz, Roy T. Cook, Philip Ebert,
Amy Hughes, Nikolaj Pedersen, Agustin Rayo, Stephen Read, Stewart Shapiro, Rob-
bie Williams, Crispin Wright, and the participants of the FOL75 conference in Berlin for
many helpful comments and suggestions.
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Logic-Based Agents and the Frame Problem:
A Case for Progression
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Intelligent agents that reason logically about their actions have to cope with
the classical Frame Problem. We argue that a progression-based solution
is necessary for agent programs to run efficiently over extended periods of
time. We support this claim by comparing the computational behavior of two
popular logic programming systems for reasoning agents: Regression-based
GOLOG and progression-based FLUX.

1 Introduction

An intriguing application of logic as a formal model of rational thought is
to endow artificial systems with the ability to reason. Software agents and
autonomous robots exhibit rational behavior as a result of reasoning about
the effects of their actions based on an abstract, symbolic model of their
environment. This approach to Artificial Intelligence is inherently connected
with the famous Frame Problem of how to axiomatize the effects of actions
in a concise way so as to enable an automated agent to infer what has and
what has not changed after a sequence of actions [6, 7.

Throughout its history, the Frame Problem has initiated many important
developments—a prominent example is nonmonotonic logic [2]—but satisfac-
tory solutions did not emerge until the past decade. These solutions have
recently evolved into declarative, high-level programming languages and sys-
tems which can be used to create reasoning agents and robots. The core of
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each such system is its underlying inference schema for solving the Frame
Problem. These inference schemata come in two different flavors.

In a regression-based solution to the Frame Problem, the question whether
a property ¢ holds after the agent has performed a sequence of actions,
is reduced to the question whether another property R[p] (the regression
of ¢) holds after the last but one action. This reduction is applied recursively
through the whole sequence, so that in the end the fully regressed formula
can be checked against what was initially true.

In a progression-based solution to the Frame Problem, a (possibly incom-
plete) initial world model is updated upon the performance of an action. In
this way, the model is progressed through an action sequence executed by the
agent, and the current model is used directly to decide whether a property ¢
holds in the current situation. We argue that this principle is mandatory
for the efficient control of agents over extended periods of time. To sup-
port this claim, we analyze and compare the computational behavior of the
regression-based logic programming system GOLOG [4] with progression-
based FLUX [13]. Our analysis shows that when the former is used, the
computational effort continually increases as a program proceeds, whereas
the latter system scales up effortlessly to long-term control.

The remainder of this paper is organized as follows. In the next section,
we compare the two principles of regression and progression in the context
of logic-based agents. In Section 3 we present and analyze experimental
results with GOLOG and FLUX applied to a mail delivery problem which
requires to reason about action sequences of non-trivial length. We conclude
in Section 4. We assume that the reader is familiar with basic notations of
logic programming and Prolog (as can be found, e.g., in [1]). Lack of space
does also not permit to give a full explanation of syntax and semantics of
GOLOG and FLUX; we refer to [4, 9] and [13], respectively.

2 Progression vs. Regression

Consider a robot whose task is to pick up and deliver mail packages exchanged
among a number of offices. The robot is equipped with several slots, a kind
of mail bag, each of which can be filled with one such package. Figure 1
depicts a sample scenario in an environment consisting of six offices and a
robot with three mail bags. A simple, general strategy for the robot is to
deliver packages whenever it finds itself at some office for which it carries
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Figure 1: The initial state of a sample mail delivery problem, with a total of
21 delivery requests.

mail, then pick up packages whenever it happens to be at some place where
items are still waiting to be collected, and finally move either up or down
the hallway toward an office where a package can be picked up or delivered.
This strategy is implemented by the following semi-formal algorithm:

loop
if possible to deliver a package
then do it
else if possible to pick up a package
then do it
else if can pick up or deliver a package up (resp. down) the hallway
then go up (resp. down)
else stop
end loop

This algorithm obviously requires the robot to evaluate conditions which
depend on the current state of the environment. For in order to decide on
its next action, the robot always needs to know the current contents of its
mail bags, the requests that are still open, and its current location. Since
these properties constantly change as the program proceeds, the robot has
to keep track of what it does as it moves along. For this purpose, it needs an
internal representation of the environment, which throughout the execution
of the program conveys the necessary information about the current location
of all packages that have not yet been delivered. Logical reasoning on the
basis of this model allows the robot to decide which actions are possible and
how the model needs to be updated after each action in accordance with the
effects of the action. With regard to the scenario in Figure 1, for instance,
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Holds(p, So)?

Holds(p, S2)?

Holds(p, S1)? Holds(p, S3)?

Figure 2: In regression-based solutions to the Frame Problem, the question
whether a property ¢ holds in a situation S; is decided by regressing ¢
through the actions that lead from the initial situation Sy to S;.

the robot needs to be able to conclude that it can start with putting one
of the three available packages into one of its mail bags. Furthermore, the
robot needs to infer that after this action, the package is in one of the mail
bags while the other two bags are still empty. Hence, the robot has to cope
with the Frame Problem [6].

In a regression-based inference schema for solving the Frame Problem [§],
the question whether a property ¢ holds after a particular action, is reduced
to the question whether another property R[p] (the regression of ¢) holds
before the action. This reduction is applied recursively through all actions the
agent has performed thus far, so that in the end the fully regressed formula
can be checked against the initial world model. Figure 2 gives a schematic
illustration of this principle. The graph shows that in general the effort of
examining the validity of a property depends on the length of the history.
As a consequence, the computational behavior of a regression-based agent
program can be expected to worsen the longer the program runs.

The family of GOLOG dialects rooted in [4] is an example of regression-
based implementations. The effects of actions are encoded by successor state
azxioms [8], which are of the form

Holds(f, Do(a,s)) + ®¢(a,s) (1)

Here, f is an atomic property, a so-called fluent, and Do(a, s) denotes the
situation, i.e., sequence of actions, reached by performing action a in situ-
ation s. Formula ®; describes the conditions on action a and situation s
under which f can be concluded to hold in the successor situation Do(a, s).
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As an example, consider the following successor state axiom, given in Prolog
notation, for the fluent Empty(b), that is, the property of mail bag b to be
empty:

holds(empty(B),do(A,S)) :- A=deliver(B)

holds (empty(B),S),
not A=pickup(B,R).

This axiom says that mail bag b is empty after performing an action a in
a situation s just in case the action was to deliver the contents of bag b, or
mail bag b happened to be empty in situation s and the action was not to
pick up into b a package for some room r. The atom Holds(Empty(b),s)
in the right hand side is solved recursively until the situation argument s
is reduced to the initial situation Sy. In this way, the computational effort
for deciding whether Empty(b) holds depends on the number of actions
performed thus far. As a consequence, the time it takes for a GOLOG agent
to make a decision can be expected to increase with every action the agent
takes.

In a progression-based inference schema for solving the Frame Problem [5,
12], a (possibly incomplete) initial world model is updated upon the perfor-
mance of an action. In this way, the model is progressed through the action
sequence performed by the agent, and the updated model is used directly to
decide whether a property holds in the current situation. Figure 3 gives a
schematic illustration of this principle. The graph shows that the effort of ex-
amining the validity of a property is independent of the length of the history.
As a consequence, the computational behavior of a progression-based agent
program should be expected to remain the same throughout the execution
so that this principle has the potential to scale up to long-term control.

FLUX [13] is an example of a progression-based implementation. World
models, so-called states, are encoded as lists of fluent terms, possibly ac-
companied by constraints for negative and disjunctive state knowledge. The
effects of actions are encoded by state update azioms [12], which are of the
form

StateUpdate(z1,a, z9)  Pu(21, 22)

Here, formula &, describes the conditions under which 2z, is the state
reached by performing action a in state z;. As an example, consider the
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Figure 3: In progression-based solutions to the Frame Problem, the world

model Z; is progressed through the next action in every situation. A prop-
erty ¢ can then be decided directly wrt. the current world model.

following state update axiom® for the action Deliver(b) of delivering the
contents of mail bag b:

state_update(Z1,deliver(B),Z2) :-
holds(at(R),Z1), update(Z1, [empty(B)], [carries(B,R)],Z2).

This axiom says that state z, is the result of performing a Deliver(b) action
in state z; if the robot is at room r in z;, and zy is the result of updating
z1 by the positive effect that bag b becomes empty and the negative effect
that the robot no longer carries in bag b a package for room r. When
executing a FLUX program, conditions of the form Holds(y, z) are always
evaluated against the current world model. Since the computational effort
for this evaluation is independent of the actions that have been performed
thus far, the time it takes for a FLUX agent to make a decision is expected
to remain the same as the program proceeds.

3 Progressive FLUX vs. Regressive GOLOG

In order to see how the theoretical differences between regression-based and
progression-based implementations manifest in practice, we have applied
both GOLOG and FLUX to mail delivery problems which require to rea-
son about action sequences of non-trivial length. We use four fluents to
describe a state in the mail delivery world: At(r) to represent that the
robot is at room r; Empty(b) to represent that the robot’s mail bag b is

I The standard FLUX predicate update(Z1,P,N,Z2) used below represents the update
of state z; to state zy by positive effects p and negative effects n .
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empty; Carries(b,r) to represent that the robot carries in bag b a package
for room r; and Request(r,r’) to indicate a delivery request from room r to
room r’. The following logic programming clauses, for example, constitute
a GOLOG specification of the initial situation depicted in Figure 1:

holds(at(1),s0).

holds (empty(bagl),s0).
holds (empty(bag2),s0) .
holds (empty(bag3),s0) .
holds(request(1,2),s0).

holds(request(6,4),s0).

The three elementary actions of the mail agent are: Pickup(b,r) to pick
up into bag b a package for room r; Deliver(b) to deliver the contents of
bag b at the current location; and Go(d) to move d = Up or d = Down the
hallway to the next room. Using GOLOG syntax, where Poss(a,s) means
that action a is possible in situation s, the following is a suitable definition
of the action preconditions in the mail delivery world:

poss (pickup(B,R),S) :- holds(empty(B),S), holds(at(R1),S),
holds(request(R1,R),S).

poss(deliver(B),S) :- holds(at(R),S), holds(carries(B,R),S).

poss(go(D),S) :— holds(at(R),S),
( D=up, R<6 ; D=down, R>1 ).

Verifying the executability of an action is a vital aspect of executing the
agent program for the mail delivery robot. The effects of the actions are
encoded by the successor state axioms given in Appendix A.

With the help of this background theory, our strategy for the mail de-
livery robot given at the beginning of Section 2 translates into the following
recursive GOLOG procedure:?

proc(main_loop, [deliver(B),main_loop] #
[pickup(B,R) ,main_loop] #
[continue,main_loop] # []).

2For details regarding syntax and semantics of GOLOG, we refer to [4, 9].
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proc(continue,
[ [?(empty(B)),?(request(R1,R2))] # 7?(carries(B,R1)),
?7(at(R)), [?(less(R,R1)),go(up)] # go(down) ]).

holds(less(R1,R2),S) :- R1<R2.

The auxiliary procedure Continue succeeds if there is the possibility for the
robot to pick up or deliver mail somewhere up or down the hallway. If neither
a Deliver(b) nor a Pickup(b,r) action is possible, and if the robot needs
not continue to another office, then the program terminates.

In FLUX, the initial state of Figure 1 is encoded by this clause:

init(Z0) :- Z0 = [at(1),empty(bagl),empty(bag2),empty(bag3),
request(1,2),...,request(6,4)].

The specification of the precondition axioms is the same as in GOLOG while
the effects of the three actions are encoded by the state update axioms given
in Appendix B.

The following FLUX program implements the same algorithm as the
GOLOG procedure for the mail robot:

main :- init(Z), main_loop(Z).

main_loop(Z) :- poss(deliver(B),Z)
-> execute(deliver(B),Z,Z1), main_loop(Z1)
; poss(pickup(B,R),Z)
-> execute(pickup(B,R),Z,Z1), main_loop(Z1)
; continue(Z,Z1)
-> main_loop(Z1)
; true.

continue(Z,Z1) :- ( holds(empty(B),Z), holds(request(R1,R2),Z)
; holds(carries(B,R1),Z) ),
holds(at(R),Z),
( R<R1 -> execute(go(up),Z,Z1)
; execute(go(down),Z,Z1) ).

Both the GOLOG and the FLUX program are available for download
from our web page www.fluxagent.org. We ran a series of experiments
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Figure 4: Overall runtime of the mail delivery program in GOLOG and
FLUX (vertical axis) depending on the solution length (horizontal axis).

with maximal delivery problems, that is, with initial requests from every
office to every other. The following table shows the resulting lengths of the
action sequences for all problem sizes from n = 10 offices up to n = 30 and
with a robot with three mail bags:?

n | #act | n | #act | n | #act
10 492 || 17 | 2144 || 24 | 5658
11 640 || 18 | 2516 || 25 | 6352
12 814 || 19| 2928 || 26 | 7100
13| 1016 || 20 | 3382 || 27 | 7904
14 | 1248 || 21 | 3880 || 28 | 8766
15| 1512 | 22 | 4424 | 29 | 9688
16 | 1810 || 23 | 5016 || 30 | 10672

Figure 4 shows the runtime of the two programs in relation to the length
of the solution. The experiments were carried out on a standard PC with

3We have kept the value for k constant because while it influences the overall number
of actions needed to carry out all requests, this parameter turned out to have negligible
influence on the computational effort needed for action selection and effect computation.
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Figure 5: The computational behavior of the GOLOG program for the mail
delivery problem in the course of its execution. The horizontal axis depicts
the degree to which the run is completed while the vertical scale is in seconds
per 100 actions.

a 500 MHz processor. A detailed analysis of the computational behavior as
the two programs proceed shows that the superiority of FLUX is mainly due
to its progressive solution to the Frame Problem: Figure 5 depicts, for three
selected problem sizes, the average action selection time in the course of the
execution of the GOLOG program. The curves show that the computational
effort increases polynomially as the program runs, which is a consequence
of the regression-based solution to the Frame Problem. Figure 6 depicts the
average time for action selection and state update computation in the course
of the execution of the FLUX program, again for three selected problem sizes.
The curves show that the computational effort remains essentially constant
throughout, thanks to the progression-based solution to the Frame Problem.
The slight general descent can be explained by the decreasing state size due
to fewer remaining requests.

4 Discussion

We have argued that progression-based solutions to the Frame Problem are
necessary for logic-based agents that need to reason about action sequences of
non-trivial length: By continually updating their internal model of the envi-
ronment, agents can evaluate properties directly at every stage. In contrast,
regression-based solutions to the Frame Problem give rise to a computational
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Figure 6: The computational behavior of the FLUX program for the mail
delivery problem in the course of its execution. The horizontal axis depicts
the degree to which the run is completed while the vertical scale is in seconds
per 100 actions.

effort for evaluating properties which increases with every action taken by the
agent. In the long run, the polynomial effort for regression worsens the com-
plexity of any polynomial algorithm for agent control. We have shown how
this difference manifests in practice by comparing regression-based GOLOG
with progression-based FLUX on a problem which requires to reason about
several hundreds or thousands of actions.

A prominent alternative to GOLOG, the implementation [11] of the event
calculus [10] is essentially regression-based just as well: In order to verify that
a property holds at some time ¢, it must be proved that this property was
initiated by some previous event and that no event in between terminated
this property. This, too, requires to take into account the history of events
(i.e., actions) when examining the validity of a property, so that again the
computational behavior of a control program can be expected to worsen with
every action taken by the agent.

In FLUX, the notion of a history of actions serves different purposes: It
is used to give semantics to program execution and to endow agents with
the ability of planning. As argued in [3], since planning is a computationally
demanding problem, it should be restrictively employed in agent programs
and interleaved with action execution. By combining progression with much
of GOLOG’s powerful concept for plan search control, FLUX combines the
best of both worlds.
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A Successor State Axioms in GOLOG

holds(at(R),do(A,S)) :- A=go(up), holds(at(R1),S),
R is R1+1

; A=go(down), holds(at(R1),8),
R is R1-1

; not A=go(D), holds(at(R),S).

holds (empty(B) ,do(A,S)) :- A=deliver(B)

holds (empty(B),S),
not A=pickup(B,R).

holds(carries(B,R),do(A,S)) :- A=pickup(B,R)

holds(carries(B,R),S),
not A=deliver(B).

holds(request(R,R1),do(A,S)) :- holds(request(R,R1),S),
( A=pickup(B,R1)
-> holds(at(R2),8),
R2\=R
; true ).

B State Update Axioms in FLUX

For the sake of simplicity and because our example domain does not involve
any sensing actions, we have omitted the argument for sensory input, which
is required for general update axioms [13].
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state_update(Z1,pickup(B,R),Z2) :-
holds(at(R1),Z1),
update(Z1, [carries(B,R)], [empty(B) ,request (R1,R)],Z2).

state_update(Z1,deliver(B),Z2) :-
holds(at(R),Z1), update(Z1, [empty(B)], [carries(B,R)],Z2).

state_update(Z1,go(D),Z2) :-
holds(at(R),Z1), ( D=up -> R1 is R+1 ; Rl is R-1 ),
update(Z1, [at(R1)], [at(R)],Z2).
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ABSTRACT: Let A(x,y,z) and M (z,y,z) denote predicates
indicating x* +y = z and z xy = z respectively. Let us say an
axiom system « recognizes Addition and Multiplication both as Total
Functions iff it can prove:

VaVy3z A(z,y,z) AND VaVy3z M(x,y,z) (1)

We will introduce some new variations of the Second Incomplete-
ness Theorem for axiom systems which recognize Addition as a “to-
tal” function but which treat Multiplication as only a 3-way relation.
These generalizations of the Second Incompleteness Theorem are in-
teresting because our prior work [30, 32, 34] has explored several types
of boundary-case exceptions to the Second Incompleteness Theorem
that occur when one weakens the the hypothesis for our main theorems
only slightly further.

1 Introduction

The Second Incompleteness Theorem states that sufficiently strong axiom
systems are unable to formally verify their own consistency. There has been
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an extensive amount of research about how the Second Incompleteness The-
orem can be generalized for weak axiom systems in the context of Frege and
Hilbert deduction. For instance, Bezboruah-Shepherdson [3] showed how a
version of the Second Incompleteness Theorem is valid for an axiom system
that Tarski-Mostowski-Robinson [24] called Q. Pudlék [16] proved a more
robust version of the Second Incompleteness Theorem, that applied to all
extensions of Q and to all versions of its Godel encoding (including very im-
portantly localized versions on Definable Cuts) involving Frege-Hilbert style
deduction. Wilkie-Paris [29] developed several examples of other versions of
the Second Incompleteness Theorems involving for example the inability of
[¥0+ Exp to prove the consistency of Q. Solovay [21] observed how one could
modify the formalism of Pudldk [16] with some techniques used by Nelson
and Wilkie-Paris [11, 29] to obtain the following result:

x  (Solovay’s Extension of Pudldk’s Generalization of the Sec-
ond Incompleteness Theorem [16, 21]) No reasonable consistent
axiom system « treating merely Successor as a total function
(and viewing Addition and Multiplication as 3-way relations) can
recognize the assured non-existence of a Frege-Hilbert style proof
of 0=1 employing «a’s axioms.

Our research was greatly stimulated by the Theorem * resulting from
the joint work of Nelson, Pudlak, Solovay and Wilkie-Paris. It differs from
this theorem’s formalism mainly by examining a Semantic Tableaux style of
a proof rather than a Frege-Hilbert methodology.

It turns out that some results from Theorem * concerning Frege-Hilbert
deduction generalize for Semantic Tableaux, but other aspects of it do not
generalize. Our research is also relevant to some open questions raised by
Paris and Wilkie [14] concerning the characterization of the exact circum-
stances where the Semantic Tableaux version of the Second Incompleteness
Theorem applies to weak axiom systems.

There have been a substantial amount of research in recent years [1, 2,
4,7, 8,9, 10, 13, 14, 16, 17, 18, 19, 23, 25, 26, 27, 29, 33| into this topic.
Our contribution in [30, 32, 34] was the focus on axiom systems « which
drop Equation (1)’s assumption that Multiplication is a total function. (Most
of [30, 32, 34]’s systems regarded only Addition as total and viewed Multi-
plication as a 3-way relation.) This topic is interesting because significant
boundary case exceptions for the Semantic Tableaux version of the Second
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Incompleteness Theorem can be found when an axiom system recognizes
merely Addition as formally total.

One of the strongest types of boundary-case exceptions to the Second
Incompleteness was presented in [34]. It introduced a hierarchy of several
increasingly strong definitions of Semantic Tableaux consistency and demon-
strated that the prior systems of [30, 32] could be improved so that they
had a capacity to recognize their self-consistency under a “Level(1)” defini-
tion of Semantic Tableaux consistency (rather than using [30, 32]’s weaker
“Level-zero” type definition). The theme of [34] was essentially that all the
different levels of definition of Semantic Tableaux consistency were logically
equivalent to each other from the standpoint of a strong enough axiom sys-
tems. However, a weak axiom system is typically unable to recognize the
equivalence of these different levels of definition. Using this fact, [34] demon-
strated that some axiom systems were able to evade the force of the Second
Incompleteness Theorem when the level-number of their associated definition
of Semantic Tableaux consistency was made sufficiently small. In essence,
our goal in this paper and in our prior work is to attempt to characterize in
as much detail as possible the maximum level number where such an evasion
of the Second Incompleteness Theorem is feasible.

Section 2 of this paper will review our definition of different levels of Se-
mantic Tableaux consistency. Our chief goal will be to show that the Seman-
tic Tableaux version of the Second Incompleteness Theorem becomes valid
at what is called “Level(2+)” for essentially all axiom systems that recognize
merely Addition as a total function. This result is significant because there
is a very narrow gap between the Level(1) — where [34] showed the Sec-
ond Incompleteness Theorem can be evaded when Multiplication is treated
as a 3-way relation — and the Level(2+) where the Second Incompleteness
Theorem takes force.

There is also a second variant of our results (in both their positive and
complementary negative forms) that involves a what we call a TabList style
of deduction, described later at the end of the next section.

2 Formal Statement of Main Theorems

Some added notation is needed to define our leveled hierarchy and the vari-
ous new theorems we will present. Define the mapping F'(aq, as...a;) to be
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a Non-Growth function iff F'(ay,as,...a;) < Mazimum(a,as,...a;) for all
values of ai, as, ...a;. Six examples of non-growth functions are Integer Sub-
traction (where x—y is defined to equal zero when = <y ), Integer Division
(where = +y is defined to equal = when y =0, and it equals | z/y |
otherwise), Maximum(z,y), Logarithm(z), Root(z,y) = [ 2'/¥ ] and
Count(z, j) designating the number of “1” bits among x’s rightmost j bits.
The term U-Grounding Function will refer to this set of six non-growth
functions plus the Growth operations of Addition and Double(z) = = + .

All our results in this paper will technically be couched in terms of a
language that houses function symbols for the eight operations defined above.
This notation is technically unnecessary — because a system that uses the
combination of Equation (2) (which implies Addition and Doubling are total
functions) along with only our first six non-growth U-Grounding operations
would have properties similar to the U-Grounding language.

VeVy3dz o =2 —y (2)

However, it is much easier to present a short proof of our results if our lan-
guage does employ two additional function symbols for the operations of
Addition and Double(z) = x + x . The virtue of this notation convention
is that it allows us to formally employ constant symbols only for the num-
bers of 0 and 1 and to encode every other integer N > 2 using no more
than 2-Logy N appearances of the function symbols for Addition and Dou-
bling applied to these two input symbols. Such a mathematical term will be
henceforth called the U-Grounded Binary Representation of N and be
denoted as N . For instance, 25 can be encoded in a “binary-like” form as:
1 + Double( Double( Double( 1 + Double(1) ) ) ).

The use of logic’s conventional notation about II,, and ¥,, sentences is
technically inappropriate in this paper because the latter notation (with its
Multiplication Function symbol) is suitable only for axiom systems which
recognize Multiplication as a total function. Instead, our analogs for II,, and
Ym in the U-Grounding Function language are called I} and 37 . Here, a
term t is defined to be a constant, variable or a U-Grounding function
symbol (whose input arguments are recursively defined terms). Also, the
quantifiers in the wifs Vv <t U(v) and Jv <t W(v) are called bounded
quantifiers. If ® is a formula that uses the U-Grounding primitives as its
function symbols and the two relation symbols of © = 7 and “ < 7, then
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this formula will be called both IIf and X whenever all its quantifiers are
bounded. For n > 1, a formula T shall be called IT? iff it is written in the
form Vv, Vv, ... Vo, @,  where ® is X7, . Likewise, T is called X iff
it is written in the form Jvy Jvy ... Jv, P,  where & is II7_, .

Let us call T a @) sentence iff it is one of a X} sentence, a II} sentence
or a Boolean combination of several ¥* and II} sentences (using the standard
connective symbols of A ; V |, = and — ). There will be three types
of definitions of Semantic Tableaux consistency that we will examine in this
paper. They are defined below:

1. A Level(n) Definition of an axiom system «’s Tableaux consistency
is the declaration that there exists no II* sentence T supporting
simultaneous Semantic Tableaux proofs from « of both Y and its
negation.

2. A Level(n+) Definition of an axiom system a’s Tableaux consis-
tency is the statement that no Q) sentence T supports simultaneous
Semantic Tableaux proofs for both T and its negation.

3. A Level(0-) Definition of a system «’s Tableaux consistency is the
statement that there exists no proof of 0=1 from «a.

All definitions of consistency, from Level(0-) up to Level(n+) for any
n , are equivalent to each other under strong enough models of Arithmetic.
However, many weak axiom systems do not have a mathematical strength to
formally prove and recognize this equivalence.

Translated into this IIj styled notation convention, the core result in
[34] was the construction of a consistent axiom system « which had the
following properties:

1. « was capable of recognizing its Level(1) Tableaux consistency.
2. « was capable of recognizing Addition as a total function.

3. « was capable of proving all of Peano Arithmetic’s II] theorems.

The above result beckons one to consider whether or not it would be
possible to develop stronger versions of this effect where « could recognize
higher levels of its own Tableaux consistency. Theorem 1 and Remark 1 show
that most such generalizations are infeasible.
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Theorem 1. Let o denote an axiom system that uses the language of the
U-Grounding functions (and thus recognizes Addition as a total function).
There exists a 117 theorem W of Peano Arithmetic such that no consis-
tent o O W of finite cardinality can recognize its own Level(2+) Tableauz
consistency.

Remark 1. It is also possible to generalize Theorem 1 for essentially
all axiom system « D W of infinite cardinality. In particular, let us say
an axiom system o« satisfies the Conventional Deciphering Property
iff there exists a 3§ sentence Test(n) such that n represents the Godel
number of an axiom of « iff and only iff Test(n) is true. We will not have
the page space to prove this stronger result here, but Theorem 1 can be
strengthened to indicate that no consistent axiom system o D W satisfying
the Conventional Deciphering Property can prove a theorem affirming its
own Level(2+) Tableaux consistency.

Remark 2. The Incompleteness effect described by Theorem 1 and Re-
mark 1 should not be confused with a prior result published by us in [33].
The latter’s version of the Incompleteness Theorem showed that there were
essentially no interesting axiom systems that could simultaneously recognize
their Level(0-) Tableaux consistency and also recognize both Addition and
Multiplication as total functions. This alternate effect is quite different from
our current result, which will apply to axiom systems that recognize solely
Addition as a total function.

In particular, this distinction is non-trivial essentially because [34] showed
that axiom systems could recognize their Level(1) consistency when they
treated Multiplication as a 3-way relation (rather than as a total function).
Hence, there arises the question concerning at what Level of Tableaux con-
sistency does the Semantic Tableaux version of the Second Incompleteness
become valid for this latter class of axiom systems which do not employ [33]’s
assumption that Multiplication is a total function? The purpose of Theo-
rem 1’s generalization of the Second Incompleteness Theorem is to at least
partially answer this question. It shows that while [33]’s Tableaux general-
ization of the Second Incompleteness Theorem is known from [34] to become
false at all levels between 0 — and 1 when a system fails to recognize
Multiplication as total, there is nevertheless available a Level(2+) Tableaux
generalization of the Second Incompleteness Theorem for such systems.

We will also discuss in this paper a cousin of Theorem 1’s Incompleteness
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result, involving an alternative rule of inference, called TabList deduction.
It is helpful to review Smullyan’s formal definition of a Semantic Tableaux
proof before formally defining TabList deduction.

Following roughly Fitting’s or Smullyan’s notation [5, 20|, let us define
a ¢-Based Candidate Tree for the axiom system « to be a tree whose
root corresponds to the sentence —® and whose all other nodes are either
axioms of « or deductions from higher nodes of the tree. Let the notation
“A = B 7 indicate that B is a valid deduction when A is an ancestor
of B . In this notation, the Tableaux-Deduction rules are:

1. YAT = T and TAT = T.

2. == T = 7. Other deduction rules for the = symbol include:
-(YVIl) = -TA-I', =(Y —-T) = YA, =2(TAT) = =YTVv-I,
Y (v) = Yo=Y (v) and —VoT(v) = Jv-T(v)

3. A pair of sibling nodes T and I' is allowed when their ancestor is T Vv I".
4. A pair of sibling nodes =Y and I" is allowed when their ancestoris T — T
5. v Y (v) = Y(u) where u is a newly introduced Parameter Symbol.

6. YVoY(v) = 7Y(t) where ¢ denotes a “Function Term”. These terms
are U-Grounding Function objects, whose inputs are any set of constant
symbols, parameter symbols or other function-objects.

Define a particular leaf-to-root branch in a candidate tree T' to be Closed
iff it contains both some sentence Y and its negation —7T . A Semantic
Tableaux proof of & is then defined [5, 20] to be a candidate tree whose
root stores the sentence —® and all of whose root-to-leaf branches are closed.

One further definition is needed before we can describe the second varia-
tion of Theorem 1’s Incompleteness Result explored in this paper. Let H
denote a sequence of ordered pairs (t1,p1), (t2,p2), ... (tn,Pn) , where p; is
a Semantic Tableaux proof of the theorem t; , and let 3 denote an arbitrary
class of sentences. Define H to be a Tab—R—List proof of a theorem T
from the axiom system « iff T'=1¢, and also:

1. Each axiom in p;’s proof is either one of tq,ts,...t;_1 or comes from a.
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2. Each of the “intermediately derived theorems” ti,t,,...t,,_1 must lie
within the “prespecified class” R of sentences.

If R denotes the set of @} sentences, the notion of an Tab—@Q; —List proof
is quite similar (although not fully identical) to constructs that have been
called R-proofs and Q). style proofs by Héjek, Paris, Pudlak and Wilkie in
[7, 16, 29]. One minor difference between these definitions is that the TabList
notion contains some added flexibility because it allows one to set R equal
to any of the classes of II; sentences, Xj sentences, ()} sentences, or for
example the union of the sets of II; and X} sentences. Another difference
is that the R-proofs and @, style proofs of [7, 16, 29] are based on partially
limiting the power of Hilbert-style deduction, whereas our dual form of this
construct proceeds in the opposite direction — where we seek to progressively
expand the logical power of Semantic Tableaux style deduction instead.

For any class R of sentences, each of our prior definitions of Level(0),
Level(N) and Level(N+) consistency can be generalized for Tab—R—List
deduction. For instance, an axiom system «’s Level(0—) consistency under
Tab—R—List deduction is the statement that every Tab—R—List proof from
a’s axioms fails to prove 0=1.

Below are our main theorems about the generality and limitations of the
Second Incompleteness Theorem under TabList deduction.

Theorem 2. Let « denote an arbitrary axiom system that uses the lan-
guage of the U-Grounding functions (and thus recognizes Addition as a total
function). It is not necessary, but for the sake of simplifying our proof of
Theorem 2 we will also assume that the axiom system « has finite cardinal-
ity. Then there exists two 117 theorems of Peano Arithmetic, Va4 and Vg
such that

A. No consistent « D Vs can prove a theorem affirming its own Level(0-)
consistency under Tab—I15—List deduction.

B. No consistent o D Vg can prove a theorem affirming its own Level(0-)
consistency under Tab—3%5— List deduction.

Theorem 3. Let Taby List be an abbreviation for the variant of Tab—R— List
deduction where R denotes the union of the set of II7 and X% sentences.
Then for each consistent axiom system A that is an extension of Peano
Arithmetic, there exists a consistent axiom system « that can
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1. recognize its own Level(1) consistency under Tab List deduction.
2. recognize the validity of all A’s I} theorems, and
3. recognize Addition as a total function

Part of the reason Theorems 2 and 3 are interesting is due to the close
match between their complementary positive and negative results. Thus,
Theorem 3 established that there exists a Boundary-Case exception to the
Second Incompleteness Theorem when R represents the union of the set
of I} and X7 sentences, while Theorem 2 shows the Second Incompleteness
Theorem comes to force when R represents instead either the class of 11}
sentences or the class of X3 sentences. Moreover, Theorem 3 indicates that
its Boundary-Case exception rises up to Level(1) definitions of consistency,
while Theorem 2 shows that even the lower Level(0—) is problematic under
Tab—II5—List and Tab—3—List deduction.

Most of our discussion in this paper will focus on proving Theorems 1
and 2. Theorem 3’s result was technically announced on the last page of our
Tableaux-2002 conference paper [34]. However, the latter conference paper
was written in a too abbreviated style for it to also include a proof of Theorem
3. Instead, its formal proof examined a slightly more specialized variation
of Theorem 3 where Semantic Tableaux deduction replaced Tab;List deduc-
tion (in Clause 1 of Theorem 3). We have therefore also inserted a 3-page
appendix into the current article, which roughly outlines how [34]’s proof
formalism can be slightly strengthened to obtain Theorem 3’s more general
result. This appendix is helpful because there is a pleasantly tight and sharp
match between Theorem 3’s positive result and Theorem 2’s complementary
negative result, as was explained in the prior paragraph.

3 Overall structure of Theorem 1’s Proof

Our method for encoding a Semantic Tableaux proof p is described on page
581 of our article [32]. This encoding is maximally compressed in that it will
encode p as an integer whose “Bit-Length” is approximately proportional
to the length of such a Semantic Tableaux proof when it is written down
by hand. Several other authors [7, 29] have also employed roughly similar
types of maximally compressed encoding methods. It is therefore probably
unnecessary for a reader to examine our exact encoding method in [32].
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This section will sketch the overall structure of Theorem 1’s proof. Let
Prf,(z,y) denote a 3§ formula indicating y is a semantic tableaux proof of
the theorem z from the axiom system «. Also, let Log(z) denote Base-2 Log-
arithm, with downwards rounding to the lowest integer, and Log* () denote
the operation Log(Log(Log...(Log(z)))) — where A\ designates an integer in-
dicating the number of iterations of Log here. It is useful to employ the
notation ShortPrf? (x,y, 2) to denote a 3% formula indicating that y repre-
sents a Semantic Tableaux proof of the theorem x from the axiom system «
and that y =Log (z) .

Takeuti [23] introduced a form of the A-Short-Proof concept for study-
ing integers y satisfying the condition 3z Log*(z) = y. His goal was to
use this construct to help explicate the relationship between Buss’s Bounded
Arithmetic, Gentzen’s sequent calculus and some of NP’s properties [23]. An
entirely different type of application of the A-Shortness concept was subse-
quently observed by Adamowicz, Salehi, Willard and Zbierski [1, 2, 19, 31, 33|
(largely independently of Takeuti’s research). This second line of research
used the A-Shortness concept as an intermediate step to help answer some
open questions about IX>,’s Incompleteness properties raised by Paris and
Wilkie in [14]. Thus in approximate chronological order, the latter research
included Adamowicz-Zbierski’s observation [1, 2| that a cut-free version of
the Second Incompleteness Theorem was valid at the level of 13, + |
Willard’s strengthening of this result so that the threshold for the Cut-Free
Second Incompleteness effect would be lowered so that it would include all
extensions of I¥, and most extensions of @ [31, 33], and Salehi’s more
recent second type of proof [19] of Willard’s I3, Incompleteness Theorem.

The A-Short concept will also help us prove Theorem 1 in this paper.
Thus, let D(«) denote the following Gddel sentence:

“There is no Semantic Tableaux proof of this sentence from a’s
set of proper axioms”

Let D*(a) denote the “ShortPrf)(x,y,2)” analog of this diagonalization sen-
tence, defined below:

“In a context of the ShortPrfA(x,y, 2) notation convention, there
exists no code (y, z) that proves this sentence from «’s axioms”
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It is easy to give D*(a) a II} encoding. Thus, let Subst(g, h) denote the
following 33§ formula:

Subst(g,h) = The integer ¢ is an encoding of a formula, and h encodes
a sentence identical to g, except all ¢’s free variables are now replaced
by a term equal to the constant g utself.

Then following Godel’s example, D*(«) is formally defined to be the sen-
tence I'(7n), where Equation (3) defines the formula I'(g) and 7 is a term
whose numerical value represents I'(g)’s Godel number.

VyVzVh <y { Subst(g,h) — - ShortPrf} (h,y,z) } (3)

Our proof of Theorem 1 will use the D*(a) Diagonalization sentence
as an intermediate step to help corroborate Theorem 1. In particular, let
Pair(s,t) denote a ¥§ formula indicating that s is the Gédel number of a
()5 sentence and that ¢ is the Godel number of a second (); sentence which
is the negation of s . Also, let [ D*)] denote D*(a)’s Gédel number.
Then the Theorem 4 (below) will help prove Theorem 1.

Theorem 4. Suppose a is a consistent axiom system capable of proving all

the X sentences that are valid in the Standard Model. Suppose there exists
two constants, X and L, such that o can also prove:

A)  Yg Yh Vh* { | Subst(g,h) A Subst(g,h*)] — h=h* }

B) Vz>L Yy { ShortPrfA([DMa)], vy, z) —

dp<z dq<z Is<z It<z [ Pair(s,t) N Prf,(p,s) N Prf,(q,t) ]}
Then o must be incapable of proving:

Vp Vq Vs Vt = [ Pair(s,t) N Prf,(p,s) N Prf,(q,t)].

We will not prove Theorem 4 here because its justification is similar to
the Theorem 2.3 from [33]. The remainder of this article will use Theorem 4
as an intermediate step to help prove Theorems 1 and 2.
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4  The Formal Proof of Theorem 1.

Let a denote an axiom system and ¢(x) denote a formula free in only z.
The formula ¢(z) is called [7] a Definable Cut relative to « iff a can
prove the theorem:

©(0) AND Vaz ¢(z) = ¢(x+1) AND VzVy<z ¢x) — o(y) (4)

Definable Cuts have been studied by a very extensive literature [1, 2, 4, 6,
7,8, 9, 10, 11, 13, 14, 16, 17, 22, 25, 26, 27, 28, 29]. They are unrelated to

Gentzen’s notion of a Sequent Calculus “Deductive Cut Rule”.

It is convenient to call a Definable Cut trivial relative to « iff a can
formally prove “¥ x ¢(x)”. For example since Peano Arithmetic recognizes
the validity of the Principle of Induction, all its Definable Cut Formulae are
trivial. On the other hand, every arithmetical logical system strictly weaker
than Peano Arithmetic contains some non-trivial Definable Cut.

One theme of the literature about Definable Cuts is that they are very
helpful for developing new versions of the Second Incompleteness Theorem,
as well as for devising new uses of it. For instance, the Theorem % |
attributed in Section 1 to the joint work of Nelson, Pudldk, Solovay and
Wilkie-Paris, was derived by using Definable Cuts as a crucial intermediate
step. As we pointed out in Section 1, our new Theorem 1 is related to this
literature, and it was greatly stimulated by its over-all perspective. However,
one aspect of our main proof will veer in a slightly different direction.

The distinction arises because the Second Incompleteness Theorem is
much more difficult to prove and generalize for cut-free proof methods, such
as Semantic Tableaux or the Cut-Free variant of the Sequent Calculus, than
it is for Cut-Permissive formalisms, such as the Hilbert-style methodology
or the Sequent Calculus with a Cut Rule. The intuitive reason for this dis-
tinction is that most generalizations of the Second Incompleteness Theorem
using Equation (4)’s formalism require a Gentzen-style Deductive Cut Rule
(or equivalently some Hilbert-style modus ponens deductions) as an inter-
mediate step. Since we are not allowed to use these methodologies under
Semantic Tableaux deductive calculi, our strategy for proving Theorem 1
will instead use Theorem 4’s formalism as an alternate interim step to facil-
itate the proof.

We will now summarize the notation used in Theorem 1’s proof. For any
fixed integer i, let G;(x) denote the scalar-multiplication operation that
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maps the integer x onto the quantity 22" . . Let A(i,z,y) denote a
¥§ formula which indicates that y = G;(z) . There are many possible ¥
encodings for A(i,z,y)’s graph. Equation (5) provides one example:

-1
{i#Z0ANz#0 — FJv<y [LogLog(v):i/\LogLog(fol)<i/\%:m/\yT < x]}

AND { [i=0V 2=0] - y=2zo+z } (5)

Let T; denote Equation (6)’s II§ sentence, which states that the operation
that maps = onto the integer G;(z) is a total function.

G;’s definition clearly implies ViVe G;1(z) = G;(G;(x)). Equation (7)
encodes this fact as a 117 sentence.

ViVeVyVz [A(,z,y) AN Ai,y,2)] — All+1,z,2) (7)

Also, for any m >0 and n >0, let (8) and (9) define the sentences ©,,
and U, below. (Equation (7) implies their validity.)

O, =def [ Yot = Yo | (8)
U, =def [ To A ©1 A Oy A ... NO, | 9)

The intuitive reason why the Second Incompleteness Theorem is harder
to prove for the Semantic Tableaux deductive calculus than for the Hilbert
method of deduction can be appreciated by examining an axiom system [
whose only non-trivial axiom about the U-Grounding functions corresponds
to (7)’s axiom. This axiom, combined with the built-in assumption that
Addition is a total function, allows one to construct a Hilbert-style proof of
the theorem 7Y, from [ whose length is no longer than c¢-n® for some
constant ¢ , using a methodology that many logicians [4, 7, 8, 10, 11, 13,
16, 17, 21, 29, 32] have attributed to unpublished private communications
from Robert Solovay. However, it oddly turns out that while the Semantic
Tableaux calculus supports equally short proofs of similar approximate length
O(c-n®) for the sentences ©,, and U, from [, there is no analogously
short Semantic Tableauz proof of Y, from [ !
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Our proof of Theorem 1 is related to this fact. It will formalize a Level(2+)
Tableaux-style generalization of the Second Incompleteness Theorem that has
no analog at Level(1) essentially because U,, has a much shorter proof than
Y, from [ (under Semantic Tableaux). No analog of this Tableaux-type
separation characterizes the several Hilbert-style versions of the Second In-
completeness Theorem, discussed in say [4, 7, 8, 9, 10, 13, 14, 16, 17, 25,
26, 27, 29], where the Second Incompleteness Theorem is equally valid at all
levels L . The intuitive reason the Semantic Tableaux will be shown in the
discussion (below) to have contrasting properties for the Levels 1 and 2+ |
unlike Hilbert deduction, will ultimately be because the difference between
the proof-lengths of T, and U, is much greater under Semantic Tableaux
deduction than under Hilbert deduction.

In essence, the above observations combined with Theorem 4’s role as
a very helpful intermediate step explain the two main underlying intuitions
behind Theorem 1’s proof.

Summary of Main Proof: In the context of our proof of Theorem 1,
the symbol “a” in the predicates ShortPrf?2 (z,y,z) and Prf, (z,y) will
have a slightly unconventional interpretation. Rather than treat “a” as
a fixed constant that denotes a finite-sized axiom system, this section will
view it as an integer that designates a Godel number that represents a finite
sequence of sentences Si,S5: ... S, , listing «’s axioms. (Under our method
for encoding an axiom system « , its Godel number will have a bit-length

proportional to the sum of the lengths of 57,5, ... S, .)

Our formal analysis will begin by defining the II] sentence W mentioned
in Theorem 1’s hypothesis. It is defined as a conjunction of nine IIj clauses
Wo, Wi ... Wy — where many of these clauses W; are in turn conjunctions
of several further II] sub-clauses. These nine clauses are defined below:

Definition of 1W: This axiom will be a multi-clause 117 sentence which
provides sufficient information about the eight U-Grounding functions so that
Wy has the capacity to formally prove every X sentence that is logically
valid. (It is unimportant which particular finite set of II{ clauses is used to
formulate Wy , as long as one of its clauses is the explicit statement “0 # 1”.)

Definitions of W; through W;5: The definition of the II] sentence W,
was given in Equation (7). In a context where Prf,(z,y), Subst(g,h) and
A(i,z,y) were already given 3§ defining formulae, the further IT} definitions
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of W5 through Wj are given by Equations 10 through 13.
Vg VYh Yh* { | Subst(g, h) A Subst(g,h")] — h=hr" } (10)

Vi Vz [ A(,1,2) — LogLog(z)=1 | (11)
Va YVt ¥Yn [ Prf,(t,n) VvV = Prf,(t,n) | (12)
Vg Vh [ Subst(g,h) VvV = Subst(g,h) ] (13)

Definitions of Wi and W;: We will not provide a formal equational
description of these two IIj sentences, similar to the prior Equations (10)
through (13), because their formal structures are a bit tedious to encode.
Instead, we will provide a functional description of them:

1. The II7 sentence Wy will contain sufficient information about the
U-Grounding functions so that for each ordered triple (@, h, 7 )
where h denotes the Godel number of D?(a) and Prf, (h, y)
is true, the formal proof of Prf, ( A, 7)) from W will have a
bit-length no larger than [Log(y)]“¢ for some constant Cj . Likewise,
the II} sentence Wy will contain sufficient information about the U-
Grounding functions so that for each ordered pair (g, h,) where
Subst(g, k) is true, the formal proof of this fact will have a bit-length
no larger than [Log(h)]“e (It is easy to construct a ITf axiom Wy and
accompanying constant Cg with these properties.)

2. Let us recall that “U-Grounded Binary-encoded Representations” n
of integers n were defined in Section 2. The II] sentence W; will
contain sufficient information about the U-Grounding functions so that

-

for any integer m > 1, the proof from W; of “n—1 + 1 = 7
has a bit-length no larger than n°” , for some sufficiently large fixed

constant C'; .

Definition of Wy: The II} definition of Wy will appear in Equation (26)
later in this section. Its presentation is postponed because some preliminary
lemmas need to first help motivate it.
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Lemma 1. Each of Wy through Wy are 11} theorems of Peano Arithmetic.

Proof: It is obvious that W; through W; are II7 theorems of Peano
Arithmetic. Also, it is trivial to construct I} sentences Wy, W5 and Wy that
satisfy their functional requirements. O

Lemma 2. Let us recall that Y;, ©,, and G,, were defined by Equations (6),
(8) and (9). Then there exists three constants Ko, K1 and Ko such that:

i) A semantic tableauz proof of ©,, from W requires a bit-length no greater
than Ki-m%Xr.

ii) A semantic tableauz proof of U, from W requires a bit-length no greater
than K, -n*2.

iii) The semantic tableauz proofs of Y; from the union of W and Y,y ,
and of —~Y;_1 from the union of W and —7Y; , each require a
bit-length no greater than K, -i%°.

Proof:

It is immediate from the definition of the sentences W; and W; that
these two parts of W are sufficient to assure that ©,,’s proof will have a
length satisfying constraint (i). The assertion (ii) follows from (i) because
the proof of ©,, has a length essentially no greater than the sum of the proof
lengths for Yo and for ©;, O, ... ©,, . The assertion (iii) follows from (i)
because the definition of ©,, makes it obvious that (iii)’s two proofs have
a sufficiently similar structure to (i)’s proof for there to be no meaningful
difference between their proof lengths.

O

Our proof of Theorem 1 will be centered around showing that the axiom
system « satisfies the requirement (B) of Theorem 4 when A =2 . After
establishing this fact, the remainder of Theorem 1’s proof will be quite easy.
Paraphrased into the English Language, Theorem 4’s Part-B requirement,
with A =2 and L representing a fixed constant, is the statement:

+ If an ordered pair (y,z) (with 2z > L ) encodes a
“2-short proof” (from a ) of the Gddel-like diagonalization sen-
tence D?(«), then there will exist some corresponding Q% sentence
(called say S') where both S and =S have Semantic Tableaux
proofs from o whose Godel numbers are smaller than z.
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Our proof of this statement will rest on showing that for some integer
n (whose exact value will depend only on the ordered pair (y,z) ), one
adequate sentence S satisfying the above assertion is Equation (9)’s sentence
O, . In order to complete Theorem 1’s proof, we will need to show that
any axiom system satisfying Theorem 1’s hypothesis will both satisfy +’s
requirements and recognize this fact about itself.

Some added notation will be employed by our next two lemmas. The
symbol W* will denote a multi-clause axiom, similar to W | except that
W*’s clauses will consist of W, through W7 (and thus omit the Wjs
condition). Also, p will be called a Partial Proof of the theorem & from
« iff its structure is identical to a Semantic Tableaux proof tree except that
one of its branches is released from the requirement of containing a pair of
contradictory nodes. This unique branch will be called p’s Open Branch.
Its lowest node will be called p’s Bottom Node. Our proof of + will have
a nicely compartmentalized modular nature, where it develops a sequence of
increasing complex partial proof trees P, , P, ... P,, , where each tree P,
is an extension of the prior tree P; and the final object P,, is the well-defined
Semantic Tableaux proof of the sentence =S required by Statement —+.

Lemma 3. There exists a constant K3 > 0 (whose exact numeric value will
be unimportant to our main theorem) such that for each n > 1, it is possible
to construct a Partial Proof P, of — U, from the axiom system W* whose
bottom node stores Y,, and where Py ’s length is bounded by K3 - n®s.

Proof: Since P; represents a proof of — 0, , its root will consist of the
sentence — = U,, . The root’s child will be the sentence U,, (which is formally
derived via Section 2’s = Elimination rule for Semantic Tableaux proofs).
Then via several applications of the A Elimination rule, Equation (9)’s U,
sentence will be broken repeatedly into smaller and smaller components until
each of the formal @3 sentences of Ty, ©,, Os, ... ©, is enumerated
along P;’s open branch. The last n steps of P;’s proof will consist in
chronological order of n repeated applications of the —  Elimination
Rule, whose i—th iteration splits Equation (8)’s ©; sentence into a left
sibling nodes of the form — T;_; and a right sibling of Y, . (These splits
will be performed so that the sentences Y1, Yo, ... T, are enumerated in
chronological order along P;’s open branch.)

To verify the above tree is a “Partial Proof” whose “Bottom Node” is T, ,
we need to confirm each of the preceding paragraph’s “left sibling nodes” of
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the form — T, ; are indeed leaves lying at the bottom of closed branches.
This fact is a consequence of our inductive construction because the parent
of each leaf storing a sentence — T, ; will store its negation Y, ;.

Hence, P; certainly represents a Partial Proof of — U, . It is trivial
that for some constant K3 > 0, its proof length is bounded by K3 - n®3. O

Lemma 4. There exists a constant K, > 0 such that for every n > 1 it is
possible to construct a Partial Proof Py of the sentence — U,, from the axiom
system W* — where this proof’s bit-length is bounded by K, -n"* and where
for some parameter w (created during existential quantifier elimination) the
Bottom Node of this Partial Proof is the sentence “ LogLog(u) = 7 7 .

Proof: The proof P, is constructed by taking Lemma 3’s partial proof
P, (whose Bottom node had stored the sentence 7Y, ) and adding seven
nodes below this bottom node. The first two of these seven nodes will store
the sentences indicated by Equations (14) and (15). In particular, (14) is
deduced from Equation (6)’s sentence T,, via the V Elimination Rule, and
(15) is deduced from (14) via the 3 Elimination Rule.

Jy Am, 1,9) (14)

ANm,1,u) (15)

The next three sentences in P,’s proof tree will consist of the axiom Wj
(whose formal statement was listed in Equation (11)) and then two deduc-
tions from this axiom based on applying the V Elimination Rule so that
Equation (11)’s universally quantified variables of i and z are replaced by
n and u. The final sentence at the bottom of these three steps is:

A(m,1,u) — LogLog(u) =n (16)
The last two nodes of Py’s proof tree will be deduced from (16) via the
—  Elimination rule. These two nodes will thus be sibling nodes storing
the sentences of “—~ A(7m , 1, u)” and “ LogLog(u) = m ”

2

The tree P, (above) is a Partial Proof because “ LogLog(u) = 7 7 is its
Bottom Node and the vertex storing “ = A( 7, 1, u)” is contradicted
by Equation (15)’s sentence (and hence represents the needed leaf closing a
branch). Since P, differs from P; by only having seven additional nodes,
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both trees have the same approximate bit-length (thereby establishing that
Py’s length is sufficiently small to satisfy Lemma 4’s claim). O

Lemma 5. Let o denote any axiom system of finite cardinality that is an
extension of W*. Let us recall the Gaodel Sentence D?*( a ) was defined in
Section 3. Suppose N denotes the Godel number of a semantic tableauz
proof of D*( ) from « . Then there will exist a semantic tableauz proof
P of the sentence = Uy from o whose bit-length is bounded by K - N%
for some fixed constant K5 >0 .

Proof Sketch. The proof P is built by taking Lemma 4’s partial proof
P, and inserting directly below P’s Bottom Sentence nine additional nodes
and three further subtrees. The first of these nine nodes will be Equation
(12)’s Wy axiom sentence. The next three nodes will represent reductions
from this axiom, using the V Elimination Rule to replace (12)’s universally
quantified variables ¢, & and n with D?(a)’s Godel number, @ and N . The
resulting sentence at the end of these reductions is:

Prf 5 ([D*a)], N )V —Pifgs ([D*a)], N) (17)

Below node (17), P’s proof will apply the V Elimination rule to produce
the following two sibling nodes

- Prf 5 ([D*a)], N) (18)

Prf o ([D*@)], N ) (19)

It is easy to inject a closed subtree 7 below node (18) which meets Lemma
5’s requirements. This is because the lemma’s hypothesis indicates N is a
proof of D?(a) and the axiom Wy then implies the subtree Tj can have
a small enough bit-length to satisfy Lemma 5’s requirements.

In order to construct an analogous second suitably small subtree below
(19)’s sentence, let G denote the particular Gédel number satisfying the
identity Subst ( G, [D*()] ) . In this context, we will insert below
(19)’s sentence, a 3-node sequence beginning with Equation (13)’s W5 axiom
followed by two iterations of the V Elimination rule to obtain the deduction:

Subst ( G, [D*(a)]) Vv —Subst ( G, [D*a)],) (20)
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Next, let us apply the V Elimination Rule to split (20)’s node into (21)
and (22)’s pair of sibling nodes.

—Subst ( G , [D*(a)],) (21)

Subst ( G, [D*(a)] ,) (22)

Using axiom Wy, it is easy to insert below node (21) a closed subtree Tha
whose bit-length is sufficiently small to satisfy Lemma 5’s requirements. Thus
to complete Lemma 5’s proof, we must merely show that it is also possible
to insert below node (22) a second adequately small subtree Top .

In order to construct Typ, we will use again the fact that N represents a
proof of the theorem D?(«a). Since N proves a theorem D?(«) (whose formal
statement in Equation (3) begins with three universally quantified variables
y, z and h ) , one can apply standard methods from Proof Theory to deduce
the existence of a proof T of 0=1 from the union of the axiom system a with
the added axioms given in Equations (23) through (25) such that T* < N?
when these two proofs are viewed as Godel numbers. (The footnote ! explains
the intuition behind 7™’s construction, and a longer version of this paper will
give a more formal proof that T* < N? exists.)

Subst ( G, uy ) (23)
Prfz (w1, ug) (24)
LogLog(u) = wue (25)

In the above context, Ty will be defined as a tree identical to T™* except that
each appearance of u; and uy in T* is replaced by respectively [D?*(@)]

!The intuitive reason that T* < N? exists is that a proof N of D?(«) will store = D?(a)
in N’s root, and the main non-degenerate versions of such proofs N will next apply the
- Elimination Rule to transform D?(a)’s universally quantified variables y, z and h into
existentially quantified variables that are subsequently replaced by the parameter symbols
u1, ug and u satisfying Equations (23) through (25) in a context where these three nodes
appear in a straight-line path in N’s proof-tree directly below the root. This footnote
should not be considered a formal proof that there exists the required 7% < N2 because
a formal proof, appearing in a longer version of this paper, must also consider certain
degenerate cases, in addition to the main non-degenerate case outlined here.
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and N in Thp. This subtree must certainly close the portion of P’s proof
tree that descends from node (22) because the sentences in Equations (23)
through (25) are identical to the three respective sentences in (22), (19)
and P»’s Bottom Node with [D?(@)] and N now replacing u; and us.
Essentially because the replacement of u, with the longer expression of N
will cause Tp’s bit-length to have an O[ (Log N )? | magnitude, the resulting
constructed Typ tree will be short enough to satisfy Lemma 5’s claim. O

Lemma 6. Let MinAxz( « ) denote a 3§ formula that indicates o« is
an azxiom system of finite cardinality which includes the I} sentences of
Wo, Wi ... Wy . Then there exists a suitably large constant L > 0 such that
Equation (26)’s 11} sentence is both valid and a theorem of Peano Arithmetic:

Vz>LVyVr { [ ShortPrf?([D?*(r)],y,2) A MinAx(r) | —

dp<z3dg<zIs<z It <z [Pair(s,t) A Prf(p,s) A Prf.(¢q,t) |} (26)

Proof: The combination of Lemma 2 (part ii) and Lemma 5 easily implies
that Equation (26) is valid for sufficiently large enough L . This is because
these two lemmas imply that if (z,y,r) satisfies the left side of (26)’s
implication clause, then (for suitably large enough L ) the @} sentence U,
will have short enough proofs of both itself and its negation to automatically
satisfy the right side of (26)’s implication clause. (Moreover, (26) is a II}
theorem of Peano Arithmetic because all the lemmas presented in this chapter
can be formally proven by Peano Arithmetic.) O

Finishing the Definition of W . The final clause Wy of the sys-
tem W will be defined as Equation (26)’s II} sentence with a large enough
value assigned to the constant L to make this sentence valid. (We had
not provided Wy’s definition earlier in this section because it seemed more

appropriate to first introduce the Lemma 6 — indicating the correctness of
Ws — before defining it.)

Finishing the Proof of Theorem 1. The combination of Lemmas 1
through 6 indicates that all the clause of W are valid IIj theorems of
Peano Arithmetic (as the hypothesis of Theorem 1 had required). To finish
the proof of Theorem 1, we must show that every finite and consistent axiom
system « D W is unable to prove its Level(2+) consistency.
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This fact is an easy consequence of Theorem 4. In particular, any o D W
must be able to prove the two sentences (A) and (B) required by Theorem
4 because the sentence (A) is identical to a’s W, axiom clause and be-
cause « can verify (B) by taking Equation (26)’s Wy axiom-sentence and
observing that it reduces to (B) when one sets r = @ (and uses the fact
that MinAx(@) =True). Hence since « can prove (A) and (B), Theorem 4
indicates « is unable to verify its Level(2+) Tableaux consistency. O

Clarification Concerning Theorem 1’s Proof and Meaning. The
preceding paragraph showed how it was relatively easy to derive from Theo-
rem 4 the conclusion that no consistent a D W can verify its own Level(2+)
Tableaux consistency. This result would actually be totally meaninglessif W
was an invalid statement because there would then be no example of a con-
sistent o D W actually existing ! The more subtle aspect of Theorem 1’s
proof was thus not its second paragraph (which explored the properties of
systems satisfying a D W) but rather it was its first paragraph (which noted
Lemmas 1 through 6 imply W is a logically valid II} sentence). Without
this latter crucial fact, Theorem 1 would be devoid of meaningful, non-trivial
structural implications. (A similar distinction about the importance of W
being a valid IIj sentence will also apply to the generalizations of Theorem
1 explored in the next section.)

5 Sketch of Theorem 2’s Proof

Throughout this section, Tab—R—List) (¢, p) will denote a ¥ sentence as-
serting p is a Tab—R—List proof of the theorem ¢ from the axiom system
a . Also, Short—R—List(z,y, 2) will denote the TabList analog of Section
3’s ShortPrf(x, y, z) predicate. It will thus denote a 3 sentence that asserts
that the two conditions of y =Log» (z) and Tab—R—List,(x,y) both hold.
Also, Dj( ) will denote the analog of Section 3’s D*( a) Godel sentence.
Thus, Dp( o) is defined to be the following diagonalization sentence:

There exists no code (y,z) that represents a ShortList proof
(with exponent A and intermediate set & ) of this sentence
from a’s axioms.

Throughout this section, the symbol 1  will denote the Gédel number
of the sentence 0 = 1. Our general technique for proving Theorem 2 will
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employ a methodology very similar to Theorem 1’s proof. It will thus employ
an intermediate step, analogous to the Theorem 4, used in Sections 3 and 4.
The formal statement of this revised form of Theorem 4 is given below:

Theorem 5. . Let R denote an arbitrary class of sentences. (In our
particular applications of Theorem 5, R will represent either the set of 115

formulae or the set of X% formulae). Suppose « is a consistent axiom system
capable of proving all the X§ sentences that are valid in the Standard Model.
Suppose there exists two constants, X\ and L, such that o can also prove:

A) Vg Yh Vh* { | Subst(g,h) A Subst(g,h*)] — h=h* }
B) Vz>L Ny { Short—R—List)( [Dp(a)], y, z2) —
dp<z Tab—R—List,( L , p) }

Then « must be incapable of proving Equation (27)’s theorem statement
(which intuitively indicates that Tab—R— List proofs using «’s set of proper
azxioms are Level(0-) consistent).

Vp = Tab—R—List,( L , p) (27)

In addition to using Theorem 5 to prove Theorem 2, we will need an
approximate analog of the prior section’s Lemma 6. Below is Lemma 6’s
analog for TabList deduction:

Lemma 7. Let MinW( « ) denote a ¥ formula that indicates « is an axiom
system of finite cardinality which includes Section 4’s 115 sentence W. Then
there exists two suitably large constants Ly > 0 and Lo > 0 such that
Equations (28) and (29) are both 11§ theorems of Peano Arithmetic:

Vz>Li Yy Vr | [Short—Hg—List%([D%E(rﬂ,y,z) AN MinW(r) | —

dpr <z Tab-II3—List,( L , p1) } (28)

Vz>Ly Vy Vr | [Short—Z§—Lz’st%((D%;(rﬂ,y,z) AN MinW(r) | —

dp, <z Tab—%5—-List, (L , p1) } (29)
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Proof Sketch for Lemma 7. In a very abbreviated form, the proof
element p; needed to make Equation (28) valid can be summarized as
having the following 4-part structure:

1. Its first fragment will be the Tab—II5—List proof y , which intuitively
represents a proof of the II} theorem D12T§ () .

2. Its second fragment will prove the IIj theorem which states that 7 ,
viewed as a Godel number, proves the theorem D3 ;(a) . (This theorem

is formally encoded as:  Tab—II;—List; ([ Df;(r)], 7). )

3. Its third fragment will prove the precise sequence of II; theorems of
Ty ,YTs, ... T, in exactly the chronological order just specified. (The
reason it is necessary to prove these theorems in increasing chrono-
logical order is that it will turn out that Part-iii of Lemma 2 can then
assure that each proof is sufficiently compact for p; to satisfy Equation
(28)’s severe size constraint of p; < z .)

4. The last fragment of p; will use the combination of the preceding three
results to prove 0=1, via a variant of Godel’s traditional diagonalization
contradiction argument. (The exactly helpful role of the theorem 7T,
in this contradiction proof is that it will guarantee the existence of the
integer 2z = 2% — whose formally proven existence is required to
finish our proof of 0=1. )

Likewise summarized again in an abbreviated form, the proof element ps
satisfying Equation (29) is the following 4-part structure:

1. Its first fragment will be the Tab—¥3—List proof y , which intuitively
represents a proof of the II} theorem D2;(a) .

2. Its second fragment will prove the ¥ theorem which states that 7 ,
viewed as a Godel number, proves the theorem DQE(CY) . (This X

theorem is formally encoded as  Tab—X3—List}, ([ D3, (r)], 7). )

3. Its third fragment will prove the precise sequence of 35 theorems of
-T,, = T,_1, ... =Ty in exactly the descending chronological order
just specified. (The reason it is necessary to prove these theorems in
decreasing chronological order is that the theorem =T, can be derived
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easily as a combined consequence of Item 1 and 2’s intermediate results,
and for each integer 7 we can then use Part-iii of Lemma 2 to obtain a
suitably short proof of =71, ; from the preceding intermediate result
of =7, to satisfy Equation (29)’s severe size constraint of ps < z .)

4. The last fragment of p, will use [tem 3’s intermediate result of -7,
to prove the desired contradiction theorem of 0=1.

The proof that the objects p; and p, satisfy the size constraints in Lemma
7’s two claims can be summarized as being analogous to Section 4’s multi-
step proof of Lemma 6 — except that roughly Part-iii of Lemma 2 will now
replace its prior Part-ii in certain intermediate steps of Lemma 7’a proof. (A
more formal proof of Lemma 7 will appear in a longer version of this article.)

Sketch of the Remainder of Theorem 2’s proof: To complete
Theorem 5’s proof, we will set V4 equal to the conjunction of Section 4’s
axiom W with Equation (28)’s II] sentence, and set Vp equal to the
conjunction of W with Equation (29)’s II} sentence. Then a similar type
of diagonalization proof, as was used in Section 4, can finish Theorem 2’s
proof. In particular, one can combine the intermediate results of Theorem 5
and Lemma 7 to derive Theorem 2 in the same manner that the prior section
combined Theorem 4 and Lemma 6 to derive Theorem 1. (Several additional
details concerning exactly how Section 4’s proof of Theorem 1 can generalize
to also verify Theorem 2 shall appear in a longer version of this paper.)

Significance of Theorem 2’s Result. Part of the reason that Theorem
2 is significant is that Theorem 3 shows that if one were to weaken only
slightly either Part-A or Part-B of Theorem 2’s hypothesis then significant
Boundary-Case Exceptions to the Second Incompleteness Theorem will arise.
It should also be stated that Theorem 2 generalizes to all axioms systems of
infinite cardinality satisfying Remark 1’s Conventional Deciphering Property.

It is also apparent that the Incompleteness effects described by Theorems
1 and 2 can generalize from Semantic Tableaux deduction to any other cut-
free rule of inference, such as for example Herbrand deduction or the cut-free
variants of the Sequent calculus. (In the particular case of Theorem 2, the
analogs of TabList deduction obviously will have their subcomponent proofs
P1, P2, ---pn consist of Herbrand or Cut-Free sequent calculus proofs.)
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6 Appendix: Sketch of Theorem 3’s Proof

This appendix will sketch a proof of Theorem 3. As Section 2 had ex-
plained, Theorem 3’s result was technically announced on the last page of our
Tableaux-2002 paper [34]. However, the latter conference paper only formally
proved the correctness of a weaker version of this result — where Semantic
Tableaux deduction replaced Tab;List deduction in Clause 1 of Theorem 3’s
formal statement. Our goal in this Appendix is to briefly summarize the
added functionality needed to prove the stronger and more general version
of [34]’s theorem. Throughout this appendix, we will assume that the reader
has already examined our prior paper [34] and has a copy of it on his desk.
Thus, we will not review most of the definitions from [34]. Also, if a Lemma
number ends with “t” (as in say “Lemma 2-t”) then it refers to a result from
our Tableaux—2002 Conference paper [34].

In all candor, we first hesitated to include a very abbreviated proof of
Theorem 3 as an appendix to this article. However, it seemed desirable
to include some type of justification of Theorem 3 here because there is
such a tight match between Theorem 3’s positive result and Theorem 2’s
complementing negative result for this topic to be worth mentioning.

Notation Conventions: The deductive rule of inference that had been
called “R(1,1) Hierarchy Deduction” in our prior paper [34] has now been
renamed, and it is called instead “Tab;List” deduction in the current paper.
Thus Tab,List , (t,p) will denote a Xf formula indicating that p is a
Tab;List proof of the theorem ¢ from the axiom system «

As in our earlier article [34], Pair*(z,y) will denote a 3§ formula in-
dicating that = is a II] sentence and y is its negation. The last page
of [34] had defined IS-1*(A) as an axiom system identical to [34]’s IS-1(A)
system, except that Tab;List deduction had replaced Semantic Tableaux de-
duction in the statement of IS-1*(A)’s self-justifying Group-3 axiom. Thus,
the Group-3 axiom of IS-1*(A) is a self-referencing axiom of the form:

VaVyVpV¥q - [ Pair*(z,y) A TabjList IS_l*(A)(:v,p) A Tab; List IS—l*(A)(y’q)] (30)

Our proof of Theorem 3 will rest on showing that one can generalize the
Theorem 2-t from [34] to establish that:

+ If A is consistent then IS-1*(A) is automatically also consistent.
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Henceforth, w(z,y,p,q) will denote the ¥§ formula enclosed within (30)’s
square bracket expression. In order to establish 4 , it is sufficient to prove
the following alternate form of this assertion:

++ If Ais consistent thenVaVyVpVqg - w(z,y,pq)

Outline of the Proof of +4 . For the sake of constructing a proof-
by-contradiction, let us assume ++ was false and that (X, Y, P, Q) denotes
the particular tuple satisfying w(X,Y, P,Q) that has minimal value for the
quantity G = Max(P, Q). Then Equation (31) is valid:

VaVyVpVeg {p<GAq¢g<G} — -wpqry) (31)

The procedure PROBE;, the notion of a (L, M)—Conservative Branch of a
Semantic Tableaux proof and the condition called Constraint(p, 5) were each
defined in [34]. Our goals will be 1) to use Equation (31) and these concepts to
construct an ordered pair satisfying Constraint(¢, ), and then 2) to combine
this fact with [34)’s Lemma 1-t to finish our proof-by-contradiction.

Some added notation is now needed to formalize this proof of ++. Let
H again denote a Tab,List proof, comprised of the sequence of ordered pairs
of (t1,p1), (ta,p2)...(tn, pn), where p; is a semantic Tableaux proof of the
intermediate result t;. Let us call T the Conclusion of the proof H iff
it is the last theorem that H proves (i.e. this means that ¢, =T ). Define
X(p;) to be the number of logical symbols appearing in p;’s proof. Also, let
Q(H) denote the quantity > | x(p;). Let us say that:

1. The ¥ sentence “ 3 vy vy ... J v, Y(v1,0v9,..0,) " is G—good iff
there exists a Tab;List proof H < G from IS-1*(A) of this sentence,
and it is accompanied with a valid Equation (32).

oy < 25UH) 3 gy < 28U Ty, < 23U V(v v, .. 0m)  (32)

2. The IIf sentence “V vy YV vy ... ¥V v, (01,02, ...0) " is G—good iff
there exists a Tab,List proof H < G from IS-1*(A) of this sentence,
and it is accompanied with a valid Equation (33).

Vo, <G-273H vy, < G273 vy, < G-273H p(uy, vy, . 0m)
(33)
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The opening paragraph of this proof had assumed that w(X,Y, P, Q)
was true, and it had defined the integer G to equal Max(P,@). In this
context, all the standard encoding conventions imply that the two formal
inequalities of S(P) < 3 Loge(G) and (Q) < 3 Logs (G) both hold when
the II7 sentence X and the X7 sentence Y are both G—good. Since it is
impossible for both X and Y to have G—good proofs under the preceding
circumstances, we are forced to conclude that there exists some sentence T*
which fails to be G—good and whose proof H* < G has the smallest Godel
number among the set of proofs that fail the G—good criteria.

Let p* denote the particular tableaux proof belonging to H* that proves
the theorem Y* . It turns out that [34]’s procedure PROBE can construct
under these assumptions a branch §* of p* satisfying Constraint(p*, 5*).
In particular, this procedure PROBE will produce such an output when it is
given the input arguments of

1. M =G-278W) 1 [ = 25H) = x0") and T = p* when T* is a
IT} sentence.

2. M = G- 2xw) =S _ 1 [, = 2% and T = p* when Y* is a
Y] sentence.

The formal proof that these input values for L, M and T will enable the
procedure PROBE to produce an (L, M)—Conservative branch is roughly
similar to the 8-step construction used in [34] to justify its Lemmas 2-t and
3-t. The added details needed to now justify our stronger effect appear in a
longer version of this paper. It differs from the analogous results from [34]
by essentially using Equation (31) and the certifiable fact that H* is the
smallest Tab;List style proof failing G—goodness to enable us to strengthen
Lemmas 2-t and 3-t.

Our justification of ++ can now be finished with the same type of proof-
by-contradiction that was used in [34]. The preceding four paragraphs have
shown that if ++ was false, then we could construct some S satisfy-
ing Constraint(p*, 5*). However such a construction is actually impossi-
ble because the axioms in p*’s proof would then form a system satisfying
the hypothesis of Lemma 1-t. In this context, Lemma 1-t certainly forbids
Constraint(p*, 8*) from being true. Hence, ++ must be true to avoid this
inherent contradiction. O
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The nature of logic has been debated ever since logic was born in ancient
Greece. These discussions focus on a considerable number of issues. What
are the functions of logic? How is logic related to other disciplines? What
is the scope of logic? Is logic inborn in our minds or perhaps learned and
mastered through experience? Is it possible to reason without logic? The an-
swers to these and other questions determine a variety of different, sometimes
conflicting philosophies of logic. Logic in its mathematical form provokes the
same problems as logic in its more traditional dressing. What is new in the
present discussions is that we can use firm metalogical results in order to
elaborate old philosophical questions about logic. This is what I will try to
do with respect to the so-called first-order thesis (FOT) (this paper follows
my earlier works [48, 49]). The “metalogical methodology” adopted in this
paper is neutral toward ontology in this sense that it makes possible to ne-
glect the ontological commitment, if any, of logic to abstract entities. Thus,
I will not discuss Quine”s objection against higher-order logic (since higher-
order logic is reduced to second-order logic, I will speak about the latter),
namely that it is committed to universals. Generally, speaking, FOT says
that first-order logic (FOL) is the logic (extensive discussions are to be find
in [33]; the author rejects FOT, but the book reviews the main arguments pro
and contra; [35, 36]; the second book is an anthology including many rele-
vant papers pro and contra FOT). I consider the problem in question not as a
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contribution to terminology, but as a conceptual analysis (see [10] for various
dimensions of the controversy over FOT). This means that the acceptance or
rejection FOT is not taken here as deciding how the word “logic” should be
employed. There is nothing new in that. Incidentally, one distinguishes logic
in the narrow (strict) sense, and logic in the broad sense. The first reduces
logic to the formal one, but the second sees logic as consisting of semiotic
(the logical theory of language), formal logic and methodology of science; it
would be unwise to demand that the term “logic” should (or should not) be
restricted to formal logic as its reference. Returning to my main task, I will,
roughly speaking, defend FOT by attempting to show that it fits better the
most fundamental conceptual intuition concerning logic than its rivals. In
particular, it precisely displays the intuition that logic is universal.

Still one preliminary remark should be made in advance. Since we have
a variety of items to be covered by the rubric “logic”, the main question of
this paper can be worded as “Which logic is the right logic?” There are two
possible lines of understanding this issue. The first one, and older, concerns
the choice between classical logic and a non-classical logic (many-valued,
intuitionistic, paraconsistent, relevant, etc.). I will not discuss (except for
incidental remarks) this problem, although FOT could (and even should) be
considered also in this context. The second path does not lead us outside
classical logic. More specifically, it consists in arguing whether FOL or second-
order logic or infinitary logic, etc. is the right logic (compare the title of
[41]). Thus, the rivals all identified on this path remain in the same classical
camp. This concerns not only classical logic seen from the point of view of
possible levels (first-order vs. second-order) or the length of its formulas (the
finite length vs. infinite strings of signs), but also modal extensions (alethic
modal logic, deontic logic, etc.) or modifications as non-monotonic logic, for
example. Although these issues are important as far as the matter concerns
the scope of classical logic, they will be touched only parenthetically in what
follows.

Since I will appeal to various intuitions, a historical account of various
understanding of logic is in order. The most extensive historical vocabu-
lary (see [27]) lists (it omits more or less exotic items, like “dialectical logic”,
“hermeneutical logic”, etc. or metaphors as “logic of history”, “logic of love”,
etc.; I keep Risse’s order and labels, but note that the last entry should be
named ['art de penser, if French authors are pointed out) nine meanings: (1)
dialectic (analysis and synthesis of concepts; Plato), (2) analytic (deduction;
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Aristoteles), (3) organon (methods of reasoning; Aristoteles), (4) canonic
(norms of knowledge; Epicurus), (5) medicina mentis (descriptive and nor-
mative account of mental capacities; Cicero), (6) Vernunftslehre (rules of
pure reason; the tradition of philosophia rationalis), (7) Kunstlehre (the art
of arguing; Husserl); (8) Wissenschaftslehre (the theory of science; Petrus
Hispanus: ars artium scientia scientiarum ad omniam aliarum scientiarum
methodorum principiam viam habent); (9) Denklehre (the theory of thinking;
Arnauld, Nicole).

The particular items occurring in this list send us various messages. Logic
is theoretical or descriptive on some accounts (e. g., as dialectics or analytic),
but practical or normative in other views (e. g., as organon or Kunstlehre).
This important difference was also captured by the medieval distinction (see
[9]) of logica docens (logic as a theory) and logica utens (applied logic). Petrus
Hispanus stressed an important feature of logic, namely that dialectica (that
is, logic) est art atrium et scientia scientiarum ad omnium aliarum scien-
tiarum methodorum principia viam habent. Since Leibniz, projects of logic
as characteristica universalis or logica magna became fairly popular. Logic
in this role played the role of a general scheme providing a methodological
and linguistic framework for the whole of science or for mathematics at least.
Logic as characteristica universalis was usually contrasted with calculus ra-
tiocinator conceived as a battery of the rules of inference (it was refreshed by
the distinction of logic as calculus and logic as language; see [42]). Although
formal logic played the central part in the whole of logic almost always (I say
“almost”, because sometimes, particularly in the Enlightenment, due to the
general philosophical environment of this period formal logic was treated as
secondary and unimportant), this attitude became explicit in mathematical
logic. Let me quote a sample of preliminary explanations of what logic is
(from classical sources and standard textbooks):

“Symbolic or formal logic [...] is the study of the various general
types of deduction.” [31, p. 10]

“Logic is concerned only with those grounds of judgment which
are truths. To make a judgment because we are cognizant of other
truths as providing a justification for it is known as inferring.
There are laws governing this kind of justification, and to set up
these laws of valid inference is the goal of logic.” [13, p. 3]

“l...] [formal] logic is concerned with the analysis of sentences
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or of propositions [...] and of proofs [...] with attention to the
form in abstraction from the matter.” [7, p. 1]

“The aim of constructing our symbolic logic is that is shall serve
as a precise criterion for determining whether or not a given in-
stance of [...] reasoning is correct.” [29, p. 5]

“The primary subject-matter of logic is the structure pattern of
demonstrative inference.” [20, p. 10]

“[...] logicis [...] the analysis of methods of reasoning [. . .| logic
is interested in the form rather than the content of argument” [22,

p. 1]
“Logic is the study of reasoning” [36, p. 1]

“Symbolic logic is a mathematical model of deductive thought.”
[11, p. 1]

“Logic is the study of correct reasoning.” [4, p. 3]

“Formal logic is [...] a theory of logical consequence” [24, p. 19]

All quoted explanations (we could continue this list ad infinitum) are ap-
proximately the same and explain that logic studies deductive, correct or
demonstrative inferences and does that by reference to the form of argu-
ments with abstraction from their content. It is clear that the terms “valid
argument”, “reasoning”, “correct reasoning”, “deductive reasoning” or “in-
ference” are considered as synonyms by the quoted authors or, at least, as
co-extensive labels. This allows skipping the question, otherwise very inter-
esting, whether inductive reasoning is logical or not, or what is the status of
reasonings performed in ordinary life.

Yet some traditional problems borrowed from the historical analysis of
the development of logic and its philosophy are still alive. The essence of
Petrus Hispanus’ dictum is clearly expressed in the views of Godel, Tarski
and Quine:

“l...] [logic] is a science prior to all others, which contains the
ideas and principles underlying all sciences.” [16, p. 125]
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“[...] the word ‘logic’ is used [...] in the present book [...]
as the name of the discipline which analyses the meaning of the
concepts common to all sciences, and establishes general laws
governing these concepts.” [40, p. XII]

“The lexicon is what caters distinctively to special tastes and
interests. Grammar and logic are the central facilities, serving all
comers.” [25, p. 102]

Let me refer to this intuition as suggesting that logic is universally applicable.
Still another aspect of logic found its impressive expression in Ryle:

“[Logical principles| are perfectly general, anyhow in this sense,
that differences of concrete subject-matters make no difference to

the validity or fallaciousness of inferences |...] ‘logical constants’
are indifferent to subject-matter or are topic-neutral.” [32, p.
115]

Roughly the same idea is expressed if one says (see [45, p. 149]; page-
references to the reprint) that logic is fundamental, because “its principles
and content cannot depend on non-logical ones” or points out (see [19, p.
177]; page-reference to the reprint) that logic is, so to speak, content-free,
because ‘no substantial content is coded in it”.

The collected material suggests a distinction of three understandings of
the universality of logic:

(a) logic is universal, because it is universally applicable;
(b) logic is universal, because it is topic-neutral;

(c) logic is universal, because its principles are universally valid.

Although (a) — (c¢) can be attributed to logica utens as well as to logica docens,
(a) seems to be primarily addressed rather to the former, but (b) and (c) as
applied to the latter. Since logica utens acts as an applied science, its essence
consists in formulating rules of performing inferences. On the other hand,
logica docens has fairly descriptive tasks. It aims at a theoretical description
of the world of logic, whatever this reality seems to be.

The contrast between normative ( logica utens) and descriptive ( logica
docens) aspects of logic finds its illustration in Frege and Russell:



374 FIRST-ORDER LOGIC: PRO AND CONTRA

“Like ethics, logic can also be called a normative science. How
must [ think in order to reach the goal, truth? We expect logic to
give us the answer to this question, but we do not demand that it
should go into what is peculiar to each branch of knowledge and
its subject-matter. On the contrary, the task we assign logic is
only that of saying what holds with the utmost generality, what-
ever its subject-mater. We must assume that the rules for our
thinking and for our holding something to be true are prescribed
by the laws of truth. The former are given along with the latter.
Consequently we can also say: logic is the science of the most
general laws of truth.” [14, p. 12§]

“Logic is concerned with the real world just as truly as zoology,
though with its more abstract and general features.” [30, p. 169]

According to Frege, the normative aspect of logic consists in prescribing
how to reach truth. I will not enter into various possible interpretations
of Frege’s related view but, in his view, the main property of the norms
of logic is that they preserve truth (or they are truth-preserving), that is,
they lead from true premises to true conclusions by necessity. Frege links
the normative function of logic with its descriptive task, that is, the account
of the most general laws of truth. Let us assume as given that the same
understanding can be ascribed to Russell’s words that logic is concerned
with “more abstract and general features” of the real world. Thus, if we take
Frege’s and Russell’s views together, we have a link between logica utens as
the set of truth-preserving rules and logica docens as dealing with the most
general laws of thought. Any reasonable philosophy of logic should explain
this regularity in a way.

What about logica magna? Well, the Frege-Russell logicism or the Les-
niewski foundational project are good examples of logica magna in its maxi-
mal proposal. Today, we have rather more moderate accounts, like this:

“[...] logic consists of a collection of mathematical structures,
a collection of formal expressions, and a relation of satisfaction
between the two [...]. We can say, then, that a logic is something
we construct to study the logic of some parts of mathematics.”

2, pp. 4-5]
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Logic in this view offers suitable tools envisaged as possible descriptions of
various mathematical structures. Doubtless, any good logic must be strongly
expressive in order to capture as much mathematical content as possible.
The requirement of a great expressive power of logic leads to the fourth
understanding of logical universality (I will refer to it by (d)). According to
this meaning of universality, logic is universal in this sense if its content is
rich: its universality is, so to speak, proportional to its content.

How are the understandings of the universality of logic displayed by (a) —
(d) mutually related? A tentative answer is that (a) — (c¢) are equivalent, but
(d) captures another understanding of universality. Consider the following
characterization of logic ([47, pp. 7-8|; I omit the issue of extensionality,
because it is not relevant in the present context):

(1) The study of logic is the study of a certain type of concepts,
most important of which are the concept of logical conse-
quence and logical truth. [...]. Put differently, it is the
study of theories or instrument of deduction. [...].

(2) Logical truth is truth due (only) to logical form. [...].

(3) Truth is a relation between sentences on the one hand and
the structures on the other [...]. [...]

(4) In logic there are not privileged objects.

Further (p. 16), Westerstahl defines logic as an ordered pair (S, |=), where
Sy, is the class of sentences of a language L and |= is the truth relation (I omit
additional constraints concerning morphisms between structures interpreting
L).

It is clear that Westerstahl combines various accounts of universality. The
point (4) gives a version of the thesis that logic is topic-neutral, the points
(1) and (2) are familiar from the previous remarks. The view expressed in
(3) stresses the semantic nature of the concept of truth. Now, Westerstahl’s
definition of logic is related (I am not sure whether consciously or not) to the
mentioned idea of characteristica universalis ( logica magna) in its moderate
version. In fact, Westarstahl develops the idea of abstract logic as a collection
of formal schemes constructed in order to investigate various mathematical
structures. Thus, we obtain a new characterization of the old idea, which
consists in the semantic explication of the nature of logica magna as language
cum the satisfaction relation. Although this explanation of the nature of logic
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is interesting in itself, it does not contribute very much to the problem of
how (a) — (c¢) and (d) are related. We can go a step further, when we try to
characterize calculus rationicator in the manner similar to that used on the
occasion of characteristica universalis. Calculus rationicator appears as a
syntactic object. Generally speaking, we have two objects (I slightly change
Westarstahl’s notation): (I) (L, =) and (II) (L,F) (the second is principally
used in Rasiowa and Sikorski [26, p. 187], although not for the discussion of
problems advanced in this paper). The question concerning the relation of
(I) and (II) is good, because, as we will see, the answer to it opens the way
to a promising account of the universality property of logic. FOT claims that
both accounts of logic are equivalent. It means, the rejection of this thesis
means that the equivalence in question does not hold generally.

Let me stress here that the distinction of (I) and (II) does not mean the
same as that of logica utens and logica docens. On the contrary, the people
who reject FOT insist that we need a powerful expressive scheme just because
logic as a codification of deductive means (usually identified with FOL) has
a very limited application. A message of this kind is clearly indicated by the
following words:

“As logicians we do our subject a disservice by convincing others
that logic is first-order logic and then convincing them that al-
most none of the concepts of modern mathematics can really be
captured in first-order logic. Paging through any modern mathe-
matics book, one comes across concept after concept that cannot
be expressed in first-order logic. Concepts from set theory (like
infinite set, countable set), from analysis (like set of measure 0
or having the Baire property), from topology (like open set and
continuous function), and from probability theory (like random
variable and having probability greater than some number r), are
central notions in mathematics which, on the mathematician-in-
the street view, have their own logic. Yet none of them fit within
the domain of first-order logic. In some cases the basic presuppo-
sitions of first-order logic about the kinds of mathematical struc-
tures one is studying are inappropriate (as the examples from
topology or analysis show). In other cases, the structures dealt
with are of the sort studied in first-order logic, but the concepts
themselves cannot be defined in terms of ‘logical constants’. |...].
Extended model theory adds a new dimension and new tools to
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the study of the logic of mathematics. The first-order thesis, by
contrast, confuses the subject matter of logic with one of its tools.
First- order logic is just an artificial language constructed to help
investigate logic, much as the telescope is a tool constructed to
help study heavenly bodies. From the perspective of the mathe-
matician in the street, the first-order thesis is like the claim that
astronomy is the study of the telescope. Extended model the-
ory attempts to take the experience gained in first-order model
theory and apply it in ever broader contexts, by allowing richer
structures and richer ways of building expressions. It attempts
to build languages similar to the first-order predicate calculus to
study concepts that are banned from logic by the first-order the-
sis. [...] Mathematicians often lose patience with logic simply
because so many notions from mathematics lie outside the scope
of first-order logic, and they have been told that is logic. The
study of model-theoretic logics should change that, by getting at
the logic of the concepts mathematicians actually use, by finding
applications, and by the isolation of still new concepts that enrich

mathematics and logic. [...] one thing is certain. There is no
going back to the view that logic is first-order logic.” [2, pp. 56,
p. 23]

Barwise’s rejection of FOT is explicit and radical. His main argument
appeals to a very poor applicability of FOL in mathematics. His arguments
are pragmatic, because they point out that FOL is not suitable for defining
and analysing mathematical structures and mathematical concepts. In par-
ticular, extended model theory (other labels: abstract model theory, abstract
logic) is of the utmost significance for mathematics, because it considerably
increases the expressive power of logic. In fact, Barwise does not claim that
FOL is to be rejected, but argues that it is not sufficient “from the perspective
of the mathematician in the street” and must be enriched by devices offered
by extended model theory. “To put FOL into its right place” can serve as a
concise summary of Barwise’s position toward FOT and first-order logic. On
the other side, the defenders of FOT argue that FOL has various elegant and
nice properties. For example, it is semantically complete and has an effective
(recursive) proof-procedure, contrary to second-order logic. We have also the
Lindstrém characterization theorem (LI) saying that if a logic LOG has only
Boolean connectives, countable language, is either (semantically) complete
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or compact (if every finite subset of a given set has a model, this set has a
model)) and satisfies the Lowenheim property (if a set of sentences has an
infinite model, it has a countable model), then LOG is equivalent with FOL
with respect to expressive power. On the other hand, one should also note
a hot controversy, whether these properties are natural or not. The oppo-
nents of FOT say that compactness limits the expressive power of first-order
theories, because it is responsible for them being insufficient to define im-
portant mathematical concepts (for example, “to be a finite set”). Further,
the Lowenheim property leads to a well-known puzzle (the Skolem paradox):
set theory with uncountable sets has countable models. Generally speaking,
FOL has a small expressive power and is not categorical, that is, it does not
provide the unique (up to isomorphism) of defined concepts, for example, the
concept of natural number. Thus, although the completeness theorem (ev-
ery tautology of FOL is provable, every consistent set of first-order sentences
has a model) and the Lindstrém theorem provide an elegant formal account
of essential properties of FOL, it is far from being obvious that “essential”
means “logically natural”.

The last sentence brings us back to philosophical issues, at least if we
assume that philosophy of logic should investigate the essence of logic just
as a conceptual matter. As I already noticed, the universality property of
logic is taken in this paper as its most essential attribute. Although none
of the mentioned formal metalogical results directly says anything about the
universality property and its aspects defined by (a) — (c) above, metalogic
can, however, be used for illuminating some points. Thus, let us investigate
what can be derived for the universality property of logic from metalogical
results. Anticipating the further discussion, if this work should be done,
we will have material allowing us to make a contrast of (a) — (c) with (d),
selected as the philosophical choice by Barwise. On the way we will touch
some corollary problems, namely the relation of logica docens and logica utens
or the relation of (I) and (II), that is, (L, =) and (L, ).

The first thing to do is to define logic by metalogical devices. I will begin
with calculus rationicator, that is, logic conceived as a deductive manual.
Intuitively speaking, such manuals provide instructions on how to prove some
propositions on the basis of other propositions adopted as premises. It is done
in virtue of inference rules; for example, modus ponens informs us that it is
logically allowed to pass A and A — B as premises to B as the conclusion.
Assume that R is a set of inference rules. The notation X F® A expresses
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that a formula A is provable (derivable) from the set X of assumptions,
relative to rules of inference from R (further I will omit the superscript
indexing the provability sign). We define

Definition 1 (Cn). A € Cn(X) <= X F A.

Cn (the consequence operation) and - (the consequence relation) are
mutually interdefinable, but a categorial difference between them should be
noted. Let L be a language understood as a set of formulas. Cn maps 2
into 2%, that is, sets of formulas into sets of formulas, but the consequence
relation act on the subsets of 25 x L, that is, links sets of formulas with single
formulas.

Although analysis of logic via the consequence operator appears more
often than the approach via Cn, I take the latter approach (I follow [38]).
How many consequence operations have we? The answer is that there are
infinitely (even, uncountably) many of them. In this situation, we need to fix
some constraints selecting a “reasonable” consequence operation (or opera-
tions). Tarski (see [39]) characterized the classical Cn axiomatically (in fact,
Tarski axiomatized the consequence operation associated with the proposi-
tional calculus; the axioms given below concern the consequence operation
suitable for first-order logic). The axioms are these (FIN — “finite”):

(C1) 0 <L < Ng;

(C2) X C CnX:;

(C3) X CY — CnX C CnY;

(C4) CnCnX = CnX;

(C5) Ac CnX —3Y CXAY €FINA (A€ CnY);
(C6) (A— B) € (nX — B e On(XU{A});

(C7) Be On(XU{A}) — (A — B) € (nX,

(C8) Cn{A,-A} =L;

(C9) Cn{A}Nn Cn{-A} =0,

(C10) A(v/t) € Cn{VrA(v)}, if the term ¢ is substitutable for v;



380 FIRST-ORDER LOGIC: PRO AND CONTRA

(C11) A€ OnX — YwA(v) € CnX, if v is not free in B, for any B € X;
(C12) t; =t; € Cnl;

(C13) (.. (s1 =)Ao A(sn=tn)...)
— A(tl, R 7tn) S OTZ{A(Sh. . .,Sn>}.

The set (C1) — (C13) can be divided into two groups. The first group
includes (C1) — (C5) as general axioms for Cn. (C1) says that the cardinality
of L is at most denumerably infinite, (C2) that any set is a subset of the set
of its consequences, (C3) established the monotonicity of Cn, (C4) its idem-
potency, (C5) states the finiteness condition, which means that if something
belongs to Cn(X), it belongs to the set of consequences of a finite subset of
X. In other words: every inference is finitary, that is, performable on the
base of a finite set of premises and, according to the character of rules, finitely
long. (C1) — (C5) do not provide any logic in its usual sense, because they
do not generate any rules of inference. The logical machinery is encapsulated
by the rest of the axioms (related to logic based on negation, implication and
the universal quantifier): (C6) the deduction theorem (if it is to be applied
to predicate logic, we must assume that A and B are closed formulas, that
is, sentences), (C7) formulates modus ponens, (C8) — (C9) characterize nega-
tion, (C10) — (C11) characterize the universal quantifier, and (C12) — (C13)
deal with identity. The status of identity leads to controversies. The main
reason to include it in the list of logical constants is that first-order logic
with identity satisfies the main metalogical theorems concerning elementary
logic: the completeness, the compactness, the Lowenheim-Skolem(LS) and
the Lindstrom (LI). This suggests that identity behaves like propositional
connectives and quantifiers. On the other hand, since identity makes it pos-
sible to define numerical quantifiers, like “there are exactly two”, “there are
exactly three”, etc. (for arbitrary natural n), it seems to introduce extralog-
ical contents to logic and, thereby, should not be considered as a logical
notion. This controversy can be settled only by a decision, and my choice is
to include identity among logical constants (see also Appendix). Thus, FOL
refers to first-order (classical) logic with identity.

How to define logic via Cn? Having the deduction theorem we say that
LOG is identified as Cnf). More formally we have:

(D1) A € LOG < A € Cnf), or, equivalently LOG = Cnf).
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(D1) looks artificial at first sight; clearly, and the empty set looks here like
a convenient metaphor. In particular, one might argue, we can derive some-
thing from the empty set only because of the logical machinery is already
incorporated into Cn. Otherwise speaking, we tacitly assumed that axioms
for Cn have a certain logical content. Hence, the question arises how to
justify that stipulations (C1) — (C13) about the consequence operation are
proper for logic. As far as the general axioms are concerned, we can for
instance drop the requirement of monotonicity (it leads to non-monotonic
logics used in computer science) or finiteness in order to obtain infinitary
logics. Hence, any definition of logic via the consequence operation needs
additional justification. (C1) and (C5) are related to human faculties in per-
forming inferences. A possible defence of these axioms consists in pointing
out that our inferential performances have the finitary character, because we
always employ finite sets of premises of a finite length. This is not at odds
with (C1), which admits that the set of sentences can be countably infinite,
because it means that this set is simply inductively extendible; even if we
admit that Ny represents the actual infinity, it is a fairly moderate ontological
presupposition. (C2) is obvious as including axioms as well as other asserted
assumptions among theorems. (C3) says that Cn acting more than once on
the given set, produces nothing more. The problem of monotonicity ((C4))
is more complicated and I restrict myself only to one remark in favour of this
property, namely that it is plausible to say that if we can derive something
from the empty set, it is also derivable from any other set. Let us take for
granted that (C1) — (C5) are justified. The rest of the axioms characterize
classical logic. If they are changed, for example, by weakening the force of
negation, we will obtain a non-classical logic, for example, intuitionistic. The
deduction theorem is, of course, very desirable. In particular, it is essential
for obtaining (D1).

However, (D1) applies not only to FOL. Leaving aside non-classical cases,
(D1) is equivalent, modulo (C1) — (C13) (in fact, (C1) — (C9) are enough;
moreover, we have intuitionistic counterparts of (C8) and (C9)) to two other
statements, namely:

(D2) A € LOG if and only if —A is inconsistent.
(D3) LOG is the only non-empty product of all deductive systems (theories).

(D2) and (D3) surely define the properties, which we expected to be pos-
sessed by any reasonable logic (paraconsistency is to be separately discussed
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at this point). We agree that negations of logical principles are contradictory
and that logic is the common part of all, even mutually, inconsistent theo-
ries. Additionally, (D3) entails that logical laws are derivable from arbitrary
premises. Thus, we immediately obtain the equivalence: A € Cnf if and
only if A € CnX, for any X, and the equality LOG = Cn) = CnX, for any
X.

Yet one can point out objections to the above explanations. In particu-
lar, that they seem to play with FOL and LOG, sometimes regarding them as
interchangeable, sometimes not. Further, every formal system can be defined
as Cnf), if axioms for axioms for Cn are modified. Let T is a theory axiom-
atized by a set A of axioms or axiom schemes. Assume that the symbol CA
denotes the conjunction of the axioms of 7' (in general, we do not need to
claim that CA is finite; see below). Assume further that t € CnA. By the
deduction theorem we have (CA — t) € Cnf). This is all right. However, if
we add the formula

(%) CAe Cnl

as a new axiom for Cn, we immediately obtain that t € Cnf). On the syntactic
level, nothing prevents such moves. In fact, the axiom (C12) is of this kind.
It was added, because there are reasons for considering identity as a logical
concept. However, it is difficult to agree that the axioms of the type ( %) are
sound in every case. In most cases they are not.

The last section suggests that it is significant to have another account of
logic, which would be independent of the way via Cn. It can be achieved
with the help of semantics, which motivates

(D4) A € LOG if and only if for every model M, A is true in M.

This definition describes logic as consisting of laws true in every model
(domain, possible world, interpretation, etc).

Now we can return to the universality property of logic. I distinguished
four ways of how this property could be understood. To repeat: (a) logic is
universal, because it is universally applicable; (b) logic is universal, because
it is topic-neutral; (c¢) logic is universal, because its principles are universally
valid; (d) logic is universal, because it has a great expressive power. I also
suggested that that (a) — (c) are equivalent. Now we can precisely state these
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intuitions. If LOG is a part of every theory, it means that it is universally
applicable. Exactly the same follows from (D4), because logic as true in every
model is applicable in every concrete deductive inference. Further, since LOG
belongs to every theory T, independently of T-content, LOG is true in every
model and LOG does not depends on specific assumptions, it is also topic-
neutral. Thus, starting from (a) or (b) or (c¢), we intuitively obtain other
points. This is only an informal reasoning. Formally speaking, (a) — (c) are
equivalent, it we can accept that (D1) and (D4) are equivalent as well, that
is,

(#) A € Cnl if and only if for every model M, A is true in L.

The justification for (#) comes from the completeness theorem. It has two
versions: strong and weak. The former says (I use the consequence relation
in this case)

(SV) X EAiff X - A,
and the latter states
(WV) 0 = Aiff 0 F A.

(SV) is much more attractive, because it concerns all theories, not only
strictly logical systems, that is, exclusively consisting of tautologies. The
strong version requires the following definition of logic

(D5) LOG = (L, Cn),

where L is an arbitrary first-order language. (D5) suggests that its right side
should be replaced by (L, =) on the semantic level.

There is, of course, nothing wrong with looking at logic as an arbitrary
first-order language together with a consequence operation, but it does not
deal directly with the universality of logic. Assume that a LOG satisfies (SV),
(C5) and (CT7). Thus, every derivation in LOG is reducible to a derivation
from a finite set of premises and the right side of (SV) can be replaced by
CX F A. By (C7), that is, the deduction theorem, we obtain ) - CX — A
and, further, by (WV), that the implication (i) CX — A is universally
valid. Therefore, (i) is a tautology. In fact, (SV) says that a derivation
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represented by CX F A proceeds via a rule of logic, which is represented by
a logical theorem (i). The universality property of (i) is directly established
by (WV). Although (WV) is obtainable from (SV) by putting () in the place

of X, the former still says something non-trivial, namely
(#+#) for any X, A € CnX if and only if A is true in all models.

[ am inclined to say that (SV) is about logica utens, but (WV) about logica
docens (see below). It seems (WV) is philosophically more important for logic
conceived as the stock of tautologies. Having (D4) justified, it is easy to show
that (a) — (c) express the same property. (D1) says that logic is independent
of any specific assumptions. It is formally displayed by (D1) and its corollary,
which says that logic is a part of every theory. (D4) indicates that logical
laws are universally valid and topic neutral. Now (##) establishes that (a)
— (c) are equivalent, not only by convention, by due to the completeness
theorem, that is, a firm metalogical result.

Now I can return to logica utens and logica docens. The former consists
of rules of inferences, the latter from theorems. Let LOG®R consists of a
stock of rules and LOG” covers a stock of theorems. Assume that R =
({A1,..., A}, A) is a rule of inference with the premises Ay, ..., A, and the
conclusion A. The deduction theorem and (SV) justifies

(#H##) (Ay,... A, A) € LOGRiff (A4 — (... — (4, — A)..)) €
LOG.

This establishes the parity of LOGT and LOG®R and thereby, also the
parity of logica utens and logica docens. It means that the definitions (D1)
— (D4) can be applied to logical theorems and logical rules as well. The
normativity of logic, as related to (D4), has an interesting feature, which is
related to Frege’s point that logic tells us how to think in order to reach
truth. Since logic does not favour any possible world (model), every world
is logically accessible from any other. The standard definition of obligation
tells us that OA is true in our world M* if and only if A is true in all
possible world accessible from M*. If A is a tautology, it is true in all worlds,
including M*. Thus O1 (where the symbol 1 denotes an arbitrary tautology)
is true in M* (in any other world as well). Thus, tautologies generate the
realm of logical oughtness (we do not worry about the ontological status of
this realm). Further, the relation of logical accessibility is reflexive. It means
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that O1 implies 1. We have also the reverse dependence. Briefly, ought and
is are not distinguishable in logic. This can be interpreted as the exception
to the Hume thesis that ought is logically separate from is, but it appears
to be the only exception. I guess that it is a proper interpretation of Frege’s
idea that logic is normative. Moreover, the most general laws of truths in
Frege’s sense or more abstract and general features of the real world can be
identified with tautologies or all models (also at this point, Frege was more
subtle than Russell). Assume further, together with Frege, that if A is true,
we should assert A. Hence, since tautologies are true, we should assert them
unconditionally. Logic in itself does not force anybody to assert it, but if it
comes to the cognitive game, the situation changes, because the obligation
to assert something appears. On the other hand, truth and assertion are not
the same. Contrary to Frege, if A is asserted, it does not need to be true,
unless we have to do with tautologies. Therefore, Frege’s opinion that logic is
normative, because it says how we must think in order to reach truth, is to be
corrected. The normativity of logic as far as matter concerns reaching truth is
restricted to inferences. Assume that Cn closes assertion. This simply means
that if A is asserted (the grounds of extralogical assertions are not relevant
here), B € CnA, then B is asserted. In order to be more realistic, we can
add that it is known to the inferring person that B € CnA. Assume that A is
asserted, it is known that B € CnA and B is not asserted. By the deduction
theorem, we obtain that (A — B) € Cnl). Thus, the formula (A — B) is
a tautology. Applying the principle of the assertion of tautologies, we obtain
that the formula (A — B) is asserted. Since assertion is distributive over
implication, we get ( Ass A — Ass B). However, if B is not asserted,
A also is not asserted, contrary to the first assumption. An easy reasoning
shows that if A is asserted conditionally as a conclusion of a correct inference
with asserted premises, it ought be asserted as well.

Let me return to FOL and the claim that it is the logic. It consists, as
logica docens, of tautologies and, since it satisfies (WV), (#) is justified for
it. It shows that FOL possesses the universality property. There is some-
thing more to be said about FOL in the light of (WV). At first, let me note
that (D5) is also applicable in this case, but with the proviso that L has a
purely logical vocabulary, that is, individual variables, propositional connec-
tives, quantifiers, identity and predicate letters understood as non-specified
parameters. We assume that a logical theorem is a formula consisted of the
above building blocks and derivable from the empty set of premises; in par-
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ticular, we assume that instantiations of logical theorems do not belong to
logic in this understanding. Clearly, logic as the system theorems is never
systematized by listing all logical tautologies; it would even be impossible
for there are infinitely many logical truths. Hence, logic is codified by a suit-
able axiomatic system. In particular, FOL has a complete axiomatization.
Assume that AXFOL is a set of axioms for FOL, that is FOL = CnAXFOL =
Cnf). This means that logica docens is generated from the axioms. Hence,
the rules leading from axioms are theorems must preserve tautologicity, al-
though rules associated with logic as (L,F) preserve “only” truth. It means
that the former are stronger, than the latter. Of course, every tautologicity-
preserving rule is also truth-preserving, but one can observe that the rule
of substitution for predicate letters (as applied in (L,F)) does not generally
lead from tautologies to tautologies (see [23, p. 90]); independently of that,
this rule transforms abstract theorems into their instantiations. Although
truth-preserving is sufficient for logic as (L, ), where L is arbitrary, the dif-
ference touched in this section is essential, at least from the philosophical
point of view, because it points out a certain peculiarity of the universality
of logica docens. Tt is important to see that LOG = Cnf) is also a language
with the consequence relation. The completeness theorem allows to see it as
(L, =) as well. This shows that Shapiro’s (see [34, p. XV]) qualification of
first-order logic as only a calculus is not well-founded, because it is also a
language with the satisfaction relation, although very limited.

There is still one result, which contributes to the interpretation of the
universality property. FOL satisfies the following neutrality theorem (¢;, ¢;
are individual constants, Py, P, are predicate parameters, the notation A(c)
and A(P) means that a constant ¢ (predicate parameter P) occurs in A):

(ND) (a) A(c;) € LOG — A(cj/c; € LOG;
(b) A(Py) € LOG — A(P,/P:) € LOG.

This theorem says that if something is provable in logic about an object or
its property, the same can be also proved about any other object or property.
Otherwise speaking, FOL does no distinguish any extralogical item, that is,
an individual constant or a predicate parameter. The semantic proof of
(ND) uses (WV), but one can also prove this theorem syntactically without
any reference to semantics (see [17, Ch. I §9], [23, Ch. 13]). The use of
the completeness theorem in the semantic proof of (ND) indicates its link
with the universality property. In fact, (ND) displays in a way that FOL
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is topically neutral. Incidentally, what Westerstahl proposed as an intuitive
mark of logic, finds, via (ND), its precise wording in metalogic.

Is (#) as a criterion of logic a sufficient and necessary condition? Cer-
tainly, it is a necessary condition. As such it excludes second-order logic,
because its completeness theorem (Henkin) does not treat all models al pari.
More specifically, second order logic with full models is incomplete, but it
becomes complete if its model are stratified in a way. However, second order
logic in the later case is equivalent to many-sorted FOL. Thus, second-order
logic with standard semantics (no model is distinguished) is not universal for
its incompleteness, but it is also not universal, when non-standard (Henkin)
semantics is admitted for the stratification of models (it should be considered
as a first-order extralogical theory). Boolos (see [5, p. 77], page-reference to
the reprint) tries to overcome this argument. He says:

“I know of no perfectly effective reply to this view [that logic is
topic-neutral — J. W.]. But, in the first place, one should per-
haps be suspicious of the identification of subject matter and
range. (Is elementary arithmetic really not about addition, but
only about numbers?) And then it might be said that logic is not
so “topic-neutral” as it is often made out to be: it can easily be
said to be about the notions of negation, conjunction, identity,
and the notions expressed by “all” and “some”, among others
(even though these notions are almost never quantified over). In
the second place, unlike planet or field, the notion as of set, class,
property, concept, and relation, etc. have often been considered to
be distinctively logical notions, probably for some such very sim-
ple reason that anything whatsoever may belong to a set, have a
property, or bear a relation. That some set- or relation-existence
assertion are counted as logical truths in second-order systems
does not, it seems to me, suffice to disqualify them as system of
logic, as a system would be disqualified if it classified as a truth
of logic the existence of planet with at least two satellites.”

First of all, logic is not about the logical concepts. They are studied in
metalogic. Take the notion of conjunction. It can be construed as a function
from L to the set {True, False}, that is, the set of truth-values. If A, B € L,
then v(A A B) = True, when v(A) = v(B) = True; otherwise, v(AA B) =
False. Yet no theorem of propositional logic asserts that conjunction behaves
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in that way. We rather should say that the formula A A B — B becomes
universally valid according to the above definition of conjunction. The second
argument has also a very weak force, because just its content is the subject
of the controversy in question. Following Boolos, one could say that second-
order logic is logic for astronomy is not. Similarly, the argument (see [8])
pointing out the indispensable role of second-order sentences (for example,
“true sentences logically imply true sentences”) in elaborating properties of
first-order tautologies seems to confuse logic and metalogic.

On the other hand, (WV) in its general form does not provide a necessary
condition, because there are logics other than FOL, which are semantically
complete, for example, some infinitary logics or logics with infinitary rules,
for example, the w-rule. However, if we say that (C5) is a natural property
of logic, then only FOL remains. Thus, the logic, on the proposed views, has
two marks, namely the universality property and the finitary (in the sense
of (C5)) character of inference rule. Note, however, that cancelling (C5)
as a source of logical properties still gives a definition, which ascribes the
universality property in the considered sense to related. But if some gen-
eralized quantifiers (for instance, “there exists countably many” or “there
exists uncountably many”) are added, (ND) does not hold and the univer-
sality property is broken. This suggests, otherwise than many contemporary
proposals do (see [47]) that generalized quantifiers, as favouring some cardi-
nalities, are not logical constants, contrary to the usual quantifiers, that is,
“for every” and “there is”. Perhaps another argument (due to Alexander M.
Levin and pointed to me by Valentin Shehtman) additionally enlightens this
point. Logic should take into account the absolute properties. Now, due to
the (LS), the notion of cardinality is not absolute. Hence, any theory, which
distinguishes cardinalities is not a logic. As far as the matter concerns the
quantifiers, only “for every” and “there is” (in particular, the former) appear
as purely logical.

One can ask what (LI) tells us about the universality property. First
of all, the Lindstrom theorem concerns rather logica utens (in the semantic
version), that is, (L, =), than logica docens. Secondly, (LI) stresses rather
the expressive power of logic than its universality property. It is of course
very interesting that completeness and compactness act to the same effect,
when they occur together with the Lowenheim property. As far as the matter
concerns logic as Cnf), its compactness is a trivial property. Applying it to
the universality property, we obtain that a set of sentences is universally valid
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if and only if its every finite subset is universally valid, but this is nothing
surprising (see also Appendix). The Lowenheim property displays an aspect
of the universality, namely that FOL makes no difference between models,
according to their cardinality. Also this feature of FOL is not surprising,
because it treats all models al pari. Thus, compactness and the Lowenheim
property are fairly natural from the point of view of logica docens, if it is
identified with FOL. Its expressive power is very poor, almost null in the case
of first-order logic without identity (“almost”, because we assume that M’s
are not empty) and somehow richer (numerical quantifiers), when identity is
added. However, although numerical quantifiers are definable in FOL (with
identity), no cardinality is distinguished (by metalogical results, that is, from
the point of view of metalogic) with one exception, namely countability. It
is really a very surprising fact (due to (LS)) that if something is first-order
satisfiable at all, it is satisfiable in a denumerable domain, even if we explain
this by the cardinality of L. The most essential observation is perhaps this: a
small expressive power of FOL as set of tautologies is a cost of its universality
property.

These considerations should be supplemented by the remark that our se-
mantics is based on the standard set theory. It is not without importance.
One can ask how reliable is set theory as the base for semantics or met-
alogic for FOL. Of course, its reliability does not exceed that witnessed in
the case of other parts of mathematics. However, using standard set the-
ory in semantics and metalogic of FOL, we need to employ only a part of
the set theoretical universe (in fact, the weak second order arithmetic with
the arithmetical comprehension axiom is enough for first-order model theory;
see [18, 37]). This circumstance is related to the absoluteness of FOL (see
[43, 44]; this second paper shows how the absoluteness of FOL is related to
(LI)). Roughly speaking, a logic (in the sense of (L, |=) is absolute if the
truth value of the expression “M |= A” depends on the existence of some
chosen sets (the existence of such sets is just guaranteed by the arithmetical
comprehension axiom). On the other, hand, second-order logic is not abso-
lute in this sense, because generates problems connected with the continuum
hypothesis and other independent set-theoretical statements (see [44, 1]). If
we go to metalogic of second-order logic, we cannot neglect the differences
between various possible extensions of ZFC. In particular, Vaananen argues
that the 15t order ZFC is equally good as second-order logic. Since the latter
operates a very relative notion of set, this makes impossible to decide which
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set-theoretical universe is really “good” on clear logical grounds. Thus, ac-
cording to Vanaanen, it is quite illusory to maintain that second-order logic
gives us the proper characterization of the set-theoretical universe. Certainly,
it is possible to appeal to other metalogical schemes, for example, to category
theory or topoi, but I do not think that it would change the situation in a
radical way.

If we pass to logica utens, that is (L,F) and (L, =), what is natural from
the perspective logica docens, might be seen otherwise from the point of view
of applications. Although I have no ambition to introduce terminological
innovations, let me temporary speak about first-order formalizations (FOF)
of theories, instead first-order logic. In order to display this idea in a explicit
way, let (L,F) and (L, ) be replaced by (L',F) and (L', ), where the
superscripts refer to the order of language. Logic is therefore hidden in I,
and semantic in =. Now, we see that one should not speak about expressive
power of I or |=, but refer this capacity to L'. There is no doubt that expres-
sive power of this language is very limited, but it fairly independent of the
properties of the consequence relation. The same concerns non-categoricity
of FOF. The matter whether FOF are good (or, how far good) for mathe-
matics and science is still a controversial question (see [44, 1] for defence of
FOF and the quoted works of Shapiro for the opposite view) and must be
here omitted except invoking one of Vandanen’s remarks. He argues that
second-order logic with Henkin’s model cannot be distinguished from the full
second-order logic. However, it seems clear that if logicians want to have
powerful languages, they have to abandon FOF in favour of second-order for-
malisms. This move leads to system with the universality property in the
sense (d). Now, it is also clear that universality in this sense is at odds with
the universality property as determined by (a) — (¢) and formally displayed
by the metalogical characterization of FOL. Observe also that (L |=) is sim-
ply not comparable with (L, ) without appealing to metalogical properties.
Thus, we have a kind of dialectic between the universality property as validity
(and its cognates) and the universality as expressive power. Some logicians
want to have both universalities without any price. However, this task seems
to be fairly impossible. Speaking of logic, one should choose the position: ei-
ther the universality property or the great expressive power. Incidentally, the
opinion that second-order theories are categorical is simply misleading. They
are incomplete by the first Godel theorem, because if arithmetic is consistent
its extensions obtained by adding undecidable sentences are also consistent
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and have models. However, these models are radically different, although can
be equicardinal. It means that also second-order theories have non-standard
models, and this fact seems to be a derivative of powerful expressive de-
vices of second-order languages. I see, then, the objection pointing out that
first-order theories do not distinguish standard and non-standard models as
simply unfair. It reminds Descartes’ famous argument that if senses deceive
us sometimes, they can deceive us in every case. This argument is strange,
because if Descartes know that senses deceive us sometimes, he should also
know, when they provide reliable information. There is no doubt which mod-
els are standard from the first-order perspective. The mistake consists here
in an unfounded belief that we have purely logical criteria of the standard-
ness of models. In fact, these criteria are extralogical also in the case of
second-order theories.

An explicitly emotional tone, present in the above quotation from Barwise
(about the point of view of “the mathematician in the street”) is not a proper
background for philosophical discussions about logic. Similarly, I regard as
misleading the following words:

“When we are interested in set theory or classical analysis, the
Lowenheim theorem is usually taken as a sort of defect (often
thought to be inevitable) of the first-order logic. Therefore, what
is established (by Lindstrém theorems) is not that first-order logic
is the only possible but rather that it is the only possible logic
when we in a sense deny reality to the concept uncountability
[...].7 [46, p. 154]

There are two thoughts in Wang. Firstly, that the Lowenheim property is
defective. As I tried to explain, it depends on the point of view or expec-
tations concerning logic. Secondly, Wang connects the view that FOL is the
logic with rejecting the concept of uncountability as referring to something
real. I think that it is a wrong diagnosis. FOL as logica docens considers
all cardinalities al pari (although the peculiar role of countability is obvi-
ous) and, thereby, has no ontological consequences stated by Wang. The
only ontological assumption made by FOL is that something exists. Other
ontological features of this logic are to be discussed independently, but (see
introductory remarks) this issue goes beyond this paper.

A more promising view is offered by something like that:
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“Lindstrom’s results show that it makes no sense to classify logic
as either good or bad, depending on whether they are complete
(compact) and have the Léwenheim-Skolem property of not. On
the contrary, Lindstrom’s result gave special emphasis to the pro-
posal — already expressed by Kreisel [...] — that there must be
balance between syntax and semantics of a logic and that the se-
mantic properties we consider must be adapted to the expressive
power and the special features of the given logic.” [12, p. 78]

“l...] we can use the Compactness Theorem to get a better
understanding of the limitations of first-order logic — or, to put a
more positive spin on it, a better understanding of the richness
of mathematics!” [21, p. 103].

And what I have tried to do consisted in investigating that the balance is
going on, when the universality property is taken as basic property of logic.
Contrary to Barwise there is “going back to the view that [the] logic is first-
order logic” under quite natural provisos. On the other hand, returning to
terminological questions, it would be unwise to fight against the extended us-
age of the word ‘logic’” or constructing and studying various model-theoretic
logics and languages, although it seems to me that the distinction between
first-order logic and n-order formalizations is important. Perhaps a com-
promise, combining FOF as languages and FOL as the universal deductive
code for mathematical proofs, is a tenable solution. However, one should
always remember that terminology does not decide about properties of sets
sentences considered as logical theories.

Appendix FOL has three segments (I omit general axioms for Cn): (A)
propositional calculus (the axioms (C6) — (C9)); (B) first-order predicate
logic without identity (the axioms: (C6) — (C111); (C) FOL itself (the ax-
ioms (C6) — (C13)). There are properties possessed by some parts, which are
not attributable to others. (A) isi. a. semantically complete, Post-complete
and decidable. (A) + (B) and (A) + (B) + (C) are neither Post-complete
nor decidable. (A) + (B) obeys the inflation theorem (IT) (if a formula is
satisfiable in a model of the cardinality n, it is also satisfiable in models
of any greater cardinality) and the deflation theorem (DT) (if a formula is
true in a model of a cardinality n, it is also satisfiable in models of any
smaller cardinality), although these theorems do not hold for (A) + (B) +
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(C). If some will insist that decidability is a natural property, only proposi-
tional logic (eventually, plus some fragments of predicate calculus) remains
as the logic. At the first sight, (IT) and (DF) theorem seem to be arguments
against including identity into the purely logical vocabulary. However, this
argument can be met. The axioms (C12) and (C13) keep their validity in
all models. Hence, the problem arises only for formulas, which are true in
one-element models, two-element models, etc. This follows from the fact that
identity defines numerical quantifiers, what is impossible in (B); logical de-
vices available in (B) do not suffice to determine concrete models. Certainly,
the expressive power of (C) is greater than that of (B) (similarly, the ex-
pressive power of (B) is greater than the content expressible in (A)), but the
identity-tautologies still behave as any other tautologies. The systems (A),
(A) + (B) and (A) + (B) + (C) are semantically complete and it is perhaps
their most important logical property (they are, of course, also consistent,
but this attribute has no use in determining what is the logic). Returning to
identity, we must choose between the universality property and “having an
amount of non-tautological content”. This situation displays traditional dis-
putes on the status of identity. I choose the universality property (together
with (C5)) as determining the logic.

Although the set of tautologies of FOL is not maximally (Post) consistent,
we can show that it is maximal in a sense (it is also absolute, because assumes
that there is a non-empty set of objects). First, note that the consequences of
tautologies should be tautologies too (recall that proofs inside Cnf) preserve
tautologicity). We need to fix the semantical status of the empty set of
sentences. This set is finite. Every finite set X of sentences is representable
by a finite conjunction CX. In general, CX € CnX. Thus, Cf) € Cn{. This,
assuming that we are working in logic satisfying the completeness theorem,
implies that C0 is a tautology. Since C() represents the set (), the latter has
to be considered as the tautological set. In other words, we have the property
TAUT associated with the set Cnf) such that TAUT (A) if and only if for any
model M, A is true in M. It is clear that: (i) TAUT(0), and (ii) TAUT (Cn0)
if and only if TAUT(X), for every finite set X such that X C Cnf). Thus,
TAUT is a property of the finite character. If we will identify the universality
property with TAUT, this property is also of the finite character. Moreover
(the Tukey Lemma), if any other set Y of sentences true in all models and
closed by Cn satisfies (i) and (ii), then Y = Cnf). Although adding non-
tautologies to Cnf) does not produce inconsistency in general, TAUT and the
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universality property are maximal in a well-defined sense. Observe that this
reasoning does not go with respect to (L,F) and (SV) of the completeness
theorem. We can naturally proof that all tautologies are universally valid
and derivable from the empty set of premises, but the consequence relation
preserves truth, not tautologicity. However, truth is not a property of the
finite character. Manipulating constraints for Cn can change this situation,
but it brings us back to the issue of what is natural in metalogic and what
should be captured by logic; for instance, we can postulate that every truth
is a consequence of the empty set. It is also possible to employ some new
metalogical concepts and results in the discussion about the essence of logic.
FOL without identity is structurally complete, but the full FOL does not
possess this property (see [23, Ch. 10]; [24, pp. 434-436]). Hence, if the
structurality of the rules of inference expresses a natural logical property,
identity loses its status as a logical constant. However, it seems to me that
the structurality is rather a property of some formal codifications of logic,
than of logic itself.

And still a word about modal logic. Their possible-world semantics is
based on various properties of the accessibility relation, like reflexivity, sym-
metry, etc. However, they are not sources of universality (some semantics
have these properties, others not). Thus, they introduce some extralogical el-
ement to the logical behaviour of modalities. In fact, only the system called
K treats all possible words equally. Its modalities, that is, necessity and
possibility, behave exactly as quantifiers. Perhaps this system represents the
pure modal logic. However, and it is not surprising, K is not sufficient to
cover all intuitions connected with modalities, because its expressive power
is relatively small.
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Bereits erschienene und geplante Bénde der Reihe

Logische Philosophie
Hrsg.: H. Wessel, U. Scheffler, Y. Shramko, M. Urchs
ISSN: 1435-3415

In der Reihe ,Logische Philosophie“ werden philosophisch relevante Ergebnisse der Logik vorgestellt. Dazu
gehoren insbesondere Arbeiten, in denen philosophische Probleme mit logischen Methoden gelost werden.

Uwe Scheffler/Klaus Wuttich (Hrsg.)

Terminigebrauch und Folgebeziehung
ISBN: 978-3-89722-050-8 Preis: 30,- €

Regeln fiir den Gebrauch von Termini und Regeln fiir das logische SchlieBen sind traditionell der Gegen-
stand der Logik. Ein zentrales Thema der vorliegenden Arbeiten ist die umstrittene Forderung nach speziellen
Logiken fiir bestimmte Aufgabengebiete - etwa fiir Folgern aus widerspriichlichen Satzmengen, fiir Erset-
zen in gewissen Wahrnehmungs- oder Behauptungssétzen, fiir die Analyse von epistemischen, kausalen oder
mehrdeutigen Termini. Es zeigt sich in mehreren Arbeiten, dafl die nichttraditionelle Prédikationstheorie ei-
ne verléafliche und fruchtbare Basis fiir die Bearbeitung solcher Probleme bietet. Den Beitrégen zu diesem
Problemkreis folgen vier diese Thematik erweiternde Beitrige. Der dritte Abschnitt beschiftigt sich mit der
Theorie der logischen Folgebeziehungen. Die meisten der diesem Themenkreis zugehtrenden Arbeiten sind
explizit den Systemen F*° bzw. S° gewidmet.

Horst Wessel
Logik
ISBN: 978-3-89722-057-7  Preis: 37- €

Das Buch ist eine philosophisch orientierte Einfiihrung in die Logik. Thm liegt eine Konzeption zugrunde, die
sich von mathematischen Einfithrungen in die Logik unterscheidet, logische Regeln als universelle Sprachregeln
versteht und sich bemiiht, die Logik den Bediirfnissen der empirischen Wissenschaften besser anzupassen.

Ausfiihrlich wird die klassische Aussagen- und Quantorenlogik behandelt. Philosophische Probleme der Logik,
die Problematik der logischen Folgebeziehung, eine nichttraditionelle Pradikationstheorie, die intuitionisti-
sche Logik, die Konditionallogik, Grundlagen der Terminitheorie, die Behandlung modaler Pridikate und
ausgewihlte Probleme der Wissenschaftslogik gehen iiber die iiblichen Einfithrungen in die Logik hinaus.

Das Buch setzt keine mathematischen Vorkenntnisse voraus, kann als Grundlage fiir einen einjahrigen Logik-
kurs, aber auch zum Selbststudium genutzt werden.

Yaroslav Shramko

Intuitionismus und Relevanz
ISBN: 978-3-89722-205-2 Preis: 25,- €

Die intuitionistische Logik und die Relevanzlogik gehoren zu den bedeutendsten Rivalen der klassischen Logik.
Der Verfasser unternimmt den Versuch, die jeweiligen Grundideen der Konstruktivitéit und der Paradoxien-
freiheit durch eine ,,Relevantisierung der intuitionistischen Logik* zusammenzufiithren. Die auf diesem Weg
erreichten Ergebnisse sind auf hohem technischen Niveau und werden iiber die gesamte Abhandlung hinweg
sachkundig philosophisch diskutiert. Das Buch wendet sich an einen logisch gebildeten philosophisch interes-
sierten Leserkreis.



Horst Wessel

Logik und Philosophie
ISBN: 978-3-89722-249-6  Preis: 15,30 €

Nach einer Skizze der Logik wird ihr Nutzen fiir andere philosophische Disziplinen herausgearbeitet. Mit mi-
nimalen logisch-technischen Mitteln werden philosophische Termini, Theoreme und Konzeptionen analysiert.
Insbesondere bei der Untersuchung von philosophischer Terminologie zeigt sich, dafl logische Standards fiir
jede wissenschaftliche Philosophie unabdingbar sind. Das Buch wendet sich an einen breiten philosophisch
interessierten Leserkreis und setzt keine logischen Kenntnisse voraus.

S. Wolfl

Kombinierte Zeit- und Modallogik.
Vollstiandigkeitsresultate fiir pradikatenlogische Sprachen

ISBN: 978-3-89722-310-3  Preis: 40,- €

Zeitlogiken thematisieren ,nicht-ewige* Sitze, d.h. Sitze, deren Wahrheitswert sich in der Zeit verdndern
kann. Modallogiken (im engeren Sinne des Wortes) zielen auf eine Logik alethischer Modalbegriffe ab. Kom-
binierte Zeit- und Modallogiken verkniipfen nun Zeit- mit Modallogik, in ihnen geht es also um eine Analyse
und logische Theorie zeitabhédngiger Modalaussagen.

Kombinierte Zeit- und Modallogiken stellen eine ausgezeichnete Basistheorie fiir Konditionallogiken, Hand-
lungs- und Bewirkenstheorien sowie Kausalanalysen dar. Hinsichtlich dieser Anwendungsgebiete sind vor allem
pradikatenlogische Sprachen aufgrund ihrer Ausdrucksstirke von Interesse. Die vorliegende Arbeit entwickelt
nun kombinierte Zeit- und Modallogiken fiir pradikatenlogische Sprachen und erértert die solchen logischen
Systemen eigentiimlichen Problemstellungen. Dazu werden im ersten Teil ganz allgemein multimodale Logiken
fiir pradikatenlogische Sprachen diskutiert, im zweiten dann Kalkiile der kombinierten Zeit- und Modallogik
vorgestellt und deren semantische Vollstandigkeit bewiesen.

Das Buch richtet sich an Leser, die mit den Methoden der Modal- und Zeitlogik bereits etwas vertraut sind.

H. Franzen, U. Scheffler

Logik.
Kommentierte Aufgaben und Losungen
ISBN: 978-3-89722-400-1 Preis: 15,- €

Ublicherweise wird in der Logik-Ausbildung viel Zeit auf die Vermittlung metatheoretischer Zusammenhinge
verwendet. Das Losen von Ubungsaufgaben — unerliflich fiir das Verstindnis der Theorie — ist zumeist Teil
der erwarteten selbstdndigen Arbeit der Studierenden. Insbesondere Logik-Lehrbiicher fiir Philosophen bieten
jedoch hiufig wenige oder keine Aufgaben. Wenn Aufgaben vorhanden sind, fehlen oft die Losungen oder sind
schwer nachzuvollziehen.

Das vorliegende Trainingsbuch enthélt Aufgaben mit Losungen, die aus Klausur- und Tutoriumsaufgaben in
einem 2-semestrigen Grundkurs Logik fiir Philosophen entstanden sind. Ausfiihrliche Kommentare machen
die Losungswege leicht verstdndlich. So iibt der Leser, Entscheidungsverfahren anzuwenden, Theoreme zu
beweisen u. 4., und erwirbt damit elementare logische Fertigkeiten. Erwartungsgemif beziehen sich die mei-
sten Aufgaben auf die Aussagen- und Quantorenlogik, aber auch andere logische Gebiete werden in kurzen
Abschnitten behandelt.

Diese Aufgabensammlung ist kein weiteres Lehrbuch, sondern soll die vielen vorhandenen Logik-Lehrbiicher
erginzen.



U. Scheffler

Ereignis und Zeit. Ontologische Grundlagen der Kausalrelationen
ISBN: 978-3-89722-657-9  Preis: 40,50 €

Das Hauptergebnis der vorliegenden Abhandlung ist eine philosophische Ereignistheorie, die Ereignisse iiber
konstituierende Séitze einfithrt. In ihrem Rahmen sind die wesentlichen in der Literatur diskutierten Fragen
(nach der Existenz und der Individuation von Ereignissen, nach dem Verhé&ltnis von Token und Typen, nach
der Struktur von Ereignissen und andere) lésbar. In weiteren Kapiteln werden das Verhéltnis von kausaler und
temporaler Ordnung sowie die Existenz von Ereignissen in der Zeit besprochen und es wird auf der Grundlage
der Token-Typ-Unterscheidung fiir die Prioritét der singulidren Kausalitidt gegeniiber genereller Verursachung
argumentiert.

Horst Wessel

Antiirrationalismus
Logisch-philosophische Aufsitze

ISBN: 978-3-8325-0266-9  Preis: 45,- €

Horst Wessel ist seit 1976 Professor fiir Logik am Institut fiir Philosophie der Humboldt-Universitét zu Berlin.
Nach seiner Promotion in Moskau 1967 arbeitete er eng mit seinem Doktorvater, dem russischen Logiker
A. A. Sinowjew, zusammen. Wessel hat grofien Anteil daran, dal am Berliner Institut fiir Philosophie in der
Logik auf beachtlichem Niveau gelehrt und geforscht wurde.

Im vorliegenden Band hat er Artikel aus einer 30-jihrigen Publikationstéitigkeit ausgewéhlt, die zum Teil nur
noch schwer zugénglich sind. Es handelt sich dabei um logische, philosophische und logisch-philosophische
Arbeiten. Von Kants Antinomien der reinen Vernunft bis zur logischen Terminitheorie, von Modalitédten bis
zur logischen Folgebeziechung, von Entwicklungstermini bis zu intensionalen Kontexten reicht das Themen-
spektrum.

Antiirrationalismus ist der einzige -ismus, dem Wessel zustimmen kann.

Horst Wessel, Klaus Wuttich

daf3-Termini
Intensionalidt und Ersetzbarkeit

ISBN: 978-3-89722-754-5  Preis: 34,- €

Von vielen Autoren werden solche Kontexte als intensional angesehen, in denen die iiblichen Ersetzbarkeits-
regeln der Logik nicht gelten. Eine besondere Rolle spielen dabei daf$-Konstruktionen.

Im vorliegenden Buch wird gezeigt, daf§ diese Auffassungen fehlerhaft sind. Nach einer kritischen Sichtung
der Arbeiten anderer Logiker zu der Problematik von daf-Termini wird ein logischer Apparat bereitgestellt,
der es ermoglicht, daff-Konstruktionen ohne Einschrinkungen von Ersetzbarkeitsregeln und ohne Zuflucht zu
Intensionalitéiten logisch korrekt zu behandeln.

Fabian Neuhaus

Naive Pridikatenlogik
Eine logische Theorie der Pradikation

ISBN: 978-3-8325-0556-1  Preis: 41,- €

Die logischen Regeln, die unseren naiven Redeweisen iiber Eigenschaften zugrunde liegen, scheinen evident und
sind fiir sich alleine betrachtet vollig harmlos - zusammen sind sie jedoch widerspriichlich. Das entstehende
Paradox, das Russell-Paradox, 16ste die sogenannte Grundlagenkrise der Mathematik zu Beginn des 20. Jahr-
hunderts aus. Der klassische Weg, mit dem Russell-Paradox umzugehen, ist eine Vermeidungsstrategie: Die
logische Analysesprache wird so beschrinkt, daf§ das Russell-Paradox nicht formulierbar ist.

In der vorliegenden Arbeit wird ein anderer Weg aufgezeigt, wie man das Russell-Paradox und das verwandte
Grelling-Paradox 16sen kann. Dazu werden die relevanten linguistischen Daten anhand von Beispielen analy-
siert und ein angemessenes formales System aufgebaut, die Naive Pradikatenlogik.



Bente Christiansen, Uwe Scheffler (Hrsg.)
Was folgt

Themen zu Wessel
ISBN: 978-3-8325-0500-4  Preis: 42,- €

Die vorliegenden Arbeiten sind Beitrége zu aktuellen philosophischen Diskussionen — zu Themen wie Exi-
stenz und Referenz, Paradoxien, Priadikation und dem Funktionieren von Sprache iiberhaupt. Gemeinsam
ist ihnen der Bezug auf das philosophische Denken Horst Wessels, ein Vierteljahrhundert Logikprofessor an
der Humboldt-Universitit zu Berlin, und der Anspruch, mit formalen Mitteln nachvollziehbare Ergebnisse zu
erzielen.

Vincent Hendricks, Fabian Neuhaus, Stig Andur Pedersen, Uwe Scheffler, Heinrich Wansing (Eds.)
First-Order Logic Revisited
ISBN: 978-3-8325-0475-5  Preis: 75,- €

Die vorliegenden Beitrige sind fiir die Tagung ,,75 Jahre Priadikatenlogik erster Stufe“ im Herbst 2003 in Berlin
geschrieben worden. Mit der Tagung wurde der 75. Jahrestag des Erscheinens von Hilberts und Ackermanns
wegweisendem Werk ,, Grundziige der theoretischen Logik“ begangen.

Im Ergebnis entstand ein Band, der eine Reflexion iiber die klassische Logik, eine Diskussion ihrer Grundlagen
und Geschichte, ihrer vielfiltigen Anwendungen, Erweiterungen und Alternativen enthélt.

Der Band enthalt Beitrige von Andréka, Avron, Ben-Yami, Briinnler, Englebretsen, Ewald, Guglielmi, Ha-
jek, Hintikka, Hodges, Kracht, Lanzet, Madarasz, Nemeti, Odintsov, Robinson, Rossberg, Thielscher, Toke,
Wansing, Willard, Wolenski

Pavel Materna
Conceptual Systems
ISBN: 978-3-8325-0636-0  Preis: 34,- €

We all frequently use the word “concept”. Yet do we know what we mean using this word in sundry contexts?
Can we say, for example, that there can be several concepts of an object? Or: can we state that some concepts
develop? What relation connects concepts with expressions of a natural language? What is the meaning of an
expression? Is Quine’s ‘stimulus meaning’ the only possibility of defining meaning? The author of the present
publication (and of “Concepts and Objects”, 1998) offers some answers to these (and many other) questions
from the viewpoint of transparent intensional logic founded by the late Czech logician Pavel Tichy (11994
Dunedin).

Johannes Emrich

Die Logik des Unendlichen

Rechtfertigungsversuche des tertium non datur in der Theorie des mathematischen Kontinuums
ISBN: 978-3-8325-0747-3  Preis: 39,- €

Im Grundlagenstreit der Mathematik geht es um die Frage, ob gewisse in der modernen Mathematik géngige
Beweismethoden zuléssig sind oder nicht. Der Verlauf der Debatte — von den 1920er Jahren bis heute — zeigt,
dass die Argumente auf verschiedenen Ebenen gelagert sind: die der meist konstruktivistisch eingestellten Kri-
tiker sind erkenntnistheoretischer oder logischer Natur, die der Verteidiger ontologisch oder pragmatisch. Die
Einschétzung liegt nahe, der Streit sei gar nicht beizulegen, es handele sich um grundlegend unterschiedliche
Auffassungen von Mathematik. Angesichts der immer wieder auftretenden Erfahrung ihrer Unvertriglichkeit
wiére es aber praktisch wie philosophisch unbefriedigend, schlicht zur Toleranz aufzurufen. Streiten heifit nach
Einigung streben. In der Philosophie manifestiert sich dieses Streben in der Uberzeugung einer objektiven
Einheit oder Einheitlichkeit, insbesondere geistiger Sphiren. Im Sinne dieser Uberzeugung unternimmt die
vorliegende Arbeit einen Vermittlungsversuch, der sich auf den logischen Kern der Debatte konzentriert.



Christopher von Biilow

Beweisbarkeitslogik
— Godel, Rosser, Solovay —

ISBN: 978-3-8325-1295-8  Preis: 29,- €

Kurt Godel erschiitterte 1931 die mathematische Welt mit seinem Unvollstéandigkeitssatz. Godel zeigte, wie fiir
jedes noch so starke formale System der Arithmetik ein Satz konstruiert werden kann, der besagt: ,,Ich bin nicht
beweisbar.“ Wiirde das System diesen Satz beweisen, so wiirde es sich damit selbst Liigen strafen. Also ist dies
ein wahrer Satz, den es nicht beweisen kann: Es ist unvollstdndig. John Barkley Rosser verstirkte spiter Godels
Ergebnisse, wobei er die Reihenfolge miteinbezog, in der Séitze bewiesen werden, gegeben irgendeine Auffassung
von ,Beweis“. In der Beweisbarkeitslogik werden die formalen Eigenschaften der Begriffe , beweisbar® und
,wird frither bewiesen als“ mit modallogischen Mitteln untersucht: Man liest den notwendig - Operator als
beweisbar und gibt formale Systeme an, die die Modallogik der Beweisbarkeit erfassen.

Diese Arbeit richtet sich sowohl an Logik-Experten wie an durchschnittlich vorgebildete Leser. Thr Ziel ist
es, in die Beweisbarkeitslogik einzufithren und deren wesentliche Resultate, insbesondere die Solovayschen
Vollstandigkeitssédtze, prizise, aber leicht zugénglich zu présentieren.

Niko Strobach

Alternativen in der Raumzeit
Eine Studie zur philosophischen Anwendung multidimensionaler Aussagenlogiken

ISBN: 978-3-8325-1400-6  Preis: 46.50 €

Ist der Indeterminismus mit der Relativitdtstheorie und ihrer Konzeption der Gegenwart vereinbar? Die-
se Frage ldsst sich beantworten, indem man die fiir das alte Problem der futura contingentia entwickelten
Ansitze auf Aussagen iiber das Raumartige {ibertrigt. Die dazu hier Schritt fiir Schritt aufgebaute relati-
vistische indeterministische Raumzeitlogik ist eine erste philosophische Anwendung der multidimensionalen
Modallogiken.

Neben den tiblichen Zeitoperatoren kommen dabei die Operatoren ,iiberall“ und ,irgendwo* sowie , fiir jedes
Bezugssystem® und ,,fiir manches Bezugssystem* zum Einsatz. Der aus der kombinierten Zeit- und Modal-
logik bekannte Operator fiir die historische Notwendigkeit wird in drei verschiedene Operatoren (,,wissbar,
Hfeststehend”, | beeinflussbar) ausdifferenziert. Sie unterscheiden sich beziiglich des Gebiets, in dem mégliche
Raumzeiten inhaltlich koinzidieren miissen, um als Alternativen zueinander gelten zu kénnen. Die Interaktion
zwischen den verschiedenen Operatoren wird umfassend untersucht.

Die Ergebnisse erlauben es erstmals, die Standpunkt-gebundene Notwendigkeit konsequent auf Raumzeit-
punkte zu relativieren. Dies ldsst auf einen metaphysisch bedeutsamen Unterschied zwischen deiktischer und
narrativer Determiniertheit aufmerksam werden. Dieses Buch ergénzt das viel diskutierte Paradigma der
verzweigten Raumzeit (,,branching spacetime®) um eine neue These: Der Raum ist eine Erzéhlform der Ent-
scheidungen der Natur.

Erich Herrmann Rast

Reference and Indexicality
ISBN: 978-3-8325-1724-3  Preis: 43.00 €

Reference and indexicality are two central topics in the Philosophy of Language that are closely tied together.
In the first part of this book, a description theory of reference is developed and contrasted with the prevailing
direct reference view with the goal of laying out their advantages and disadvantages. The author defends
his version of indirect reference against well-known objections raised by Kripke in Naming and Necessity
and his successors, and also addresses linguistic aspects like compositionality. In the second part, a detailed
survey on indexical expressions is given based on a variety of typological data. Topics addressed are, among
others: Kaplan’s logic of demonstratives, conversational versus utterance context, context-shifting indexicals,
the deictic center, token-reflexivity, vagueness of spatial and temporal indexicals, reference rules, and the
epistemic and cognitive role of indexicals. From a descriptivist perspective on reference, various examples
of simple and complex indexicals are analyzed in first-order predicate logic with reified contexts. A critical
discussion of essential indexicality, de se readings of attitudes and accompanying puzzles rounds up the
investigation.



Magdalena Roguska

Exklamation und Negation
ISBN: 978-3-8325-1917-9  Preis: 39.00 €

Im Deutschen, aber auch in vielen anderen Sprachen gibt es umstrittene Negationsausdriicke, die keine ne-
gierende Kraft haben, wenn sie in bestimmten Satztypen vorkommen. Fiir das Deutsche handelt sich u.a. um
die exklamativ interpretierten Sétze vom Typ:

Was macht sie nicht alles! Was der nicht schafft!

Die Arbeit fokussiert sich auf solchen Exklamationen. Thre wichtigsten Thesen lauten:

e Es gibt keine Exklamativsitze aber es gibt Exklamationen.
e Alles und nicht alles in solchen Sdtzen, haben semantische und nicht pragmatische Funktionen.

e Das ,nicht-negierende“ nicht ohne alles in einer Exklamation ist doch eine Negation. Die Exklamation
bezieht sich aber trotzdem auf denselben Wert, wie die entsprechende Exklamation ohne Negation.

e In skalaren Exklamationen besteht der Unterschied zwischen Standard- und , nicht-negierenden* Nega-
tion im Skopus von nicht.

Die Analyse erfolgt auf der Schnittstelle zwischen Semantik und Pragmatik.

August W. Sladek

Aus Sand bauen. Tropentheorie auf schmaler relationaler Basis

Ontologische, epistemologische, darstellungstechnische
Moéglichkeiten und Grenzen der Tropenanalyse

ISBN: 978-3-8325-2506-4 (4 Bénde) Preis: 198.00 €

Warum braucht eine Tropentheorie zweieinhalbtausend Seiten Text, wenn zweieinhalb Seiten ausreichen, um
ihre Grundidee vorzustellen? Weil der Verfasser zuerst sich und dann seine Leser, auf deren Geduld er baut,
tiberzeugen will, dass die ontologische Grundidee von Tropen als den Bausteinen der Welt wirklich tragt und
sich mit ihnen die Gegenstéinde nachbilden lassen, die der eine oder andere glaubt haben zu miissen. Um
metaphysischen, epistemologischen Dilemmata zu entgehen, sie wenigstens einigermaflen zu meistern, preisen
viele Philosophen Tropen als , Patentbausteine* an. Die vorliegende Arbeit will Tropen weniger empfehlen
als zeigen, wie sie sich anwenden lassen. Dies ist weit miihseliger als sich mit Andeutungen zu begniigen, wie
brauchbar sich doch Tropen erweisen werden, machte man sich die Miihe sie einzusetzen. Lohnt sich die Miihe
wirklich? Der Verfasser wollte zunéichst nachweisen, dass sie sich nicht lohnt. Das Gegenteil ist ihm gelungen.
Zwar sind Tropen wie Sandkorner. Was lésst sich schon aus Sand bauen, das Bestand hat? Wenn man nur
genug ,,Zement“ nimmt, gelingen gewiss stabile Bauten, doch wie viel und welcher ,,Zement® ist erlaubt?
Nur schwache Bindemittel diirfen es sein; sonst gibt man sich mit einer hybriden Tropenontologie zufrieden,
die Bausteine aus fremden, konkurrierenden Ontologien hinzunimmt. Die vier Béinde bieten eine schwiéchst-
mogliche und damit unvermischte, allerdings mit Varianten und Alternativen behaftete Tropentheorie an samt
ihren Wegen, Nebenwegen, Anwendungstests.



Mireille Staschok

Existenz und die Folgen
Logische Konzeptionen von Quantifikation und Pridikation

ISBN: 978-3-8325-2191-2  Preis: 39.00 €

Existenz hat einen eigenwilligen Sonderstatus in der Philosophie und der modernen Logik. Dieser Sonderstatus
erscheint in der klassischen Pradikatenlogik — {ibereinstimmend mit Kants Diktum, dass Existenz kein Pradikat
sei — darin, dass ,Existenz“ nicht als Pradikat erster Stufe, sondern als Quantor behandelt wird. In der
natiirlichen Sprache wird ,existieren dagegen pridikativ verwendet.

Diese andauernde und philosophisch fruchtbare Diskrepanz von Existenz bietet einen guten Zugang, um die
Funktionsweisen von Préidikation und Quantifikation zu beleuchten. Ausgangspunkt der Untersuchungen und
Bezugssystem aller Vergleiche ist die klassische Pradikatenlogik erster Stufe. Als Alternativen zur klassischen
Pradikatenlogik werden logische Systeme, die sich an den Ansichten Meinongs orientieren, logische Syste-
me, die in der Tradition der aristotelischen Termlogik stehen und eine nichttraditionelle Priadikationstheorie
untersucht.

Sebastian Bab, Klaus Robering (Eds.)

Judgements and Propositions
Logical, Linguistic, and Cognitive Issues
ISBN: 978-3-8325-2370-1  Preis: 39.00 €

Frege and Russell in their logico-semantic theories distinguished between a proposition, the judgement that
it is true, and the assertion of this judgement. Their distinction, however, fell into oblivion in the course of
later developments and was replaced by the formalistic notion of an expression derivable by means of pureley
syntactical rules of inference. Recently, however, Frege and Russell’s original distinction has received renewed
interest due to the work of logicians and philosophers such as, for example, Michael Dummett, Per Martin-Lf,
and Dag Prawitz, who have pointed to the central importance of o both the act of assertion and its justification
to logic itself as well as to an adequate theory of meaning and understanding.

The contributions to the present volume deal with central issues raised by these authors and their classical
predecessors: What kind of propositions are there and how do they relate to truth? How are propositions
grasped by human subjects? And how do these subjects judge those propositions according to various di-
mensions (such as that of truth and falsehood)? How are those judgements encoded into natural language,
communicated to other subjects, and decoded by them? What does it mean to procede by inference from
premiss assertions to a new judgement?

Marius Thomann

Die Logik des Konnens
ISBN: 978-3-8325-2672-6  Preis: 41.50 €

Was bedeutet es, einer Person eine praktische Fihigkeit zu attestieren? Und unter welchen Umsténden sind
derartige Fahigkeitszuschreibungen wahr, etwa die Behauptung, Max konne Gitarre spielen? Diese Fragen
stehen im Zentrum der vorliegenden Untersuchung. Thr Gegenstand ist die philosophisch-logische Analyse des
Fihigkeitsbegriffs. Als Leitfaden dient eine Analyse normalsprachlicher Fahigkeitszuschreibungen, geméifl der
Max genau dann Gitarre spielen kann, wenn er dies unter dafiir angemessenen Bedingungen normalerweise
erfolgreich tut. Drei in der Forschungsliteratur vorgeschlagene Systeme werden diskutiert, die zwar wertvolle
Impulse fiir die formale Modellierung geben, als Vertreter des so genannten modalen Ansatzes aber von der
Diagnose ontologischer Inadéquatheit betroffen sind: Die Entitdten, die als Fihigkeiten attribuiert werden,
lassen sich nicht iiber Propositionen individuieren; ohne die explizite Referenz auf Handlungstypen, die eben
gekonnt oder nicht gekonnt werden, bleibt Max’ Fahigkeit, Gitarre zu spielen, unterbestimmt. Um diesen
Einwand zu vermeiden, liegt demgeméifl der hier vorgestellten Logik des Konnens ein Gegenstandsbereich
zugrunde, dessen Struktur an der Ontologie von Handlungen orientiert ist.
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