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zungsgenehmigungen durch den jeweiligen Rechteinhaber.

DOI: https://doi.org/10.30819/0004

https://philportal.de/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.30819/0004


Elena Tatievskaya
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1

Einleitung

Die Idee, Logik in der Form einer Sprache zu präsentieren, geht auf
Frege zurück. Obwohl sich dieser Gedanke mit der Forderung, eine
(wissenschaftliche) Analyse mit der Analyse der Sätze (der Wis-
senschaft) anzufangen, verbinden lässt, die z. B. Russell, ein Zeit-
genosse Freges, vertrat und für die Forderung hielt, die sich in der
Philosophie schon etablierte, stellt dieses Vorhaben Freges eine Er-
kenntnis von enormer Tragweite dar. Das Erscheinen der Begriffs-
schrift wird deshalb zu Recht als Beginn einer neuen Epoche in
der Entwicklung der modernen mathematischen Gestalt der Logik
([Boch70], 314–315) angesehen.

Eine der Besonderheiten dieser Entwicklung liegt in dem Be-
wusstwerden, dass die Mittel der traditionellen formalen Logik trotz
ihrer Kraft nicht universell sind. Doch weder Frege noch Russell
können in ihren Werken auf die traditionellen formal-logischen Ter-
minologie und Prinzipien verzichten. Das bestätigt nicht nur die
Tiefe ihrer Kenntnisse auf diesem Gebiet, sondern auch, dass die-
se Terminologie und Prinzipien durch die Umgestaltung der Logik
nicht an Bedeutung verlieren. Die Nicht-Universalität der traditio-
nellen Logik ist aber nur einer der Faktoren, die zur Herausbil-
dung neuer logischer Ideen geführt haben. Ein anderer Grund war
das Auftreten philosophischer Theorien, die erkenntnistheoretische
und ontologische Begriffe als Korrelate der entsprechenden formal-
logischen Begriffe auffassen. Die Entwicklung der Psychologie und
Errungenschaften auf diesem Gebiet verlangen die Abgrenzung der
Logik als einer besonderen Wissenschaft. Mathematische Grundla-
genforschung und Versuche, den Gegenstand der Mathematik im
Rahmen dieser Forschung zu definieren, fordern einerseits eine kon-
sequente Unterscheidung zwischen dem Zeichen und dem von dem
Zeichen Bezeichneten und andererseits die Einführung einer ganzen
Typologie der die mathematischen Objekte präsentierenden Zei-
chen, die streng bestimmten Regeln und Konventionen unterliegen
sollen.

Diese Problemstellung bedingte die Richtung der logischen Un-
tersuchungen während der so genannten Fregeschen Periode sowie
die Mittel, die zur Lösung dieser Probleme gewählt und geschaf-
fen wurden. Eine logische Theorie wird nicht nur für die Entwick-
lung der Logik selbst aufgebaut, sondern soll bei der Begründung
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einer anderen Wissenschaft (nämlich der Mathematik) angewandt
werden. Dieses Anwendungsziel verlangt die Klärung von logischen
Grundbegriffen und führt dazu, dass die logische Theorie die Ge-
stalt eines

”
Symbolismus“ oder einer Sprache annimmt. Doch ob-

wohl diese Sprache nicht als Mittel zwischenmenschlichen Umgangs
eingesetzt wird (oder gerade deswegen), muss sie eine geregelte se-
mantische Interpretation bekommen und in eine Beziehung zur Um-
gangssprache gebracht werden, so dass die Ausdrücke der letzteren,
welche in einer wissenschaftlichen Theorie benutzt werden, ein Kor-
relat in der logischen Sprache finden, für die sie als Teil ihrer Inter-
pretation auftreten. Der Aufbau einer logischen Sprache hängt also
mit der Entwicklung von semantischen Begriffen zusammen.

Dieses Buch ist der Versuch, eine aussagenlogische Theorie im
Hinblick auf diese historischen Umstände ihrer modernen Formulie-
rung darzulegen. Diese Aufgabenstellung führte insbesondere dazu,
dass die Analyse der zu betrachtenden Begriffe auf logischen und
semantischen Konzepten Freges und Russells sowie auf Ideen man-
cher ihrer Zeitgenossen basiert oder auf diese Bezug nimmt. Im
ersten Teil der Arbeit werden einige logische Grundbegriffe sowie
die Begriffe, die man in der Logik benutzt, diskutiert. Das Hauptziel
dieses Abschnittes ist es, einige spezifische Merkmale der modernen
Gestalt der Logik festzustellen. Im zweiten Teil der Arbeit werden
die Grundbegriffe und Prinzipien traditioneller formaler Logik dar-
gelegt. Der dritte Teil ist den Prinzipien des Aufbaus eines logischen
Kalküls und seiner Interpretation gewidmet.

Da dieser Arbeit eine Lehrveranstaltung zugrunde liegt, ist je-
des Kapitel von den thematisch entsprechenden Übungsaufgaben
begleitet. Für einige Übungsaufgaben sind Lösungsvorschläge an-
gegeben.
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1 Moderne Gestalt der Logik

1.1 Logik und Philosophie der Logik

1.1.1 Zur Definition der Logik

Zunächst geben wir eine Definition von Logik an, um über sie
sprechen zu können und um sie von anderen Wissenschaften ab-
zugrenzen. Unter Logik verstehen wir die Wissenschaft, die rich-
tiges Schließen untersucht. Diese Definition kann später erweitert
werden.

Die Entwicklung der modernen Logik hängt mit ihren verschie-
denen Anwendungen zusammen. Dazu zählen die Grundlagenfor-
schung der Mathematik, die Methodologie der Wissenschaft, die In-
formatik, die Rechnertechnologie und die logische Analyse der nor-
malen (oder natürlichen) Sprache. Bei den logischen Systemen, die
in Hinblick auf die Bedürfnisse des jeweiligen Anwendungsgebiets
formuliert werden, sind die Unterschiede mitunter so groß, dass die
Theoretiker, die sich mit einem der logischen Systeme beschäftigen,
sich kaum noch mit denjenigen verständigen können, deren Inter-
essen einem anderen System gelten. Wie spezialisiert die Logik ist,
zeigt ein Blick in das Inhaltsverzeichnis von fast jedem Buch, das
Anspruch auf eine umfassende Darstellung verschiedener logischer
Theorien erhebt. Ein Beispiel dafür ist die Klassifikation von lo-
gischen Theorien, die 1968 von N. Rescher vorgeschlagen wurde
([Re68]).

Rescher unterteilt Logik in Grundlogik, Metalogik (sie hat die
Grundlogik zu ihrem Gegenstand) und angewandte Logik, die er
in mathematische, wissenschaftliche und philosophische Entwick-
lungen der Logik untergliedert. Zwar entspricht diese Klassifikation
der Breite und dem Umfang der theoretischen Interessen, die man
durch das Wort

”
Logik“ bezeichnet, aber das Aufbauen dieser Klas-

sifikation wirft auch einige Fragen auf. So liegt ein Nachteil dieser
Klassifikation in der Vagheit der Kriterien, die für die Einordnung
dieser oder jener Logik benutzt werden. Es bleibt unklar, ob die-
se Kriterien in der Geschichte der Entwicklung einer der Logiken
liegen oder in den Begriffen und Methoden, welche die Logik ge-
braucht. Ein Beispiel dafür ist die Einordnung der Syllogistik. Die
syllogistische Logik ordnet Rescher der so genannten traditionellen
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Logik zu, die er zum größten Teil mit ihrer im Laufe der Geschichte
herausgebildeten lehrbuchreifen Gestalt identifiziert. Aber die Syl-
logistik wird auch heute auf verschiedenen logischen Gebieten, z. B.
der Modallogik, untersucht und weiterentwickelt. Fraglich ist auch,
dass demselben Bereich der traditionellen Logik die Diskussionen
über Denkgesetze in der idealistischen Logik zugeordnet werden.
Dieses Thema gehört einerseits zur Geschichte der Logik, und an-
dererseits dient es zur Definition der Grundbegriffe der modernen
Logik. Diese können aber auf dem Gebiet der philosophischen An-
wendung der Logik diskutiert werden, insofern als hier die Logik
selbst als zu untersuchendes Objekt auftritt.

Schon an Hand dieser Klassifikation sieht man, dass das Wort

”
Logik“ auf zweifache Weise interpretiert werden kann. Einerseits

versteht man darunter eine Wissenschaft, die als ein Zweig der Phi-
losophie angesehen wird, und andererseits benutzt man das Wort

”
Logik“, um ein (formalisiertes) System zu definieren, das als Ge-

genstand der logischen Untersuchung auftritt ([Cur63]).

Die Gestalt einer logischen Theorie, die man traditionell der
Logik zuschreibt, ist durch solche Merkmale wie Präzision von For-
mulierungen und Schlüssen, genaue Abgrenzung logischer Objek-
te voneinander sowie die Möglichkeit, jeden Satz nach bestimmten
Kategorien (z. B. solchen wie Wahrheit oder Falschheit) zu klassifi-
zieren, gekennzeichnet. Manche moderne Anwendungen der Logik,
besonders solche, die mit der normalen Sprache verbunden sind,
können aber dazu führen, dass die Logik im Bereich dieser Anwen-
dungen ihre derartige typisch logische Gestalt verliert.

Als Beispiele solcher Logiken, bei denen selbst ihre Zugehörig-
keit zur Logik in Frage gestellt werden kann, können einige Ent-
wicklungen der

”
fuzzy logic“ dienen, die in den 70er Jahren von

L. A. Zadeh und R. E. Bellman entwickelt wurde. Diese logische
Theorie kann zur Untersuchung vager Begriffe, wie groß oder kahl
eingesetzt werden, deren Bezeichnungen in der normalen Sprache
oft vorkommen. Im alltäglichen Gebrauch bereiten vage Begriffe
geringe Schwierigkeiten. Probleme entstehen erst bei der logischen
Analyse der entsprechenden Begriffswörter. Manchen Philosophen
(insbesondere Russell) diente diese Analyse als Bestätigung der
Untauglichkeit der normalen Sprache für die wissenschaftliche Ar-
gumentation. Die Entwicklung der Wissenschaft kann man nach
Meinung Russells dadurch charakterisieren, dass vage Erkenntnisse
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durch immer präzisere ersetzt werden. Eine derartige Ersetzung ver-
langt auch eine Präzisierung der Sprache. Diese These Russells ist in
ihrer späteren Version Bestandteil der Diskussion über die Analyse
der normalen Sprache. Diese Diskussion führte Russell mit einer
philosophischen Schule, die in den 50er Jahren in Oxford entstand
(deren Theorie unter dem Namen

”
ordinary language philosophy“

bekannt ist), und zu deren Repräsentanten G. Ryle, J. O. Urm-
son, G. J. Warnock und P. F. Strawson zählen. Dadurch, dass diese
Bewegung die natürliche Sprache zum Gegenstand der philosophi-
schen Untersuchung macht, wird das Interesse an solchen Themen
wiederbelebt, wie der Frage danach, ob der Verlust eines Haares die
Kahlköpfigkeit ausmacht. Vagheit wird somit Gegenstand der logi-
schen Analyse. Die Vagheit (insbesondere die eines Begriffs) lässt
sich u. a. dadurch charakterisieren, dass die Anzahl der Objekte, auf
die ein vager Begriff zukommt, undefiniert bleibt. Ein weiteres Cha-
rakteristikum der Vagheit besteht darin, dass die Grenze zwischen
Trägern einer Eigenschaft, die durch ein vages Prädikat bezeichnet
wird, und denjenigen, denen diese Eigenschaft nicht zukommt, (z. B.
zwischen großen und nicht-großen Menschen) verwischt (

”
fuzzy“)

ist. Sätze, welche vage Prädikate enthalten, unterliegen nicht immer
dem Gesetz des ausgeschlossenen Dritten. Dieses Gesetz ist eins der
drei so genannten logischen Grundgesetze. Unter diesen ist zunächst
das Gesetz der Identität zu erwähnen, das man durch die Formel
A ≡ A ausdrücken kann. Dieses Gesetz, als eine Norm aufgefasst,
ist die Forderung der Bestimmtheit, die an folgerichtiges Denken ge-
stellt wird. Es verlangt, dass A (durch A bezeichnen wir eine Aussa-
ge) in ein und demselben Inhalt genommen werden muss, während
wir A betrachten. Das Gesetz des Widerspruchs ∼(A · ∼A) besagt,
dass man nicht zugleich die Aussage A behaupten und verneinen
darf, oder dass A und nicht-A nicht beide gleichzeitig wahr sein
können. Das Gesetz des ausgeschlossenen Dritten A ∨ ∼A bedeu-
tet, dass entweder A oder nicht-A wahr ist (beide Aussagen können
nicht zugleich falsch sein). Gegen dieses letzte Gesetz verstoßen die
fraglichen Sätze. So gibt es Personen, von denen man nicht sinnvoll
behaupten kann, dass sie entweder kahlköpfig oder nicht kahlköpfig
sind. Einen Gegenstand, der einem als groß erscheint, beschreibt
ein anderer als nicht groß. Obwohl der alltägliche Gebrauch solcher
Begriffe keine ernsthaften Schwierigkeiten auslöst, da man sich im-
mer verständigen kann, was groß und nicht groß, kahlköpfig oder
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nicht kahlköpfig ist, kann der besagte Verstoß gegen das Gesetz
des ausgeschlossenen Dritten als einer der Gründe für die Erweite-
rung der zweiwertigen Logik betrachtet werden. Spricht man über
den Wahrheitswert solcher Sätze wie

”
Arno ist kahlköpfig“, kann

man entweder noch einen zusätzlichen Wert neben wahr und falsch
einführen – unbestimmt –, oder aber eine Reihe von Werten, die
zwischen wahr und falsch liegen. Diese Reihe kann auch unendlich
sein. Es gibt verschiedene Formalisierungen dieser Idee. In manchen
formalisierten Sprachen und ihren Anwendungen werden wahr und
falsch durch 1 und 0 bezeichnet. Dank dieser Bezeichnungsweise
kann man die unendlich vielen Werte in das Intervall einer Reihe
von reellen Zahlen zwischen 0 und 1 einbetten. Bei der Entwicklung
einer logischen Theorie werden die Werte in Beziehungen zueinan-
der gebracht, so dass man aus einem Satz mit einem Wahrheitswert
einen anderen Satz mit einem bestimmten Wert folgern kann.

Eine andere Möglichkeit ist, die Begriffe wahr und falsch selbst
als vage anzusehen. Nach einer solchen Auffassung sind

”
wahr“ und

”
falsch“ Prädikate, die verschiedene Grade bei ihrem Auftreten zu-

lassen. Benutzt man die schon angesprochene Methode der Einbet-
tung der Wahrheitswerte in ein Zahlenintervall für die Erklärung
dieser Idee, kann man sagen, dass die unendliche Anzahl der Punk-
te aus dem Intervall (0,1) jetzt durch die unendliche Anzahl unbe-
stimmter (

”
fuzzy“) Teilmengen aus diesem Intervall ersetzt wird.

Diesen Teilmengen kann man solche Begriffe wie sehr wahr, nicht
sehr wahr, mehr oder weniger wahr, eher wahr zuordnen. Die auf
einem solchen Fundament aufgebaute Logik erlaubt keine präzise
Schlussfolgerung, denn die Relation der logischen Folgerung, die
sich durch eine Beziehung zwischen Wahrheitswerten beschreiben
lässt, kann hier dank der Vielfachheit der Grade der Werte selbst
einen Grad haben. Man kann diesen Zusammenhang durch die Be-
hauptung ausdrücken, dass ein Satz aus dem anderen nur zu einem
bestimmten Grad folgt. In der Logik war und bleibt der Begriff
der Schlussfolgerung traditionell einer der Grundbegriffe. Zu ihrem
Gegenstand hatte Logik immer die Bestimmung der Bedingungen,
welche die Glaubwürdigkeit der Schlussfolgerung garantieren. Diese
traditionell verstandene Logik erleidet bei einer solchen Entwick-
lung der fuzzy Logik eine Umwandlung, die es unmöglich macht,
die entstandene Theorie weiterhin als Logik zu charakterisieren.

Damit in Zusammenhang und wegen der Vielfachheit der Ge-
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stalten von logischen Theorien stellt sich die Frage nach der Ein-
heitlichkeit der Logik, die u. a. zu folgenden Fragestellungen führt:

1. Was sind die Grundlagen der Logik?

2. Worin besteht die Natur des logischen Wissens?

3. Welcher Zusammenhang besteht zwischen der Logik und den
anderen wissenschaftlichen Disziplinen?

Jede dieser Fragen impliziert weitere, obwohl ihre Abgrenzung
nicht immer explizit vorgenommen werden kann. Wenn man z. B.
die Natur des logischen Wissens betrachtet, analysiert man oft die
linguistische Form, in der dieses Wissen existiert. Von dem Versuch
zu bestimmen, was die Bedeutung der logischen Zeichen ist, welche
Werte Variablen in logischen Sätzen annehmen können, was logische
Konstanten repräsentieren, erhofft man sich eine Antwort auf die
Frage, was das Besondere an dem logischen Wissen ist, und wie es
erworben wird.

Will man Logik begründen, fragt man nach dem Wesen der logi-
schen Form. Lässt sich diese Form unabhängig von der Analyse der
Erkenntnis selbst begreifen, oder wird sie als eine in den Produk-
ten der Denktätigkeit gegebene Erkenntnisform erfasst? Wenn sie
somit eine Form des Denkens ist, dann bleibt die Frage zu klären,
worin sich das Logische von dem Psychischen oder Linguistischen
unterscheidet. Hier kommt das Problem der Beziehung der Logik zu
anderen Wissenschaften zum Vorschein. Hat Logik einen besonde-
ren Gegenstand im Vergleich zu anderen Disziplinen? Wie ist ihre
Relation zu diesen?

Obwohl der Gegenstand der Philosophie der Logik oft keine
besondere Definition bekommt, werden alle erwähnten Probleme
und Fragen sowohl in einer allgemeinen als auch in einer konkre-
ten Form unter diesem Titel diskutiert. Um den Gegenstand dieser
Diskussion zu präzisieren, könnte man sich auf die Analogie zu dem
Terminus

”
Philosophie der Mathematik“ beziehen, unter dem man

nicht nur Untersuchungen der philosophischen Bedeutung mathe-
matischer Begriffe und Theorien versteht, d. h. nicht nur der mögli-
chen Folgen der Anwendung solcher Begriffe und Theorien für die
Philosophie. In erster Linie meint man unter diesem Begriff die
Grundlagenforschung dieser Wissenschaft selbst. Der Gegenstand
dieser Forschung ist die Bestimmung des Gegenstands der Mathe-
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matik und ihrer Grundbegriffe sowie des spezifischen Charakters
des theoretischen Wissens, das man im Rahmen der Mathematik
erwirbt.

Den Gegenstand der Philosophie der Logik definieren wir als
Untersuchung der Grundlagen der Logik. Wenn wir Bezug auf die
Probleme der Philosophie der Logik nehmen, werden wir uns haupt-
sächlich mit der Periode der Entwicklung der Logik beschäftigen,
die mit der Formulierung der ersten Systeme der mathematischen
Logik verbunden ist. Wir folgen der Periodisierung, die Bocheński
vorgeschlagen hat ([Boch70, 314]), und markieren den Anfang die-
ser Periode mit 1879 – dem Jahr der Erscheinung der Begriffsschrift
Freges – und ihr Ende mit 1910-1913 – den Jahren der Erscheinung
der Principia Mathematica von Whitehead und Russell. Diese Peri-
ode war besonders fruchtbar, was die Klärung der logischen Grund-
begriffe anbelangt. Dieser Zeit gehört auch eine besondere Definiti-
on der spezifischen Natur der Logik an sowie die Formulierung der
Themen und Richtungen, die die Problematik der Philosophie der
Logik bestimmen.

1.1.2 Die Rolle der Semantik in der Begründung der Lo-
gik

Der Analyse von logischen Prinzipien legen wir einige semantische
Überlegungen zugrunde. Wenn die Semantik zu der Begründung
der Logik herangezogen wird, tritt sie nicht in einer formalisierten
Gestalt auf, sondern als eine Reihe zusammenhängender Begrif-
fe, Schemen und Definitionen, in die die logische Problematik ein-
gebettet wird. Wir werden jeder Spracheinheit als einem Zeichen
ein Bezeichnetes zuordnen, wobei die Wahl der Auffassung des Be-
zeichneten offen bleibt. Einem Satz ordnen wir eine Aussage zu,
einem grammatischen Prädikat einen Begriff, einem Namen einen
Gegenstand, einer Konjunktion eine Kopula oder eine Relation, ei-
ner Phrase das von ihr Bezeichnete. Diese Idee der

”
Verdoppelung“

der Termini stammt von Curry ([Cur63]). Ob man dabei die Aus-
sage mit dem Satz selbst oder mit einem Gedanken oder mit einem
Sachverhalt identifiziert oder noch weitere semantische Schichten
einführt, ist eine Frage, die schon eine bestimmte Auffassung der
Grundlagen der Logik voraussetzt und impliziert, und die man bei
der Klärung dieser Begriffe in Betracht ziehen kann.
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Besonders wichtig außer der Einführung solcher Zweifachheit
der Termini ist die mit dieser Einführung zusammenhängende Un-
terscheidung zwischen dem Zeichen als Mittel der Bezeichnung und
dem Zeichen als bezeichnetem Objekt. Warum es wichtig ist, diese
Unterscheidung zu machen, zeigt ein einfaches Beispiel, das Curry
angibt. Nehmen wir zwei Sätze:

(1) Arno ist rothaarig.

(2) Arno ist ein Name aus 4 Buchstaben.

Wenn man keine sichtbare Unterscheidung zwischen den Vor-
kommen des Namens

”
Arno“ in den gegebenen Sätzen macht, könn-

te man, von bestimmten logischen Prinzipien ausgehend und von
dem uns intuitiv klaren Inhalt der Sätze absehend, den Schluss aus
den gegebenen Sätzen ziehen, dass ein Name aus 4 Buchstaben rot-
haarig ist. Im Satz (1) wird der Name

”
Arno“ als bezeichnender

Name gebraucht, er hat in der Terminologie Russells ([PM], Ap-
pendix C) ein

”
transparentes“ Vorkommen, d. h., er wird benutzt,

um über etwas, was sich von ihm selbst unterscheidet, zu sprechen.
Im Satz (2) hat

”
Arno“ ein

”
nicht-transparentes“ Vorkommen, der

Name wird hier nicht als solcher gebraucht, sondern nur erwähnt.
Um diesen Unterschied sichtbar zu machen, trifft man die Vereinba-
rung, dass ein Name (oder ein beliebiger anderer Sprachausdruck),
der nur erwähnt wird und nicht in seiner bezeichnenden Funktion
gebraucht wird, durch Anführungszeichen zu kennzeichnen ist.

Der semantische Ansatz bei der Klärung der logischen Grund-
begriffe und der Konstruktion einer logischen Theorie ist einerseits
historisch bedingt und hat andererseits seine Gründe sowohl in der
Struktur semantischer Theorien als auch in den Charakteristika der
modernen Stufe der Entwicklung der Logik.

An der Grenze zwischen dem 19. und dem 20. Jahrhundert ent-
stand die Idee einer allgemeinen Zeichentheorie, die unabhängig
voneinander von verschiedenen Autoren entwickelt wurde. In erster
Linie sind hier Ch. S. Peirce und F. de Saussure zu nennen. Auch
E. Husserl führte in Logischen Untersuchungen eine bedeutende
semiotische Analyse durch, und Freges und Russells Werke sind
durch semiotische Ausführungen gekennzeichnet. Die neuere semio-
tische Forschung knüpft vor allem an die Meta-Mathematik Hilberts
an. Als bedeutende Forscher auf diesem Gebiet sind A. Tarski und
R. Carnap zu bezeichnen. Der Name

”
Semiotik“ sowie die allgemei-
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ne Einteilung der Wissenschaft stammt von Ch. Morris, der seine
Ansichten in dem programmatischen Aufsatz

”
Foundations of the

Theory of Signs“ (1938) formulierte ([Mor38]).

Man unterteilt die Zeichentheorie (Semiotik) in drei Bereiche,
abhängig davon, welche der Beziehungen des Zeichens zu anderen
Objekten betrachtet werden. Syntax beschäftigt sich mit den Bezie-
hungen eines Zeichens zu anderen Zeichen, Semantik mit der Bezie-
hung zwischen Zeichen und Bezeichnetem, Pragmatik mit der Be-
ziehung zwischen Zeichen und dem Subjekt, dem Menschen, der das
Zeichen produziert und verwendet. Bocheński verwendete 1954 für
die Darstellung der besagten Beziehungen ein Schema ([Boch93]),
das auf der Idee von Morris basiert, und repräsentierte diese Bezie-
hungen als Dimensionen des Zeichens (Schema 1 ).

das Zeichen pragmatisch
die Träger der Sprache
(Menschen)

andere Zeichen
(Sprache)

das Bezeichnete

semantisch

✲

✻

�
�
�
�
�
�
�
�
�
�
�
�
�
��✒

s
y
n
t
a
k
t
i
s
c
h

Schema 1

Wenn wir über Dimensionen eines Zeichens und Objekte, die den
Charakter dieser Dimensionen bestimmen, sprechen, gehen wir von
den Funktionen aus, welche die Objekte in dem Prozess ausführen,
in dem etwas als ein Zeichen fungiert. Die Eigenschaft, ein Zeichen
zu sein, liegt nicht in der Natur des Objekts, das in einer Situation
der Bezeichnung oder des Sprachgebrauchs als ein Zeichen auftritt,



11

sondern wird von dem Objekt erst durch eine solche Situation er-
worben.

Morris führt besondere Bezeichnungen für die Beziehungen der
Zeichen zu den Objekten, die sie bezeichnen, zu anderen Zeichen
und zu Interpreten (denjenigen, die Zeichen interpretieren, oder den
Trägern der Sprache) ein. Auf der Ebene der syntaktischen Dimen-
sion eines Zeichens tritt die Beziehung implizieren auf. Auf der Ebe-
ne der semantischen Dimension sind das die Beziehungen bedeuten
und bezeichnen, auf der Ebene der pragmatischen Dimension ist
das die Beziehung ausdrücken. Das Wort

”
Tisch“ z. B. impliziert

den Ausdruck
”
ein Möbelstück, auf das man etwas legen kann“, be-

deutet ein solches Möbelstück, bezeichnet diejenigen Objekte, auf
die man das Wort anwendet, und drückt seinen Interpreten aus.
Zwischen all diesen Dimensionen existieren aber Verbindungen. Sie
zeigen sich erstens dadurch, dass die Wissenschaften, die eine der
Dimensionen untersuchen, oft den Gegenstand zu einem ihrer Ob-
jekte haben, der von einer anderen Wissenschaft untersucht wird.
Zweitens kommen diese Verbindungen dadurch zum Vorschein, dass
man einige semiotische Begriffe nur mit Hilfe aller drei Zweige der
Semiotik definieren kann, so z. B. die Begriffe Zeichen und Sprache.

Die Syntax (deren bestimmte Form einerseits von objektiven
Ereignissen und andererseits von dem Verhalten der Träger der
Sprache geregelt wird) untersucht die syntaktischen Beziehungen
zwischen den Zeichen. Die logische Syntax, die Morris bei seiner Ar-
gumentation am meisten beeinflusste, erlaubt, eine Sprache als ei-
ne Gesamtheit von Objekten zu beschreiben, die miteinander durch
zwei Arten von Regeln verbunden sind: die Regeln der Konstruktion
und die Regeln der Rekonstruktion. Die ersten bestimmen, welche
Zeichenkombinationen zulässige selbständige Zeichen der Sprache
sind (Sätze oder Formeln). Die Regeln der zweiten Klasse bestim-
men, welche Zeichen man aus den zulässigen selbständigen Zeichen
der Sprache bilden kann. Man kann also die Syntax der Sprache als
Untersuchung der Zeichen und ihrer Kombinationen definieren, die
nach syntaktischen Regeln gebildet sind.

Die Semantik untersucht die Beziehungen zwischen Zeichen und
Objekten. Die Sätze, die für die Semantik typisch sind, sind Sätze
der Form

”’
Arno‘ bezeichnet Arno“. In Sätzen der Semantik treten

Zeichen einer Sprache oft als Zeichen auf, und deswegen ist einer
der Hauptunterschiede, auf denen die Semantik basiert, der Unter-
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schied zwischen der so genannten Objektsprache und Metasprache.
Als Objektsprache fungiert in der Semantik die Sprache, die durch
bestimmte syntaktische Regeln definiert ist, deswegen sagt man,
dass die Semantik die Syntax voraussetzt und auf der Syntax ba-
siert. Die Sätze der Semantik selbst sind Sätze einer Metasprache.
Die Beziehungen zwischen Zeichen und Objekten, die die Seman-
tik untersucht, werden durch semantische Regeln reguliert. Unter
einer semantischen Regel versteht man eine Regel, die definiert,
unter welchen Bedingungen ein Zeichen ein Bezeichnetes (ein De-
notat) hat. Die semantische Regel bestimmt somit die Klasse von
Denotaten, die ein Zeichen haben kann. Die Träger der (normalen)
Sprache formulieren solche Regeln normalerweise nicht, weil für sie
die semantischen Regeln in der Form von Sprachgebrauchsfertigkei-
ten existieren. Da man die Zeichen nach dem Umfang der von ihnen
implizierten Zeichen unterscheidet, unterscheidet man zwischen In-
dizes, charakterisierenden und universalen Zeichen. Für diese Arten
von Zeichen gibt es verschiedene semantische Regeln. Diese bestim-
men die Klassen von Denotaten, die jeder Art der Zeichen entspre-
chen. Denotate der Indexzeichen sind einzelne Gegenstände, Deno-
tate von einstelligen charakterisierenden Zeichen sind Eigenschaften
und von mehrstelligen charakterisierenden Zeichen sind die Deno-
tate Relationen.

Die Pragmatik untersucht die Beziehungen von Zeichen und ih-
ren Interpreten. Sie ist mit der Analyse der psychologischen, biologi-
schen und soziologischen Ereignisse verbunden, die den Prozess des
Sprachgebrauchs und der Bezeichnung beeinflussen. Von dem Ge-
sichtspunkt der Pragmatik, glaubt Morris, kann man die Sprache als
ein Verhaltenssystem ansehen. Er schlägt vor, als spezifisch prag-
matische solche Begriffe wie Verstehen, Interpretation und Ähn-
liche zu betrachten. Den Begriff Wahrheit, der auch als einer der
Hauptbegriffe der Semantik auftritt, betrachtet er als einen, der be-
stimmte pragmatische Aspekte hat. Dieser Gedanke wird später von
Montague weiterentwickelt. Montague schlägt vor, den Begriff der
Wahrheit als einen pragmatischen Begriff zu betrachten, der aber
nicht von der Semantik übernommen, sondern im Unterschied zu
dem entsprechenden semantischen Begriff durch einen Kontext des
Zeichengebrauchs definiert wird. Pragmatische Regeln halten die
Bedingungen fest, unter denen ein Objekt für den Interpreten als
ein Zeichen funktioniert. Da diese Bedingungen nicht immer durch
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semantische und syntaktische Regeln reguliert werden können, wie
im Fall des Auftretens von Befehlen, Modalitäten und Ähnlichem,
werden sie dem Bereich der Pragmatik zugeordnet.

Morris’ Darstellung basiert ohne Zweifel in erster Linie auf Be-
griffen, die im Rahmen der logischen Untersuchungen formuliert
wurden. Die Hauptbegriffe der Zeichentheorie, die für die Logik re-
levant sind (wie z. B. Sinn und Bedeutung), wurden in Verbindung
mit der Konstruktion einer formalisierten Sprache und der Forde-
rung, zwischen Zeichen und Bezeichnetem scharf zu unterscheiden,
in besonders aufschlussreicher Form von Frege zum Ausdruck ge-
bracht. Seine Ideen, von Russell, Wittgenstein und Carnap disku-
tiert, haben sowohl die moderne logische und semantische Termi-
nologie als auch die Tendenz der logischen Entwicklung geprägt.
Russell ist der zweite Autor, mit dessen Namen man die Formu-
lierung von semantischen Hauptbegriffen verbindet. Obwohl man
oft die Originalität mancher seiner Ansichten im Vergleich zu Fre-
ges Theorie bestreitet, gehört Russell zweifellos das Verdienst, als
ein Ziel seiner logischen Untersuchungen das Bestreben zu erklären,
die logischen Gegenstände in die Beziehung zu den für sie stehen-
den Zeichen zu bringen, durch die er logische Begriffe zu erklären
versucht. Die Formulierung einer theory of symbolism, unter der
die Theorie der Relation zwischen Zeichen und Bezeichnetem ver-
standen wird, betrachten Russell und ihm folgend Wittgenstein als
Hauptziel ihrer Studien und Diskussionen. Während der Fregeschen
Periode war somit die logische Problematik mit der semantischen
stark verflochten.

Neben den historischen Gründen und den Vorteilen und der Be-
quemlichkeit des semantischen Ansatzes bei der Betrachtung der
Grundlagen der Logik wird dieser Ansatz auch durch Funktionen
bedingt, die in der Logik keine andere Theorie als die semantische
erfüllen kann.

1. Die Semantik zerlegt das zu Erkennende in bestimmte Kategori-
en oder Typen. Somit liefert sie der Logik, die sich mit bestimm-
ten Gesetzmäßigkeiten von Zusammenhängen der Erkenntnisse
befasst, ihre Grundbegriffe. Weder die semantische Interpreta-
tion der Logik noch Definition und Gebrauch logischer Begriffe
können allein mit Hilfe syntaktischer (formaler) Mittel realisiert
werden. Die Logik selbst entwickelt nicht solche Begriffe wie
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Wahrheit oder Falschheit. Sie übernimmt diese Begriffe aus der
Semantik und der Erkenntnistheorie. Selbst die Anzahl der von
der logischen Theorie anerkannten Wahrheitswerte ist durch die
semantischen Voraussetzungen der Theorie bestimmt.

2. Die Semantik formuliert die Wahrheitsbedingungen für die Sätze
der Logik. Da eine logische Theorie in der Form einer Sprache
dargelegt werden kann, wird die Relation dieser Sprache zu ih-
rem Anwendungsgebiet durch semantische Regeln reguliert.

3. Die nächste wichtige Funktion der Semantik besteht darin, dass
sie eine Interpretation formalisierter logischer Sprachen liefert.
Eins der Merkmale der modernen Entwicklung der Logik ist der
große Anteil des Formalismus an der Aufstellung einer logischen
Theorie. Eine logische Theorie kann mit Hilfe von logischen Zei-
chen als eine Reihe von Formeln formuliert werden. Eine solche
logische Sprache hat nur insofern einen theoretischen Wert, als
sie eine semantische Interpretation zulässt oder eine Semantik
schon als Basis hat (eine Semantik kann entweder als Interpre-
tation einer schon existierenden Sprache eingeführt oder aber
von einer solchen Existenz unabhängig aufgebaut werden).

4. Schließlich besteht eine der Funktionen einer semantischen Theo-
rie darin, dass sie die Grundlage für die Formalisierung der nor-
malen Sprache bildet. Normale Sprache betrachtet man dabei
als ein Phänomen, dessen Existenz und Funktionieren durch
subjektive Faktoren bedingt sind. Solche semantischen Begrif-
fe wie Sinn und Bedeutung werden gebraucht, um die Rolle
dieser Faktoren bei der Bestimmung des Bezeichneten zu de-
finieren und dadurch scheinbar nicht-formalisierbare Aspekte
der normalen Sprache zu formalisieren. Das betrifft z. B. Sätze,
die subjektive Beziehungen der Träger der Sprache zu ande-
ren Sätzen ausdrücken. Eine solche Formalisierung erlaubt eine
weitere logische Analyse der natürlichen Sprache und ist Vor-
aussetzung für die Entwicklung einer logischen Theorie, die sich
mit derartigen Sätzen und ihren Zusammenhängen befasst.

Die Verwendung von semantischen Begriffen und Ideen ist somit
für die Begründung der Logik nicht nur nützlich, sondern auch not-
wendig.
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Übungsaufgaben

1. Charakterisieren Sie vage Begriffe.

2. Betrachten Sie folgende Ausdrücke.

k,
’
k‘,

”
k“, Logik,

’
Logik‘,

”
Logik“

Setzen Sie gegebene Ausdrücke in die unten angeführten Phra-
sen ein, so dass Sie wahre Sätze erhalten.

a) ist ein Sprachausdruck.

b) bezeichnet .

c) ist ein Teil von .

d) enthält Anführungszeichen.

e) ist ein Buchstabe.

f) ist ein Wort.
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1.2 Der Wahrheitsbegriff und der Formbegriff

1.2.1 Der Wahrheitsbegriff in der Logik

Die Aufgabe der Logik besteht in der Untersuchung und Formu-
lierung verschiedener Arten von Schlussfolgerungen. Jeder Schluss
unterliegt von dem logischen Gesichtspunkt aus der Forderung, dass
er die Beziehung der logischen Folgerung reproduzieren muss. Un-
ter der Bedingung, dass die Voraussetzungen des Schlusses wahr
sind, gewährleistet diese Beziehung, dass der Schlusssatz selbst auch
wahr ist. Eine der wichtigsten Botschaften, die uns diese Forderung
vermittelt, ist die Notwendigkeit, die logischen Deduktionsregeln
durch ein Wahrheitskonzept zu begründen. Logik entwickelt keinen
eigenen Wahrheitsbegriff, aber er ist Teil des Gegenstands der Lo-
gik, insofern als diese die Schlüsse als Zusammenhänge von Wahr-
heitswerten untersucht. Den Wahrheitsbegriff übernimmt die Logik
in erster Linie aus der Erkenntnistheorie. Am häufigsten beruht die
logische Semantik auf der Korrespondenztheorie der Wahrheit, die
im Rahmen der semantischen Interpretation einer logischen Theorie
die Gestalt einer Reihe von Regeln annimmt.

Dieser durch den Gebrauch des Begriffs der logischen Folgerung
vorausgesetzte Bezug auf den Wahrheitsbegriff zeigt, warum die
Deutung des Wahrheitsbegriffs zur Grundlagenforschung der Logik
gehört. Die Untersuchung des Wahrheitsbegriffs bestimmt eine der
Richtungen, welche man in der Entwicklung der Grundlagen der Lo-
gik unterscheiden kann. Diese Richtung kann man in erster Linie mit
der Problematik der Natur der logischen Gesetze verbinden. Wenn
Logik die Gesetzmäßigkeiten und Beziehungen des Wahren unter-
sucht, stellt sich die Frage, was für eine Realität dem Wahren zu-
kommt. Betrachtet man das Wahre als ein Objekt, dann befasst sich
Logik mit objektiven Zusammenhängen. Unseren Gedanken (Urtei-
len, Sätzen) werden andere Gebilde (Komponenten solcher Zusam-
menhänge) gegenübergestellt, die selbst einen Wahrheitswert haben
können und deren Wahrheitswert von dem Wahrheitswert unserer
tatsächlich auftretenden Gedanken abweichen kann. Auf diesen Un-
terschied wiesen im Rahmen der Diskussion über Psychologismus
Ende des 19. und Anfang des 20. Jahrhunderts Frege und Husserl
hin. Für die Entwicklung der psychologistischen Thesen und Ideen,
die Frege und Husserl bekämpften, gab es unterschiedliche Gründe,
die zum großen Teil in dem Charakter der von der Logik untersuch-
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ten Gegenstände und den vielfältigen Möglichkeiten sie aufzufassen
liegen. Frege ordnete den logischen Gegenständen die Komponen-
ten zu, die am Verfahren des Schließens beteiligt sind ([NS],

”
Lo-

gik“, 3), und den logischen Gesetzen die Gesetze des Schließens. Als
Schließen betrachtete er ein solches Urteilen, das sich in der Form
eines wahren Urteils (oder in unserer Terminologie: einer wahren
Aussage) vollzieht, wobei dieses Urteil andere Wahrheiten als seine
Rechtfertigungsgründe hat. Aber selbst aus zwei wahren Urteilen
kann man nicht immer ein anderes wahres Urteil folgern. Obwohl
die Logik dieser Tatsache Rechnung tragen soll, betrachtet sie kei-
ne konkreten Urteile und Schlüsse. Deswegen sind ihre Gegenstände
keine konkreten Begriffe, sondern Begriffe von solchen, z. B. die Be-
griffe eines Begriffs und eines Gegenstands. Diese, wie auch andere
logische Objekte, sind unsinnlich und in dieser Hinsicht ähneln sie
den Gegenständen der Psychologie.

”
Sie sind weder sichtbar noch

tastbar“, schreibt Frege ([NS], 3). Das ist einer der Gründe für die
Gefahr des Eindringens des Psychologismus in die Logik. Der zwei-
te Grund liegt in der Tatsache, dass die Sprache der Träger des
Logischen ist. Die logischen Gegenstände, wie Begriffe und Wahr-
heitswerte, sind uns nur in der Form einer Wortgruppe oder eines
Satzes gegeben. Aber irgendeine logische Struktur oder logische Be-
ziehung wiederzugeben, ist oft nicht das Ziel des Sprechenden oder
zumindest nicht sein einziges Ziel. Das Urteilen, das vom logischen
Gesichtspunkt aus eine bestimmte Struktur aufweist, die sich un-
ter dem Einfluss der subjektiven Faktoren nicht ändert, hat jedes
Mal, wenn das Urteil gefällt wird, einen unterschiedlichen Ablauf
([Ged], 30, [NS], 3). Dieser ändert sich von einer Person zur ande-
ren, da jeder zu demselben Urteil aus verschiedenen individuellen
Gründen kommt, unterschiedliche Interessen und Erfahrungen hat
und durch verschiedenste Vorstellungen bei dieser Handlung be-
einflusst wird. Das Urteilen als ein Geschehen hat eine bestimmte
Regularität, welche Psychologie und Erkenntnistheorie studieren.
Logik interessiert sich aber für das Sein des schon gefällten Urteils,
und zwar für sein objektives Sein. Sie beschäftigt sich mit der Rea-
lität eines Urteils, die sich einerseits in Beziehungen dieses Urteils
zu anderen Urteilen zeigt, und andererseits offenbart sich diese Rea-
lität in der Möglichkeit, die Bedingungen des Wahrseins des Urteils
aufzudecken. Diese Möglichkeit ist dadurch gegeben, dass sich der
durch das Urteil anerkannte Wahrheitswert eines Gedankens in Be-
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griffe oder in Begriffe und Gegenstände zerlegen lässt. Womit das
Urteil in Beziehungen zu anderen Urteilen tritt, ist sein Wahrheits-
wert. Die Möglichkeit, das logische Korrelat des Urteils in seine
Bestandteile zu zerlegen, charakterisiert den Wahrheitswert als ein
zusammengesetztes Objekt. In der Sprache sind aber das Logische
und das Psychologische vermischt ([NS], 6). Ein anderes Problem,
das zu psychologistischen Ansichten führen kann, ist das Problem
der Unterscheidung zwischen der Geschichte eines Begriffs einer-
seits und der

”
Entstehung“ des Begriffs bei einer einzelnen Person

andererseits ([GLA], XIX). Während die Geschichte des Begriffs die
Geschichte seiner Erkenntnis und der Identifizierung des Begriffs-
wortes mit einer bestimmten Bedeutung ist, wird das Erfassen des
Begriffs bei einer einzelnen Person jedes Mal durch verschiedene
Gründe und Bedingungen hervorgerufen. Während die Bedeutung,
die man mit einem Begriffswort verbindet, keine Vorstellung oder
ein ähnlich subjektives psychologisches Gebilde ist, wird der Begriff
von einer einzelnen Person aufgrund der Analyse eines psychischen
Ereignisses (oder mehrerer Ereignisse) erfasst. Wären die logischen
Objekte solche psychischen Ereignisse, die einzeln, veränderlich und
vergänglich sind, und die sich von Subjekt zu Subjekt unterschei-
den, dann würde damit nach Frege das Erkenntnisziel ins Subjektive
gezogen.

”
Wenn in dem beständigen Flusse aller Dinge nichts Fes-

tes, Ewiges beharrte, würde die Erkennbarkeit der Welt aufhören
und Alles in Verwirrung stürzen“ ([GLA], XIX). Mit dieser Aus-
sage erklärt Frege, worin er die Gefahr des Psychologismus sieht.
Durch eine psychologistische Betrachtungsweise kommt man leicht
zu einem solipsistischen Gesichtspunkt, der selbst die Möglichkeit
eines wissenschaftlichen Wissens in Frage stellt.

Anhand dieser Argumentation sehen wir, dass man, von einem
psychologistischen Gesichtspunkt ausgehend, logische Objekte als
reale Gegenstände und logische Termini als Beobachtungstermini
betrachten kann. Wenn man nun, davon ausgehend, die Informa-
tion analysiert, die uns die logischen Sätze (Gesetze) vermitteln,
kann man darauf kommen, dass sie die tatsächlichen Regularitäten
oder Gesetzmäßigkeiten des Denkens darstellen. Eine solche Auffas-
sung bestimmt das Wesen des Psychologismus, das darin besteht,
dass die Logik als eine empirische Wissenschaft betrachtet wird, die
Gesetze und Formen des Denkens untersucht, das seinerseits als ein
psychisches reales Verfahren auftritt.
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Man kann weiterhin zwischen dem Akt des Schließens aus den
gegebenen Voraussetzungen und den Zusammenhängen dieser Vor-
aussetzungen mit anderen Aussagen, die von einem einzelnen Akt
des Schließens nicht abhängen, unterscheiden. Indem wir in je-
dem einzelnen Fall schließen, vollzieht sich ein subjektiv beding-
tes Schließen. Der Zusammenhang der Aussagen in einem solchen
einzelnen Fall ist nicht notwendigerweise mit dem Zusammenhang
identisch, der einen wahren Schluss aus den gegebenen Vorausset-
zungen liefert. Wie die Wahrheit aufgefasst wird, ob als Charak-
teristikum, das laut den einer logischen Theorie zugrunde gelegten
Konventionen einigen Aussagen unabhängig von der Anerkennung
ihrer Wahrheit zukommt, oder aber als eine von einer Handlung
des Subjekts abhängige Entität oder Beziehung, bestimmt die Auf-
fassung der Natur der logischen Gesetze. Nach Frege besteht das
Wesen der logischen Gesetze darin, dass sie keine Gesetze des wirk-
lichen Schließens sind, obwohl das wirkliche Schließen den Stoff für
jede logische Untersuchung liefert. Das wirkliche Schließen kann
richtig und insofern logisch sein. Aber wenn alles wirkliche Schließen
richtig wäre, wären Fehlschlüsse unmöglich ([NS], 3). Frege weist in
diesem Zusammenhang auf den Doppelsinn des Wortes

”
Gesetz“

hin. Einerseits besagt ein Gesetz, was ist, und schreibt anderer-
seits vor, was sein soll ([GGA], XV). Wenn man von Denkgeset-
zen redet, wie es in der Logik üblich ist, kann man den Eindruck
gewinnen, als ob diese Gesetze das Denken auf dieselbe Weise re-
gierten

”
wie die Naturgesetze die Vorgänge in der Außenwelt. Dann

können sie nichts anderes als psychologische Gesetze sein; denn das
Denken ist ein seelischer Vorgang“. Die Information, welche die
logischen Sätze wiedergeben, betrifft nach Freges Meinung nicht
den tatsächlichen Ablauf des Denkens und auch nicht die Regula-
ritäten, die das Denken aufweist. Das besagt aber nicht, dass Logik
sich nicht mit den objektiven Zusammenhängen beschäftigt. Ihren
normativen Charakter haben die logischen Gesetze dank der Ob-
jektivität der Gegenstände, welche die Logik betrachtet, und dank
der Objektivität der Zusammenhänge und Zusammensetzungen, in
die diese Gegenstände miteinander treten.

1.2.2 Konventionen über die Träger der Wahrheitswerte

Was man als Kriterium der Wahrheit einer Spracheinheit betrach-
tet, bestimmt u. a., wie der Träger des Wahrheitswertes und dement-
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sprechend der Gegenstand der logischen Untersuchung definiert wer-
den. Findet man dieses Kriterium im Bereich der Beziehungen zwi-
schen Sprachzeichen (z. B. in der Konsistenz der Sätze) oder im Be-
reich der Relationen zwischen Zeichen und Bezeichnetem, wie die
Korrespondenztheorie der Wahrheit, dann werden unter die Träger
der Wahrheitswerte Sätze eingereiht. In einigen Fällen, wie bei Rus-
sell, der vor 1905 die Wahrheit als Eigenschaft komplexer Objek-
te (Propositionen) betrachtete, die nicht mit den Sätzen identisch
sind, sind die Wahrheitsträger in erster Linie solche zusammenge-
setzte Objekte (Propositionen) selbst. Bei Frege sind das Gedanken,
die ihrerseits in Sätzen ausgedrückt werden. Wenn man aber das
Kriterium der Wahrheit in einem Bereich sucht, wo mehrere ver-
schiedene Subjekte agieren, dann muss der Wahrheitsträger nicht
unbedingt ein einzelner Satz sein, sei er einfach oder zusammen-
gesetzt. Als ein Wahrheitsträger kann hier ein Kontext betrachtet
werden, in dem mehrere Sätze in einem Zusammenhang stehen und
in dem deswegen nicht unbedingt ein einzelner Satz eine sinnvolle,
als wahr bewertbare Einheit ist. Die moderne Logik, die sich auch
mit Kontexten befasst, kommt zu diesem Thema gerade dadurch,
dass sie bestimmte Charakteristika des Trägers der Sprache berück-
sichtigt: seine Einstellungen, Begriffe oder Information, über die ein
solcher Träger verfügt, seine Einschätzung der Wahrheitsbedingun-
gen der Sätze.

Deswegen treffen wir zunächst eine Vereinbarung darüber, wel-
chen Objekten wir die Eigenschaft wahr zu sein zusprechen. Einer
der ersten Gedanken, auf die man im Zusammenhang mit dieser
Frage kommt, ist die Anwendung des Wortes

”
wahr“ auf Sätze.

Frege, den dieses Problem insbesondere 1918-1919 im Aufsatz
”
Ge-

danke“ beschäftigte, bemerkte, dass man die Eigenschaft wahr auch
Bildern und Vorstellungen zuschreibt. Wird das Wort

”
wahr“ in

Bezug auf solche Objekte gebraucht, wird es aber nicht als ein

”
Eigenschafts-Wort“ benutzt, sondern als ein

”
Beziehungs-Wort“.

Stillschweigend wird bei den Behauptungen über die Wahrheit der
Bilder eine Beziehung der Übereinstimmung gemeint. Bewertet man
ein Bild als wahres, steckt dahinter nach Freges Meinung die Zu-
rückführung auf einen Gedanken, den Gedanken über die Beziehung
des Bildes zu dem abgebildeten Objekt. Die Wahrheit definiert Fre-
ge aus diesen Gründen als Eigenschaft eines Gedankens. Er unter-
scheidet zwischen: 1) dem Fassen eines Gedankens, das er auch
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als das Denken beschreibt, 2) der Anerkennung der Wahrheit eines
Gedankens (dem Urteilen) und 3) der Kundgebung des gefällten
Urteils (dem Behaupten).

Kundgegeben wird das Urteil in einem Satz. Diese Form der
Existenz eines Urteils erlaubt es, den Gedanken und den Wahr-
heitswert als eine semantische Interpretation des Satzes anzusehen
([WB], 96, s. Schema 2 ).

Satz Eigenname Begriffswort

Sinn des Satzes
(Gedanke)

Sinn des
Eigennamens

Sinn des
Begriffswortes

Bedeutung des
Satzes (Wahr-
heitswert)

Bedeutung des
Eigennamens
(Gegenstand)

Bedeutung des
Begriffswortes

(Begriff)

Gegenstand,
der unter den
Begriff fällt







❄ ❄ ❄

❄ ❄ ❄

✲

Schema 2

Für Frege sind Wahrheit und Falschheit abstrakte Gegenstände
(das Wahre und das Falsche), und ein Satz ist dann wahr, wenn
der dem Satz entsprechende Gedanke wahr ist und seine Bedeu-
tung folglich das Wahre ist. Dank der Tatsache, dass Sätze als ihre
Bedeutung einen Wahrheitswert besitzen, kann man alle wahren
Sätze (sowie auch alle falschen) einander gleichsetzen, was eine be-
sondere Bedeutung für die logische Theorie hat, denn der Umstand,
dass ein Satz wahr oder falsch ist, impliziert die Möglichkeit, bei
der Analyse der logischen Beziehungen zwischen Sätzen von ihrem
Inhalt abzusehen und die Gesetze und Regeln zu formulieren, die
für die Sätze eines beliebigen Inhalts gelten. Wollen wir nun die
Sätze näher bestimmen, die wir als wahre oder falsche beschreiben
können, sagen wir, dass das die Aussagesätze sind, die etwas über
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die Eigenschaften eines Objekts oder eine Relation von (mindes-
tens) zwei Objekten behaupten, oder aber komplexe Sätze, die als
ihre Teilsätze solche Aussagesätze enthalten. Wir werden als Ob-
jekte, die wahr oder falsch sein können, auch Aussagen zulassen,
denn diese, selbst wenn sie sich von Sätzen unterscheiden sollten,
können als Klassen von Sätzen gewisser Form interpretiert werden.

Schlüssen sprechen wir vorerst nicht die Eigenschaft wahr zu.
Ein Schluss ist ein Zusammenhang von mindestens zwei Aussagen,
von denen eine der Schluss (der Schlusssatz) selbst ist, und die ande-
re(n) als Prämisse(n) auftreten. Wir charakterisieren einen Schluss
als richtig, korrekt oder annehmbar. Man kann einen Schluss aller-
dings auch als eine Aussage darstellen und dann über den Wahr-
heitswert (oder über das System der Wahrheitswerte) dieser Aus-
sage sprechen.

1.2.3 Definitionen

Eine weitere Konvention betrifft Definitionen, die mit dem Wahr-
heitsbegriff zusammenhängen. Weil der Wahrheitswert eines Satzes
als seine semantische Interpretation angesehen werden kann, ge-
ben wir keine Definition des Wahrheitswertes als eines selbständi-
gen unabhängig vom Satz denkbaren Objekts. Wir definieren, unter
welchen Bedingungen ein Satz (eine Aussage) wahr ist. Dabei be-
nutzen wir die Idee Tarskis ([Tar35]), der von der klassischen Kor-
respondenztheorie der Wahrheit ausgeht. Für einen atomaren oder
elementaren Satz, der keine weiteren Sätze als seine Bestandtei-
le enthält, werden die Wahrheitsbedingungen folgendermaßen defi-
niert. Bezeichnen wir einen Satz durch

”
p“, dann sagen wir, dass

”
p“ dann und nur dann wahr ist, wenn p. Nach dem Beispiel Tarskis

ist der Satz
”
Der Schnee ist weiß“ dann und nur dann wahr, wenn

der Schnee weiß ist.

Die Wahrheitsbedingungen der komplexen Sätze definieren wir,
indem wir bestimmte logische Konjunktionen einführen, denen wir
Korrelate aus der natürlichen Sprache zuordnen. Die Definition,
die wir geben, können wir einerseits als Definition der Wahrheits-
bedingungen der zusammengesetzten Sätze auffassen, und ande-
rerseits als Definition der aussagenlogischen Funktionen, die durch
diese Konjunktionen vertreten sind. Wir gehen davon aus, dass die
einfachen (oder auch komplexen) Sätze, die solche Konjunktionen
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verbinden, wahr oder falsch sind, und somit den Wahrheitswert w
(wahr) oder f (falsch) haben.

Es gibt eine singuläre Konjunktion, die sich auch als Funktion
von einem Argument (das Argument einer solchen Funktion ist der
Wahrheitswert einer Aussage) beschreiben lässt. Die Funktion, für
die die Konjunktion

”
∼“ (

”
nicht“) steht, hat für das Argument w

den Wert f , und für das Argument f den Wert w. Diese Konjunk-
tion bezeichnet man als Negation. Die anderen Konjunktionen sind
binär. Die Kombinationen der Werte ww, wf , fw, ff der Sätze, die
durch die jeweilige Konjunktion verbunden sind, ergeben folgende
Werte:

”
∨“ (

”
. . . oder . . .“) — wwwf

(nicht-ausschließende Disjunktion)

”
·“ (

”
. . . und . . .“) — wfff

(Konjunktion)

”
⊃“ (

”
wenn . . . , dann . . .“) — wfww

(Implikation)

”
⊂“ (

”
. . . , wenn . . .“) — wwfw

(konverse Implikation)

”
≡“ (

”
. . . dann und nur dann, wenn . . .“) — wffw

(Äquivalenz )

”
6≡“ (

”
entweder . . . , oder . . .“) — fwwf

(ausschließende Disjunktion, Antiäquivalenz )

”
|“ (

”
nicht beide . . . und . . .“) — fwww

(Sheffer-Strich, Antikonjunktion)

”
∨̄“ (

”
weder . . . , noch . . .“) — fffw

(Antidisjunktion)

”
6⊃“ (

”
. . . , aber nicht . . .“) — fwff

(Antiimplikation)

”
6⊂“ (

”
nicht . . . , aber . . .“) — ffwf

(konverse Antiimplikation)

Wenn wir die gegebenen Definitionen als Beschreibung einer Ab-
bildungsvorschrift ansehen, ordnen wir jeder logischen Konjunkti-
on eine Funktion zu, die im Fall von binären Konjunktionen für
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jede der 4 Kombinationen der Wahrheitswerte (ww, wf , fw, ff)
einen Wahrheitswert (w oder f) als ihren Wert hat. Wenn wir von
den kombinatorischen Überlegungen ausgehen, können wir aus zwei
Wahrheitswerten 24 (= 16) von einander verschiedene geordnete 4-
Tupel aus den Elementen w und f bilden.

ww wf fw ff

∇1 w w w w
∇2 w w w f Disjunktion
∇3 w w f w konverse Implikation
∇4 w f w w Implikation
∇5 f w w w Antikonjunktion (Sheffer-Strich)
∇6 w w f f
∇7 w f f w Äquivalenz
∇8 f f w w
∇9 f w f w
∇10 f w w f Antiäquivalenz (ausschließendes

”
oder“)

∇11 w f w f
∇12 w f f f Konjunktion
∇13 f w f f Antiimplikation
∇14 f f w f konverse Antiimplikation
∇15 f f f w Antidisjunktion
∇16 f f f f

∇1, ∇16 werden nicht als aussagenlogische Funktoren betrach-
tet, denn die Werte dieser Funktionen hängen nicht von den Wahr-
heitswerten ihrer Argumente ab. ∇6, ∇11 werden nicht als logische
Konjunktionen benutzt, da die Werte der Funktionen, die sie re-
präsentieren könnten, mit den Werten eines ihrer Argumente zu-
sammenfallen und sie deswegen keine Funktionen von 2 Argumen-
ten sind. ∇8, ∇9 werden aus demselben Grund nicht als logische
Konjunktionen benutzt, weil der Wahrheitswert der jeweiligen an-
geblichen Funktion in diesem Fall mit dem Wert der Verneinung
eines der Argumente zusammenfällt.

Diese Überlegungen zeigen auch, dass hinter dem Wunsch, eine
Konjunktion bzw. ihr Korrelat in der normalen Sprache als Bezeich-
nung (oder Ausdruck) einer Beziehung (z. B. einer kausalen, wie im
Fall der Implikation) zwischen Aussagen aufzufassen, oft nur die
entsprechende Auslegung der fraglichen wahrheitswertigen Funkti-
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on steht. Gehen wir davon aus, dass die Logik, die wir studieren,
eine zweiwertige Logik mit den Werten wahr und falsch ist, und
dass jeder logische Ausdruck einen von diesen Werten annehmen
kann, dann sind wir durch die angegebenen Definitionen zu keiner
durch die Tradition bedingten oder durch die natürliche Sprache
aufgezwungenen Auffassung des

”
Namens“ der Funktion verpflich-

tet. Die Annahme, dass besondere Beziehungen zwischen Aussagen
die Werte von logischen Funktionen bestimmen, würde bedeuten,
dass die Logik (insbesondere die Aussagenlogik) inhaltliche Zusam-
menhänge von Aussagen untersucht. Dies ist insofern nicht zutref-
fend, als das Ziel der Logik darin besteht, allgemeine Schlussregeln,
die auf jeden Inhalt anwendbar sind, zu gewinnen.

Die dritte Konvention betrifft die Anzahl der Wahrheitswerte.
Wir setzen voraus, dass jede Aussage wahr oder falsch ist, womit wir
unsere Analyse auf das Gebiet der zweiwertigen Logik einschränken.

1.2.4 Konventionen über den Formbegriff

Neben dem Wahrheitsbegriff, dessen Definition sich sowohl auf die
Interpretation der logischen Sprache als auch auf die Auffassung
des Gegenstands der Logik auswirkt, spielt der Formbegriff in der
Logik eine große Rolle. Der Formbegriff grenzt den Bereich des Lo-
gischen ab und definiert u. a. die ontologischen Annahmen, mit de-
nen eine logische Theorie verbunden ist. Da Logik die Schlussar-
ten systematisch so beschreiben soll, dass sie den Charakter einer
Gesetzmäßigkeit gewinnen, ist der Formbegriff einer der wichtigs-
ten logischen Begriffe. Die logischen Gesetze sollen erlauben, einen
richtigen Schluss aus Voraussetzungen beliebigen Inhalts zu ziehen.

Der Begriff der Form ist somit auch ein wesentlicher Teil der
Definition der Logik. Nachdem man die Logik als Wissenschaft des
richtigen Schließens definiert hat, kann diese Definition dadurch
präzisiert werden, dass die Logik von dem Inhalt der Aussagen, de-
ren Zusammenhänge sie untersucht, absieht und nur die Form dieser
Zusammenhänge berücksichtigt. Logische Gesetze gelten für jeden
Inhalt. Man kann die Beziehungen zwischen den Begriffen Mensch,
Grieche und sterblich betrachten und aus den Voraussetzungen

”
Al-

le Menschen sind sterblich“ und
”
Alle Griechen sind Menschen“ den

Schluss
”
Alle Griechen sind sterblich“ ziehen. Mit derselben Not-

wendigkeit lässt sich aus den Voraussetzungen
”
Jedes partikuläre
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Urteil kann in die Form mit
’
es gibt‘ umgesetzt werden“ und

”
Je-

des Urteil, das in die Form mit
’
es gibt‘ umgesetzt werden kann, ist

ein Existentialurteil“ der Schluss
”
Jedes partikuläre Urteil ist ein

Existentialurteil“ folgern. Zu bemerken ist allerdings, dass die eben
angegebenen Schlüsse nicht nur dieselbe logische Form haben, son-
dern auch dadurch gekennzeichnet sind, dass ihre Prämissen wahre
Aussagen sind.

Noch klarer kommt die Anwendbarkeit von logischen Prinzi-
pien auf Aussagen beliebigen Inhalts in der Aussagenlogik zum
Ausdruck, die nicht die Relationen zwischen Termini betrachtet,
sondern zwischen Aussagen. Logische Konjunktionen (insbesondere
binäre Konjunktionen) können zwischen Aussagen mit vollkommen
unterschiedlichem Inhalt gesetzt werden, ohne dass dabei die Fra-
ge nach dem Wahrheitswert des gewonnenen zusammengesetzten
Satzes ihren Sinn verliert. Das Einzige, worauf es ankommt, ist der
Wahrheitswert dieser Aussagen. Die Aussage

”
Wenn alle Körper

ausgedehnt sind, dann ist der Schnee weiß“ ist wahr, obwohl die
Begriffe, die in der ersten Teilaussage vorkommen, keine inhaltliche
Beziehung zu den Begriffen haben, die in der zweiten Teilaussage
erwähnt werden. Genauso wahr ist auch die Aussage

”
Wenn zwei

mal zwei fünf ist, dann ist der Schnee weiß“.

Mit dem Formbegriff kann man eine andere Richtung in der
Entwicklung der Grundlagen der Logik in Zusammenhang bringen.
Wenn der Wahrheitsbegriff zu einer bestimmten Auffassung der Na-
tur und der Struktur der logischen Objekte beiträgt, indem er eine
semantisch interpretierbare Einheit der logischen Sprache und ih-
re Bestandteile bestimmt, gibt der Formbegriff eine Auffassung des
Inhalts der logischen Zeichen und der Gegenstände, deren Existenz
die Logik voraussetzt oder zulässt.

Bei den logischen Zeichen handelt es sich normalerweise um For-
meln und ihre Bestandteile: Konstanten und Variablen. Eine logi-
sche Formel kann selbst mit der logischen Form identifiziert wer-
den, und zwar der logischen Form der Sätze. Diese Identifizierung
kommt dadurch zustande, dass man die Beziehung zwischen zwei
Sprachausdrücken dieselbe logische Form haben definiert und die-
se Beziehung auf die Möglichkeit zurückführt, die Sprachausdrücke
auf die gleiche Formel zu bringen (die Sätze

”
Sokrates liebt Wein“

und
”
Platon liebt Sokrates“ kann man beide durch dieselbe Formel

”
aRb“ repräsentieren).
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Warum vermeidet man den Versuch einer direkten Definition
der logischen Form? Einen Aufschluss darüber könnten uns Rus-
sells Notizen zum Begriff der logischen Form von 1912, die erst
1992 veröffentlicht wurden ([Rus92]), geben. Russells Argumentati-
on basiert auf folgenden zwei Voraussetzungen. Erstens behauptet
er, dass die Logik sich mit der Form von Komplexen beschäftigt,
unter denen Russell Korrelate von Sätzen versteht und denen er
die Objektivität von Tatsachen zuspricht. Worauf Logik operiert,
oder eher was sie zum Ausdruck bringt, ist nichts Einzelnes. Das
führt dazu (oder äußert sich dadurch), dass Logik Variablen be-
nutzt. Hier diskutiert Russell zunächst die Möglichkeit, das, was wir
als eine Form bezeichnen könnten, zu definieren. Wenn ein Kom-
plex eine Form hat und wir danach fragen, was diese Form ist, kann
sie kein Bestandteil des Komplexes sein. Die Bestandteile des Kom-
plexes sind auf irgendeine Art zusammengefügt, und diese Art ist
die Form des Komplexes. Wäre die Form selbst ein Bestandteil des
Komplexes, dann müsste sie irgendwie auf die anderen Bestandtei-
le des Komplexes bezogen sein, und man müsste dann annehmen,
dass die Art und Weise dieses Beziehens die Form ist. Eine solche
Annahme führt aber zum Fortschreiten ins Unendliche. Eine an-
dere Möglichkeit, die Form eines Komplexes aufzufassen, die hier
für Russell in Frage kommt, ist die Möglichkeit, über zwei Komple-
xe zu behaupten, dass sie

”
dieselbe Form haben“. Russell schlägt

auch eine entsprechende Definition vor. Zwei Komplexe haben die-
selbe Form, wenn einer aus dem anderen durch Substitution von
neuen Termen für die in ihm vorkommenden gewonnen wird. Einen
Komplex kann man dann als einen logischen Komplex definieren,
wenn dieser für beliebige Substitutionen ein Komplex bleibt, d. h.,
der Komplex verliert nicht seine Einheitlichkeit, und seine Bezeich-
nung bleibt ein Satz. Die Logik ließe sich dann als eine Klasse von
logischen Komplexen definieren. Die Schwierigkeit bei dieser Auf-
fassung besteht darin, dass keine Substitution in einem Komplex
vorgenommen werden kann, wenn man den Komplex für ein von
dem Satz verschiedenes Objekt hält. Substituieren kann man nur
für Zeichen (nicht für das von einem Zeichen Bezeichnete), und was
man für ein Zeichen substituiert, kann nur ein Zeichen sein. Ein
anderer Nachteil einer solchen Auffassung der Form besteht dar-
in, dass sie von vornherein nichtexistierende Komplexe, wie z. B.
x 6= x, verbietet. In der logischen Theorie und ihren Anwendungen
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können aber solchen Komplexen entsprechende Formeln vorkom-
men, und sie werden sogar gebraucht, um beispielsweise die leere
Klasse zu definieren. Der Schluss, den Russell daraus zieht, ist, dass
man Komplexe nicht als Ausgangsdaten der Logik betrachten darf.
Wenn man von der Annahme ausgeht, dass die Formen selbst pri-
mitive Daten der Logik sind, dann kann man sie folgendermaßen
charakterisieren. Einer Form kann man (wie einer Funktion) Werte
zuordnen. Solche Werte sind Komplexe, welche die Form besitzen.
Abhängig davon, welche Werte eine Form hat, kann man sie als
eine notwendige oder eine mögliche Form definieren. Eine Form ist
notwendig, wenn sie für jede Kombination der Werte von Variablen
einen Wert hat, und möglich, wenn die Negation dieser Behauptung
nicht notwendig ist. Die Logik untersucht notwendige und mögliche
Formen. Eine Form ist nach dieser Auffassung etwas, aber sie ist
kein Bestandteil eines Komplexes, dessen Form sie ist. Eine Form ist
etwas, was sich von ihrem Zeichen unterscheidet. Eine Form kann
unmöglich sein, was bedeutet, dass solchen Ausdrücken wie

”
x 6= x“

eine Form entspricht. Russells Schlüsse lassen sich aber auch so be-
werten: Wenn der Ausdruck einer Form eine Kombination von Va-
riablen oder von Variablen und logischen Konstanten (z. B.

”
aRb“

oder
”
p ⊃ q“) ist, kann man durch Zuordnung bestimmter Werte

für die Variablen einen konstanten Ausdruck bekommen. Dieser ist
aber selbst keine Form, und seine Form lässt sich ohne Bezug auf
die besagte Kombination von Variablen (also eine Formel) gar nicht
ausdrücken. Formeln kann man aber unterteilen, indem man als
Unterteilungskriterium die Möglichkeit einer Interpretation dieser
Formel nimmt. Nach Russell gibt es drei Klassen von Formen (und
entsprechenden Formeln), die man mit Hilfe einer solchen Interpre-
tation bekommt: notwendige, mögliche und unmögliche. Geht man
von Russells Beispielen und von seiner Auffassung der Notwendig-
keit aus, die er mit der Eigenschaft einer propositionalen Funktion
identifiziert, wahre Propositionen als Werte für beliebige Werte der
Argumente der Funktion zu haben, dann können wir diese Klassen
sogar als Klassen von Tautologien, neutralen Formeln und Kontra-
diktionen betrachten. Das Fazit: erstens präzisiert man den Begriff
der logischen Form mit Hilfe des Wahrheitsbegriffs, zweitens spricht
man nicht über die Form als solche, die als etwas Bezeichnetes der
Formel gegenübersteht. Im zweiten Fall könnte man sonst behaup-
ten, dass die logische Form selbst der Sinn oder die Bedeutung einer
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logischen Formel ist. Eine solche Annahme führt zu Problemen, die
sich hier nur andeuten lassen. Man unterscheidet zwar zwischen der
Form und der Formel, aber sieht in der Formel die Vergegenständ-
lichung der Form, weil erst in der Gestalt einer Formel die Form
die Existenz erlangt, welche die Form auch zu analysieren erlaubt.

Es bleibt die Frage offen, wovon die logische Form die Form
ist. Denn ist sie die Form der Sätze, ist es fraglich, ob ihre logische
Form mit ihrer syntaktischen Form übereinstimmt. Wenn nicht, wie
Russell in seiner Theorie der Beschreibungen zeigt ([Rus05], [PM]),
steht derjenige, der sich mit dieser Frage befasst, vor der Aufga-
be, den Unterschied zu zeigen. Wie man die logische Form auffasst
und was man für Träger der logischen Form hält, bestimmt also
schließlich die Auffassung der Bedeutung von logischen Zeichen. Es
geht hier somit auch um die ontologischen Annahmen einer logi-
schen Theorie, z. B. darum, ob den logischen Funktoren irgendei-
ne Realität entspricht. Wenn sie keine synkategorematischen Aus-
drücke sind, was für Realität bezeichnet dann z. B. das Wort

”
nicht“

oder
”
oder“? Ist der Gebrauch dieser Wörter nur der Ausdruck ei-

nes mentalen Zustands des Sprechenden, der Ausdruck von seinem
Nicht-Glauben oder Zweifel, wie Russell meint? In einem solchen
Fall könnte man die logische Form als die Form der Beziehung an-
sehen, in die ein Denkender die Teile des gedachten Inhalts setzt.
Inwiefern ist dann die logische Form objektiv? Welche Beziehung
hat die logische Form zu dem gedachten Inhalt und was bestimmt ei-
ne solche Zusammensetzung der Inhalte? Ist es überhaupt möglich,
das Formale und das Inhaltliche immer auseinander zu halten? Und
welche Realität hat das Formale und das Inhaltliche in der Logik?
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Übungsaufgaben

3. Diese Aufgaben betreffen den programmatischen Aufsatz Freges

”
Über Sinn und Bedeutung“ (1892). Beantworten Sie bitte die

folgenden Fragen:

a) Was ist nach Frege der Grund für die Gleichsetzung von
zwei verschiedenen Zeichen (wenn man z. B. behauptet, dass
a = b)?

b) Geben Sie zwei Beispiele für eine solche Gleichsetzung.

c) Worin liegt die Verschiedenheit der Zeichen, die man als
gleichbedeutend betrachtet?

d) Wählen Sie eins der Zeichen, die Sie in der Teilaufgabe b)
einführen und bestimmen Sie seinen Sinn bzw. seine Bedeu-
tung.

e) Wie kann man die Beziehungen zwischen einem Zeichen der
natürlichen Sprache und seinem Sinn und Bedeutung be-
schreiben? Sind diese Beziehungen eineindeutig?

f) Wie unterscheiden sich der gewöhnliche und der
”
ungerade“

Gebrauch der Wörter?

g) Was unterscheidet den Sinn eines Zeichens von einer Vorstel-
lung? Charakterisieren Sie die Vorstellung und den Sinn.

h) Welche Redewendungen benutzt Frege, um den Unterschied
zwischen dem Sinn und der Bedeutung eines Zeichens und
zwischen ihren semantischen Rollen auszudrücken?

i) Warum ist der Gedanke nicht mit der Bedeutung des Satzes
identisch?

j) Welche Sätze haben nach Frege keine Bedeutung? Geben
Sie Freges Beispiel an und finden Sie zwei eigene Beispiele
solcher Sätze.

k) Wann interessiert man sich für die Bedeutung des Satzes?

l) Wie definiert Frege den Wahrheitswert eines Satzes?

m) Welche Bestandteile hat ein Gedanke und welche Bestand-
teile hat die Bedeutung des Satzes?
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n) Was ist Urteilen?

o) Was sind die Bedeutung und der Sinn eines Nebensatzes,
der die Aussage eines anderen wiedergibt? Was sind die Be-
deutung und der Sinn einer Beschreibung?
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1.3 Logische Theorie als eine formalisierte
Sprache

1.3.1 Syntax einer logischen formalisierten Sprache

Eine moderne logische Theorie wird normalerweise als eine forma-
lisierte Sprache aufgebaut. Das Ziel einer solchen Konstruktion be-
steht darin, dass man die logische Form des Schließens reproduzie-
ren und untersuchen kann. Eine formalisierte Sprache kann man
wie jede andere Sprache als eine Gesamtheit von Zeichen auffassen,
die man in bestimmte syntaktische Kategorien einteilen kann. Wir
unterscheiden folgende syntaktische Kategorien.

1. Konstanten (Namen, die eine bestimmte Bedeutung haben).
Man unterscheidet einfache oder primitive Konstanten (Eigen-
namen wie z. B.

”
Sokrates“) und zusammengesetzte Konstanten

(darunter auch Sätze).

2. Variablen. Diese haben keine bestimmte Bedeutung, sondern
deuten unbestimmt ein Element einer nichtleeren Menge ihrer
möglichen Werte an. Sie können durch Namen ersetzt werden.

3. Formen. Das sind Zeichenkombinationen, die man aus Sätzen
oder anderen zusammengesetzten Namen gewinnt, indem man
einige bezeichnende Ausdrücke in diesen durch Variablen er-
setzt. Eine Form ist keine Konstante, die einen bestimmten
Gegenstand bezeichnet. Sie ist eher mit mehreren konstanten
Ausdrücken verbunden. Der Wert, den die Form durch die Er-
setzung einer oder mehrerer in ihr vorkommenden Variablen
durch Konstanten bekommt, ändert sich in Abhängigkeit von
dem Wert, der der (oder den) entsprechenden Variablen zuge-
sprochen wird. Eine n-stellige Form enthält n freie Variablen.

4. Funktoren. Wir unterscheiden diese von Funktionen. Unter einer
Funktion verstehen wir eine Operation, die, auf etwas als Argu-
ment angewandt, diesem Argument ein Objekt zuordnet. Der
Definitionsbereich einer Funktion besteht aus Objekten, die als
Argumente der Funktion auftreten, und ist begrenzt. Der Wer-
tebereich einer Funktion besteht aus ihren Werten. Wahrheits-
wertige Funktionen werden von Frege in der

”
Begriffsschrift“,

sowie in den Aufsätzen
”
Funktion und Begriff“ (1891),

”
Über

Begriff und Gegenstand“ (1892),
”
Was ist eine Funktion“ (1904)
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eingeführt. Man spricht von einer n-stelligen Funktion, wenn n
die Anzahl ihrer Argumente ist. Einer n-stelligen Form kann
man in einer bestimmten Sprache eine n-stellige Funktion zu-
ordnen. Dass die Funktion etwas von dem Funktor Verschiede-
nes ist, erkennt man daran, dass eine Funktion sich immer mit
der entsprechenden Abbildungsvorschrift identifizieren lässt,
während das Zeichen für Funktion (Funktor) keine Vorschrift
ist, sondern ein Teil ihrer Beschreibung und einer Bezeichnungs-
konvention, die man in Bezug auf die Funktion treffen kann.

Konstanten, Variablen, Formen und Funktoren bezeichnet man auch
als eigentliche Symbole, denen man ein Bezeichnetes (ein bestimm-
tes Objekt oder eine Menge von Objekten) zuordnet. Unter den
uneigentlichen (oder synkategorematischen) Symbolen unterschei-
den wir folgende.

1. Klammern. Sie dienen als Interpunktionszeichen einer logischen
Sprache.

2. Konjunktionen. Eine Konjunktion ist eine Kombination von un-
eigentlichen Zeichen, die in Verbindung mit einer oder mehreren
Konstanten oder Formen eine neue Konstante oder Form ergibt.
Konstanten oder Formen, auf die eine Konjunktion angewandt
wird, nennt man Operanden. Ist die Anzahl der Operanden ei-
ner Konjunktion n, dann heißt diese Konjunktion n-stellig.

3. Operatoren (darunter auch Quantoren). Unter einem Operator
versteht man eine Kombination von uneigentlichen Symbolen,
die zusammen mit einer oder mehreren Variablen (Operator-
Variablen) und einem Operand (mehreren Operanden) eine neue
Konstante oder Form liefert. Operator-Variablen sind durch
Operatoren gebunden. Eine Variable hat in einem Ausdruck ein
freies Vorkommen, wenn sie keine Operator-Variable ist. Man
spricht über m-n-stellige Operatoren: sie werden auf m verschie-
dene Operator-Variablen und n Operanden angewandt. Solche
Quantoren wie Allquantor und Existenzquantor sind z. B. 1-1-
stellige (oder einfache) Operatoren.

Werden solche konstruktive Elemente des Aufbaus einer formali-
sierten logischen Sprache zusammen mit Konstruktionsregeln für
die Ausdrücke der Sprache ohne Interpretation eingeführt, gewinnt
man dadurch einen rein formalen Bestandteil der logischen Theorie
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(formale Sprache). Die Interpretation dieser Sprache wird mittels
einer Metasprache gegeben, wofür man am häufigsten eine natürli-
che Sprache benutzt, die allerdings formalisierbar ist.

Bei dem Aufbau einer formalen Sprache wird zunächst das Al-
phabet der Sprache eingeführt, unter dem man eine Menge von
unteilbaren primitiven Symbolen versteht, aus denen man beliebig
viele Ausdrücke der Sprache konstruieren kann. Ein Ausdruck der
Sprache ist eine endliche Folge solcher Symbole. Aus den Elementen
des Alphabets kann man zwei Arten von Ausdrücken konstruieren:
diejenigen, die als Formeln der Sprache (oder wohlgebildete Aus-
drücke der Sprache) anerkannt werden, und Zeichenfolgen, die keine
Formeln der Sprache sind. Die Kriterien zur Unterscheidung wohl-
gebildeter Ausdrücke der Sprache von denen, die als Ausdrücke der
Sprache gar nicht anerkannt werden, formuliert man in einer Defini-
tion, die auch als Konstruktionsregel der Sprache betrachten werden
kann. Einige der wohlgebildeten Ausdrücke der Sprache können als
Axiome (primitive Sätze) der Sprache eingeführt werden. Man gibt
ferner die (Deduktions-) Regeln an, nach denen man aus den schon
konstruierten Formeln der Sprache andere Formeln ableiten kann.
Einer solchen formalen Sprache wird eine semantische Interpretati-
on zugefügt, deren Regeln erstens festlegen, was und wie ein Aus-
druck der Sprache bezeichnet, und zweitens den primitiven Sätzen
der Sprache einen ausgezeichneten Wert als Bezeichnetes zuordnen.
Wir werden noch Gelegenheit haben, die Konstruktion einer logi-
schen Sprache sowie einige Prinzipien einer solchen Konstruktion
näher zu betrachten.

1.3.2 Frege über die Forderungen an Syntax und Seman-
tik einer formalisierten Sprache

Wir legten fest, welche syntaktische Kategorien eine formalisier-
te Sprache enthält, und deuteten an, wie man eine solche Sprache
konstruiert. Berechtigt ist nun die Frage, worin der Wert der For-
malisierung der Sprache besteht, die in der Logik vorgenommen
wird, und die jedes Mal in einer bestimmten logischen Theorie eine
konkrete Realisierung bekommt.

Frege stellte sich die Aufgabe, eine besondere Sprache zu kon-
struieren, die auch andere Funktionen als die normale Sprache er-
füllt. In diesem Zusammenhang formulierte er 1879 die Idee und
die Prinzipien der Konstruktion einer Begriffsschrift –

”
der For-
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melsprache des reinen Denkens“ ([BS]). Bei dem Versuch, zu ver-
stehen, zu welcher Art von Wahrheiten die arithmetischen Aussa-
gen gehören, entsteht der Bedarf an einer solchen Sprache. Stützen
sich arithmetische Aussagen bei ihrer Begründung auf rein logische
Sätze oder auf Erfahrung, und inwiefern kann man das arithmeti-
sche Wissen als eine Kette von logischen Schlüssen darstellen? Um
diese Fragen zu beantworten, braucht man eine Genauigkeit, über
die die alltägliche Sprache nicht verfügt. Die Begriffsschrift steht
zu der alltäglichen Sprache in einer ähnlichen Beziehung wie das
Mikroskop zum Auge. Die Kraft des Auges ist ungenügend, wenn
besonders scharfe Unterscheidung verlangt wird. Das Mikroskop ist
dafür gut geeignet, aber gerade aus diesem Grund taugt es nicht für
alles andere. Frege konstruiert die Begriffsschrift auf folgende Wei-
se. Er bestimmt zwei Arten der Zeichen, die die Ausdrücke dieser
Sprache bilden – Variablen und Konstanten. Verschiedenen Arten
von Variablen werden verschiedene Gegenstandsbereiche zugeord-
net. Einer Variablen kann man einen beliebigen Wert aus dem ent-
sprechenden Gegenstandsbereich zusprechen, wobei zwei gleichar-
tige Variablen denselben Wert annehmen können. Jedes konstante
Zeichen hat seine eigene Bedeutung. Diese Bedeutung wird für jedes
solches Zeichen speziell definiert.

Nehmen wir als Beispiel für das Zeichen mit einer bestimm-
ten Bedeutung die Bezeichnung des Urteils. Das Fällen eines Ur-
teils wird mit Hilfe des Zeichens

”
⊢“ bezeichnet. Den senkrechten

Strich
”
|“ nennt Frege

”
Urteilsstrich“. Der waagerechte Strich ist

der
”
Gedankenstrich“. Schreibt man

”
A“, bedeutet dieser Aus-

druck das Gedachtwerden eines Inhalts, eine bloße Zusammenset-
zung der (objektiven) Vorstellungen. Schreibt man

”
⊢A“, bedeutet

das das Fällen des Urteils, A wird hier behauptet.
”
A“ steht dabei

für den Inhalt, der eine Behauptung zulässt. Freges Bezeichnungs-
weise konnte sich nicht durchsetzen, obwohl sie einige Vorteile auf-
weist. Einer dieser Vorteile ist mit der Bezeichnung der logischen
Konjunktionen verbunden. Logische Konjunktionen bezeichnet Fre-
ge mit Hilfe von Kombinationen von verschiedenen Strichen, so
dass die meisten logischen Formeln nicht bloß in einer Zeile ste-
hen, sondern eine zweidimensionale Gestalt haben. Eine solche Be-
zeichnungsweise impliziert keine Fragen über die Bedeutung von
logischen Konstanten, da in dieser logischen Sprache die Konjunk-
tionen nicht als selbständige, von anderen Zeichen trennbare Ein-
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heiten auftreten. Ohne Variablen, die mit ihrer Hilfe auf bestimmte
Weise zueinander positioniert sind, sind sie nicht denkbar. Ein Bei-
spiel ist die Bezeichnung für die Formel p ⊃ q, die behauptet wird:

q

p

Frege formulierte Regeln des Schließens und stellte einige logi-
sche Sätze und Schlüsse in dieser Sprache dar. Die Sprache, die er
formulierte, ist nicht das Ergebnis einer Übertragung der mathe-
matischen Darstellungsmethoden auf die logische Sprache, obwohl
der Buchtitel das vermuten lässt. Die Begriffsschrift stellt allgemei-
ne Beziehungen zwischen Begriffen und Aussagen auf, die insofern
auch für mathematische Begriffe und Aussagen gelten, als diese ih-
rer Gattung nach Begriffe und Aussagen sind. Was Frege von der
Mathematik übernimmt, ist in erster Linie der Begriff der Funktion
und ihrer Argumente. Frege will die traditionellen logischen Begriffe
Subjekt und Prädikat durch diese Begriffe ersetzen.

In dem Buch Grundgesetze der Arithmetik, dessen erster Band
1893 erschien, betrachtet Frege die Forderungen an eine formalisier-
te Sprache, die an diese von einer wissenschaftlichen Untersuchung,
die sich einer solchen Sprache bedient, gestellt werden. Diese For-
derungen betreffen einerseits die syntaktischen und andererseits die
semantischen Charakteristika der Sprachzeichen.

Von der Syntax der formalisierten Sprache wird Folgendes ver-
langt.

1. Die erste der Forderungen ist mit der Idee der Ergänzungs-
bedürftigkeit des Begriffs verbunden, die Frege als

”
Ungesättigt-

sein“ des Begriffs bezeichnet. Ein Begriff ist bei Frege eine Funk-
tion. Wie mathematische Funktionen, die ihren Argumenten be-
stimmte Werte zuordnen, ordnet der Begriff seinen Argumen-
ten (Gegenständen) einen Wert zu, und zwar einen der zwei
Wahrheitswerte – das Wahre oder das Falsche. Als Beispiel be-
trachten wir den Begriff Mensch. Als einen Gegenstand nehmen
wir Sokrates. Sagen wir

”
Sokrates ist ein Mensch“, dann sagen

wir etwas Wahres aus oder behaupten einen wahren Gedanken.
Der Satz erweist sich als wahr, weil der Begriff Mensch dem Ge-
genstand Sokrates den Wahrheitswert das Wahre zuordnet. Der
Wert der Funktion Mensch (oder eher (etwas) ist ein Mensch)



37

kann für ein anderes Argument das Falsche sein. Jeden Begriff
unterscheidet von dem Gegenstand (seinem möglichen Argu-
ment) das Ungesättigtsein, der Umstand, dass der Begriff im-
mer einer Ergänzung bedarf. Dieses Ungesättigtsein ist die ein-
zige Quelle der Bildung der komplexen Inhalte und Bedeutun-
gen. Gäbe es dieses Ungesättigtsein nicht, könnten Teile eines
Gedankens nicht aneinander haften. Der Begriff wird norma-
lerweise in Bezug auf seine Argumente, die ersetzbar sind, als
unersetzbar gedacht ([BS], 15). Diesem Konzept folgend wird
verlangt, dass auch die Zeichen für Funktionen nicht allein er-
scheinen dürfen. Ihre Argumentstellen müssen immer ausgefüllt
sein. In der Begriffsschrift erfüllen diese Funktion Buchstaben
oder Variablen, die einen Gegenstand aus dem Gegenstandsbe-
reich andeuten. In der gesprochenen Sprache gebraucht man zu
diesem Zweck unbestimmt andeutende Pronomen, z. B.

”
etwas“.

2. In der wissenschaftlichen Sprache braucht man unbestimmt an-
deutende Wörter oder Variablen (Frege nennt sie Buchstaben),
um Sprachausdrücken Allgemeinheit zu verleihen. Allgemein-
heit ist eine notwendige Eigenschaft des Gesetzes ([NS],

”
Lo-

gische Allgemeinheit“, 278). Ein Gesetz ist nur dann wertvoll,
wenn es viele Einzeltatsachen umfasst. Diese Allgemeinheit
bringt man am besten zum Ausdruck, indem man Variablen und
eine hypothetische Form des Urteils verwendet. Frege schlägt
in einem seiner späteren Manuskripte

”
Logische Allgemeinheit“

eine Unterscheidung vor, die der Unterscheidung von Sprache
und Metasprache nahe steht. Diese Unterscheidung betrifft die
Struktur einer wissenschaftlichen Sprache. Die Sprache, die so-
wohl Wörter als auch Buchstaben enthält, und in der man Ge-
setze formuliert, nennt Frege die

”
Hilfssprache“. Die übliche

Sprache nennt Frege
”
Darlegungssprache“ ([NS], 280–281). Die

Sätze der Hilfssprache sind Gegenstände, von denen in der Dar-
legungssprache die Rede sein soll. Das Wesen der Hilfssprache
liegt darin, dass in ihr die gleichgestalteten Eigennamen oder
Buchstaben innerhalb eines Satzes denselben Gegenstand be-
zeichnen. Sagt man z. B.

”
Wenn Napoleon ein Mensch ist, ist

Napoleon sterblich“, oder
”
Wenn a ein Mensch ist, ist a sterb-

lich“, bezeichnet man durch
”
Napoleon“ oder im anderen Fall

durch
”
a“ ein und dieselbe Person. Die Hilfssprache hat also Ei-

genschaften der formalisierten Sprache, über die wir sprechen.
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Hinter den Forderungen Freges an die Semantik der formalisier-
ten Sprache steht folgende Idee. Das Zeichen ist das, schreibt Frege,
was

”
uns dazu dient, irgendetwas zu bezeichnen, auszudrücken oder

zu behaupten. Dabei wollen wir nicht von dem Zeichen etwas sagen,
wenn wir es gebrauchen, sondern seine Bedeutung ist uns in der Re-
gel die Hauptsache“. Das Zeichen ist

”
nur ein willkürlich gewähltes

Mittel des Gedankenausdrucks, das ganz außerhalb der Betrach-
tung bleibt. In dieser Stellvertretung liegt der Nutzen der Zeichen“
([GGA], 105). Die Forderungen an die semantische Interpretation
der in der Wissenschaft gebrauchten Zeichen sind folgende:

1. Die Zeichen müssen eine Bedeutung haben. Insbesondere, sind
Eigennamen, die keinen Gegenstand bezeichnen, unzulässig, so-
wie Sätze, die man weder als wahr noch als falsch bewerten
kann. Solche Sätze können zwar Gegenstand einer wissenschaft-
lichen Untersuchung sein, dürfen aber nicht als diejenigen Sätze
zugelassen werden, mit deren Hilfe diese Untersuchung sich voll-
zieht ([GGA], 76–77).

2. Jedes konstante Zeichen muss vollständig erklärt werden, d. h.,
jedes solche Zeichen muss eine Bedeutung erhalten.

3. Buchstaben oder Variablen bekommen einen fest begrenzten
Gegenstandsbereich zugeordnet, wobei einer der Gegenstände
aus diesem Bereich von Variablen angedeutet werden kann
([GGA], 78).

4. Die Erklärung des Zeichens darf nicht durch die Erklärung eines
komplexen Ausdrucks erfolgen, in dem das Zeichen vorkommt,
da in verschiedenen Kontexten das Zeichen unterschiedliche Be-
deutung haben kann. Dieses Prinzip nennt Frege der

”
Grund-

satz der Einfachheit des erklärten Ausdrucks“ ([GGA], 79). Das
Prinzip garantiert, dass in unterschiedlichen Fällen in verschie-
denen Ausdrücken das Zeichen dieselbe Bedeutung hat. Dabei
ist das Zeichen nicht einfach, wenn die Bedeutung des Ganzen
aus den Bedeutungen der Teile folgt, und wenn diese Teile in an-
deren Verbindungen als selbständige Zeichen mit eigener Bedeu-
tung behandelt werden. Um diese Forderung zu verdeutlichen,
nehmen wir den Satz

”
Mensch ist ein Lebewesen“. Hier bedeu-

tet das Wort
”
Mensch“ einen besonderen Gegenstand, nämlich

den Umfang des Begriffs Mensch. Sagt man dagegen,
”
Sokra-
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tes ist Mensch“, bedeutet hier
”
Mensch“ den Begriff selbst. In

diesem Fall wird Mensch nicht als etwas selbständiges (z. B. als
alle Menschen) gedacht, wie im ersten Fall, wo die Klasse aller
Menschen in eine Beziehung zu einer anderen Klasse gebracht
wird. Hier geht es um Menschsein, also darum, ob der Gegen-
stand Sokrates die Merkmale besitzt, die man im Begriff Mensch
vereinigt.

5. Ein anderer Grundsatz der Bezeichnung: verschiedene Dinge
bekommen verschiedene Zeichen. Also ist Mehrdeutigkeit der
Zeichen, wie man sie in der normalen Sprache vorfindet, in der
Begriffsschrift (in der formalisierten wissenschaftlichen Sprache)
unzulässig ([GGA], 138).

6. Als eine besondere Forderung kann man auch die Ersetzbar-
keit der Zeichen formulieren. Die Zeichen können nach einer
bestimmten Regel oder Definition einander ersetzen ([GGA],
111–112). Die Ersetzung eines Zeichens durch ein anderes kann
einen Fortschritt der Erkenntnis bedeuten, wenn man feststellt,
dass die Zeichen, die verschiedenen Sinn haben, wie z. B.

”
der

Abendstern“ und
”
der Morgenstern“, die gleiche Bedeutung be-

sitzen, in unserem Fall denselben Himmelskörper bezeichnen.

Aus allen diesen Forderungen können wir schließen, was noch nach
Frege eine formalisierte Sprache charakterisiert. Eines ihrer allge-
meinen Charakteristika ist die Rolle, die Frege dieser Sprache zu-
schreibt. Diese Rolle besteht in der Aufdeckung der Zusammenhän-
ge der (gedachten) Inhalte. Die formalisierte Sprache ist somit ein
Instrument, das von der Wissenschaft benutzt wird, um das Wissen
von Wahrheiten zu erreichen.

1.3.3 Funktionen formalisierter logischer Sprachen

Logische Sprachen werden entwickelt, um besondere Aufgaben zu
erfüllen. Es fragt sich also, welche Funktionen eine formalisierte
Sprache erfüllt, insbesondere eine formalisierte logische Sprache.

1. Die erste (aber nicht unbedingt die wichtigste) hier zu erwähnen-
de Funktion der formalisierten logischen Sprache besteht in der
Verkürzung der Formulierung von Schlussregeln und Schlüssen,
sowie in der Vereinfachung deren Verständnisses. Dies ist aber
nicht ihre einzige Funktion, wie man annehmen könnte, wenn
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man dächte, dass formalisierte Sprachen nur durch Ersetzen
normaler Wörter und Ausdrücke durch Buchstaben und For-
meln entstehen.

2. Die zweite Funktion besteht in der Repräsentation der logischen
Ableitung. Das Ziel, das die Logik mit der Entwicklung einer
formalisierten Sprache verfolgt, ist nicht das bloße Ersetzen der
Symbole einer Art durch die anderen, sondern die Reproduktion
der logischen Deduktion, der Ableitung einer Aussage aus den
anderen. Die Bedeutung logischer Zeichen ist deswegen nicht
mit der Bedeutung einzelner Ausdrücke der normalen Sprache
(einzelner Wörter oder Sätze) identisch. Was die logische Spra-
che repräsentiert, sind logische (nicht syntaktische!) Struktu-
ren und Zusammenhänge. Wenn man die Ausdrücke der nor-
malen Sprache für Träger von logischen Strukturen und For-
men hält, repräsentieren die logischen Zeichen Eigenschaften
von Ausdrücken der normalen Sprache, die es erlauben, Worte
und Sätze unterschiedlichen Inhalts miteinander zu vergleichen
und gegebenenfalls zu identifizieren. Sonst müsste man jeder
syntaktischen Einheit der normalen Sprache ein logisches Zei-
chen zuordnen, was die logische Sprache zu einem Stenogramm
der Ausdrücke der normalen Sprache machen würde. Die logi-
sche Sprache wird dadurch unnötig erweitert und ihre Syntax
kann mit der Syntax der normalen Sprache gleichgesetzt wer-
den. Um das zu vermeiden, wird die Semantik und die Syntax
der formalisierten logischen Sprache durch besondere, von den
syntaktischen verschiedene Definitionen und Regeln eingeführt.
Das eröffnet die Möglichkeit, außer eindeutiger Definition von
Symbolen und exakter Formulierung der syntaktischen Regeln,
das eigentümlich Logische der Theorie hervorzuheben.

3. Die dritte Funktion einer formalisierten logischen Sprache be-
steht in der Konstruktion neuer Arten von Schlüssen, welche die
Analyse der Umgangssprache nicht liefert. Durch die Untersu-
chung der Zusammenhänge von Zeichen, denen auf Grund von
bestimmten Konventionen eine Bedeutung (ein Wahrheitswert)
zugesprochen wird, wird eine Interpretation für einen beliebigen
Inhalt der wohlgebildeten Zeichenfolgen der Sprache ermöglicht,
die (für jeden Wert ihrer Bestandteile) einen ausgezeichneten
Wert als ihre Bedeutung haben.
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4. Eine weitere Funktion der formalisierten Sprache besteht dar-
in, dass sie eine kontextuelle Definition von Objekten erlaubt,
die nicht als primitive Objekte einer Theorie eingeführt wer-
den. Deswegen hatte die Entwicklung der formalisierten Spra-
che einen besonderen Wert für solche Theorien wie den Logizis-
mus, die als eins ihrer Ziele die Beseitigung der Widersprüche
erklärten, die im Zusammenhang mit der Untersuchung der für
die Begründung der Mathematik wesentlichen Begriffe entstan-
den. Die Möglichkeit einer kontextuellen Definition entbindet
einen von der Notwendigkeit, die Existenz solcher Objekte wie
Klassen anzunehmen. Kontextuelle Definitionen erlauben es,
Zeichen für solche Objekte als Abkürzungen für komplexe Zei-
chenkombinationen einzuführen, welche ihrerseits keine proble-
matischen Schlüsse in Bezug auf die besagten Objekte implizie-
ren. Wenn ein Objekt durch eine solche Definition eingeführt
wird, wird eine semantische Interpretation des Kontextes, in
dem die Bezeichnung des Objekts vorkommt, gegeben. Als Bei-
spiel einer solchen kontextuellen Definition betrachten wir eine
Anwendung von Russells Theorie der Beschreibungen (

”
theory

of descriptions“), deren Grundideen 1905 in dem Aufsatz
”
On

Denoting“ formuliert wurden und die in Principia Mathematica
(1910-1913) ausführlich dargelegt wurde. Eine der Fragen, die
Russell zu der Formulierung der Theorie bewogen hat, war die
Frage, ob jedes Zeichen etwas bezeichnet, und unter welchen Be-
dingungen es überhaupt ein Bezeichnendes ist (eine Bedeutung
hat). Betrachten wir den Satz

”
Der jetzige König von Frank-

reich ist kahlköpfig“. Wir verstehen diesen Satz, obwohl das,
was durch die Phrase

”
der jetzige König von Frankreich“ be-

zeichnet wird, nicht existiert. Man kann diesen Satz als einen
komplexen Satz betrachten, als Behauptung, dass, wenn jemand
der jetzige König von Frankreich ist, er dann auch kahlköpfig
ist. Diese Darstellung des gegebenen Satzes macht ihn zu einem
wahren Satz, denn die Implikationsaussage ist auch dann wahr,
wenn das Antezedens der Aussage falsch ist. In dem gegebenen
Fall ist das Antezedens der Aussage falsch, weil es die Person,
deren Existenz man in dem Satz behauptet und der man die Ei-
genschaft kahlköpfig zu sein zuspricht, nicht gibt. Der gesunde
Menschenverstand ist sicherlich nicht bereit, das zu akzeptieren.
Zugleich kann man über den gegenwärtigen König von Frank-
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reich behaupten, dass er keine Glatze hat. Die eben vorgeschla-
gene Auffassung der Struktur des ersten behauptenden Satzes
macht auch den verneinenden zu einem wahren Satz, wenn die
Kahlköpfigkeit (nicht die Existenz) verneint wird. Spricht man
solchen Objekten wie dem gegenwärtigen König von Frankreich
Eigenschaften zu, führt dies zu Widersprüchen ([Rus05], 48).
Betrachten wir nun den Satz

”
Den jetzigen König von Frank-

reich gibt es nicht“, dessen Wahrheit für gewöhnlich nicht in
Frage gestellt wird. Wenn wir sagen, dass der Satz wahr ist,
bedeutet der Satz, dass es ein Objekt, das

”
der jetzige König

von Frankreich“ heißt, nicht gibt. Indem wir dieses Objekt be-
nennen und denken, nehmen wir also an, dass dieses Objekt
ein Sein hat, um dieses Sein negieren zu können ([PM], 69).
Russell sieht nur einen Ausweg aus dieser widersprüchlichen
Situation. Man muss anerkennen, dass nicht jedes Zeichen ei-
ne Bedeutung in Isolation hat. Es gibt Zeichen (oder Zeichen-
kombinationen), die eine Bedeutung erst im Kontext erhalten.
Russell behauptet, dass uns bei der Analyse derartiger Sätze
die grammatische Form des Satzes irreführt. Während in der
alltäglichen Sprache damit so gut wie keine Probleme verbun-
den sind, verlangt die wissenschaftliche Sprache eine Präzision,
die nur die logische und nicht die syntaktische Analyse geben
kann. Russell schlägt vor, derartige Sätze so umzuformulieren,
dass ihre logische Struktur keine offenen Fragen lässt, die den
Wahrheitswert des Satzes betreffen. Den ersten Satz kann man
laut Russellscher Theorie so formulieren:

”
Es gibt ein Objekt

c, so dass x der jetzige König von Frankreich dann und nur
dann ist, wenn x c ist und c kahlköpfig ist“. Man schreibt:

”
(∃c) : ϕx . ≡x . x = c : ψc“ oder

”
ψ{( x)(ϕx)}“. Den zwei-

ten Satz kann man so umformulieren:
”
Falsch ist, dass es ein

Objekt c gibt, so dass x der jetzige König von Frankreich dann
und nur dann ist, wenn x c ist“. In der Sprache von Princi-
pia:

”
∼{(∃c) : ϕx . ≡x . x = c}“ oder

”
∼E!( x)(ϕx)“. Man

sieht, dass sich nach dieser Umformulierung der erste Satz als
ein falscher Satz erweist, und der zweite – als ein wahrer, ohne
dass dabei irgendwelche Widersprüche entstehen. Die Theorie
definiert einen der Mechanismen, mit deren Hilfe man durch
die Umformulierung eines Satzes seine semantische Interpre-
tation erreicht. Das Zeichen

”
( x)(ϕx)“, das

”
das x, das ϕx
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erfüllt“ bedeutet, ist nach Russell ein unvollständiges Symbol,
also ein Symbol, das keine selbständige Bedeutung in Isolation
hat. Die Theorie der Beschreibungen, die sich mit solchen Sym-
bolen beschäftigt, liefert eine Methode zur Umformulierung von
Sätzen, die unvollständige Symbole enthalten. Obwohl man oft
die Problematik, die zur Formulierung dieser Theorie führte, für
überholt erklärt, findet die Theorie der Beschreibungen immer
neue Anwendungen in der Wissenschaft.

5. Eine weitere Funktion der formalisierten Sprache ist die Un-
tersuchung kognitiver Verfahren und die Klärung der ontolo-
gischen Annahmen, die mit diesen Verfahren verbunden sind.
Eine präzise Formulierung der Syntax und Semantik schafft ei-
ne idealisierte Rekonstruktion der Erkenntnis, und setzt voraus
oder impliziert eine Gliederung des Erkennbaren.

1.3.4 Allgemeine Charakteristika der Entwicklung der
Logik

Die Idee der Konstruktion einer formalisierten logischen Sprache
kann man als das Produkt der Entwicklung der Logik ansehen.
Diese Entwicklung lässt sich ihrerseits als Prozess der Erweite-
rung der Liste von standardisierten logischen Strukturen auffassen
([Smir96]).

Eine Standardisierung von logischen Strukturen erfüllt folgende
zwei Funktionen. Sie kennzeichnet in erster Linie die Erweiterung
des Anwendungsgebiets des diskursiven Denkens, für welches die
Logik die Gesetze und Regeln aufstellt. Außerdem ist die Stan-
dardisierung der Form der Sprachausdrücke, auf die man logische
Gesetze anwendet, der erste Schritt zur Darstellung einer logischen
Theorie als einer formalisierten Sprache. Die formalisierte Sprache,
die als eine Form der Darbietung der logischen Theorie auftritt,
weist sowohl einige allgemeine Aspekte jeder Sprache auf, als auch
spezifische Merkmale, die von einigen Eigenschaften der normalen
Sprache abzusehen erlauben. Besonderheiten dieser Sprache kann
man so beschreiben:

1. Es ist eine Sprache, die nicht zum Zweck der Kommunikation
gebildet wird.
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2. Sie ist eine Realisierung der Idee, Gegenstände mit vorgege-
benen Eigenschaften (insbesondere mit einem ausgezeichneten
Wahrheitswert, wie wahr) zu konstruieren.

3. Die Ausdrücke dieser Sprache sind sprachliche Korrelate solcher
zu konstruierenden Gegenstände und können selbst als Objekte
aufgefasst werden.

4. Die syntaktischen Regeln dieser Sprache bestimmen, wie die
Ausdrücke der Sprache in Zusammenhang zueinander gebracht
werden: die Ausdrücke der Sprache (Objekte der logischen Un-
tersuchung) sind vollkommen durch die schon definierten Ge-
genstände und Regeln der Sprache bestimmt.

Wenn das Wissen in einer standardisierten Form präsentiert wird,
verfolgt eine solche Präsentation verschiedene Ziele. Man sucht nach
Formen, die eine Information klarer machen, oder diese Informati-
on anderen Personen verdeutlichen, oder sie zu speichern erlauben.
Die Bedeutung der standardisierten Form für die Logik liegt in der
Möglichkeit, Zusammenhänge zwischen Spracheinheiten, in denen
das Wissen präsentiert wird, auf einheitliche Weise zu beschreiben.
Die Formulierung der Sätze, die über schon erzielte Kenntnisse be-
richten, muss garantieren, dass man allein aufgrund der Form der
Aussagen einen Schluss bekommen kann. Darum endet der Prozess
der Standardisierung der Sprachausdrücke in der Logik nicht nur
mit einer bestimmten Umformung der Sätze der normalen Sprache
nach einem vorgegebenen Typ. Man geht noch einen Schritt weiter
und ersetzt einige Sprachausdrücke durch Variablen.

Die Standardisierung eines Teils der normalen Sprache ist eine
unerlässliche Voraussetzung jeder Wissenschaft. Sie ist notwendig,
und diese Notwendigkeit wird in erster Linie durch die Form der
Existenz des wissenschaftlichen Wissens bestimmt. Die theoreti-
schen Sätze sind von jeglichem persönlichen Bezug befreit. Ihr In-
halt ist allgemein zugänglich und für jeden gültig. In theoretischen
Sätzen geht es um Tatsachen und Relationen zwischen Objekten
oder Gruppen von Objekten.

Die Vorteile der Standardisierung sind, dass die standardisierte
Beschreibung einer Tatsache oder eines Zusammenhangs erlaubt,
von den theoretisch unwesentlichen Faktoren abzusehen. Dadurch
bekommt man die Möglichkeit, die schon ausgearbeiteten Metho-
den der Problemstellung und Problemlösung anzuwenden. Wenn
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man einen theoretischen Satz beweisen will, bringt man für gewöhn-
lich die Ausgangsdaten und Voraussetzungen in eine standardisierte
Form. Jeder, der einen mathematischen Satz jemals bewies, weiß,
dass das der sicherste Weg ist, einen begründeten Schluss zu bekom-
men. Das Bewusstwerden der Notwendigkeit einer solchen Standar-
disierung kann man als den Ausgangspunkt der Entwicklung der
Logik betrachten.

Aristoteles gilt zweifellos als der erster Logiker, der der Logik
die Gestalt einer Theorie verliehen hat. Auf ihn geht es auch zurück,
Aussagen, die man als Prämissen eines Schlusses benutzt, in einer
Standardform zu formulieren. Diese Form ist die Form einer kate-
gorischen Aussage. Eine kategorische Aussage ist eine Aussage, die
einfach ist in dem Sinn, dass sie keine weiteren Aussagen als ihre
Teile enthält. Sie ist die Aussage über einen Gegenstand und seine
Eigenschaft, die als eine in dem Gegenstand selbst gefundene Ei-
genschaft gedacht wird. Die Wahrheitsbedingungen einer einfachen
kategorischen Aussage sind deswegen durch keine weiteren Aussa-
gen eingeschränkt, die als Teilaussagen möglicherweise implizit in
der gegebenen Aussage enthalten sind. Die Elemente der logischen
Struktur einer kategorischen Aussage sind Subjekt, Prädikat und
Kopula. Ein Beispiel einer kategorischen Aussage ist

”
Alle Athener

sind Griechen“. Wird eine Aussage in die Form einer kategorischen
Aussage gebracht, dann kann man das Subjekt und Prädikat durch
Variablen ersetzen. Diese Ersetzung ist dadurch gerechtfertigt, dass
die Formen der Schlüsse für Aussagen beliebigen Inhalts definiert
werden. Welche Begriffe die Materie der einfachen kategorischen
Aussage ausmachen, ist für die Form des Schlusses, für den die ge-
gebene Aussage als eine Prämisse dient, ohne Belang, sofern die
Prämissen des Schlusses wahr sind. Von Bedeutung für die Form
des Schlusses sind die Qualität der Relation zwischen Subjekt und
Prädikat und das quantitative Charakteristikum des Subjekts.

Die erste Erweiterung der Anzahl der standardisierten logischen
Formen verbindet man mit der megarisch-stoischen Schule. Ihre
Repräsentanten haben die Idee der Standardisierung der logischen
Struktur komplexer Sätze entwickelt. Der Gebrauch solcher Struk-
turen im diskursiven Denken setzt voraus, dass die Teilsätze kom-
plexer Sätze durch logische Konjunktionen (Funktoren) verbunden
werden, und dass die Materie der Aussagen, für die die Teilsätze
stehen, nur insofern von Bedeutung für den Wahrheitswert des kom-
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plexen Satzes ist, als diese Materie den Wahrheitswert der Teilsätze
bestimmt. Die Frage, die einen in Bezug auf die Teilsätze eines kom-
plexen Satzes interessiert, ist also die Frage nach dem Wahrheits-
wert der fraglichen Aussagen. Bringt man einen komplexen Satz
in eine solche standardisierte Form, kann man die ganzen Teilsätze
durch Variablen repräsentieren, und nicht nur die Satzteile wie bei
der kategorischen Aussage. Der Wertebereich von Variablen wird
also erweitert: Aussagen werden als Teil des Wertebereichs der lo-
gischen Variablen eingeführt.

Die weitere Erweiterung der Anzahl der standardisierten logi-
schen Strukturen ist mit den Begriffen des Quantors und der Re-
lation verbunden. Obwohl einige diesbezügliche Ideen schon aus
der Antike stammen, werden diese Begriffe erst im 19. Jahrhundert
eingeführt. Einer von denen, nämlich der Begriff des Quantors, ist
mit dem Namen Freges verbunden, und der der Relation – mit
denen von de Morgan, Peirce und Schröder. Die Relationentheo-
rie ermöglicht die Darstellung der Struktur einer Relationsaussage
durch geordnete n-Tupel von Elementen einer Menge, auf der die
Relation definiert ist, wobei n die Anzahl der Stellen einer Rela-
tion ist. Die Anerkennung von Relationen als Mittel der Darstel-
lung der logischen Struktur von Aussagen, die man auch bei Fre-
ge und Russell findet, bewirkt in erster Linie die Verallgemeine-
rung des Prädikatsbegriffs. In Verbindung mit Freges Thesen über
die funktionale Natur des Prädikats und darüber, dass die Quan-
tität der Aussage kein Charakteristikum des Subjekts dieser Aus-
sage ist, führt sie dazu, dass die Unterscheidung zwischen den bei
Aristoteles gleichgestellten Subjekt und Prädikat (die man beide
als Begriffe charakterisieren kann) nun durch die Unterscheidung
zwischen Argumenten einer Funktion und Funktion selbst ersetzt
wird. Somit wird der Wertebereich von logischen Variablen weiter
geteilt. Man unterscheidet nun nicht nur zwischen Term-Variablen
und Aussagenvariablen, sondern innerhalb von Term-Variablen zwi-
schen Individuen- (Gegenstands-) Variablen und Prädikatenvaria-
blen, die n-stellig sein können. Diese Unterscheidung führte zu der
Erweiterung des Anwendungsgebiets der Logik und insbesondere
dazu, dass die logische Theorie zur Begründung der Mathematik
herangezogen wurde.

Die Einführung von Quantoren kann man als ein weiteres Er-
gebnis der Idee betrachten, dass sich die Struktur einer Aussage
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mit Hilfe des Begriffs einer Funktion auffassen lässt. Während in
der klassischen Logik der Gebrauch der Termini

”
alle“ und

”
einige“

die Qualität der Aussagen charakterisiert, werden diese Wörter nun
als Zeichen für Operationen auf Aussagen angewandt. Wenn man
eine Aussage in eine Funktion und ihr Argument (oder Argumente)
zerlegt, kann man Aussagen, deren Bezeichnungen solche Operato-
ren enthalten, als Funktionen von Funktionen beschreiben. Versteht
man dabei den Begriff, der in der Aussage einem Subjekt prädiziert
wird, als eine Funktion, ist das, was die Quantoren bezeichnen, eine
Eigenschaft dieser Funktion. Allgemeinheit ist somit keine Eigen-
schaft einer Aussage, sondern eine Eigenschaft einer Funktion. Das
gilt auch für den Begriff der Existenz. Frege, dem die Einführung
von Quantoren zugeschrieben wird, behauptet, dass Existenz einem
Gegenstand nicht prädiziert werden kann. Nach Freges Überzeu-
gung ist im Satz

”
Es gibt Menschen“ nicht von Individuen, wie es

scheinen mag, sondern von dem Begriff Mensch selbst die Rede.
Frege formuliert den Satz auf folgende Weise um:

”
Einige lebende

Wesen sind vernünftig“ ([NS],
”
Dialog mit Pünjer über Existenz“,

70). Dieser Umformulierung legt Frege eine bestimmte Definition
des Menschen zugrunde. Er zerlegt den Begriff Mensch in zwei an-
dere Begriffe – Lebewesen und vernünftig zu sein. Was behauptet
nun dieser neu gewonnene Satz? Er behauptet, dass zwei Begrif-
fe in einer bestimmten Relation zueinander stehen. Diese Relation
kann man als Relation zwischen Umfängen dieser Begriffe auffas-
sen, und sagen, dass der Umfang eines Begriffs mit zumindest ei-
nem Teil des Umfangs des anderen zusammenfällt. Wäre Existenz
ein Begriff, dann wäre dieser Begriff vollkommen ohne Inhalt, da
er nichts abgrenzen könnte. Er hätte zwar den größten Umfang
unter den Begriffen, wäre aber eine widersprüchliche Entität. Den
Inhalt der Begriffe bilden Merkmale der Gegenstände, die unter
diesen Begriff fallen. Um den Inhalt eines Begriffs zu bestimmen,
müssen die Gegenstände, die unter den Begriff fallen, sich von den-
jenigen, denen dieser Begriff nicht zukommt, durch solche Merkmale
unterscheiden. Existenz kommt aber, nach Freges Meinung, jedem
Gegenstand zu, also kann man durch Existenz keine Gegenstände
voneinander unterscheiden. Also hat der Begriff der Existenz kei-
nen Inhalt, den er aber haben müsste, wenn er ein Begriff wäre.
Folglich ist Existenz kein Begriff, und folglich kein Merkmal, das
im Inhalt eines anderen Begriffs auftreten kann. Frege bezeichnet
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Existenz als eine Eigenschaft eines Begriffs ([NS], 74). Vermutlich
ist es die Eigenschaft eines Begriffs, einen nicht-leeren Umfang zu
haben.
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Übungsaufgaben

4. Betrachten Sie eine Sprache S, deren Ausdrücke in drei syn-
taktische Kategorien eingeteilt sind – Namen (bezeichnet durch

”
n“), die ein Objekt nennen, Sätze (bezeichnet durch

”
s“), die

eine Behauptung ausdrücken, und Funktoren, die einem Aus-
druck oder mehreren Ausdrücken neue Ausdrücke zuordnen, in
denen der gegebene Ausdruck (oder Ausdrücke) als einer der
Bestandteile vorkommt. Die Ausdrücke, aus denen mit Hilfe ei-
nes Funktors ein neuer Ausdruck gebildet wird, bezeichnet man
als Argumente dieses Funktors, und den Ausdruck, der gebildet
wird, als seinen Wert. Funktoren kann man nach der Anzahl ih-
rer Argumente klassifizieren. Ordnet ein Funktor m Argumen-
ten X1, . . . , Xm einen Ausdruck Y zu, dann bezeichnet man den
Funktor durch die Zeichenfolge FmX1 . . .XmY . Die Funktoren
unterteilt man nach der Art ihrer Argumente und Werte in 4
Kategorien:

a) Funktoren, die Namen als Argumente und Namen als Werte
haben. Sie heißen Operatoren. Ein Beispiel: der Funktor in
dem Ausdruck

”
der Verfasser des Tractatus“ gehört zu der

Kategorie der Funktoren F1nn.

b) Funktoren, die Namen als Argumente und Sätze als Werte
haben. Sie heißen Prädikatoren. Ein Beispiel: der Funktor in
dem Satz

”
Sokrates ist ein Mensch“ gehört zu der Kategorie

der Funktoren F1ns.

c) Funktoren, die Sätze als Argumente und Sätze als Werte
haben – Konnektoren. Der Funktor in dem Satz

”
Wenn So-

krates ein Mensch ist, dann ist er sterblich“ gehört zu der
Kategorie der Funktoren F2sss.

d) Funktoren, die Sätze als Argumente und Namen als Werte
haben. Der Funktor in dem Ausdruck

”
Der Philosoph, der

Tractatus schrieb“ gehört zu der Kategorie der Funktoren
F1sn.

I. Bestimmen Sie, zu welcher syntaktischen Kategorie die un-
terstrichenen Ausdrücke gehören.
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i.
”
Wittgenstein ist der Verfasser des Tractatus“

ii.
”
Es ist notwendig, dass 9 > 7 “

iii.
”
Es regnet oder es regnet nicht“

iv.
”
Wittgenstein ist der Verfasser des Tractatus“

v.
”
Der die elliptische Gestalt der Planetenbahnen ent-
deckte, starb im Elend“

vi.
”
Wittgenstein ist der Verfasser des Tractatus“

II. Bezeichnen Sie diese Ausdrücke durch das entsprechende
Symbol (

”
n“,

”
s“ oder die Bezeichnung eines Funktors).

5. Das Alphabet A einer Sprache besteht aus einem Element,
A = {1}. Einen Ausdruck dieser Sprache definiert man fol-
gendermaßen. (i) 1 ist ein Ausdruck der Sprache; (ii) ist a ein
Ausdruck der Sprache, dann ist (a1) ein Ausdruck der Sprache
(ein Ausdruck der Sprache wird also aus einem anderen Aus-
druck dadurch gebildet, dass man 1 rechts von a schreibt oder
mit anderen Worten 1 auf a anwendet); (iii) nichts anderes ist
ein Ausdruck der Sprache. Der Ausdruck

”
1“ bezeichnet sei-

nerseits das Objekt | . Jeder Ausdruck der Sprache bezeichnet
auch ein Objekt, das jedes Mal die Kombination einer endlichen
Anzahl der Striche ist, so ist z. B. der Ausdruck

”
((11)1)“ ein

Name des Objekts | | |. Die inneren Klammern, die die Kon-
struktionsweise des Ausdrucks wiedergeben, können ausgelas-
sen werden (der Name

”
((11)1)“ hat in einem solchen Fall die

Gestalt
”
(111)“). Bestimmen Sie, welche der Ausdrücke a)-c)

und welche der Ausdrücke der Gestalt d)-e) (wobei a für einen
Ausdruck der Sprache steht) korrekt (der gegebenen Definiti-
on entsprechend) gebildet wurden, und welche Objekte diesen
Ausdrücken entsprechen.

a) (1(111))

b) (11)

c) ((11)(111))

d) ((111a1)1)

e) ((a1)1)
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2 Traditionelle formal-logische Theorie

der Aussage

2.1 Begriff

2.1.1 Definitionen

Jetzt wenden wir uns den logischen Grundbegriffen, wie sie in der
traditionellen formalen Logik gebraucht werden, zu. Diese sind Be-
griff, Urteil und Schluss. Wir benutzen hier an Stelle von

”
Urteil“

das Wort
”
Aussage“, da wir davon ausgehen, dass das Urteil in

einem Satz ausgedrückt wird. Das Urteilen (wie ein Urteil gefällt
wird) wird im Rahmen dieser Untersuchung nicht betrachtet. Von
Interesse ist nur die Form der Existenz des schon gefällten Urteils.
Die Benutzung des Terminus

”
Aussage“ gewährleistet außerdem ei-

ne einheitlichere Terminologie.

Wir haben Logik als die Wissenschaft vom richtigen Schließen
definiert. Man kann auch alternative Definitionen der Logik geben.
Eine von diesen beschreibt Logik als Wissenschaft von den For-
men des richtigen Denkens. Obwohl diese Definition im Rückblick
auf die Diskussion über Psychologismus eine gewisse Gefahr in sich
birgt, hat sie den Vorteil, eine strikt logische Definition von Begriff,
Aussage, und Schluss zu ermöglichen. Sonst müssen sie als primiti-
ve Begriffe angesehen werden, die wegen ihres grundlegenden Cha-
rakters keine Definition zulassen. Um aber der Gefahr einer psy-
chologistischen Auffassung des Terminus

”
Denkform“ zu entgehen,

legen wir fest, dass dieses Wort für eine der Klassen von Einheiten
steht, in die man einen gedachten Inhalt (eine Wissenseinheit oder
eine Gesamtheit von solchen) teilen kann, so dass die bezeichnen-
den Ausdrücke für diese Bestandteile keine synkategorematischen
Symbole sind.

Traditionell unterscheidet man drei Denkformen – Begriff, Aus-
sage und Schluss.

Unter dem Begriff versteht man die Form des Denkens, welche
Gegenstände durch die Einheit ihrer wesentlichen Merkmale cha-
rakterisiert und voneinander abgrenzt.

Die Aussage, unter der man einen Zusammenhang von mindes-
tens zwei Begriffen versteht, lässt sich dann als eine Form des Den-
kens definieren, welche die Verhältnisse zwischen Gegenständen und
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ihren Merkmalen mittels Bejahung oder Verneinung repräsentiert.
Relationsaussagen betrachten wir hier nicht, aber eine entsprechen-
de Definition kann auch für sie gegeben werden.

Fasst man den Begriff der Aussage als fundamentalen Begriff
(in Bezug auf die anderen logischen Grundbegriffe) auf, so definiert
man als Aussage die Denkform, mit deren Hilfe erstens ein bestimm-
ter Gegenstand von den anderen getrennt wird, zweitens ein Teil
seines Inhalts dargelegt wird, und drittens eine Relation zwischen
dem Gegenstand und dem gegebenen Teil seines Inhalts behauptet
wird. Die Aussage kann man dann in ihre Bestandteile zerlegen, von
denen einige als Begriffe definiert werden. Einige Zusammenhänge
von Aussagen, in denen die Aussage selbst als eine Komponente
auftritt, werden dann als Schlüsse bezeichnet. Die Möglichkeit ei-
ner solchen Auffassung wird letztendlich durch die Idee gerechtfer-
tigt, die Aussage als Hauptform des logischen Denkens zu charak-
terisieren. Diese Idee ist offenbar dadurch begründet, dass erst der
Aussage solche Eigenschaften wie wahr oder falsch zu sein zugespro-
chen werden. Dass die Aussage diese Eigenschaften besitzt, macht
das Schließen möglich. Die Rolle der Aussage als einer Komponente
des Schlusses ist also entscheidend für die Klassifikation von logi-
schen Formen und bestimmt, welche von ihnen grundlegend ist. Zu
beachten ist auch die Argumentation derjenigen, die den Begriff
als eine fundamentale Form des logischen Denkens betrachten. Die
Befürworter dieser Ansicht betrachten Logik als einen wesentlichen
Teil des Instrumentariums jeder Wissenschaft und gehen davon aus,
dass eine wissenschaftliche Untersuchung die Entwicklung und For-
mulierung eines Begriffs zu ihrem Ziel hat, und dass die Aussagen
und Schlüsse, welche die Form der Existenz der Untersuchung dar-
stellen, in den Begriff münden und in seinem Inhalt enthalten sind.
Ohne ausdrücklich für jemanden in dieser Auseinandersetzung Par-
tei zu ergreifen, setzen wir als Ausgangspunkt dieser Untersuchung
den Begriff des Begriffs.

2.1.2 Klassifikation der Begriffe

Begriffe können in verschiedene Klassen unterteilt werden, abhängig
vom Grund dieser Klassifikation.

Wenn man Begriffe durch Unterscheidung der Gegenstände cha-
rakterisiert, die mit Hilfe der Begriffe definiert werden, teilt man sie
in folgende Gruppen.
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1. Man unterscheidet leere und nichtleere Begriffe. Unter einen
leeren Begriff fällt kein existierender Gegenstand. Um Unbe-
stimmtheit einer solchen Beschreibung zu vermeiden, kann man
auch behaupten, dass ein einfacher (oder atomarer) Satz, in
dem der Name eines solchen Begriffs als Funktor (Prädikator)
vorkommt, nicht wahr sein kann. Ein solcher Begriff ist z. B.
Zentaur. Ein Begriff ist nicht leer, wenn man mindestens einen
Gegenstand aufweisen kann, der unter den Begriff fällt, oder
wenn mindestens einer der atomaren Sätze, in denen der Na-
me des Begriffs als Funktor vorkommt, wahr ist. So ist z. B.
dementsprechend der Begriff Pferd nicht leer.

2. Ferner unterscheidet man konkrete und abstrakte Begriffe. Einen
konkreten Begriff (Pferd, Mensch, Haus) kann man zur Definiti-
on einzelner Gegenstände (einer Art) oder zu einer Behauptung
über einen beliebigen von gleichartigen Gegenständen benut-
zen. Ein abstrakter Begriff (Mut, Röte) wird benötigt, um ei-
ne Eigenschaft von Gegenständen oder eine Relation zwischen
einzelnen Gegenständen zu definieren oder zu repräsentieren.
Eine Eigenschaft eines Gegenstands ist das, was mittels eines
abstrakten Begriffs gedacht wird. Viele philosophische Proble-
me sind mit einzelnen abstrakten Begriffen wie z. B. die Röte
verbunden. Man kann sich z. B. fragen, ob die Eigenschaft, die
mit Hilfe eines solchen Begriffs gedacht wird und die offenbar
als ein Objekt identifiziert wird, jedem der roten Gegenstände
zukommt und dabei mit sich selbst identisch ist. Oder sind alle
roten Gegenstände nur einander ähnlich? Eine Diskussion über
solch eine Problematik würde uns hier aber viel zu weit führen,
deswegen wird sie hier nur angedeutet.

3. Man unterscheidet einzelne und allgemeine Begriffe. Beschreibt
man ein einzelnes Objekt, das zu einer Klasse gleichartiger Ob-
jekte gehört (Mensch, Urteil), oder eine solche Klasse, ist der
Begriff allgemein. Der Begriff ist einzeln, wenn unter diesen Be-
griff ein einziges Objekt fällt (Augsburg). Es gibt auch Begriffe,
die eine Gesamtheit von Gegenständen betreffen, welche gleiche
Eigenschaften (oder mindestens eine gleiche Eigenschaft) besit-
zen. Ein Beispiel eines solchen Begriffs ist Parlament. Solche
Begriffe nennt man Sammelbegriffe. Wenn man die Bildungs-
weise eines Begriffs berücksichtigt, kann man das Spezifische
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eines Sammelbegriffs und den Unterschied zwischen einem Sam-
melbegriff, der selbst als allgemeiner Begriff auftritt, und einem
allgemeinen Begriff, der kein Sammelbegriff ist, folgendermaßen
beschreiben. Ein allgemeiner Begriff kann auf jedes Element der
Klasse der Gegenstände angewandt werden, deren Unterklasse
durch den fraglichen Sammelbegriff definiert ist. Der Sammelbe-
griff dagegen lässt sich nicht auf jedes oder ein einzelnes Element
einer solchen Unterklasse anwenden, deren Elemente ein Ganzes
bilden, das durch den gegebenen Sammelbegriff definiert wird.
Nimmt man z. B. die Klasse von Menschen, kann man über je-
den Menschen behaupten, dass dieser ein Parlamentarier ist.
Denkt man über Parlamentarier als eine Gruppe von Objekten,
gewinnt man die Möglichkeit, diese Gruppe als ein Parlament
zu beschreiben. Dieser Begriff lässt sich seinerseits jedoch nicht
auf einzelne Menschen anwenden, sondern nur auf die besagte
Gruppe.

Zieht man die Charakteristika des Begriffs in Betracht, die den Be-
griff als eine Gesamtheit von anderen Begriffen repräsentieren, lie-
fert das Gründe für folgende Klassifikationen.

1. Ein Begriff kann registrierend oder nicht-registrierend sein. In
einem registrierenden Begriff kann man solche Merkmale un-
terscheiden, die innerhalb einer Klasse von Gegenständen einen
besonderen Teil bestimmen. Zu einer solchen besonderen Unter-
klasse werden Elemente einer Klasse entsprechend ihren raum-
zeitlichen oder anderen Eigenschaften vereinigt. In diesem Sin-
ne sind registrierende Begriffe quantitativ bestimmt. Nicht-re-
gistrierende Begriffe sind dagegen nur qualitativ bestimmt, wie
z. B. Mensch. Der Begriff Menschen, die heutzutage in Europa
wohnen, ist registrierend.

2. Man unterscheidet ferner absolute und relative Begriffe. Ein re-
lativer Begriff schließt ein Merkmal ein, das eine Relation eines
Gegenstands zu einem anderen festhält. Ein absoluter Begriff
hat dagegen kein solches Merkmal. Mensch, Gebäude sind ab-
solute, Vater, Lehrer – relative Begriffe.

3. Ein Begriff kann positiv oder negativ sein, wie z. B.Mensch und
Nicht-Mensch. Für gewöhnlich geht man davon aus, dass ein
negativer Begriff sich von dem positiven nur durch die so ge-
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nannten Artmerkmale unterscheidet. Für das gegebene Beispiel
bedeutet dies: wenn man den Menschen als ein vernunftbegab-
tes Lebewesen definiert, ordnet man dem Begriff Nicht-Mensch
alle anderen Lebewesen zu, denen man keine Vernunft zuspricht.
Wenn man dagegen dem Begriff Nicht-Mensch alle Objekte zu-
ordnet, die in unserem Diskussionsbereich vorkommen, sogar
solche, die mit Hilfe von abstrakten Begriffen beschrieben wer-
den, droht der negative Begriff kein Begriff zu werden, da er in
diesem Fall keine inhaltliche Bestimmtheit hat.

2.1.3 Merkmale

Bei der Klassifikation der Begriffe benutzten wir schon mehrmals
den Terminus

”
Merkmal“. Unter einem Merkmal versteht man in

der Logik das, worin verschiedene Gegenstände einander ähnlich
sind, oder worin sie sich voneinander unterscheiden. Merkmale un-
terteilt man in wesentliche und unwesentliche, allgemeine und Un-
terscheidungsmerkmale, Hauptmerkmale und abgeleitete Merkma-
le, zufällige und notwendige. Wir betrachten nur zwei dieser Unter-
scheidungen.

Allgemein heißen die Merkmale, in denen Gegenstände einander
ähneln oder identisch sind. Merkmale, durch die sich Gegenstände
voneinander unterscheiden, heißen Unterscheidungsmerkmale. Qua-
drat und Rhombus z. B. haben einige allgemeine Merkmale, sie sind
beide Vierecke und haben gleiche Seiten. Das Unterscheidungsmerk-
mal, das ein Quadrat im Vergleich zum Rhombus hat, besteht darin,
dass es rechteckig ist.

Wenn man einen Begriff bildet, kann man nicht alle Merkmale
des gedachten Gegenstands in den Begriff einschließen. Eine solche
Aufgabe ist nicht nur kaum realisierbar kraft der Mannigfaltigkeit
von Merkmalen eines Gegenstands, sondern lohnt sich auch nicht
vom logischen Standpunkt aus. Die wissenschaftliche Erkenntnis
verlangt das Auswählen derjenigen Merkmale, die es einerseits er-
lauben, den gedachten Gegenstand von anderen Objekten zu un-
terscheiden, und die andererseits diesem Gegenstand unter allen
Umständen und Bedingungen zugehören, so dass ohne diese Merk-
male der Gegenstand als solcher überhaupt nicht gedacht werden
kann. Solche Merkmale heißen wesentlich. Das Quadrat hat zwei
wesentliche Merkmale – rechteckig zu sein und gleiche Seiten zu
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haben. Ein Quadrat kann auch unwesentliche Merkmale haben, wie
eine bestimmte Seitenlänge (z. B. die Seitenlänge 1). Das Merkmal,
das einem Gegenstand sowohl zukommen, als auch nicht zukom-
men kann, wobei das Fehlen des Merkmals die Existenz dieses Ge-
genstands nicht beeinflusst, heißt unwesentlich. Ob die Seitenlänge
eines Quadrates 1 oder 2 ist, ist unwesentlich, insofern es sich um
definierende Eigenschaften eines Quadrates handelt, durch die man
jedes beliebige Quadrat im Gegensatz zu anderen Objekten der
gleichen Gattung charakterisiert.

Da man durch wesentliche Merkmale einen Gegenstand von den
anderen unterscheiden kann, darf man wesentliche Merkmale als
Unterscheidungsmerkmale ansehen. Wenn ein Gegenstand mehrere
wesentliche Merkmale hat (wie ein Quadrat), reicht eins als Unter-
scheidungsmerkmal nicht aus. Durch die Eigenschaft rechteckig zu
sein kann man das Quadrat von dem Rhombus unterscheiden, nicht
aber von einem Rechteck. Die Gleichheit der Seiten allein reicht
nicht aus, um Quadrat und Rhombus auseinander zu halten. Also
lassen sich die Gegenstände, die unter einen Begriff fallen, nur durch
die Einheit der wesentlichen Merkmale von den Gegenständen un-
terscheiden, die unter einen anderen Begriff fallen.

Zu bemerken ist, dass durch die Einheit der Merkmale nicht
die Individuen derselben Art voneinander unterschieden werden,
sondern Exemplare, auf die ein Begriff anwendbar ist, von den Ex-
emplaren, die durch einen anderen Begriff vertreten sind. Einen
Menschen kann man durch Merkmale, die in dem Begriff Mensch
vereinigt sind, von den Individuen anderer Arten unterscheiden, den
Individuen, deren Eigenschaften Merkmale anderer Begriffe z. B.
Pflanze oder Gebäude bilden.

Man spricht aber nicht nur über Merkmale von Gegenständen,
die als Grund für die Begriffsbildung auftreten, und die somit den
Unterschied zwischen zwei verschiedenen Begriffen ausmachen kön-
nen. Einen schon gebildeten Begriff kann man infolgedessen auch als
eine Gesamtheit von verschiedenen Merkmalen beschreiben. Diese
zeigen die Relation des Begriffs zu anderen Begriffen. Die Klas-
sifikation der Merkmale, die man in einem Begriff unterscheidet,
folgt der Unterteilung der Merkmale von Gegenständen, die mit
Hilfe des Begriffs definiert werden, in wesentliche und unwesentli-
che. Wenn man über wesentliche Merkmale spricht, unterscheidet
man zwischen einem Gattungsmerkmal und einem Artunterschied.
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Ein Gattungsmerkmal wird zur Definition der Gegenstände, die mit
Hilfe des gegebenen Begriffs charakterisiert werden, benötigt. Wenn
wir jedem Begriff eine Klasse von Gegenständen zuordnen, dann
bilden die Gegenstände, die durch den gegebenen Begriff definiert
werden, eine Unterklasse der Klasse der Gegenstände, die man dem
Gattungsbegriff zuordnen kann. Wenn wir Logik als Wissenschaft
definieren, ist das ein Merkmal, das die Logik nicht von anderen
Wissenschaften (den Begriff der Logik nicht von anderen Begriffen
mit demselben Gattungsmerkmal) unterscheidet, sondern von allem
anderen, das sich nicht als Wissenschaft definieren lässt. Ein Gat-
tungsmerkmal betrachtet man als eines der wesentlichen Merkmale
des fraglichen Objekts, die den Hauptteil des Begriffsinhaltes bil-
den. Im Begriff Quadrat ist dieses Merkmal Rechteck. Ein weiteres
wesentliches Merkmal ist ferner der Artunterschied. Das ist ein Be-
griff, der dazu dient, dass man den gegebenen Begriff von anderen
Begriffen derselben Gattung unterscheiden kann. Sprechen wir z. B.
über Logik, dann können wir das Merkmal vom richtigen Schließen,
durch welches wir Logik als Wissenschaft charakterisieren, als solch
einen Artunterschied betrachten. Das Gattungsmerkmal zusammen
mit einem Artunterschied ergibt eine Art. Die Art ist ein Merkmal,
insofern sie einem Gegenstand zugesprochen werden kann. Die Art
Quadrat kann man z. B. einer geometrischen Figur zusprechen. Der
so genannte Nebenteil (im Inhalt) eines Begriffs, der unwesentliche
Merkmale enthält, kann aus mehreren Merkmalen bestehen. Eine
Art solcher Merkmale ist das eigene Merkmal. Das ist das Merkmal,
das allen Gegenständen einer gegebenen Klasse zukommt, und das
kein wesentliches Merkmal dieser Gegenstände ist, aber von diesen
abgeleitet werden kann. Ein in diesem Zusammenhang traditionell
angegebenes Beispiel ist das Merkmal Tastgefühl haben bei Men-
schen, das allen Lebewesen zukommt. Eine weitere Art der Merk-
male ist das nichteigene Merkmal. Das ist ein Merkmal, das allen
Gegenständen der gegebenen Klasse zukommt, sich aber nicht aus
den wesentlichen Merkmalen ableiten lässt (z. B. die schwarze Farbe
der Krähe).

2.1.4 Umfang und Inhalt eines Begriffs

Man unterscheidet zwischen dem Umfang eines Begriffs und sei-
nem Inhalt. Durch Umfang und Inhalt charakterisiert man sowohl
Begriffe als auch Beziehungen zwischen Begriffen.
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Der Inhalt eines Begriffs besteht aus allen seinen Elementen
(oder Merkmalen), die man als selbständige Begriffe betrachten
kann. Meistens wird aber der Inhalt eines Begriffs mit den we-
sentlichen Merkmalen identifiziert, die dem gedachten Gegenstand
zukommen. Laut dieser Auffassung bilden den Inhalt des Begriffs
Quadrat die Begriffe rechteckig zu sein und gleiche Seiten zu haben.

Den Umfang eines Begriffs definiert man als alle diejenigen Be-
griffe, für die der gegebene Begriff als Hauptteil ihres Inhalts (oder
ein Gattungsmerkmal) dient. Man ist oft geneigt, den Umfang ei-
nes Begriffs als die Menge (oder die Klasse) der Gegenstände, die
unter diesen Begriff fallen, zu betrachten. Obwohl diese Auffassung
ein bequemes Modell für die Beschreibung der Beziehungen zwi-
schen Begriffen liefert, kann man eine solche Definition nicht als
zutreffend bezeichnen, und das aus folgenden Gründen.

Erstens handelt es sich in der Logik um Relationen zwischen Be-
griffen, nicht um Relationen zwischen Gegenständen. Zweitens kann
die Annahme, dass der Umfang eines Begriffs aus Gegenständen be-
steht, zu der Annahme führen, dass der Umfang des Begriffs ein Ag-
gregat und somit selbst ein besonderer Gegenstand ist. Frege fasste
den Begriff als Funktion auf. Der Wert einer derartigen Funkti-
on ist ein Wahrheitswert, und ihre Argumente sind Gegenstände.
Wenn der Begriff als eine Funktion auftritt, kann er selbst nicht als
Gegenstand betrachtet werden. Dafür fehlt die Möglichkeit, ihn in
diesem Zusammenhang ohne jegliche Ergänzung zu denken. Man
kann aber die Klasse der Gegenstände, die unter den Begriff fal-
len, selbst als einen Gegenstand ansehen. Ob Frege diese Klasse
als Umfang des Begriffs betrachtet, ist fraglich. Als Begriffsumfang
bezeichnet Frege, davon ausgehend, dass ein Begriff eine (wahr-
heitswertige) Funktion ist, den Wertverlauf einer solchen Funktion
([FBB],

”
Funktion und Begriff“, 28). Man kann den als Gegenstand

aufgefassten Begriffsumfang (Wertverlauf) nun mit anderen gleich-
artigen Gegenständen vergleichen, und Frege betrachtet es als evi-
dente Tatsache, dass aus der Identität der Wertverläufe von zwei
Funktionen man immer auf die Gleichheit der Werte dieser Funk-
tionen für ein und dasselbe Argument schließen kann und umge-
kehrt. In dem Aufsatz

”
Funktion und Begriff“ (1891) benutzt er

die Gleichheit der Werte von zwei Funktionen für dasselbe Argu-
ment als Definition der Beziehung denselben Wertverlauf zu haben
zwischen diesen Funktionen ([FBB], 23–24). Bei dem Vergleich der
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Wertverläufe von zwei Funktionen vergleicht man also in der Tat
geordnete Paare, die aus einem Argument und dem Wert der jewei-
ligen Funktion für dieses Argument bestehen, wodurch letztendlich
an die Stelle der Klasse der Gegenstände (als eines Begriffsumfangs)
eine andere Klasse, nämlich die Klasse der besagten Paare gesetzt
wird. Trotzdem spricht Frege auch über Klassen der unter einen
Begriff fallenden Gegenstände. Nun gibt es verschiedene Funktio-
nen (Begriffe), unter denen es auch solche gibt, deren Umfang nicht
mittels desselben Begriffs gedacht werden kann, durch den die Ge-
genstände, die unter den Begriff fallen, definiert werden. Über So-
krates oder Platon kann man sinnvoll behaupten, dass jeder von
ihnen ein Mensch ist. Es wäre aber kaum sinnvoll zu sagen, dass
die Klasse aller Menschen ein Mensch ist. Die Klasse aller Menschen
können wir als eine Klasse beschreiben, die nicht ihr eigenes Ele-
ment ist. Betrachten wir nun die Klasse solcher Klassen, und fragen
wir uns, ob diese Klasse (die als K bezeichnet wird) sich selbst an-
gehört oder nicht. Wenn ja, dann fällt sie unter den Begriff einer
Klasse, die sich selbst nicht angehört, und folglich gehört sie sich
selbst nicht an. Wenn wir aber annehmen, dass die Klasse K sich
selbst nicht angehört, dann gehört sie zu K. Wir bekommen einen
Widerspruch ([GGA], 253–255). Aus diesem Widerspruch zieht Fre-
ge mehrere Schlüsse. Einer davon, der von ihm in verschiedenen
Zusammenhängen erwähnt wird, besteht darin, dass dem Umfang
eines Begriffs als Klasse der Gegenstände, die unter diesen Begriff
fallen, Gegenständlichkeit abgesprochen werden muss. Selbst wenn
die Klasse der Gegenstände, die durch den Begriff definiert werden
können, als Gegenstand anerkannt wird, muss es ein

”
uneigentli-

cher“ Gegenstand sein. Ein Ausweg daraus ist die Definition der
Klasse (des Umfangs eines Begriffs) als einer Einheit der Merkma-
le. Im Umfang eines Begriffs realisieren sich somit die Beziehungen
dieses Begriffs zu anderen Begriffen, während sich in seinem Inhalt
die Beziehungen des Begriffs zu Gegenständen, die unter diesen Be-
griff fallen, realisieren.

Die Beziehung zwischen dem Umfang und Inhalt eines Begriffs
charakterisiert man folgendermaßen.

Wenn der Inhalt des Begriffs A ein Teil des Inhalts des Begriffs
B ist, dann fällt der Umfang des Begriffs B in den Umfang des
Begriffs A. Und umgekehrt: wenn der Umfang von A ein Teil des
Umfangs von B bildet, dann ist B ein Teil des Inhalts des Begriffs
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A. Nehmen wir die Begriffe Mensch und Grieche. Da jeder Grie-
che ein Mensch ist, ist Mensch ein Merkmal eines jeden Griechen,
und somit bildet dieser Begriff einen Teil des Begriffsinhaltes von
Grieche. Der Begriff Mensch kommt aber auch im Inhalt der Begrif-
fe vor, die wir einfachheitshalber durch das Wort

”
Nicht-Grieche“

bezeichnen können. Also enthält der Umfang des Begriffs Mensch
den Umfang des Begriffs Grieche. Diese Beziehung zwischen dem
Inhalt und Umfang eines Begriffs bezeichnet man als das Gesetz
der reziproken Beziehung zwischen dem Inhalt und dem Umfang
eines Begriffs (Reziprozitätsgesetz der Begriffe). Dieses Gesetz gilt
nicht für zwei beliebige Begriffe, sondern nur für diejenigen, von de-
nen einer der Gattungsbegriff in Bezug auf den anderen ist. Wenn
wir diese Forderung nicht berücksichtigen, können wir die Fälle, wo
zwei Begriffe verschiedenen Inhalt aber den gleichen Umfang ha-
ben, nicht erklären. Unter Berücksichtigung dieser Forderung kann
man das Gesetz folgendermaßen formulieren. Jede Erweiterung des
Inhalts eines Begriffs führt zur Einschränkung seines Umfangs, und
jede Einschränkung des Inhalts führt zur Erweiterung des Umfangs.

Wenn ein Element des Umfangs eines Begriffs kein Teil des In-
halts anderer Begriffe sein kann, heißt es Individuum. Als eine Gat-
tung bezeichnet man einen Begriff, der in Bezug auf einen anderen,
in dessen Inhalt er als Hauptteil vorkommt, einen größeren Umfang
hat. Als eine Art charakterisiert man den Begriff, der in Bezug
auf den anderen, der in seinem Inhalt als der Hauptteil vorkommt,
einen kleineren Umfang hat. Die Begriffe der Art und Gattung sind
somit relativ. Fällt der Umfang eines Begriffs in den Umfang eines
anderen, dann ist der zweite Begriff eine Gattung in Bezug auf den
ersten Begriff, und der erste – eine Art für den zweiten. Ein Begriff
kann Gattung für einen zweiten und zugleich eine Art für einen
dritten Begriff sein. Die erste und die berühmteste Klassifikation
der Termini nach ihrem Umfang stammt von Porphyr (von Tyrus)
(3. Jh. n. Chr.) (Schema 3 ). Das ist der so genannte

”
Baum des

Porphyr“ ([Boch70], 24.03). In der Klassifikation von Porphyr ist
die Substanz eine Gattung, die keine Art sein kann. Solche Begriffe
heißen Kategorien. Sie haben den größten Umfang und den kleins-
ten Inhalt im Vergleich zu anderen Begriffen. Lebewesen ist eine Art
für Körper und Gattung für das vernünftige Lebewesen. Mensch ist
hier nur eine Art, Sokrates – ein Individuum. In der Logik hat sich
die diagrammatische Darstellung der Umfänge und deren Bezie-
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hungen durchgesetzt. Diagrammatisch dargestellt sieht der Baum
des Porphyr so aus (Schema 4 ). Mit Hilfe von Diagrammen wer-
den formal-logische Beziehungen zwischen Begriffen sowie Figuren
und Modi des Syllogismus dargestellt. Als erster hat Leibniz sol-
che Darstellungen entworfen. Sie blieben bis 1903 unveröffentlicht.
Beachtet werden solche Darstellungen seit Euler (zunächst 1768).
Weiterentwickelt hat sie unter anderen Venn (1880) ([Boch70], 304–
306).

Der Baum des Porphyr

Substanz

(körperlich) (unkörperlich)
Körper

(beseelt) (unbeseelt)
Der beseelte Körper

(mit Sinnen) (ohne Sinne)
Lebewesen

(vernunftbegabt) (vernunftlos)
Das vernünftige Lebewesen

(sterblich) (unsterblich)
Der Mensch

Sokrates Platon Aristoteles . . .

– das am meisten Gattungshafte

– das am meisten Spezifische (nur Art)

– das Individuelle

�
�

��

❅
❅
❅❅

PPPPPPPPPPP

❍❍❍❍❍❍

❍❍❍❍❍❍❍

❅
❅
❅❅

❛❛❛❛❛❛❛❛

❅
❅
❅❅

Schema 3
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Substanz

Körper

Körper

Lebewesen

Lebewesen

Mensch

Sokrates

der beseelte

das vernünftige

Schema 4

2.1.5 Formal-logische Beziehungen zwischen Begriffen

Zwischen zwei beliebigen Begriffen kann man immer eine Relation
feststellen, die sowohl Inhalt als auch Umfang dieser Begriffe be-
trifft. Derartige Relationen werden als formal-logische Beziehungen
zwischen Begriffen bezeichnet.

Ihrem Inhalt nach unterscheidet man vereinbare und unverein-
bare Begriffe. Vereinbar sind zwei Begriffe, die solche Merkmale in
ihrem Inhalt haben, dass deren Umfang völlig oder zum Teil zu-
sammenfallen kann. Trifft das auf die Begriffe nicht zu, heißen sie
unvereinbar.

1. Vereinbare Begriffe können gleichbedeutend oder äquipollent
sein, wie Rechteck mit gleichen Seiten und Quadrat. Solche Be-
griffe sind ihrem Umfang nach gleich, aber fallen dem Inhalt
nach nicht zusammen.

2. Zwei vereinbare Begriffe können sich schneiden, wie Blume und
Fleischfresser. Ein Teil des Umfangs eines Begriffs fällt in die-
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sem Fall mit einem Teil des Umfangs des anderen zusammen.
Der Hauptteil des Inhalts der beiden Begriffe ist verschieden.

3. Zwei vereinbare Begriffe können zueinander in der Relation ei-
nes Unterordnenden zu einem Untergeordneten (einer Gattung
zu einer Art) stehen, wie Pflanze und Tulpe. In diesem Fall ist
der Umfang eines Begriffs ganz in dem Umfang eines anderen
enthalten, und der Inhalt des unterordnenden (subordinieren-
den) Begriffs ist ein Teil des Inhalts des untergeordneten (sub-
alternen) Begriffs.

4. Verschiedene Arten ein und derselben Gattung sind koordiniert.
Der Umfang solcher Begriffe (wie z. B. Löwe und Tiger) hat
keine gemeinsamen Teile (deswegen kann man sie auch als un-
vereinbare Begriffe definieren), aber der Inhalt beinhaltet ein
und dasselbe Gattungsmerkmal.

5. Unvereinbare Begriffe können kontradiktorisch oder wider-
sprüchlich sein, wie weiß und nicht-weiß. Bei kontradiktorischen
Begriffen kann man immer einen als positiven Begriff und den
anderen als negativen Begriff betrachten, wobei der negative Be-
griff aus dem Umfang des positiven ausgeschlossen wird. Wenn
wir diese Begriffe als Arten derselben Gattung ansehen, dann
können wir sie dadurch charakterisieren, dass sie sich komple-
mentär zueinander verhalten: alles, was nicht-weiß ist, ist nicht
weiß, und alles, was weiß ist, ist nicht nicht-weiß.

6. Unvereinbare Begriffe können konträr sein, wie z. B. weiß und
schwarz. Solche Begriffe sind einem dritten Begriff untergeord-
net, aber im Unterschied zu kontradiktorischen Begriffen sind
sie nicht komplementär zueinander. Nicht für jeden Begriff lässt
sich ein konträrer Begriff finden. Meistens findet man konträre
Begriffe im Umfang solcher Gattungsbegriffe, deren Arten ver-
gleichbar in Bezug auf eine Eigenschaft sind. Für zwei konträre
Begriffe gilt, dass einer von denen in Bezug auf den dem an-
deren kontradiktorischen Begriff subaltern ist, und somit mit
Hilfe von diesem definiert werden kann, aber sein Inhalt weist
ein gewisses Merkmal auf, das ihn als einen positiven Begriff zu
charakterisieren erlaubt.

7. Begriffe, die ihrem Umfang nach einander ausschließen, und da-
bei keinen gemeinsamen nahestehenden Gattungsbegriff haben,
heißen disparat. Beispiel: Seele und Dreieck.
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Übungsaufgaben

6. Charakterisieren Sie folgende Begriffe, von der gegebenen Klas-
sifikation der Begriffe ausgehend:

a) Haus

b) das runde Quadrat

c) Form

7. Bestimmen Sie einen der Artbegriffe, für den die folgenden Be-
griffe Gattungsbegriffe sind:

a) Wissenschaft

b) Satz

c) Sprache

d) Gebäude

Was sind für den jeweiligen Artbegriff Individuen oder für den
von Ihnen angegebenen Begriff ein Artbegriff?

8. Bestimmen Sie, in welchen formal-logischen Beziehungen fol-
gende Begriffe zueinander stehen.

a) Kröte – Kugelschreiber

b) Dürer – Picasso

c) sterblich – unsterblich

d) Löwe – Raubtier

e) Haus – Treppe

f) Wissenschaftler – Nobelpreisträger

g) Rechteck mit gleichen Seiten – Quadrat

h) heiß – kalt
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2.2 Einfache kategorische Aussage

2.2.1 Struktur einer einfachen kategorischen Aussage

Eine Aussage ist eine Form des Denkens, die eine Relation zwischen
Gegenständen und ihren Merkmalen durch Bejahung oder Vernei-
nung repräsentiert. Schon dieser Definition kann man die wesent-
lichsten Charakteristika einer Aussage entnehmen – ihre Komple-
xität und Einheitlichkeit einerseits, und die Möglichkeit, eine Aus-
sage und ihr sprachliches Korrelat (Satz) als wahr oder falsch zu
bewerten, andererseits. Diese Charakteristika erlauben, die Aussage
als Hauptform des logischen Denkens zu betrachten. Sie bestätigen,
dass man nicht mittels eines einzelnen Begriffs denken kann. Viel-
mehr lässt sich der Begriff selbst als ein Gebilde betrachten, das
mit Hilfe mehrerer Aussagen konstruiert wird. Sein Inhalt wird im
Kontext dieser Aussagen gebildet und vervollständigt. Jede Aussa-
ge, in der einem Gegenstand etwas zugesprochen wird, kann man
als eine Art Schlusses betrachten, dessen Prämissen das Subjekt
der fraglichen Aussage definieren und dem es definierenden Begriff
eine Eigenschaft zu- oder absprechen. Nehmen wir die Aussage Al-
le Menschen sind sterblich. Unabhängig davon, wie das Erkennen
tatsächlich verläuft, kann man diese Aussage als Schlusssatz anse-
hen, den man von der Annahme ausgehend konstruiert, dass der
Inhalt des Begriffs Mensch einen solchen Begriff wie Lebewesen,
den man bereits mit dem Begriff der Sterblichkeit verbindet, als
eins seiner Elemente enthält. Die Kenntnis davon, dass Menschen
sterblich sind, setzt in einem solchen Fall das Wissen voraus, dass
Menschen Lebewesen sind und dass jedes Lebewesen sterblich ist.
Dieses Wissen realisiert sich in der Form von besonderen Aussa-
gen. Nur die Tatsache, dass ein Begriff schon in einigen solchen
Aussagen vorkommt, erlaubt uns, ihn als ein selbständiges logi-
sches Objekt zu betrachten, ohne uns explizit auf alle bekannten
Aussagen zu beziehen, in denen der Begriff als ihr Subjekt auf-
tritt. Wenn wir Merkmale im Inhalt eines Begriffs aufzählen, oder
von seinem Umfang reden, betrachten wir ihn als einen selbständi-
gen Gegenstand, ein einzeln auftretendes und fassbares Objekt. Die
immer wieder von den Logikern deklarierte Gleichgültigkeit der lo-
gischen Untersuchung bezüglich des Inhalts (von Aussagen) ver-
schleiert manchmal die Besonderheiten der von der Logik studierten
Zusammenhänge zwischen Objekten, obwohl gerade diese Zusam-
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menhänge für die Begründung mancher logischen Prinzipien wichtig
sind. Als eine solche Besonderheit kann man den Umstand ansehen,
dass hinter jedem Begriff eine oder mehrere Aussagen stehen, wel-
che seinen Inhalt definieren und diesen Begriff in eine Relation zu
anderen Begriffen bringen. Deswegen führt die Feststellung, dass
der Begriff in seinem Inhalt eine Einheit von Merkmalen ist, zu der
Idee, dass jeder Begriff einen Zusammenhang von Aussagen dar-
stellt. Als eine

”
Kurzfassung“ eines solchen Zusammenhangs tritt

der Begriff in andere Aussagen ein. Einer der Protagonisten dieser
Idee war Cohn ([Cohn08]), der seine Aufgabe in der Entwicklung
der Kantischen Idee einer wissenschaftlichen Philosophie sah, die
eine allgemeine methodologische Grundlage der Wissenschaft bil-
den und formulieren sollte. Jede Wissenschaft in ihrem gegenwärti-
gen Zustand kann man als eine Menge von zusammenhängenden
Aussagen betrachten, wobei dieser Zusammenhang einige Begriffe
zum Ausgangspunkt hat und in die Formulierung anderer Begrif-
fe münden soll. Diese Idee basiert auf einem bestimmten logischen
Konzept. Laut diesem Konzept ist, erstens, die Aussage ein Kom-
plex, der aus Begriffen zusammengesetzt ist, und zweitens, erhält
der Begriff, der als Subjekt der Aussage auftritt, in dieser Aussage
eine Definition oder eine

”
Teildefinition“, indem er in eine Relati-

on zu dem entsprechenden Gattungsbegriff oder anderen Begriffen
gebracht wird. Seinem Inhalt wird ein neues Merkmal zugefügt, in-
dem dem Begriff eine Eigenschaft zugesprochen wird, die man ihm
zuvor vielleicht nicht zusprach. In Die Grundlagen der Arithmetik
äußerte Frege den Gedanken (der bis heute von seinen Interpreten
diskutiert wird), dass die Wörter nur im Satz eine Bedeutung haben
([GLA], 71). In Zusammenhang mit der Auffassung einer Aussage
als einer Kombination von Begriffen, die in einer Relation zueinan-
der stehen, könnte eine solche Behauptung bedeuten, dass in der
Aussage (wir sprechen jetzt einfachheitshalber über eine bejahen-
de Aussage) der Inhalt des Begriffs (des Subjekts der Aussage) um
ein neues Merkmal erweitert wird. Mit Freges These, dass der Be-
griffsumfang (falls dieser sich mit der Bedeutung des Begriffsworts
identifizieren lässt) als ein Zusammenhang der Merkmale des Be-
griffs aufgefasst werden kann, ließe sich das begründen. Allerdings
interessiert sich die Logik weniger für die Funktionen einer Aus-
sage in dem Verfahren der Erweiterung des Inhalts eines Begriffs,
sondern mehr für die Beziehungen zwischen Denkformen, bei de-
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nen schon ein fester Inhalt vorausgesetzt wird. Die erste Aufgabe
überlässt die Logik eher der Erkenntnistheorie.

Die Bestandteile einer kategorischen Aussage sind Subjekt, Prä-
dikat und Relation oder Kopula. Das Subjekt einer Aussage ist ein
Begriff, der den Gegenstand des Denkens als solchen identifiziert.
Man bezeichnet das Subjekt einer Aussage durch

”
S“. Das Subjekt

einer Aussage ist von dem Gegenstand des Denkens zu unterschei-
den. Dieser Unterschied besteht in erster Linie darin, dass der Ge-
genstand von dem Erkennenden nicht in allen seinen Eigenschaften
und Beziehungen (zu anderen Gegenständen) erfasst werden kann,
und dass dem Subjekt der Aussage deswegen nicht jede Eigenschaft
des Gegenstands zugesprochen werden kann. Wenn man ein Objekt
zum Gegenstand des Denkens macht und diesen mit Hilfe eines Be-
griffs als Subjekt einer Aussage über diesen Gegenstand repräsen-
tiert, kann man nicht alle seine Beziehungen berücksichtigen. Man
sondert nur einige seiner Eigenschaften ab, so dass sie ausreichen,
dieses Objekt von anderen zu unterscheiden. Ausschöpfend kann
eine solche Absonderung kaum sein. Die Existenz des Objekts, das
in der Aussage durch das logische Subjekt vertreten wird, hängt
ferner nicht von einem einzelnen Vorkommen des Satzes ab, der für
die jeweilige Aussage steht, und folglich nicht davon, ob das Ob-
jekt jeweils durch das Subjekt repräsentiert und somit begrifflich
erfasst wird. Ein und dasselbe Objekt kann außerdem zum Subjekt
verschiedener Aussagen werden. Da in jeder Aussage das Subjekt
in eine besondere Beziehung zu einem besonderen Prädikat tritt, ist
oft das Subjekt einer konkreten Aussage seinem Inhalt nach nicht
mit dem Subjekt einer anderen Aussage identisch, selbst wenn die
beiden Subjekte dasselbe Objekt repräsentieren und durch dasselbe
Begriffswort vertreten werden.

Das zweite logische Element einer kategorischen Aussage ist das
Prädikat, das man durch

”
P“ bezeichnet. Das Prädikat repräsen-

tiert das Wissen von Eigenschaften eines Objekts.

Subjekt und Prädikat einer konkreten Aussage bilden zusam-
men Materie einer Aussage. Die Materie der Aussage bestimmt die
Existenz und den Charakter der logischen Beziehungen zwischen
den Aussagen.

Das dritte Element der Aussage heißt Kopula. Sie wird durch
solche Wörter wie

”
ist“ oder

”
ist nicht“ bezeichnet. Manchmal wird

die Relation zwischen Subjekt und Prädikat einer Aussage auch
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durch andere Verben ausgedrückt. Davon abhängig, ob man das
Prädikat dem Subjekt zu- oder abspricht, unterscheidet man zwei
Formen von Kopula: die behauptende und die verneinende. Diese
Form ist entscheidend für die Bestimmung der Qualität der Aussa-
ge. Die Identifizierung der sprachlichen Form der Kopula mit dem
Wort

”
ist“ und die Mehrdeutigkeit dieses Wortes in einem Satzzu-

sammenhang waren Faktoren, die zusammen mit einigen anderen
Problemen zum Revidieren der Auffassung der Struktur einer Aus-
sage führten. In The Principles of Mathematics (1903) weist Russell
darauf hin, dass in solchen Sätzen wie

”
Sokrates ist sterblich“,

”
So-

krates ist ein Mensch“ und
”
Sokrates ist der Philosoph, der zum

Tod durch Gift verurteilt wurde“ das
”
ist“ vollkommen verschiede-

ne Relationen zwischen dem Subjekt und dem jeweiligen Prädikat
vertritt. Während im ersten Satz einem Gegenstand eine Eigen-
schaft zugesprochen wird, wird in der zweiten Aussage das Objekt
(Sokrates) in eine Relation zu einer Klasse von Menschen gebracht,
und in der dritten geht es um Identität zwischen zwei Objekten.
Die Notwendigkeit, eine logische Theorie, die dieser Mehrdeutig-
keit Rechnung trägt, zu entwickeln, war einer der Gründe dafür,
dass die Mittel der traditionellen formalen Logik für unzureichend
erklärt wurden.

Die Struktur einer kategorischen Aussage drückt man durch die
Formel

”
S − P“ aus.

In der formalen Logik stellt man die kategorischen Aussagen
den hypothetischen und den disjunktiven gegenüber. Die Struktur
einer hypothetischen Aussage wird durch die Formel

”
Wenn A−B,

dann C−D“ und die Struktur einer disjunktiven durch die Formel

”
A−B, oder − C, oder −D“ dargestellt.

2.2.2 Qualität und Quantität einer Aussage. Klassifika-
tion von Aussagen

In Abhängigkeit von dem Charakter der Kopula unterteilt man
Aussagen nach ihrer Qualität in bejahende und verneinende. In be-
jahenden Aussagen (Alle Menschen sind sterblich) spricht man dem
Subjekt das Prädikat zu. In verneinenden Aussagen (Manche Vögel
können nicht fliegen) trennt man das Prädikat von dem Subjekt ab.

In Abhängigkeit von dem Umfang, in dem das Subjekt in der
Aussage genommen wird, unterteilt man Aussagen nach ihrer Quan-
tität – in partikuläre und allgemeine. In partikulären Aussagen be-
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zieht sich der Inhalt des Prädikats auf einen Teil des Umfangs des
Subjekts (Einige Menschen sind Philosophen). Um eine partikuläre
Aussage auszudrücken, benötigt man zusätzliche Sprachelemente,
solche Wörter und Phrasen wie

”
ein“,

”
einige“,

”
ein Teil“,

”
man-

che“. In allgemeinen Aussagen (Alle Philosophen sind Menschen)
bezieht sich das Prädikat auf alle Gegenstände einer bestimmten
Klasse. Das Subjekt wird also in solchen Aussagen in seinem vollen
Umfang genommen. Die Sätze, die für allgemeine Aussagen stehen,
enthalten besondere zusätzliche Wörter oder Wortgruppen, die auf
die Distribuiertheit des Subjekts hinweisen. Das sind solche Aus-
drücke wie

”
alle“,

”
jeder“,

”
der“. Als einen Spezialfall von allge-

meinen Aussagen betrachtet man einzelne Aussagen, in denen der
Umfang des Subjekts aus nur einem Gegenstand besteht (Sokra-
tes ist ein Mensch). Einzelnen Aussagen wird häufig kein besonde-
rer Platz in der Klassifikation von Aussagen zugewiesen. Sie wer-
den allgemeinen Aussagen zugeordnet, weil in diesen Aussagen das
Subjekt stets in seinem vollen Umfang genommen wird. Das Sub-
jekt einer einzelnen Aussage ist immer ein einzelner Begriff, der in
seinen Umfangsbeziehungen zu anderen Begriffen nur als Element
ihres Umfangs auftritt. Da ein solcher Begriff immer ein Individu-
um in einer dem Baum des Porphyr entsprechenden Unterordnung
der Begriffe ist, kann sein Umfang nicht unterteilt werden und wird
damit schon

”
per Definition“ in seinem vollen Umfang genommen.

In der Logik vereinigt man die beiden Kriterien und klassifi-
ziert kategorische Aussagen in vier Arten – allgemein bejahende,
allgemein verneinende, partikulär bejahende und partikulär vernei-
nende.

1. Eine allgemein bejahende Aussage ist allgemein nach ihrer Quan-
tität und bejahend nach ihrer Qualität. Für die formale Darstel-
lung derartiger Aussagen benutzt man die Formel

”
alle S sind

P“. Oft wird eine allgemein bejahende Aussage durch
”
A“ be-

zeichnet. Diese Bezeichnung gehört zu den mnemotechnischen
Ausdrücken, die schon seit Anfang des 13. Jahrhunderts nach-
weislich gebraucht werden ([Boch70], 32.06, 32.09). Beispiel –
Alle wahren Aussagen sind allgemeingültig.

2. Allgemein verneinende Aussagen sind allgemein nach ihrer
Quantität und verneinend nach ihrer Qualität. Die Formel ist

”
Kein S ist P“, die Bezeichnung –

”
E“, das Beispiel – Keine
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wahre Aussage ist allgemeingültig.

3. Partikulär bejahende Aussage ist partikulär nach der Quantität
und bejahend nach der Qualität. Die Formel –

”
Einige S sind

P“, die Bezeichnung –
”
I“, das Beispiel – Einige wahre Aussa-

gen sind allgemeingültig.

4. Partikulär verneinende Aussagen sind partikulär ihrer Quan-
tität nach, und verneinend nach ihrer Qualität. Die Formel –

”
Einige S sind nicht P“, die Bezeichnung –

”
O“, das Beispiel –

Einige wahre Aussagen sind nicht allgemeingültig.

2.2.3 Distribuiertheit der Termini einer Aussage

Wenn man von der Relation zwischen Subjekt und Prädikat einer
Aussage, die man an Hand der gegebenen Klassifikation beschreibt,
zur Charakterisierung der Begriffe übergeht, welche die Stelle von
Subjekt und Prädikat einnehmen, spricht man von der Distribuiert-
heit der Termini einer Aussage.

Ein Terminus der Aussage heißt distribuiert, wenn er in dieser
Aussage in seinem vollen Umfang genommen wird, und nicht dis-
tribuiert, wenn nur ein Teil seines Umfangs betrachtet wird.

1. In einer allgemein bejahenden Aussage ist das Subjekt immer
distribuiert. Das Prädikat ist üblicherweise nicht distribuiert,
und wird nur in einigen Ausnahmefällen in seinem vollen Um-
fang genommen. In den meisten Fällen ist das Subjekt einer sol-
chen Aussage dem Prädikat untergeordnet, wie in der Aussage
Alle Philosophen sind Menschen. In der Aussage Aristoteles ist
der Begründer der Logik fallen die Umfänge des Subjekts und
des Prädikats zusammen, und beide Termini sind distribuiert.

2. In einer allgemein verneinenden Aussage ist sowohl Subjekt als
auch Prädikat distribuiert. Der Umfang des Subjekts wird völlig
aus dem Umfang des Prädikats ausgeschlossen, und das be-
stimmt die Distribuiertheit des Prädikats (Kein Philosoph ist
ein Stein).

3. In einer partikulär bejahenden Aussage ist das Subjekt niemals
distribuiert. Das Prädikat kann dagegen sowohl nicht distribu-
iert (Einige Logiker sind Engländer), als auch distribuiert sein
(Einige Europäer sind Engländer). Im ersten Fall schneiden sich
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die Umfänge der Begriffe, im zweiten ist einer der Begriffe dem
anderen untergeordnet, und das Subjekt ist der subordinierende
Begriff.

4. In einer partikulär verneinenden Aussage ist das Subjekt nie-
mals distribuiert. Das Prädikat ist dagegen immer distribu-
iert, da der betroffene Teil des Umfangs des Subjekts aus dem
Umfang des Prädikats ausgeschlossen wird. Es gibt nun zwei
Möglichkeiten, die ein solches Ausschließen erlauben. Die erste
Möglichkeit ist, dass der Umfang des Prädikats in dem ganzen
Umfang des Subjekts enthalten ist (Einige Europäer sind nicht
Engländer) und die zweite, dass sich die Umfänge schneiden,
wie in der Aussage Einige Tiere sind nicht Fleischfresser.

2.2.4 Logische Beziehungen zwischen den Aussagen der
gleichen Materie. Logisches Quadrat

Die Aussagen A, E, I, O mit der gleichen Materie treten zueinander
paarweise in die Beziehungen, die man in vier Arten unterteilen
kann.

1. Eine der besagten Arten von Beziehungen ist die Beziehung
der Subalternation zwischen den Aussagen A und I, E und O.
A und E sind unterordnende und I und O – untergeordnete
Aussagen. Die Beziehung der Subalternation lässt sich folgen-
dermaßen charakterisieren. Ist eine allgemeine Aussage (A oder
E) wahr, dann ist die partikuläre Aussage derselben Qualität
(I oder O) auch wahr. Ist eine partikuläre Aussage falsch, dann
ist auch die entsprechende allgemeine Aussage falsch. Aus der
Wahrheit einer partikulären Aussage kann man aber die Wahr-
heit der entsprechenden allgemeinen Aussage nicht folgern. Neh-
men wir als Beispiel die Aussage Einige Menschen sind gelehrte
Logiker. Diese Aussage ist wahr, aber die entsprechende allge-
meine - falsch. Auch aus der Falschheit einer allgemeinen Aus-
sage folgt nicht die Falschheit der partikulären.

2. Die zweite Beziehung ist die Beziehung der Kontradiktion zwi-
schen einer allgemein bejahenden und einer partikulär vernei-
nenden Aussage (zwischen A und O), und zwischen einer all-
gemein verneinenden und partikulär bejahenden Aussage (zwi-
schen E und I). Diese Beziehung ist derart, dass die Wahrheit
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einer der Aussagen die Falschheit der kontradiktorischen impli-
ziert, und umgekehrt. A und O (sowie E und I) stehen zuein-
ander in der Relation einer Behauptung zu einer Verneinung.
Wenn es wahr ist, dass I (Einige Menschen sind Lebewesen),
dann ist es falsch, dass E (Der Mensch ist nicht ein Lebewe-
sen). Wenn E (Kein Philosoph ist ein Stein) wahr ist, dann ist
I (Einige Philosophen sind Steine) falsch. Wenn es wahr ist,
dass A (Der Mensch ist ein Lebewesen), dann ist es falsch, dass
O (Einige Menschen sind nicht Lebewesen).

3. Die dritte Beziehung ist die Beziehung zwischen allgemeinen
Aussagen verschiedener Qualität A und E. Sie charakterisiert
diese Aussagen als konträr. Konträre Aussagen können bei-
de falsch sein, aber die Wahrheit der einen zieht immer die
Falschheit der anderen nach sich. Dass beide zugleich falsch sein
können, sieht man schon an dem einfachen Beispiel: Alle Kat-
zen sind weiß und Keine Katze ist weiß. Beide Aussagen sind
falsch, wahr ist, dass einige Katzen weiß sind.

4. Die vierte Beziehung – zwischen partikulären Aussagen unter-
schiedlicher Qualität I und O – charakterisiert diese Aussagen
als subkonträr. Diese Aussagen können beide zugleich wahr sein,
aber die Falschheit der einen impliziert die Wahrheit der ande-
ren. Es ist falsch, dass einige Menschen keine Lebewesen sind,
deswegen ist es wahr, dass einige Menschen Lebewesen sind.
Weil es einen Teil des Umfangs des Begriffs Mensch nicht gibt,
der aus der Menge aller Lebewesen ausgeschlossen ist, muss die
Menge aller Menschen unter den Begriff Lebewesen fallen, und
somit auch jede Teilmenge dieser Menge. Dass die subkonträren
Aussagen zugleich wahr sein können, kann man auch durch Hin-
zunehmen anderer logischer Beziehungen zwischen Aussagen er-
klären. Nehmen wir an, dass eine partikulär bejahende Aussage
wahr ist. Dann ist die kontradiktorische allgemein verneinen-
de falsch, aber aus der Falschheit einer allgemein verneinenden
Aussage folgt nicht die Falschheit einer partikulär verneinen-
den. Also kann man nicht aus der Wahrheit einer partikulär
bejahenden Aussage auf die Falschheit der entsprechenden par-
tikulär verneinenden schließen. Ist aber die partikulär bejahende
Aussage falsch, dann ist die allgemein bejahende auch falsch, da
sie die Aussage ist, die zu der gegebenen partikulär bejahenden
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in der Beziehung der Subalternation steht. Aus der Falschheit
der allgemein bejahenden Aussage folgt aber die Wahrheit der
kontradiktorischen partikulär verneinenden Aussage.

Alle diesen Beziehungen stellt man mittels des so genannten
logischen Quadrats dar (Schema 5 ).

subaltern

subkonträr

konträr

subaltern

kontradiktorisch
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❅
❅
❅
❅❅

Schema 5

Die eben beschriebenen logischen Beziehungen kann man auch
als die Beziehungen zwischen Wahrheitswerten von Aussagen dar-
stellen. Betrachten wir Subalternation, Kontradiktion, konträre und
subkonträre Beziehungen als Funktionen, dann können wir sagen,
dass sie dem jeweiligen Wahrheitswert der Aussage (A, E, I oder
O) einen Wahrheitswert einer anderen Aussage aus dieser Liste zu-
ordnen. Aber durch die Wahrheitswerte der Argumente einer dieser
Funktionen wird nicht immer ein Wahrheitswert für jede der vier
Arten von Aussagen definiert (Tabelle 1 ). Wenn wir z. B. die sub-
alterne Beziehung zwischen I und A nehmen, und dem Argument
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I den Wahrheitswert wahr zuordnen, hat diese Funktion keinen
bestimmten Wert für die allgemein bejahende Aussage derselben
Materie, der von dem Inhalt der Aussage unabhängig bleibt.

A E I O

w f w f w f w f

A w f f − − f f w

E f − w f f w − f

I w − f w w f − w

O f w w − − w w f

Durch die fett gesetzten
”
w“ und

”
f“ sind in der Tabelle die Werte

der Argumente der besagten Funktionen bezeichnet.
Die kursiv gesetzten

”
w“ und

”
f“ stehen hier für die Werte der

von dem jeweiligen Argument verschiedenen Aussagen. Diese Werte
sind durch die fraglichen Funktionen bestimmt.
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Übungsaufgaben

9. Betrachten Sie folgende Sätze.

a) Sokrates ist ein Mensch.

b) Nicht alle Vögel können fliegen.

c) Einige Menschen sind Griechen.

d) Ein Schluss ist dann richtig, wenn er nach logischen Regeln
aus wahren Prämissen folgt.

e) Das Gesetz des Widerspruchs gilt nicht für zwei beliebige
Aussagen.

f) Diese Zahl ist größer als jene.

g) Der Mensch ist vernünftig.

h) Aristoteles ist der Schüler von Platon.

i) Wittgenstein brachte seinen Schülern Orangen.

j) Russell behauptet, dass Wittgenstein in der Vernachlässi-
gung seiner Berufung von seinem Stolz getrieben wurde.

k) Wenn jemand ein Athener ist, dann ist dieser jemand ein
Grieche.

Welche dieser Sätze präsentieren kategorische, hypothetische
oder Relationsaussagen?

Versuchen Sie, jede kategorische Aussage als eine Relationsaus-
sage zu formulieren.

Versuchen Sie, jede kategorische Aussage als eine quantifizierte
Aussage zu formulieren (als Aussage, die mit

”
Es gibt . . . , so

dass . . .“ oder
”
Für alle (jeden) . . . gilt, dass . . .“ beginnt).

Benutzen Sie für solche Umformulierungen auch Variablen.

10. Geben Sie ein Beispiel einer Aussage folgender Art an:

a) eine allgemein bejahende Aussage, in der das Prädikat dis-
tribuiert ist

b) eine partikulär bejahende Aussage, in der das Prädikat dis-
tribuiert ist

c) eine partikulär verneinende Aussage
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11. Warum können die Aussagen E und A zugleich falsch sein?
Begründen Sie Ihre Antwort:

a) durch ein Beispiel

b) durch Analyse der logischen Beziehungen zwischen den Aus-
sagen A und O, E und O einerseits und E und I, A und I
andererseits.

12. Warum impliziert die Wahrheit einer partikulär bejahenden Aus-
sage nicht die Wahrheit der allgemein bejahenden? Begründen
Sie Ihre Antwort durch die Analyse der logischen Beziehungen
zwischen kontradiktorischen und konträren Aussagen.
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2.3 Ein einfacher kategorischer Syllogismus

2.3.1 Was ist ein Schluss?

Unter einem Schluss versteht man das Ableiten einer neuen Aussage
aus einer oder mehreren gegebenen Aussagen. Aussagen, aus denen
man ableitet, heißen Prämissen, die abgeleitete Aussage nennt man
Schluss oder Schlusssatz. Wir interessieren uns hier für Schlüsse,
deren Prämissen und Schlusssätze einfache kategorische Aussagen
sind.

An einen logischen Schluss werden bestimmte Forderungen ge-
stellt. Die erste Forderung ist, dass der Schlusssatz einen neuen Ge-
danken ausdrücken muss (im Vergleich zu den Prämissen). Ein logi-
scher Schluss soll die notwendige Beziehung zwischen den Prämiss-
en und dem Schlusssatz aufdecken und zustande bringen. Diese
Notwendigkeit ist kein Charakteristikum der Modalität der Aussa-
gen, welche die Komponenten des jeweiligen Schlusses ausmachen,
sondern charakterisiert die Beziehung zwischen den Prämissen und
dem Schluss. Man kann vom logischen Schließen sprechen, wenn die-
se Beziehung der Folgerung für wahre Prämissen beliebigen Inhalts
sowie für die ihnen entsprechenden Schlüsse gilt. Die Notwendig-
keit der Beziehung der Folgerung garantiert, dass sich aus wahren
Prämissen der gleichen Form (in unserem Fall – aus den Aussagen
der gleichen Qualität und Quantität mit einer bestimmten Position
eines der Termini der Aussage) gleichförmige Schlüsse ziehen las-
sen. Durch Heranziehen des Gesetzes des Widerspruchs lässt sich
diese Notwendigkeit auch definieren. Man kann behaupten, dass
die Prämissen des Schlusses in einer notwendigen Beziehung zu
seinem Schlusssatz stehen, wenn die Annahme, dass der Schluss-
satz falsch ist, zu einem Widerspruch zu einer der Prämissen führt.
Ein Beispiel dafür ist der folgende Schluss: Alle Philosophen sind
Menschen – Alle Menschen sind sterblich – Alle Philosophen sind
sterblich. Macht man die Annahme, die dem Schluss widerspricht
(Einige Philosophen sind nicht sterblich), und betrachtet man die
Annahme als Prämisse eines neuen Schlusses, ergibt diese Prämisse
zusammen mit der Prämisse des gegebenen Schlusses Alle Philoso-
phen sind Menschen den Schluss Einige Menschen sind nicht sterb-
lich, der der Prämisse Alle Menschen sind sterblich widerspricht.
Interessant bei dieser die Notwendigkeit des Schlusses betreffenden
Argumentation ist, dass man die Beziehungen zwischen den Kom-
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ponenten des Schlusses und seine logischen Charakteristika durch
die formal-logischen Gesetze begründet ([As47], 150–154, [ForLo],
87–88). Eine derartige Begründung ist einer der typischen Züge
der formalen Logik, welche die formal-logischen Gesetze somit zu
einem Bestandteil des meta-logischen Instrumentariums macht. Bo-
cheński ist der Meinung, dass Aristoteles für die Begründung seiner
Syllogistik oft aussagenlogische Prinzipien benutzt, ohne sie expli-
zit als Gegenstand seiner Untersuchung zu betrachten ([Boch70],
88–89). Der metalogische Gebrauch von formal-logischen Gesetzen,
die als Sätze moderner aussagenlogischer Theorien auftreten, weist
Parallelen zu dieser historischen Tatsache auf, und bestätigt die
Einheitlichkeit und Kontinuität der logischen Theorie.

Nach der Anzahl der Begriffe in Prämissen unterteilt man Schlüs-
se in unmittelbare und mittelbare.

2.3.2 Unmittelbare Schlüsse

Unmittelbare Schlüsse sind diejenigen, bei denen man aus einer ge-
gebenen Beziehung zwischen zwei Begriffen auf eine andere Bezie-
hung zwischen diesen Begriffen (oder einem dieser Begriffe und dem
zu dem anderen kontradiktorischen Begriff) schließt. Unmittelbare
Schlüsse basieren auf logischen Beziehungen zwischen Aussagen der
gleichen Materie oder auf logischen Beziehungen zwischen Begriffen
in einer Aussage, die durch die Distribuiertheit der Begriffe bedingt
sind.

Eine Art von unmittelbaren Schlüssen bilden die Schlüsse von
der Wahrheit oder Falschheit einer Aussage der Form A, E, I, O auf
die Wahrheit oder Falschheit der entsprechenden kontradiktorisch,
konträr oder subkonträr entgegengesetzten, subordinierenden oder
subalternen Aussagen. Diese Schlüsse werden in mehrere Grup-
pen unterteilt. Aus der Wahrheit (Falschheit) einer allgemein beja-
henden (bzw. allgemein verneinenden) Aussage kann man auf die
Falschheit (Wahrheit) einer partikulär verneinenden (bzw. parti-
kulär bejahenden) Aussage schließen. Umgekehrt, von der Wahrheit
(Falschheit) einer partikulär bejahenden (partikulär verneinenden)
Aussage ausgehend, kann man auf die Falschheit (Wahrheit) einer
allgemein verneinenden (allgemein bejahenden) Aussage schließen.
Aus der Wahrheit einer subordinierenden Aussage kann man die
Wahrheit einer subalternen Aussage folgern. Aus der Falschheit ei-
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ner subalternen schließt man auf die Falschheit der subordinieren-
den. Aus der Wahrheit einer allgemeinen Aussage kann man auf
die Falschheit der konträren, und aus der Falschheit einer parti-
kulären Aussage auf die Wahrheit der subkonträren schließen. Sol-
che Schlüsse haben eine kompliziertere Formulierungsform, als man
bei unmittelbaren Schlüssen vermuten würde. Das zeigt folgendes
Beispiel. Einen Schluss von der Falschheit einer allgemein bejahen-
den Aussage auf die Wahrheit der entsprechenden partikulär vernei-
nenden kann man als Zusammenhang folgender Aussagen repräsen-
tieren: wenn A falsch ist, dann ist O wahr – A ist falsch – also ist O
wahr. Wenn man beachtet, dass aus der Wahrheit oder Falschheit
einer Aussage nicht immer auf die Wahrheit oder Falschheit einer
anderen Aussage geschlossen werden kann (Tabelle 1 ), ergeben sich
folgende Schlüsse:

von der Wahrheit von A auf die Falschheit von O

die Falschheit von E

die Wahrheit von I

von der Falschheit von A auf die Wahrheit von O

von der Wahrheit von E auf die Falschheit von I

die Falschheit von A

die Wahrheit von O

von der Falschheit von E auf die Wahrheit von I

von der Wahrheit von I auf die Falschheit von E

von der Falschheit von I auf die Wahrheit von E

die Wahrheit von O

die Falschheit von A

von der Wahrheit von O auf die Falschheit von A

von der Falschheit von O auf die Wahrheit von A

die Wahrheit von I

die Falschheit von E
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Andere Arten von unmittelbaren Schlüssen lassen sich auch als
Operationen auf Aussagen charakterisieren, durch deren Anwen-
dung man aus einer gegebenen wahren Aussage eine andere wahre
Aussage gewinnt, die sich von der ursprünglichen durch die La-
ge des Subjekts und Prädikats, oder durch Qualität, oder durch
diese beiden Charakteristika unterscheidet. Während die oben be-
schriebenen unmittelbaren Schlüsse direkt auf den Beziehungen des
logischen Quadrats basieren, können die logischen Operationen auf
Aussagen durch die Gesetzmäßigkeiten der Distribuiertheit der Ter-
mini von Aussagen charakterisiert werden. Diese Operationen sind
folgende.

Obversion (Umwandlung) ist eine logische Operation auf Aus-
sagen, bei der sich die Qualität der Aussage ändert, aber die Lage
des Subjekts und der Wahrheitswert der Aussage bleiben gleich.
Die Veränderung der Qualität der Aussage wird dabei dadurch rea-
lisiert, dass das Subjekt der Aussage, die als Prämisse eines solchen
Schlusses dient, in eine Beziehung zu dem Begriff gebracht wird,
der kontradiktorisch zu dem Prädikat der Aussage ist. Schema der
Schlüsse, die man durch Obversion bekommt:

aus A: bekommt man E:

Alle S sind P Kein S ist nicht-P

aus E: bekommt man A:

Kein S ist P Alle S sind nicht-P

aus I: bekommt man O:

Einige S sind P Einige S sind nicht nicht-P

aus O: bekommt man I:

Einige S sind nicht P Einige S sind nicht-P .

Konversion (Umkehrung) ist eine logische Operation auf Aussa-
gen, bei der das Subjekt der gegebenen Aussage zu dem Prädikat,
und das Prädikat zum Subjekt der neuen Aussage gemacht wird,
wobei sich die Qualität der gegebenen Aussage nicht ändert. Man
unterscheidet einfache oder reine Umkehrung, welche die Quantität
der Aussage erhält, und die Umkehrung mit Einschränkung. Einer
einfachen Umkehrung unterliegen einerseits partikulär bejahende
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und andererseits allgemein verneinende Aussagen. Schema der Um-
kehrung:

aus I: bekommt man I:

Einige S sind P Einige P sind S

aus E: bekommt man E:

Kein S ist P Kein P ist S.

Umkehrung mit Einschränkung bedeutet, dass sich die Quan-
tität der Aussage verändert.

aus A: bekommt man I:

Alle S sind P Einige P sind S.

Die Notwendigkeit der Einschränkung des Subjekts der gewon-
nenen Aussage hat in diesem Fall den Grund, dass das Prädikat ei-
ner allgemein bejahenden Aussage in der Regel nicht distribuiert ist.
Würde man eine allgemein bejahende Aussage ohne Einschränkung
umkehren, kann dabei das Gesetz der reziproken Beziehung zwi-
schen dem Inhalt und dem Umfang eines Begriffs verletzt werden.
Ist die allgemein bejahende Aussage, auf die man die Operation der
Umkehrung anwendet, wahr, dann ist der Umfang des Subjekts der
Aussage in dem Umfang ihres Prädikats enthalten, und der Inhalt
des Prädikats ist ein Teil des Inhalts des Subjekts. Wird nun be-
hauptet, dass der Umfang des Prädikats ein Teil des Umfangs des
Subjekts ist, und wird weiter angenommen, dass diese Behauptung
wahr sei, dann müsste der Inhalt des Subjekts der ursprünglichen
Aussage ein Teil des Inhalts ihres Prädikats sein, der seinerseits
schon ein Teil des Inhalts des Subjekts ist. Wenn die Umfänge
des Subjekts und Prädikats dabei nicht zusammenfallen, könnte
das implizieren, dass die Relation zwischen einem Ganzen und sei-
nem Teil eine symmetrische Relation wäre. Die Umkehrung ohne
Einschränkung ist für eine allgemein bejahende Aussage nur dann
möglich, wenn das Subjekt und Prädikat der Aussage äquipollent
sind (dann also, wenn das Prädikat der Aussage auch distribuiert
ist). Eine partikulär verneinende Aussage unterliegt nicht der Um-
kehrung. Betrachten wir als Beispiel einer partikulär verneinenden
Aussage Einige Vögel können nicht fliegen. Nehmen wir an, dass die
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Umkehrung dieser Aussage möglich ist. Bei der Umkehrung ändert
sich die Qualität der Aussage nicht, also muss die neue Aussage
verneinend und ihr Prädikat (früheres Subjekt) distribuiert sein.
Das Prädikat der gegebenen Aussage ist von vornherein als Prädi-
kat einer verneinenden Aussage distribuiert. Also ist die Aussage,
die wir durch Umkehrung bekommen, eine allgemein verneinende
Aussage Kein Wesen, das fliegen kann, ist ein Vogel. Diese Aussa-
ge kann man nun einer einfachen Umkehrung unterwerfen, wodurch
man die Aussage Kein Vogel kann fliegen gewinnt. Die Aussage, die
wir der ersten Umkehrung unterwarfen, ist aber wahr. Also schlos-
sen wir letztendlich von der Wahrheit einer partikulär verneinenden
Aussage auf die Wahrheit der allgemein verneinenden Aussage der-
selben Materie, was gegen die Beziehungen des logischen Quadrats
verstößt.

Unter einer Kontraposition (des Prädikats) versteht man eine
Operation auf Aussagen, bei der eine Aussage zunächst der Obver-
sion und dann der Konversion unterworfen wird. Durch die Kon-
traposition gewinnt man aus der Aussage A (Alle S sind P ) eine
allgemein verneinende Aussage E (Kein nicht-P ist S). Aus E (Kein
S ist P ) bekommt man I (Einige nicht-P sind S). Aus der parti-
kulär verneinenden Aussage O (Einige S sind nicht P ) gewinnt man
die partikulär bejahende Aussage I (Einige nicht-P sind S). Eine
partikulär bejahende Aussage I unterliegt nicht der Kontrapositi-
on, denn durch die Obversion aus I bekommt man eine partikulär
verneinende Aussage, und diese unterliegt nicht der Umkehrung.

2.3.3 Mittelbare Schlüsse. Definitionen

Mittelbare Schlüsse sind Schlüsse, die man aus Aussagen mit teil-
weise übereinstimmender Materie zieht. Ein einfacher kategorischer
Syllogismus ist eine Form deduktiver mittelbarer Schlüsse. Mit Hil-
fe solcher Schlüsse werden Relationen zwischen zwei Begriffen auf
Grund ihrer Relation zu einem dritten Begriff festgestellt. Die Theo-
rie des einfachen kategorischen Syllogismus ist ein wesentlicher Be-
standteil der Syllogistik (der Lehre vom Schluss), die von Aristoteles
entwickelt wurde.

Ein einfacher kategorischer Syllogismus ist ein Schluss, bei dem
man auf die Beziehung zwischen zwei Termini, ausgehend von ihren
Beziehungen zu einem dritten Terminus, schließt.
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Ein Syllogismus enthält drei einfache kategorische Aussagen –
zwei Prämissen und einen Schlusssatz (Schluss).

Der Terminus, welcher das Prädikat des Schlusssatzes ist (so-
wie der ihm gleichförmige in einer der Prämissen), heißt größerer
Terminus. Die Prämisse, die den größeren Terminus enthält, heißt
dementsprechend die größere Prämisse. Der Terminus, der das Sub-
jekt des Schlusssatzes ist, und der ihm gleichförmige in einer ande-
ren Prämisse heißt kleinerer Terminus, und die Prämisse, die ihn
enthält, kleinere Prämisse. Der kleinere und der größere Terminus
werden beide als äußere Termini bezeichnet. Der Terminus, der nur
in Prämissen und nicht im Schlusssatz vorkommt, heißt mittlerer
Terminus. Den größeren Terminus bezeichnet man durch

”
P“, den

kleineren – durch
”
S“ und den mittleren – durch

”
M“.

Es gilt nicht immer, dass aus zwei wahren Prämissen ein Schluss
folgt. Nehmen wir die Aussagen Einige Blumen sind Fleischfres-
ser und Alle Rosen sind Blumen als Prämissen eines Schlusses,
lässt sich kein Schlusssatz aus ihnen ableiten. Eine der Methoden,
nach der man alle gültigen Schlüsse, welche die Form eines einfa-
chen kategorischen Syllogismus haben (es gibt 24 solcher Schluss-
formen, die durch eine bestimmte Position des mittleren Terminus
in Prämissen, sowie durch eine bestimmte Qualität und Quantität
der Prämissen gekennzeichnet sind, und die Modi des Syllogismus
heißen), gewinnen kann, besteht in der Analyse möglicher Bezie-
hungen der Umfänge der Termini der größeren Prämisse und darauf
folgender Analyse möglicher Beziehungen zwischen den Termini der
kleineren Prämisse, die für einen Schluss notwendig sind, und den
Ausschluss derjenigen Relationen, die keinen eindeutigen Schluss
zulassen.

Als Beispiel eines solchen Verfahrens nehmen wir eine allgemein
bejahende Aussage der Gestalt MaP (das klein geschriebene

”
a“ re-

präsentiert hier die Qualität und Quantität der Aussage, und man
liest diese Zeichenfolge als

”
alle M sind P“) als größere Prämisse.

Hat dann die kleinere Prämisse die Form SaM (alle S sind M),
können wir auf die Aussage der Gestalt SaP (alle S sind P ) schlie-
ßen. Da der Umfang des Begriffs M in dem Umfang des Begriffs
P , und der Umfang des Begriffs S in dem Umfang von M enthal-
ten sind, muss der Umfang des Begriffs S ein Teil des Umfangs des
Begriffs P ausmachen (Schema 6 ). Unter der Voraussetzung, dass
SiM (einige S sind M), ziehen wir den Schluss der Form SiP . Gilt,
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dass alle M S sind (MaS) oder dass einige M S sind (MiS), dann
ist der Schluss auch SiP (einige S sind P ). Haben wir dagegen
als kleinere Prämisse eine verneinende Aussage der Gestalt SeM ,
SoM , MeS oder MoS, können wir keinen Schluss aus den gege-
benen Prämissen ziehen. Wenn z. B. kein S M ist, kann S ein zu
M koordinierter Begriff sein, und somit eine Art von P ; oder ein
Begriff, der mit M unvereinbar ist, aber sich mit P schneidet; oder
aber ein Begriff, der auch mit P unvereinbar ist (Schema 6 ).

Man unterteilt, je nachdem welche Stelle der mittlere Terminus
in den Prämissen einnimmt, alle Modi des Syllogismus in vier Fi-
guren.

1. Figur

M − P
S −M
S − P

2. Figur

P −M
S −M
S − P

3. Figur

M − P
M − S
S − P

4. Figur

P −M
M − S
S − P

2.3.4 Allgemeine Charakteristika der Figuren des Syllo-
gismus

Erste Figur. Ein Beispiel eines Modus dieser Figur ist der Modus
Barbara: Jeder Mensch ist ein Lebewesen – Jeder Grieche ist ein
Mensch – Jeder Grieche ist ein Lebewesen. Die Besonderheiten die-
ser Figur sind folgende:

– Die größere Prämisse ist immer eine allgemeine Aussage.

– Die kleinere Prämisse ist immer eine bejahende Aussage.

– Das ist die einzige Figur, bei der man als Schluss jede der vier
Arten der Aussagen A, E, I und O gewinnen kann.

– Das ist die einzige Figur, in der eine allgemein bejahende Aussa-
ge als Schluss auftritt. Aus diesem Grund hält Aristoteles diese
Figur für die beste Figur des Syllogismus und betrachtet sie
als Vorschrift, nach der eine Beweisführung in der Wissenschaft
erfolgen kann.

– Die erste Figur verwendet man, um die Frage nach der Unterord-
nung zwischen Begriffen zu beantworten. Der Schluss nach der
ersten Figur besteht in dem Fortschreiten von der Behauptung
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über eine Gruppe von Gegenständen zu der Behauptung über
einzelne Gegenstände der Gruppe. Was allen Gegenständen ei-
ner Art zukommt, kommt auch jedem dieser Gegenstände zu,
und was bei allen Gegenständen einer Klasse negiert wird, wird
auch bei jedem dieser Gegenstände negiert. Diese Erkenntnis
(auch

”
Axiom des Syllogismus“ oder

”
dictum de omni et de

nullo“ genannt) bildet den Grund für Schlüsse nach dieser Fi-
gur.

Zweite Figur. Ein Beispiel ist der Modus Baroco: Jeder Athener ist
ein Grieche – Ein Logiker ist nicht Grieche – Ein Logiker ist nicht
Athener. Die Besonderheiten sind folgende.

– Die größere Prämisse ist immer eine allgemeine Aussage.

– Eine der Prämissen ist verneinend.

– Der Schlusssatz ist auch verneinend.

– Die Figur verwendet man, um falsche Subsumtionen zu wider-
legen.

– In der zweiten Figur basiert der Schluss auf der Gegenüberstel-
lung der Prädikate, die man auch als Definitionen der Subjekte
betrachten kann. Durch eine solche Gegenüberstellung kommt
man zum Schluss, dass, wenn Definitionen eines Objekts ein-
ander widersprechen, auch die Gegenstände dieser Definitionen
nicht identisch sein können. Durch Feststellung der Unverein-
barkeit der Prädikate kommt man zu der Behauptung, dass das
Subjekt eines der Prädikate nicht (oder nicht immer) das Sub-
jekt des anderen sein kann.

Dritte Figur. Ein Beispiel des Schlusses nach dieser Figur ist der
Modus Bocardo: Ein Athener ist nicht Logiker – Jeder Athener ist
Grieche – Ein Grieche ist nicht Logiker. Die Besonderheiten dieser
Figur:

– Die kleinere Prämisse ist immer eine bejahende Aussage.

– Der Schlusssatz ist immer eine partikuläre Aussage.

– Die Schlüsse nach der dritten Figur sind im Zusammenhang mit
dem Erkennen des Partikulären wichtig. Im Unterschied zu den
Schlüssen nach der zweiten Figur werden in diesen Schlüssen
Subjekte miteinander verglichen. Im Unterschied zu den Schlüs-
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sen nach der ersten Figur wird hier nicht das Prädikat einer
Klasse auf Elemente dieser Klasse übertragen. Es wird behaup-
tet, dass eins der Prädikate ein mögliches Charakteristikum der
Klasse ist, die durch das andere Prädikat definiert wird, da die-
ses Charakteristikum auf einen Teil der Klasse zutrifft. Dass der
Schluss partikulär ist, zeigt, dass die Möglichkeit, das Prädikat
dieser Klasse zuzusprechen, auf einen weiter nicht definierten
Teil der Klasse beschränkt ist.

– Die Bedeutung dieser Figur besteht in der Möglichkeit, den
Schlusssatz, den man beim Schließen gewinnt, für die Wider-
legung einer allgemeinen Aussage durch einen Ausnahmefall zu
verwenden. Erhält man als Schluss eine wahre partikuläre Aus-
sage, kann man daraus die Falschheit der allgemeinen Aussage
derselben Materie folgern.

Vierte Figur. Einer der Modi dieser Figur ist Dimaris : Einige Lo-
giker sind Engländer – Alle Engländer sind Europäer – Einige Eu-
ropäer sind Logiker. Die Entdeckung dieser Figur als einer besonde-
ren Figur des Syllogismus wurde vermeintlich, wie Bocheński zeigt
([Boch70], 24.30–24.34) Galen zugeschrieben. Ihre Regeln und Mo-
di wurden ausführlich im 13. Jahrhundert vom Albalag formuliert
([Boch70], 32.25–32.32). Die Besonderheiten dieser Figur sind fol-
gende.

– Wenn die größere Prämisse eine bejahende Aussage ist, dann ist
die kleinere Prämisse allgemein.

– Wenn eine der Prämissen verneinend ist, dann ist die größere
Prämisse allgemein.

2.3.5 Allgemeine Regeln des Syllogismus

Diese Regeln gelten für alle Figuren des Syllogismus. Ein Verstoß
gegen eine dieser Regeln macht den Schluss fehlerhaft. Sie bilden
einen Bestandteil eines metalogischen Systems, das durch die Be-
schreibung von Syllogismen schon bei Aristoteles zustande kommt
([Boch70], 92). Verschiedene Autoren geben eine unterschiedliche
Anzahl dieser Regeln an. Wir gehen von 10 allgemeinen Regeln des
Syllogismus aus.

Die ersten zwei Regeln betreffen die Anzahl der Termini und
der Aussagen in einem Syllogismus.
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1. Der Syllogismus enthält genau drei Termini – nicht mehr und
nicht weniger.

Hat ein Syllogismus weniger als drei Termini, ist das erstens ein
Verstoß gegen die Definition des mittelbaren Schlusses. Sollte ein
solcher Schluss drei Aussagen enthalten, könnte das auch einen Ver-
stoß gegen die Forderung implizieren, dass der Schlusssatz eine neue
Aussage im Vergleich zu den Prämissen sein muss. Wenn ein Syl-
logismus mehr als drei Termini enthält, dann ist entweder über-
haupt kein Schluss möglich (wenn das Subjekt und das Prädikat
des Schlusses in den Prämissen in eine Beziehung zu verschiedenen
Termini gebracht werden), oder es wurden einige Prämissen ausge-
lassen, und was als einfacher Syllogismus erscheint, ist ein verkürz-
ter Polysyllogismus. Ein Beispiel eines solchen: Alle Menschen sind
sterblich – Alle Athener sind Griechen – Alle Athener sind sterb-
lich. Ausgelassen ist hier die Prämisse Alle Griechen sind Menschen
und der Schluss aus dieser und der ersten Prämisse Alle Griechen
sind sterblich, der als größere Prämisse für den gegebenen Schluss
dient.

2. Der Syllogismus enthält genau drei Aussagen.

Diese Regel folgt aus der Definition des Syllogismus und aus der
ersten Regel. Da ein Syllogismus genau drei Termini enthält, von
denen in jeder Prämisse und im Schluss zwei verschiedene vorkom-
men, würde eine kleinere Anzahl von Aussagen bedeuten, dass ent-
weder eine Prämisse oder der Schluss fehlt. Eine größere Anzahl von
Aussagen könnte bedeuten (wenn man den trivialen Fall des mehr-
maligen Vorkommens einer Prämisse und den schon besprochenen
Fall eines verkürzten Polysyllogismus ausschließt), dass im Syllogis-
mus Aussagen mit derselben Materie aber verschiedener Qualität,
Quantität oder Reihenfolge der Termini vorkommen, was implizie-
ren könnte, dass der eindeutige Schluss nicht möglich ist.

Zwei weitere Regeln betreffen die Distribuiertheit der Termini
in Prämissen und im Schlusssatz des Syllogismus. Ein Syllogismus
muss ein gültiger Schluss für alle Aussagen sein, die seine Prämiss-
en und Schlusssatz bilden können. Deswegen betrachtet man das
Prädikat einer allgemein bejahenden und einer partikulär bejahen-
den Aussage in der Theorie eines einfachen kategorischen Syllogis-
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mus als nicht distribuiert.

3. Der mittlere Terminus muss zumindest in einer der Prämissen
distribuiert sein.

Die Beziehung zwischen dem Subjekt des Schlusses und seinem
Prädikat wird in dem Syllogismus auf Grund der Beziehungen des
Subjekts und des Prädikats zu dem mittleren Terminus festgestellt.
Nehmen wir an, dass dieser in beiden Prämissen nicht distribuiert
ist. Dann ist die Beziehung der äußeren Termini nur zu einem Teil
des Umfangs vom mittleren Terminus bekannt (definiert). Da in
diesem Fall die Situation möglich ist, dass S und P Relationen zu
verschiedenen sich nicht schneidenden Teilen des Umfangs von M
haben, kann man nicht auf ihre Beziehung zueinander mit Sicher-
heit schließen.

4. Wenn der größere oder der kleinere Terminus in den Prämissen
nicht distribuiert ist, kann er auch im Schluss nicht distribuiert
sein.

Wenn ein äußerer Terminus in der entsprechenden Prämisse
nicht distribuiert ist, bedeutet das, dass die Beziehung nur eines
Teils seines Umfangs zu dem mittleren Terminus bekannt ist. Da
in dem Syllogismus die Beziehung zwischen den äußeren Termini
ausschließlich durch deren Beziehungen zu dem mittleren Terminus
festgestellt wird, kann im Schluss der andere äußere Terminus nur
in eine Beziehung zu dem besagten Teil des Umfangs des nicht-
distribuierten Terminus gebracht werden. Die Gültigkeit dieser Re-
gel soll uns folgendes Beispiel verdeutlichen. Nehmen wir den gegen
diese Regel verstoßenden Syllogismus: Alle Logiker untersuchen die
Gesetze des logischen Schließens – Alle Logiker sind Menschen –
Jeder Mensch untersucht die Gesetze des logischen Schließens. Der
gegebene Schluss ist nicht begründet, weil der Terminus Menschen
in der kleineren Prämisse als Prädikat einer bejahenden Aussage
nicht distribuiert ist. Der Umfang des Terminus Logiker schöpft
den Umfang des Terminus Menschen nicht aus. Im Schluss bringen
wir aber den ganzen Umfang des Terminus Menschen, von dem uns
als Ganzem nichts bekannt ist, in eine Beziehung zu dem größeren
Terminus.
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Die anderen Regeln bestimmen die Verbindung zwischen Qua-
lität und Quantität der Prämissen und des Schlusssatzes.

5. Wenn beide Prämissen verneinend sind, kann man aus ihnen
keinen Schluss ziehen.

Sind beide Prämissen verneinend, dann werden der Umfang des
Subjekts des Schlusses und des mittleren Terminus, sowie des Prädi-
kats und des mittleren Terminus (oder Teile ihrer Umfänge) ausein-
ander gebracht. In diesem Fall ist kein eindeutiger Schluss möglich,
da sich S und P schneiden, ausschließen oder sogar subordinieren
können.

6. Wenn ein Schluss aus den Prämissen möglich ist, und eine Prä-
misse verneinend ist, dann ist der Schlusssatz auch verneinend.

Ist eine Prämisse verneinend, dann ist der Umfang des äußeren Ter-
minus, mit dem er in der Prämisse und im Schluss (Regel 4 ) vor-
kommt, aus dem Umfang des mittleren Terminus (oder seinem Teil)
ausgeschlossen. Selbst dann, wenn der mittlere Terminus in der ver-
neinenden Prämisse nicht distribuiert ist, lässt sich keine Behaup-
tung über die Beziehung zwischen dem fraglichen äußeren Terminus
und dem restlichen Umfang des mittleren Terminus aufstellen. Der
Grund dafür liegt in den logischen Beziehungen zwischen Aussagen
der gleichen Materie und der Annahme, dass die Prämissen eines
Syllogismus wahre Aussagen sind. Von der Wahrheit einer parti-
kulär verneinenden Aussage können wir weder auf die Wahrheit der
allgemein verneinenden noch auf die Wahrheit der partikulär beja-
henden Aussage schließen. Wenn aber ein Schluss möglich ist, ist die
andere Prämisse des Syllogismus bejahend (Regel 5 ). Unabhängig
davon, ob diese Prämisse allgemein oder partikulär ist, schneiden
sich die Umfänge des mittleren Terminus und des in der bejahenden
Prämisse vorkommenden äußeren Terminus. Ist nun der mittlere
Terminus in der verneinenden oder in beiden Prämissen distribu-
iert, muss man gerade den Teil des Umfangs des in der bejahenden
Prämisse vorkommenden äußeren Terminus, der mit dem Umfang
des mittleren Terminus zusammenfällt, aus dem Umfang des ande-
ren äußeren Terminus ausschließen. Ist der mittlere Terminus in der
bejahenden Prämisse distribuiert und in der verneinenden nicht dis-
tribuiert, kann aus den oben angegebenen Gründen nichts über die
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Beziehung des in der verneinenden Prämisse vorkommenden Ter-
minus zu dem ganzen Umfang des mittleren Terminus behauptet
werden, und folglich muss der Umfang dieses äußeren Terminus aus
dem Teil des Umfangs des anderen äußeren Terminus ausgeschlos-
sen werden. Also muss der Schluss in beiden Fällen verneinend sein.

7. Aus zwei bejahenden Prämissen kann man nie einen verneinen-
den Schluss gewinnen.

Nehmen wir an, dass der Schluss verneinend ist und die beiden
Prämissen bejahend. Dann ist das Prädikat des Schlusses das Prädi-
kat einer allgemein verneinenden oder partikulär verneinenden Aus-
sage und aus dem ganzen Umfang des Subjekts oder aus einem Teil
dieses Umfangs ausgeschlossen. Das Prädikat einer verneinenden
Aussage ist außerdem distribuiert. In der größeren Prämisse ist das
Prädikat dementsprechend auch distribuiert (Regel 4 ). Das ist in
folgenden Fällen möglich. Erstens, wenn das Prädikat des Schlus-
ses das Prädikat der größeren Prämisse ist und diese eine partikulär
verneinende oder allgemein verneinende Aussage ist. In diesem Fall
ist eine der Prämissen offenbar eine verneinende Aussage, was der
Annahme widerspricht und die Regel bestätigt. Im zweiten Fall ist
das Prädikat des Schlusses in der größeren Prämisse das Subjekt
einer allgemein bejahenden Aussage. Das bedeutet, dass der mitt-
lere Terminus in dieser Prämisse nicht distribuiert ist, und er muss
daher (nach der Regel 3 ) in der kleineren Prämisse distribuiert sein.
Ist die kleinere Prämisse bejahend, impliziert das, dass das Subjekt
den mittleren Terminus und folglich das Prädikat subordiniert. Das
Subjekt soll außerdem im Schluss nicht distribuiert sein. Um aber
einen Schluss zu bekommen, in dem das Prädikat von einem Teil
des Umfangs des Subjekts ausgeschlossen wird, muss man etwas
von diesem Teil des Umfangs des Subjekts wissen. Da aber dieser
Teil als Teil des Prädikats einer allgemein bejahenden Aussage un-
bestimmt bleibt, muss der Schluss in diesem Fall bejahend sein, was
der Annahme widerspricht.

8. Aus zwei partikulären Prämissen kann man keinen richtigen
Schluss bekommen.

Angenommen die beiden Prämissen sind partikulär und ein Schluss
aus ihnen wäre möglich, dann müsste eine der Prämissen verneinend
sein, damit der mittlere Terminus distribuiert wäre. In diesem Fall
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müsste aber auch der Schluss verneinend sein (Regel 6 ), und somit
das Prädikat des Schlusses distribuiert. Distribuiertheit des Prädi-
kats im Schluss bedeutet aber, dass es auch in der größeren Prämisse
distribuiert sein muss (Regel 4 ). Wenn die Prämissen dabei par-
tikulär sind, dann kann die größere Prämisse nur eine partikulär
verneinende Aussage sein, deren Prädikat der größere Terminus ist.
Als das Subjekt einer partikulären Aussage ist der mittlerer Ter-
minus in der größeren Prämisse nicht distribuiert. Da das Prädikat
des Schlusses sich von dem mittleren Terminus unterscheidet (der
Regel 1 entsprechend), muss der mittlere Terminus das Prädikat
der kleineren Prämisse sein. Diese ist ihrerseits, wie schon gezeigt
wurde, auch eine partikulär verneinende Aussage, denn nur diese
Qualität garantiert die Distribuiertheit des Prädikats der Aussage.
Somit sind beide Prämissen verneinend, was nach der Regel 5 die
Möglichkeit eines Schlusses ausschließt.

9. Wenn ein Schluss möglich ist, und eine der Prämissen parti-
kulär ist, dann kann der Schluss nur partikulär sein.

Nehmen wir an, dass ein allgemeiner Schluss aus den gegebenen
Prämissen möglich ist. Der Schluss kann eine allgemein bejahende
oder eine allgemein verneinende Aussage sein. Wenn der Schluss ei-
ne allgemein bejahende Aussage ist, muss das Subjekt des Schlusses
in der kleineren Prämisse distribuiert sein und keine Prämisse darf
verneinend sein. Somit wäre die kleinere Prämisse allgemein (SaM),
und der mittlere Terminus wäre nicht distribuiert. Er müsste dann
in der größeren Prämisse distribuiert sein, also hätte dann die größe-
re Prämisse die Form MaP , und beide Prämissen wären dann all-
gemein. Wenn der Schluss eine allgemein verneinende Aussage ist,
sind sein Subjekt und Prädikat beide im Schluss und folglich in
beiden Prämissen distribuiert. Außerdem muss eine der Prämissen
verneinend sein. Wenn einer der äußeren Termini des Syllogismus
das Subjekt einer allgemein bejahenden Aussage ist, ist der mittle-
re Terminus in dieser Aussage nicht distribuiert. Also muss dieser
Terminus das Prädikat einer partikulär verneinenden Aussage sein,
was Nicht-Distribuiertheit des Subjekts dieser Prämisse nach sich
zieht. Das Subjekt der verneinenden Prämisse ist aber ein äuße-
rer Terminus und muss folglich distribuiert sein. Also muss diese
Prämisse eine allgemein verneinende Aussage sein. Somit führt die
Annahme, dass unter den gegebenen Bedingungen der Schluss nicht
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partikulär ist, zu einem Widerspruch.

10. Wenn die größere Prämisse partikulär ist, und die kleinere Prä-
misse verneinend, ist ein Schluss unmöglich.

Sei die größere Prämisse partikulär, und die kleinere Prämisse ver-
neinend. Daraus folgt, dass die größere Prämisse bejahend ist (Re-
gel 5 ), und der Schlusssatz – verneinend (Regel 6 ). In einer ver-
neinenden Aussage ist das Prädikat immer distribuiert, aber in ei-
ner partikulär bejahenden – nicht distribuiert. Das Prädikat des
Schlusssatzes ist dementsprechend in der größeren Prämisse nicht
distribuiert. Dann ist dieser Terminus auch im Schlusssatz (Regel
4 ) nicht distribuiert. Also ist ein Schluss unmöglich.

2.3.6 Die erste Figur des Syllogismus. Reduktion auf die
erste Figur

Die Syllogistik ist das erste axiomatische logische System. Als Axio-
me dieses Systems können die Syllogismen einer der Figuren die-
nen. Hauptsächlich betrachtet man als Axiome die Syllogismen der
ersten Figur. Alle anderen Syllogismen kann man dann aus diesen
Axiomen ableiten. Die Idee der Ableitbarkeit eines Syllogismus aus
einem anderen findet ihren Ausdruck in dem Begriff Reduktion auf
(eine der Figuren, insbesondere auf) die erste Figur. Das Wesen
der Reduktion besteht darin, dass man die Gültigkeit des Schlus-
ses nach einem Syllogismus durch Umwandlung des Syllogismus in
einen der Syllogismen beweisen kann, die als Axiome angenommen
werden. Da die erste Figur des Syllogismus für die vollkommens-
te Figur des Syllogismus gilt, bevorzugt man diese Syllogismen als
Axiome.

Die erste Figur des Syllogismus unterliegt außer den allgemeinen
noch folgenden besonderen Regeln.

1. Die kleinere Prämisse ist eine bejahende Aussage. Wäre die
kleinere Prämisse verneinend (. . .S sind nicht M), müsste der
Schluss auch verneinend sein (Regel 6 ), also die Form . . .S sind
nicht P haben. Also müsste dann auch das Prädikat in der
größeren Prämisse distribuiert sein, was nur dann möglich ist,
wenn diese Prämisse verneinend ist (. . .M sind nicht P ). Aber
wenn die größere Prämisse auch verneinend ist, ist der Schluss
unmöglich (Regel 5 ). Also ist die Annahme falsch.
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2. Die größere Prämisse ist eine allgemeine Aussage. Wäre die
größere Prämisse partikulär, dann wäre der mittlere Terminus in
dieser Prämisse nicht distribuiert (als Subjekt einer partikulären
Aussage). Aber dann wäre der mittlere Terminus auch in der
kleineren Prämisse nicht distribuiert (als Prädikat einer beja-
henden Aussage). Dann wäre der mittlere Terminus in beiden
Prämissen nicht distribuiert, und der Schluss wäre unmöglich
(Regel 3 ). Also muss die größere Prämisse allgemein sein.

Man kann 64 Modi der ersten Figur (wie bei jeder anderen Fi-
gur) konstruieren, je nachdem welche Aussagen man als Prämissen
und als Schlusssatz nimmt:

AAA AEA AIA AOA

AAE AEE AIE AOE

AAI AEI AII AOI

AAO AEO AIO AOO

EAA EEA EIA EOA

EAE EEE EIE EOE

EAI EEI EII EOI

EAO EEO EIO EOO

IAA IEA IIA IOA

IAE IEE IIE IOE

IAI IEI III IOI

IAO IEO IIO IOO

OAA OEA OIA OOA

OAE OEE OIE OOE

OAI OEI OII OOI

OAO OEO OIO OOO

Von diesen fallen alle Modi mit den Prämissen EE, EO, OO,
OE nach der Regel 5 weg; alle Modi mit den Prämissen II, IO,
OI – nach der Regel 8 ; alle Modi mit den Prämissen IE – nach der
Regel 10 ; alle Modi mit den Prämissen IA, OA – nach der zweiten
Regel der 1. Figur; von den übrigen – alle Modi mit den Prämissen
AE, AO – nach der ersten Regel der 1. Figur. Die Modi AAE, AAO,
AIE, AIO verstoßen gegen die Regel 7, die Modi EAA, EAI, EIA,
EII – gegen die Regel 6, die Modi AIA und EIE – gegen die Regel
9.
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Es bleiben also folgende richtige Modi:

AAA – Alle M sind P , alle S sind M , also: alle S sind P (Bar-
bara),

AAI – Alle M sind P , alle S sind M , also: einige S sind P
(Barbari),

EAE – Alle M sind nicht P , alle S sind M , also: alle S sind
nicht P (Celarent),

EAO – Alle M sind nicht P , alle S sind M , also: einige S sind
nicht P (Celaront),

AII – Alle M sind P , einige S sind M , also: einige S sind P
(Darii),

EIO – Alle M sind nicht P , einige S sind M , also: einige S
sind nicht P (Ferio).

Der Beweis eines Syllogismus oder die Reduktion des Syllogis-
mus auf die erste Figur kann mittels drei Operationen durchgeführt
werden – durch Umkehrung der Aussage, Auswechseln der Prämiss-
en oder Zurückführung auf das Unmögliche.

Als Beispiel eines Beweises durch Umkehrung betrachten wir die
Reduktion eines Syllogismus der dritten Figur.

Darapti Alle Athener sind Griechen.
Jeder Athener ist ein Mensch.
Einige Menschen sind Griechen.

MaP
MaS
SiP

Durch Umkehrung mit Einschränkung der kleineren Prämisse
bekommt man:

Alle Athener sind Griechen.
Einige Menschen sind Athener.
Einige Menschen sind Griechen.

MaP
SiM
SiP ,

also Darii.

Die Modi Baroco (2. Figur) und Bocardo (3. Figur) reduziert
man auf die 1. Figur durch Zurückführung auf das Unmögliche.
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Baroco Jeder Athener ist Grieche.
Einige Logiker sind nicht Griechen.
Einige Logiker sind nicht Athener.

Wenn man annimmt, dass der Schluss falsch ist, dann wird die
dem Schluss widersprechende Aussage behauptet: Alle Logiker sind
Athener. Die größere Prämisse des Schlusses besagt: Jeder Athener
ist Grieche. Nun hat man zwei allgemein bejahenden Aussagen, die
man als Prämissen eines Syllogismus betrachten kann. Offenbar ist
der mittlere Terminus, der in beiden Prämissen vorkommt, der Ter-
minus Athener. Diese Prämissen, aus denen man einen Schluss über
die Beziehung zwischen den Termini Logiker und Griechen ziehen
kann, sind schematisch in der Reihenfolge S −M , M − P darstell-
bar. Durch Einführung der passenden Reihenfolge der Prämissen
bekommt man den Modus Barbara der 1. Figur:

Alle Athener sind Griechen.
Alle Logiker sind Athener.
Alle Logiker sind Griechen.

Die Behauptung, die man als Schluss aus den gegebenen Prämiss-
en bekommt, steht im Widerspruch zu der kleineren Prämisse von
Baroco. Also muss eine der Prämissen des gewonnenen Syllogis-
mus verworfen werden. Die größere Prämisse war von Anfang an
als wahr angenommen, also wird der Widerspruch zum Schlusssatz
von Baroco verworfen. Folglich gilt der Schluss nach Baroco.

Zu bemerken ist, dass Aristoteles einen syllogistischen Schluss
als eine Aussage betrachtete, die man in der Sprache der modernen
Aussagenlogik als eine Implikation formulieren kann. Diese Auf-
fassung lässt die Möglichkeit zu, einen wahren Schluss auch aus
falschen Prämissen, also zufällig zu ziehen. Deswegen wird von
den Prämissen des Syllogismus oft verlangt, dass diese wahr sein
müssen. Diese Forderung steht auch im Einklang mit der späteren
Auffassung eines Syllogismus, die diesen als eine Regel darstellt.
Auf diese Darstellungsform des Syllogismus deutet auch eine der
hier gebrauchten Schreibweisen, welche die Prämissen des Syllogis-
mus von seinem Schluss durch einen Strich trennt.
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MaP − SaM − SaP MaP − SeM − ?

Schema 6
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Übungsaufgaben

13. Bestimmen Sie, Modi welcher Figur die folgenden Syllogismen
sind.

a) Wenn A keinem B zukommt, B aber einigem C, dann muss
A einigem C nicht zukommen.

b) Wenn M jedem N zukommt und einem X nicht zukommt,
muss N einem X nicht zukommen.

c) Es komme A jedem B und B einigem C zu, so muss A
einigem C zukommen.

d) Wenn R jedem S, P aber einem (zukommt), dann muss P
einem R zukommen.

e) Wenn M jedem N , aber keinem X zukommt, wird auch X
keinem N zukommen.

f) Wenn R jedem S zukommt, P aber einem nicht zukommt,
dann muss P einem R nicht zukommen.

14. Beweisen Sie folgende Modi des Syllogismus durch Reduktion
auf die erste Figur.

Fresison: Kein Rabe ist weiß
Einiges Weiße ist Lebewesen
Einige Lebewesen sind nicht Raben

Camestres: Alle P sind M
Alle S sind nicht M
Alle S sind nicht P

Felapton: Alle M sind nicht P
Alle M sind S
Einige S sind nicht P

Disamis : Einige M sind P
Alle M sind S
Einige S sind P

Beachten Sie dabei Folgendes. Der Name, der links vor dem
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Syllogismus steht, ist in Wirklichkeit ein
”
Rezept“ der Reduk-

tion. Der erste Buchstabe bezeichnet den Modus der 1. Figur,
dessen Name mit demselben Buchstaben anfängt, und auf den
der gegebene Modus reduziert wird. Die Vokale charakterisie-
ren die Qualität und Quantität von Prämissen und Schluss, ih-
re Reihenfolge entspricht der Reihenfolge, in der die Aussagen
im Syllogismus vorkommen. Der erste der Vokale steht für die
größere Prämisse, der zweite – für die kleinere, und der drit-
te – für den Schluss. Die Buchstaben

”
s“,

”
p“ und

”
m“ weisen

darauf hin, dass auf den Aussagen, deren Bezeichnungen links
vor diesen Buchstaben stehen, folgende logische Operationen
durchgeführt werden sollen. Für einfache Umkehrung steht

”
s“,

”
p“ – für Umkehrung mit Einschränkung und

”
m“ für das Aus-

wechseln der Prämissen.

15. Beweisen Sie den folgenden Modus durch Zurückführung auf
das Unmögliche.

Bocardo: Einige Athener sind nicht Logiker
Alle Athener sind Griechen
Einige Griechen sind nicht Logiker
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3 Von einfachen kategorischen Aussa-

gen zu konstruktiven Objekten

3.1 Was ist ein logischer Kalkül?

In der Syllogistik werden Subjekt und Prädikat einer Aussage als
Elemente (Terme) einer Relation betrachtet. Obwohl diese Relation
im allgemeinen nicht definiert wird, gelten die Terme dieser Relation
oft als

”
gleichberechtigt“. Sie gehören demselben logischen Typ an,

zumindest in dem Sinn, dass sie beide Begriffe sind. Fraglich ist
dies in Bezug auf einzelne Begriffe oder Individuen, die nicht im
Inhalt anderer Begriffe vorkommen können. Aber dass das Subjekt
und Prädikat einer Aussage in einem allgemeinen Fall denselben
logischen Typ haben, realisiert sich insbesondere in der Gültigkeit
einer solchen logischen Operation wie Umkehrung.

Diese
”
Gleichberechtigung“ des Subjekts und Prädikats einer

Aussage wird allerdings durch die Unterscheidung von Extension
und Intension eines Begriffs in Frage gestellt. Extension und Inten-
sion als Charakteristika eines Begriffs wurden 1662 zum ersten Mal
im Werk von Nicole und Arnauld, das später unter dem Namen

”
Logik von Port-Royal“ bekannt wurde, definiert. Begriffe wurden

darin als Vorstellungen oder Ideen aufgefasst. In allgemeinen Be-
griffen gibt es zweierlei: den Inhalt und die Ausdehnung. Der Inhalt
besteht aus Attributen, welche der Begriff in sich schließt, und wel-
che man ihm nicht nehmen kann, ohne ihn zu vernichten. Die Aus-
dehnung (Umfang) eines Begriffs bilden die Subjekte, welchen die-
ser Begriff zukommt, und die man auch die Untergeordneten eines
allgemeinen Terminus nennt, welcher in Hinblick auf sie als über-
geordnet bezeichnet wird. Bocheński behauptet, dass man ähnliche
Unterscheidungen schon vor Nicole und Arnauld bei Porphyr und in
der Scholastik (z. B. bei Petrus Hispanus) finden kann. Porphyr un-
terscheidet zwischen dem was und dem wie des Prädizierens. Sagt
man über Sokrates, dass er ein Mensch ist, geht es darum, was So-
krates ist. Ein Begriff wird einem anderen untergeordnet, und man
kann über die Beziehungen zwischen Begriffsumfängen sprechen.
Sagt man über einen Menschen, dass er ein vernünftiges Lebewe-
sen ist, dann handelt es sich hier darum, wie der Mensch ist, also
um den Inhalt dieses Begriffs. In der Scholastik unterscheidet man
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zwischen einfacher und personaler Supposition (wenn das Begriffs-
wort mehrere Subjekte (gleicher Art) oder ein einzelnes Subjekt
bezeichnet). Im ersten Fall geht es um Begriffswörter, die Prädika-
te vertreten, im zweiten Fall handelt es sich um Begriffswörter für
Subjekte. Diesen Unterschied kann man laut Bocheński als Unter-
scheidung zwischen der Extension und ihren Trägern (Subjekten)
einerseits und der Intension und ihren Trägern (Prädikaten) ande-
rerseits betrachten ([Boch70], 24.06, 27.17, 36.10).

Die Begriffe der Extension und Intension bieten die Möglichkeit,
die Wahrheitsbedingungen zu definieren, indem man die Begriffsre-
lation, die in der einfachen kategorischen Aussage gegeben ist, mit
Hilfe dieser zwei Begriffe interpretiert. Man kann behaupten, dass
eine allgemein bejahende kategorische Aussage dann wahr ist, wenn
der Umfang des Subjekts in den Umfang des Prädikats fällt, und
der Inhalt des Prädikats völlig in den Inhalt des Subjekts eingeht.
Ist eine allgemein-bejahende kategorische Aussage wahr, dann fällt
ein Teil des Inhalts des Subjekts mit dem Inhalt des Prädikats der
Aussage zusammen. Die Möglichkeit einer solchen Auffassung ver-
leitet zu der Idee, die Relation zwischen Subjekt und Prädikat einer
Aussage als Relation der Identität aufzufassen.

Diese Auffassung birgt mehrere Gefahren in sich. Eine dieser
Gefahren, auf die Cohn 1908 hinweist, ist die Möglichkeit, jede
Aussage als Aussage über Identität zu betrachten, und somit ihres
Erkenntniswertes zu berauben. Man kann den Erkenntniswert einer
Aussage mit dem Gedanken (oder dem Sinn), den der der Aussa-
ge entsprechende Satz ausdrückt, verbinden und verlangen, dass ein
Gedanke dann einen Erkenntniswert besitzt, wenn die Gedankentei-
le (die auch in anderen Gedanken als deren Bestandteile vorkommen
können) sich voneinander unterscheiden. Werden zwei verschiede-
ne Gedankenteile in eine Relation zueinander gebracht, kann man
daraus auf die Relation eines dieser Gedankenteile zu den Begrif-
fen schließen, die ihrerseits bestimmte Beziehungen zu dem anderen
Gedankenteil aufweisen. Handelt es sich bei den Gedankenteilen um
ein und denselben Begriff, kann man aus ihrer Gleichsetzung keine
neuen Erkenntnisse gewinnen. Das könnte erklären, warum Cohn
die Idee der Identität von Subjekt und Prädikat einer Aussage als
Gleichsetzung der Bedeutung eines Satzes mit dem Fehlen jeglicher
Bedeutung interpretiert. Cohn erläutert dies am Beispiel des Satzes

”
Caesar überschritt den Rubikon“. Spricht dieser Satz die Identität
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des Subjekts und des Prädikats aus, dann entspricht dem wahren
logischen Sinn des gegebenen Satzes

”
Der den Rubikon überschrei-

tende Caesar ist der den Rubikon überschreitende Caesar“.
”
Man

setzt das vollzogene Urteil in den Gegenstand des Subjekts hinein,
macht dieses so zur Voraussetzung eines inhaltlosen Scheinurteils
und glaubt, das Problem der Erkenntnis aus der Welt geschafft zu
haben, weil man es nicht mehr sieht“ ([Cohn08], 87).

Die andere Gefahr dieser Auffassung liegt in dem Versuch, ei-
ne Relation mit Hilfe des Begriffs des Prädikats zu erklären. Wenn
man Relationen für sekundär in Bezug auf Prädikate hält, leitet
man eine Relation letztendlich aus der Identität von Subjekt und
Prädikat ab. Bei einer solchen Ableitung wird insbesondere jede
Relation zwischen zwei Gegenständen auf die Relation der Iden-
tität zwischen ihren Prädikaten zurückgeführt. Russell analysierte
das Wesen solcher Versuche 1898, 1899 und 1903. Seiner Meinung
nach realisieren sich diese Versuche auf zweifache Weise. Einerseits
– als die so genannte

”
monadistische“ Theorie, deren Repräsen-

tanten nach Russells Meinung Leibniz und Lotze sind, andererseits
– als die so genannte

”
monistische“ Theorie, die von Spinoza und

Bradley vertreten wird ([Rus03], § 212). Nach der
”
monadistischen“

Theorie betrachtet man eine Relation zwischen zwei Objekten als
Summe von Eigenschaften dieser Objekte. Stehen die Objekte a und
b in einer Relation R zueinander, dann kommt einem der Objekte
die Eigenschaft r1, und dem anderen die Eigenschaft r2 zu (es gilt
ar1 und br2), die zusammen die Relation R ergeben. Laut der

”
mo-

nistischen“ Theorie ist die fragliche Relation eine Eigenschaft des
Ganzen, das aus a und b besteht (wir können aRb als (ab)r darstel-
len, wobei r für eine Eigenschaft des Ganzen steht). Die wichtigsten
Argumente Russells gegen diese Theorien, deren Grund er in der
Gleichsetzung von Subjekt und Prädikat einer Aussage sieht, sind
folgende.

Wären Subjekt und Prädikat einer Aussage identisch, dann
könnte man jede Aussage in zwei Aussagen zerlegen, von denen
eine dem Subjekt und die andere dem Prädikat ein gemeinsames
Prädikat zusprächen. Solche Aussagen hätten aber einen anderen
Inhalt im Vergleich zu der ursprünglichen Aussage (sie wären beide
von ihr verschieden). Andererseits würde jeder Versuch, eine Relati-
on zwischen zwei Subjekten auf ihre Prädikate zurückzuführen, eine
Relation zwischen diesen Prädikaten voraussetzen, was ins Unend-
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liche führen kann. Das wäre der Fall, wenn z. B. die Behauptung,
dass ein Objekt a größer als ein anderes Objekt b ist, zu einer
Behauptung über die Größen von a und b führte. Sogar wenn man
zustimmt, dass das Subjekt einer Aussage ihr Prädikat enthält, und
damit die Identität zwischen dem Prädikat und einem Teil des In-
halts des Subjekts anerkennt, ist eine solche Anerkennung zugleich
das Zugeständnis, dass in dieser Aussage in der Tat eine Relati-
on (zwischen dem Ganzen und einem seiner Teile) behauptet wird.
Schließlich besteht die Möglichkeit, eine kategorische Aussage so
umzuformulieren, dass ihr Prädikat selbst als Subjekt einer anderen
Aussage auftritt. Eine solche Aussage kann man ihrer Bedeutung
nach mit der ursprünglichen Aussage gleichsetzen, was zeigt, dass
das Prädikat einer Aussage auch als ein selbständiges Objekt auf-
treten kann, das in eine Beziehung zu anderen Objekten tritt. Ein
Beispiel, das diese letzte Idee bestätigen sollte, ist die Möglichkeit,
den Satz

”
Dieser Stuhl ist rot“ in die Form

”
Röte ist diesem Stuhl

prädizierbar“ zu überführen ([Rus1899], 141).

Was diese Kritik zeigt, ist die Notwendigkeit einer neuen Auf-
fassung der Struktur der Aussage. Diese neue Auffassung realisiert
sich in der Idee, dass die Beschreibung der Struktur einer Aussage
mit Hilfe der Begriffe Subjekt und Prädikat nicht universal ist. Die
Notwendigkeit der weiteren Verwirklichung dieser Idee wird auch
durch die Entdeckung bestätigt, dass die formalen Mittel, die uns
die traditionelle formale Logik bietet, nicht für jede Aufgabe ausrei-
chen. Insbesondere kann man ausschließlich auf der Basis des vor-
handenen logischen Wissens nicht allen Arten von mathematischen
Aussagen eine passende logische Struktur zuordnen. Schwierigkei-
ten entstehen u. a. bei der Analyse der Aussagen über Anzahl und
über Ordnungsrelationen.

Frege gibt eine neue Auffassung der logischen Struktur einer
Aussage. Bekanntlich teilt Frege jede Aussage in eine Funktion und
ihre Argumente auf. Da nun sowohl eine einfache als auch eine zu-
sammengesetzte Aussage eine solche Struktur aufweist, bedarf man
in erster Linie einer neuen Auffassung von Extension und Intension,
die auch dem Unterschied zwischen Einfachem und Zusammenge-
setztem Rechnung trägt. Begriffe und Beziehungen sind für Fre-
ge wahrheitswertige Funktionen, deren Werte man mit besonderen
Namen bezeichnet, die ihrerseits als zusammengesetzte Ausdrücke
(Beschreibungen) aufgefasst werden können. Der Name eines Wahr-
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heitswertes (der Satz), den man als einen Komplex betrachtet, be-
schreibt die Bedingungen, unter denen der besagte Wahrheitswert
das Wahre oder das Falsche ist, und gibt damit das Gesetz der Zu-
ordnung wieder, nach dem bestimmten Argumenten ein bestimmter
Wahrheitswert zugeordnet wird. Dass die Begriffe und Beziehun-
gen sowie andere logische Funktionen wahrheitswertige Funktionen
sind, zeigt, dass die Begriffe der Extension und Intension erweitert
werden können. Es besteht die Möglichkeit, nicht nur über Extensi-
on und Intension der Begriffe (Komponenten der Struktur von ele-
mentaren Aussagen) zu sprechen, sondern auch über die Extension
und Intension anderer wahrheitswertiger Funktionen (Komponen-
ten der Struktur von komplexen Aussagen) oder ihrer Werte.

Das logische Prädikat einer Aussage, das Frege als eine wahr-
heitswertige Funktion betrachtet, hält er nicht für einen selbständi-
gen Gegenstand. Der Grund dafür liegt aber nicht darin, dass sich
das Prädikat als ein Teil des Inhalts des Subjekts auffassen lässt.
Die logischen Beziehungen zwischen dem Subjekt und dem Prädikat
einer Aussage sind bei Frege immer durch eine bestimmte Relation
zwischen diesen beschreibbar.

Die erste Erkenntnis, von der Frege ausgeht, ist die Ersetzbar-
keit des Subjekts einer Aussage durch andere Subjekte (sowie des
Prädikats durch andere Prädikate). In dem Satz

”
Sokrates ist ein

Mensch“ kann man den Namen
”
Sokrates“ durch einen anderen

Namen, z. B.
”
Platon“ ersetzen, oder sogar durch eine Variable,

wodurch man den Ausdruck einer Funktion
”
x ist ein Mensch“

bekommt. Im Unterschied zu einem Satz hat ein Funktionsaus-
druck keine bestimmte Bedeutung, und die Werte, die eine gege-
bene Funktion durchläuft, hängen mit den Werten des Funktions-
arguments zusammen.

Frege behauptete die Objektivität von Aussagen (in seiner Ter-
minologie Gedanken). In Die Grundlagen der Arithmetik (1884) be-
trachtet Frege Begriffe und Gegenstände als

”
objektive Vorstellun-

gen“, die unabhängig von Empfindungen, Anschauungen und Vor-
stellungen sind. Sie sind aber nicht unabhängig von der Vernunft,
in der Frege anscheinend den Träger der Form des Urteilens sieht.
Objektive Vorstellungen sind unsinnlich und für alle Menschen die-
selben. Sobald man den objektiven Charakter von Gegenständen
(von Werten der Argumente) und Werten einer wahrheitswertigen
Funktion anerkennt, wird man mit der Frage konfrontiert, wodurch
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die
”
objektiven Vorstellungen“ (Gegenstände und Begriffe) zusam-

mengesetzt werden. Wird die Zusammensetzung von Bestandteilen
eines Gedankens zu einer Einheit von einem Subjekt vollzogen, kann
die Objektivität des Gedankens, d. h. seine Zugänglichkeit für an-
dere erkennende Subjekte, verloren gehen. Deshalb legt Frege den
Grund für die Einheitlichkeit eines Gedankens in das Zusammen-
zusetzende selbst. Die Quelle der besagten Einheitlichkeit erhält
den Namen

”
Ungesättigtsein“ eines Begriffs, und diese Auffassung

der Einheitlichkeit führt dazu, dass der Begriff als eine Funktion
betrachtet wird.

Der formallogischen Tradition entsprechend unterscheidet Fre-
ge in dem genannten früheren Werk zwischen Inhalt und Umfang
eines Begriffs. Nach Frege besteht ein Begriff aus Merkmalen, die
ihrerseits Eigenschaften von Gegenständen sind. Den Umfang des
Begriffs definiert er nicht. Es wird davon ausgegangen, dass es
klar sei, was der Begriffsumfang ist. An Stelle des Wortes

”
Be-

griffsumfang“ benutzt Frege auch das Wort
”
Begriff“. Frege ver-

gleicht Begriffe miteinander, indem er fragt, welcher der zwei zu
vergleichenden Begriffe umfassender ist, als der andere, wobei um-
fassender zu sein nicht dasselbe ist, wie (der Anzahl nach) größer
zu sein. Da die meisten Begriffe als Prädikate auftreten können,
spricht Frege über die Anwendbarkeit der den Prädikaten entspre-
chenden

”
Eigenschaftswörter“ für die Beschreibung und Definiti-

on der Gegenstände, denen man das jeweilige Prädikat prädizie-
ren kann. Schon hier findet man also die Idee eines

”
linguistischen

Shifts“ vor. Diese Idee führt schließlich dazu, dass Umfang und In-
halt als Eigenschaften eines Zeichens (also als seine semiotischen
Charakteristika) angesehen werden und nicht als Eigenschaften des
Korrelats eines Zeichens. Daher rührt auch die Tradition, die ins-
besondere mit Carnap in Verbindung gebracht wird, nicht nur die
Bedingungen für die Extensions- und Intensionsgleichheit zu formu-
lieren und dadurch Extension und Intension zu definieren, sondern
auch festzulegen, was Extension und Intension eines Zeichens ist.
Ein Eigenschaftswort (Begriffswort) bezeichnet einen Begriff, den
man mit dem Umfang des Begriffs gleichsetzen kann. Geht man au-
ßerdem von Freges Idee aus, zwischen den Merkmalen eines Begriffs
(Eigenschaften der Gegenstände, die unter den Begriff fallen) und
seinen Eigenschaften (Beziehungen zu anderen Begriffen) zu unter-
scheiden, dann kann man auch die traditionellen Termini

”
Umfang“
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und
”
Inhalt“ interpretieren. Den Inhalt eines Begriffswortes kann

man mit Merkmalen des Begriffs gleichsetzen, während Eigenschaf-
ten eines Begriffs (seine Beziehungen zu anderen Begriffen, die dem
Begriff

”
eine Zahl beilegen“), als Umfang des Begriffs beschrieben

werden. Dadurch, dass Frege zumindest seit 1891 zwischen dem
Sinn und der Bedeutung eines Zeichens unterscheidet, vollendet er
den Übergang zur neuen Auffassung der Extension und Intensi-
on. Indem man Argumente einer wahrheitswertigen Funktion sowie
ihre Werte als Gegenstände beschreibt, gewinnt man die Möglich-
keit, die Extension eines Funktionszeichens mit solchen Argumenten
und Werten zu identifizieren. Die Intension eines Funktionszeichens
kann man dann in den besonderen Bedingungen sehen, unter denen
einem bestimmten Argument der Funktion ein Wahrheitswert zuge-
ordnet wird. Obwohl Frege diese Idee nicht äußert, widerspricht sie
nicht seinen Thesen. Betrachtet man wie Frege die Beziehung zwi-
schen dem Gegenstand und dem Begriff, unter den der Gegenstand
fällt als die grundlegende logische Beziehung, wird es klar, dass man
die Beziehungen zwischen Begriffen, die den Umfang eines Begriffs
charakterisieren, auf Beziehungen zwischen Bedingungen, unter de-
nen Argumente einer wahrheitswertigen Funktion eine andere Funk-
tion erfüllen und somit als ihre Argumente auftreten, zurückführen
kann. Man kann behaupten, dass Argumente und Werte einer wahr-
heitswertigen Funktion ihren Umfang vollständig charakterisieren.
Die Wahrheitsbedingungen, die für eine Funktion gelten, beschrei-
ben, wann ein als Argument der Funktion auftretender Gegenstand
die Funktion erfüllt. Das ist dann der Fall, wenn der Gegenstand
die Eigenschaften hat, die in die Definition der Funktion eingehen.

Russell vertritt eine sich von Freges Auffassung unterscheiden-
de Ansicht über die Struktur der Aussage. Für ihn sind Prädikate
ihrem logischen Status nach selbständige Objekte, die selbst als
logische Subjekte von Aussagen auftreten können, und die, wenn
sie einem Subjekt zugesprochen werden, in eine Beziehung zu die-
sem gebracht werden, die man auch als eine Relation, nämlich die
Relation der Prädikation, definieren kann.

Die Einheitlichkeit einer Aussage (Proposition) liegt nach Rus-
sell in der Beziehung zwischen ihren Bestandteilen. Jeden Versuch,
eine Aussage in ein Argument und eine Behauptung über dieses zu
zerlegen (was Russell Frege zuschreibt), hält Russell für geschei-
tert, weil die Behauptung über den Gegenstand keine Einheitlich-
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keit besitzt und in weitere Bestandteile zerfällt, sobald man diese
Behauptung ihres Gegenstands beraubt ([Rus03], § 482). Identifi-
ziert man die Behauptung mit einer Funktion, bedeutet das, dass
die Funktion ohne ihren Definitionsbereich (ohne ihre Argumente)
als Funktion gar nicht auftreten kann. Sieht man diesen Definitions-
bereich als die Klasse der Gegenstände an, die die Funktion erfüllen,
dann ist die Funktion durch diese Klasse bestimmt (definiert). Das
heißt auch, dass man jeder Klasse von Gegenständen eine Funktion
(ein Prädikat) zuordnen kann. Die Möglichkeit einer solchen Zuord-
nung ist aber zweifelhaft, was insbesondere die berühmte Antino-
mie Russells (1902) zeigt. Obwohl Russells Feststellung bezüglich
des Zusammenhangs zwischen der Funktion und ihrem Definitions-
bereich als eine Anerkennung von Freges Idee des Ungesättigtseins
angesehen werden kann, die sich insbesondere in Freges Forderung
äußert, dass man den Ausdruck einer Funktion nicht ohne einen
Platzhalter für ihr Argument gebrauchen darf, wird sie bei Russell
der Ausgangspunkt für eine andere Auffassung.

Die einzige Möglichkeit, die logische Struktur einer Aussage
so zu erfassen, dass sie auch für die Entwicklung eines Formalis-
mus Grund bietet, sieht Russell in dem Begriff einer propositiona-
len Funktion (auch Aussagenfunktion oder Satzfunktion genannt).
Russells propositionale Funktionen sind Freges Begriffen ähnlich,
unterscheiden sich aber von diesen in erster Linie ihrem Wert nach.
Während der Wert eines Begriffs für ein bestimmtes Argument ein
Wahrheitswert ist, ist der Wert einer propositionalen Funktion für
ein bestimmtes Argument eine Aussage (Proposition), die die Ei-
genschaft besitzt, wahr oder falsch zu sein. Wenn sich die propo-
sitionale Funktion durch eine Form ausdrücken lässt, z. B.

”
x ist

ein Mensch“, werden die Werte der propositionalen Funktion durch
Sätze (konstante Sprachausdrücke also) ausgedrückt. Die Bezeich-
nung für einen der Werte der gegebenen propositionalen Funktion
ist der Satz

”
Sokrates ist ein Mensch“. Der Satz lässt sich als wahr

oder falsch einschätzen, während die propositionale Funktion alle
möglichen Sätze der Gestalt

”
. . . ist ein Mensch“ durchläuft, die

sowohl wahr als auch falsch sein können. Die propositionale Funk-
tion kann man daher als ein Instrument betrachten, mit dessen
Hilfe man den Gegenstandsbereich in den Definitionsbereich dieser
Funktion und sein Komplement teilt. Wenn man den Definitions-
bereich einer propositionalen Funktion als eine Klasse betrachtet,
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dann kann man diese Klasse als alle diejenigen Gegenstände defi-
nieren, welche die fragliche propositionale Funktion erfüllen, was
wiederum heißt: als alle diejenigen Gegenstände, für die der Wert
der propositionalen Funktion eine wahre Aussage ist ([Rus03], §
84). Es fragt sich allerdings, in welcher Beziehung nun propositio-
nale Funktionen und Begriffe zueinander stehen.

Russell unterschied vor 1903 die extensionale und intensiona-
le Seiten eines Begriffs. Die Extension eines Begriffs betrachtet er
als eine Klasse – als Gesamtheit von Gegenständen, die man ent-
weder durch Aufzählung oder durch ein sie definierendes Prädikat
vorgeben kann. Begriffe (Prädikate) sind für Russell Bedeutungen
(
”
meanings“), die eine wesentlich prädikative Natur haben und kei-

ne Gegenstände sind, die man zählen kann. Obwohl Prädikate (Be-
deutungen) sich voneinander unterscheiden, kann man einem Prädi-
kat keine Zahl zuordnen. Elemente einer Klasse sind nach Russell
Objekte, die dieselbe Bedeutung (oder Inhalt) haben, d. h. mögli-
che Subjekte ein und desselben Prädikats sind ([Rus1898], 175).
Man kann sowohl etwas über die Beziehungen zwischen zwei Be-
deutungen als auch über die Beziehungen zwischen Klassen (oder
zwischen Elementen von Klassen und Klassen) aussagen. Dabei ist
die Aussage über eine Beziehung zwischen Prädikaten ein Grund für
die Aussage über Beziehungen zwischen Objekten. Wenn wir sagen

”
Rot impliziert Farbe“, bedeutet der Satz, dass rote Gegenstände

farbig sind. Man kann eine solche Aussage über Implikation als
eine Aussage betrachten, die die Intension der relevanten Begriffe
betrifft, und die Aussage über Zugehörigkeit zu einer Klasse – als
Aussage, die die Extension der Begriffe betrifft.

Beide Aussagearten kann man aus Aussagen mit traditioneller
Subjekt-Prädikat-Struktur gewinnen, oder aber auf Aussagen mit
dieser Struktur zurückführen. Dabei sind die auf solche Weise er-
haltenen Aussagen äquivalent, d. h. sie haben ein und denselben
Wahrheitswert. Von dem intensionalen Standpunkt aus gesehen,
kommt die Relation der Implikation zwischen Prädikaten dadurch
zustande, dass die Definition eines Begriffs (also sein Inhalt) ein
Teil der Definition des anderen Begriffs ist. Die extensionale Inter-
pretation der Beziehung zwischen zwei Begriffen realisiert sich in
der Behauptung über die Denotate dieser Begriffe, d. h. über die
Gegenstände, die die Begriffe in den Aussagen vertreten ([Rus03],
§ 73). Der Begriff einer propositionalen Funktion ermöglicht eine
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Definition der Extension und Intension, die die Besonderheiten der
beiden Interpretationen berücksichtigt. Wird ein Subsumtionssatz
(z. B.

”
Alle Griechen sind Menschen“) als Bezeichnung für eine pro-

positionale Funktion betrachtet, die man in der Satzform (
”
Wenn

x ein Grieche ist, dann ist x ein Mensch“) ausdrücken kann, dann
überführt eine solche Satzform die Relation zwischen zwei Begriffs-
inhalten, die sich auch im Satz

”
Griechesein impliziert Menschsein“

formulieren lässt, in eine Relation zwischen zwei Aussageformen
(oder aber in eine Aussageform), die sich in diesem Fall als for-
male Implikation erweist. Eine propositionale Funktion, wie x ist
ein Grieche, definiert außerdem eine Klasse, nämlich die Klasse
solcher Objekte, welche die propositionale Funktion erfüllen. Die
logischen Beziehungen zwischen Begriffen (zwischen ihren Inhalten
und ihren Umfängen) werden dank der Einführung von proposi-
tionalen Funktionen durch logische Funktoren repräsentiert, was
auch die Idee Russells bestätigt, dass man diese Beziehungen durch
die Beziehungen der Wahrheitswerte der Werte von propositiona-
len Funktionen charakterisieren kann. Die Möglichkeit einer solchen
Charakterisierung führt dazu, dass die Extension und Intension zu
Charakteristika von wahrheitswertigen Funktionen werden. Die An-
erkennung des Seins der Begriffe wird nicht durch die Einführung
des Instrumentariums von propositionalen Funktionen aufgehoben,
weil die für Russell zu dieser Zeit typische intensionale Auffassung
von Aussagen durch eine solche Aufhebung in Frage gestellt würde.
Aber dieses Instrumentarium erweist sich auf dem Gebiet des For-
malismus als fruchtbares Mittel, um ohne eine Annahme der Exis-
tenz solcher Entitäten wie Begriffe auszukommen. Man kann von
nun an jedes Prädikat und jede Relation in ihren prädikativen und
beziehenden Funktionen mit Hilfe einer propositionalen Funktion
darstellen. Die Möglichkeit, die Relationen zwischen Begriffen mit
Hilfe von propositionalen Funktionen aufzufassen, zeigt, was Ber-
nays konstatiert, wenn er behauptet, dass die mathematische Logik
keine Logik von Extensionen (

”
Umfangs-Logik“) sein soll, weil Be-

griffsumfänge durch die Relationen zwischen Funktionen (insbeson-
dere propositionalen Funktionen) definiert werden können ([Ber27],
13).

Die Erkenntnis, dass die Struktur einer Aussage mit Hilfe des
Begriffs einer Funktion dargestellt werden kann, ist aber nicht das
Einzige, was die Gestalt der modernen logischen Theorien bestimmt.
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Die zweite Idee, die wir schon ansprachen, ist die Idee des Aufbaus
einer besonderen formalisierten Sprache, der die Auffassung von der
funktionalen Struktur der Aussage zugrunde liegt.

Der Aufbau eines Kalküls, insbesondere eines logischen, beruht
darauf, dass man die logischen Gegenstände in der Form, die auch
bestimmte Operationen auf diesen Objekten erlaubt (z. B. in der
Form von Formeln), als konstruktive Objekte betrachtet. Wenn
die logische Untersuchung sich mit solchen konstruktiven Objek-
ten (bzw. mit ihrer Konstruktion) beschäftigt und auf der Abstrak-
tion der potentiellen Unendlichkeit beruht, ohne die Abstraktion
der aktuellen (also schon realisierten und als ein Ganzes gedach-
ten) Unendlichkeit anzunehmen, spricht man von der Anwendung
konstruktiver Methoden in der Logik.

Einer derjenigen Autoren, die die konstruktiven Methoden an-
wenden, ist Hilbert. Auf dem 3. Internationalen Mathematiker-
Kongress 1904 berichtete er über sein Vorhaben bezüglich der Be-
gründung der Arithmetik ([Hil05]). Die Ideen, die Hilbert hier äußer-
te, werden später (1958) von Fraenkel und Bar-Hillel als radika-
les, ihrem Sinn nach intuitionistisches, Programm angesehen. Dabei
muss man merken, dass sich der Intuitionismus (insbesondere Neo-
Intuitionismus) erst später, mit der Dissertation Brouwers (1907),
als eine Richtung in der Begründung der Mathematik ankündigte
([FBL84], 217). Von den Problemen von Freges Theorie ausgehend,
die Hilbert für eine Studie hält, die tiefer in das Wesen der ganzen
Zahl eindringt als viele andere, möchte er von vornherein die Un-
tersuchung der Grundlagen der Arithmetik so ausrichten, dass eins
ihrer Hauptziele die Vermeidung derartiger Widersprüche wie Rus-
sells Antinomie ist. Der Weg, den Hilbert zur Realisierung dieses
Ziels wählt, ist die Methode, die er selbst als axiomatisch bezeich-
net. Da er es für kaum möglich hält, die logischen Grundbegriffe,
die man für die Begründung der Arithmetik benutzt (solche wie den
Begriff der Menge), ohne jegliche Erwähnung einiger arithmetischer
Begriffe (wie des Begriffs der Zahl) zu verwenden, glaubt er, ein Er-
folg auf diesem Gebiet dadurch zu erzielen, dass man die Gesetze
der Logik und Arithmetik gleichzeitig entwickelt. Einen Gegenstand
unseres Denkens bezeichnet Hilbert als ein Gedankending, das man
auch durch ein Zeichen benennt. Der Aufbau der Theorie fängt für
Hilbert mit der Betrachtung der so genannten einfachen Gedanken-
dinge an. Er betrachtet zunächst zwei Gedankendinge als einfach,
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das Gedankending eins, durch das Zeichen
”
1“ bezeichnet, und das

Gedankending gleich, das durch
”
=“ bezeichnet wird. Obwohl die

Rede von den Gedankendingen ist und nicht von Zeichen, die für
diese stehen, erfüllen die Zeichen in dieser Theorie die Rolle von
Objekten, so dass wir von nun an über diese Objekte (über Zei-
chen) sprechen können, ohne uns um die Korrelate dieser Objekte
(um die Gedankendinge) kümmern zu müssen. Nun kann man jedes
der zwei einfachen Objekte sowohl mit sich selbst als auch mit dem
jeweils anderen kombinieren. Diese Möglichkeit spricht nochmals
dafür, dass die Objekte der Theorie Zeichen sind, die man beliebig
oft reproduzieren kann. Zwei Kombinationen kann man hinsicht-
lich ihrer Gestalt vergleichen. Bei dem Vergleichen untersucht man,
welches einfache Zeichen, wie oft und in welcher Reihenfolge in den
zu vergleichenden Kombinationen vorkommt. Alle Kombinationen
unterteilt man in zwei Klassen – Seiende und Nichtseiende. Jede
Kombination gehört zu einer dieser Klassen, und eine Kombina-
tion, die ein Element einer Klasse ist, kann nicht zu der anderen
gehören. Diese Unterteilung von Kombinationen kann man verschie-
den auffassen (z. B. als eine Unterteilung von Ausdrücken in die, die
aus den Elementen des Alphabets einer Sprache wohlgebildete Aus-
drücke dieser Sprache bilden, und in Zeichenfolgen, die der Spra-
che nicht angehören). Hilbert dient diese Unterteilung zunächst als
Grund für die semantische Interpretation von Aussagen.

Parallel dazu werden von Hilbert Aussagen als weitere Objekte
eingeführt, nämlich als logische Objekte. Als eine einfache Aussage
a wird die Aussage über die Zugehörigkeit eines der oben erwähn-
ten Objekte (eines der einfachen Objekte oder einer ihrer Kombi-
nationen) zu einer der Klassen von Seienden oder Nichtseienden
genommen. Aus einfachen Aussagen kann man mit Hilfe solcher
logischen Operatoren wie Negation, Implikation und Disjunktion,
sowie durch Quantifizierung, weitere Aussagen konstruieren. Sobald
man sowohl einfache Objekte als auch ihre Kombinationen in eine
gemeinsame Kategorie von Objekten einreiht, kann man für diese
Objekte eine Relation (einen Begriff) definieren. In Hilberts Theo-
rie ist das der Begriff gleich, und seine Definition wird durch zwei
Axiome gegeben, deren Interpretation auf der Interpretation von
Aussagen basiert. Axiome enthalten Variablen und Formen, wel-
che jeweils für Objekte und für Aussagen über Objekte stehen. Für
Hilbert sind Axiome auch Aussagen. Ein Axiom kann nämlich als



111

Prämisse einer
”
Folgerung aus dem Axiom“ auftreten, die aus dem

Axiom durch Ersetzen der Variablen, die in dem Axiom vorkom-
men, durch einfache Objekte oder ihre Kombinationen gewonnen
wird. Wir sehen also, dass Hilbert als eine Schlussregel seiner Theo-
rie die Substitutionsregel benutzt. Die zweite Regel ist ein Analogon
des Kettenschlusses. Diese Regel kann man, Hilberts Terminologie
folgend, so formulieren: Ist eine Reihe der Folgerungen gegeben,
so dass die Voraussetzungen der letzen Folgerung der Reihe mit
den Behauptungen der voranstehenden Folgerungen zusammenfal-
len, dann ist die Aussage, deren Voraussetzung die Voraussetzungen
der besagten voranstehenden Folgerungen, und die Behauptung –
die Behauptung der letzten Folgerung ist, auch eine Folgerung (aus
den Axiomen der Theorie). Das Wort

”
Folgerung“ wird von Hilbert

dabei auf zweifache Weise gebraucht – einerseits für die Bezeichnung
einer Implikation, – andererseits für die Bezeichnung eines Schlus-
ses oder eher eines Theorems, das aus den Axiomen nach einer der
genannten Regeln abgeleitet wird. Axiome selbst werden von Hil-
bert als Folgerungen, die keine Voraussetzungen haben, gedeutet
und in der Klasse der Seienden zusammengefasst.

Zu den schon eingeführten Objekten fügt Hilbert noch drei wei-
tere Objekte hinzu. Das sind die unendliche Menge (u), das Folgen-
de (oder der Nachfolger) (f) und die begleitende Operation (f ′).
Die Relationen zwischen diesen Objekten und den Objekten, die
wir schon betrachteten, werden durch drei weitere Axiome definiert.
Alle diese drei Objekte können wir als Zeichen für bestimmte Ope-
rationen auf den schon eingeführten Objekten und ihren Kombina-
tionen betrachten. Durch Hinzufügen des Objekts u links vor einem
Objekt x bekommt man ein weiteres Objekt ux, das man als

”
ein

Element der unendlichen Menge“ bezeichnet, durch Hinzufügen des
Objekts f links vor einem Objekt bekommt man ein weiteres Ob-
jekt, das man als

”
Nachfolger dieses Objekts“ bezeichnet. Während

der Operator f auf ein Element der unendlichen Menge ux ange-
wandt wird, um das Gedankending zu beschreiben, das auf das
fragliche Element der unendlichen Menge folgt, wird der Operator
f ′ auf diejenigen Objekte angewandt, auf die man anschließend den
Operator u anwendet. Eines der neu eingeführten Axiome legt ins-
besondere fest, dass die unendliche Menge u ein in Bezug auf die
Operation f erstes Element enthält und dass dieses Element 1 ist.
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Die nächste Frage, die Hilbert in Bezug auf Objekte seiner Theo-
rie stellt, ist, ob irgendwelche Folgerungen aus den Axiomen der
Theorie zu einem Widerspruch führen können. Wie diese Frage be-
antwortet wird, zeigt Hilbert am Beispiel eines der Axiome, nämlich
des hier schon erwähnten Axioms, das besagt, dass es in der unend-
lichen Menge u kein Element gibt, dem das Element dieser Menge
1 folgt. Die Aufgabe besteht darin, dass man prüft, ob ein Objekt,
das den restlichen Axiomen der Theorie entsprechend als eine Kom-
bination der fünf der Theorie zugrundegelegten einfachen Objekte
konstruiert ist, die Verneinung des fraglichen Axioms erfüllen kann.
Hilbert nimmt an, dass dies möglich wäre. In einem solchen Fall
entspräche aber das Objekt, welches die Verneinung des fraglichen
Axioms erfüllt, nicht den restlichen Axiomen. Jedes Objekt, das
diese erfüllt, ist so konstruiert, dass die Gleichungen, in denen es
vorkommt, homogen sind. Das bedeutet, dass die beiden Objekte,
die links und rechts von dem Gleichheitszeichen in einer Gleichung
vorkommen, Kombinationen von gleicher Anzahl der einfachen Ob-
jekte sind. Auf das Objekt, das den Widerspruch zu dem fraglichen
Axiom erfüllt, trifft das nicht zu. Das Axiomensystem, das Hilbert
hier aufstellt, führt also zu keinem Widerspruch, und alle Objekte,
die man aus diesen Axiomen gewinnt (auch die Aussagen), können
in die Klasse der Seienden eingereiht werden. Die Klasse der Nicht-
seienden ist die Klasse solcher Objekte, welche die Axiome nicht
erfüllen. Axiome der Theorie kann man also als Vorschriften be-
trachten, nach denen man Objekte in diese zwei Klassen einteilt. In
Bezug auf diese Einteilung wird die

”
Richtigkeit“ von Aussagen ge-

prüft, die in der Theorie formuliert werden. Ist die Aussage richtig,
dann kann man diese als ein Axiom einfügen, ohne dadurch einen
Widerspruch zu erhalten. Hilbert skizziert auch den Beweis der Wi-
derspruchsfreiheit des Mengenbegriffs. Diese Widerspruchsfreiheit
wird insbesondere dadurch erreicht, dass der Begriff des Elements
einer Menge als ein

”
Erzeugnis des Mengenbegriffs selbst erscheint“

([Hil05], 182). Wir werden sehen, dass Hilbert hier Ideen äußert,
die im wesentlichen die konstruktiven Prinzipien des Aufbaus eines
Kalküls (sowie seiner Interpretation) in der Logik charakterisieren.

Konstruktiv heißen Objekte, die entweder unmittelbar gegeben
und repräsentiert sind, oder durch ein effektives Verfahren aus zu-
vor gebildeten Objekten aufgebaut sind. Die konstruktiven Objekte
erster Art heißen atomare konstruktive Objekte. Sie werden durch
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die Liste ihrer Repräsentanten vorgegeben. Diese Liste heißt Alpha-
bet. Das Alphabet gehört zu den Konventionen, die man mit der
Sprache verbindet. Das Alphabet ist eine Sammlung von Objekten
(Buchstaben oder Symbolen), die man in unbegrenzter Anzahl re-
produzieren kann. Die andere Art von Sprachkonventionen bilden
die Regeln, die zeigen, wie man aus den Elementen eines Alphabets
bestimmte Kombinationen aufbauen kann, die auch Ausdrücke hei-
ßen. In der Logik benutzt man am häufigsten die Begriffe Term
und Formel. Sie identifiziert man mit den konstruktiven Objekten,
die man aus den Elementen des Alphabets bildet. Die Natur von
konstruktiven Objekten spielt für den Aufbau des Kalküls eher ei-
ne geringe Rolle. Es wird von solchen Objekten verlangt, dass sie
diskret und fest sind, so dass man ein jedes als Ganzes betrachten,
es von den anderen Objekten unterscheiden oder mit diesen iden-
tifizieren kann. Wir sahen, dass schon Hilbert (indem er einfache
Gedankendinge sowie ihre Kombinationen einführt) die Existenz
von zwei Arten konstruktiver Objekte anerkennt.

Die Objekte, die man aus den Elementen eines Alphabets baut,
werden mittels einer fundamentalen induktiven Definition einge-
führt. Eine solche Definition enthält direkte und indirekte Punkte.
Mittels direkter Punkte stellt man fest, was der zu konstruierende
Gegenstand ist. Indirekte Punkte enthalten die Behauptung, dass
nur diejenigen Gegenstände, die laut den direkten Punkten konstru-
iert werden, unter diese Definition fallen. Für gewöhnlich enthält
eine solche Definition nur einen indirekten Punkt. Direkte Punkte
der Definition kann man ihrerseits in Basispunkte und induktive
Punkte unterteilen. Basispunkte zählen die Ausgangsobjekte auf.
Die induktiven geben die Konstruktionsweise an, durch die man
neue Objekte aus den schon konstruierten bildet.

Ein typisches Beispiel der induktiven Definition eines konstruk-
tiven Objekts ist die folgende Definition. Wir gehen davon aus,
dass das uns vorgegebene Alphabet A eines (formalen) Systems
aus einem Element besteht, A = {1}. Nun wollen wir eine Ziffer
definieren.

i. 1 ist eine Ziffer.

ii. Ist a eine Ziffer, dann ist a1 auch eine Ziffer.

iii. Ein Ausdruck dieses Systems ist dann und nur dann eine Ziffer,
wenn er den Punkten i–ii entsprechend konstruiert ist.
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Punkte i bis ii dieser Definition sind direkt, wobei i der Basis-
punkt ist, und ii – ein induktiver Punkt. Dieser Punkt gibt eine
Operation an, mittels der man aus einer Ziffer eine andere Zif-
fer konstruieren kann. Jede Ziffer können wir als Vertreter einer
natürlichen Zahl interpretieren.

Haben wir eine Menge von konstruktiven Objekten durch eine
fundamentale induktive Definition eingeführt, können wir auf die-
ser Menge Prädikate und Funktionen definieren, die insbesondere
in der Konstruktionsweise des Objekts ihre Rechtfertigung finden.
Solche Objekte werden durch nicht-fundamentale induktive Defi-
nitionen eingeführt. Die fundamentale und die nicht-fundamentale
Definition stimmen in der Struktur überein, der Unterschied ist
rein funktional. Fundamentale Definitionen führen die Gegenstände
der Betrachtung ein, nicht-fundamentale – Prädikate auf den schon
konstruierten Objekten. Ist das System, das wir auf solche Weise
aufbauen, axiomatisch, dann werden einige Prädikate der Objekte,
die wir betrachten, durch Axiome angegeben.

Sowohl fundamentale als auch nicht-fundamentale induktive De-
finitionen rechtfertigen die Diskussionsweise, die auf der Methode
der mathematischen Induktion basiert, und die für die logischen
Kalküle üblich ist. Die Methode der mathematischen Induktion ist
ein Schluss, der auf folgendem Axiom (oder Prinzip) basiert. Die-
ses Axiom drückt die Haupteigenschaft der Reihe der natürlichen
Zahlen aus: jede nicht leere Menge von natürlichen Zahlen enthält
eine kleinste Zahl. Das Axiom besagt Folgendes. Ist ein Satz S für
eine natürliche Zahl m wahr (oft setzt man m = 0 oder m = 1),
und folgt aus der Annahme, dass S für eine Zahl k wahr ist, wobei
k > m, dass S auch für n = k + 1 wahr ist, dann ist S wahr für
eine beliebige natürliche Zahl. Die Bedeutung dieses Prinzips für
konstruktive Theorien in der Logik liegt insbesondere darin, dass
die mathematische Induktion das Urbild aller Konstruktionen lie-
fert, die auf einer endlichen Anzahl von Prozeduren basieren. Mit-
tels solcher Prozeduren bekommt man Sätze oder Formen, deren
Wahrheitswert (oder Menge der Wahrheitswerte) man durch eine
endliche Anzahl von Tests feststellen kann.

Unter einem Kalkül auf dem System von konstruktiven Objek-
ten versteht man ein System von Regeln, das erlaubt, auf diesen Ob-
jekten irgendwelche streng bestimmte Operationen durchzuführen.
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Jeder Kalkül ist also ein syntaktisches System, das Ausdrücke
einer gewissen, durch Definitionen vorgegebenen Art enthält. Die-
se sind keine beliebigen aus einer natürlichen Sprache entnomme-
nen Wörter oder Sätze, obwohl ohne diese die Formulierung eines
Kalküls und seine Interpretation kaum möglich ist. Die Ausdrücke
des Kalküls sind konstruktive Objekte, was bedeutet, dass sie eine
standardisierte Form haben, und entweder nach gewissen Regeln
aufgebaut sind, oder als Ausgangsobjekte eingeführt wurden. Bei
der Aufstellung eines Kalküls gibt man also erst ein Alphabet an,
das Ausgangssymbole enthält. Mittels einer Regel gibt man eine
oder mehrere konstruktive Operationen vor. Man kann eine solche
Operation in Hinblick auf die Beschaffenheit ihres Ergebnisses auch
als Operation der Konkatenation charakterisieren, die einen Aus-
druck (darunter Satz oder Form) an einen anderen (rechts oder auch
links davon) anknüpft. Die Regeln eines Kalküls kann man in zwei
Arten unterteilen. Die erste Art bilden die konstruktiven Regeln.
Sie legen fest, was ein Ausdruck ist, der aus den Elementen des
Alphabets aufgebaut wird. Die zweite Art besteht aus den Regeln,
welche die Beziehungen zwischen Ausdrücken bestimmen, u. a. wie
man aus einem Ausdruck einen anderen ableiten kann. Alle Aus-
drücke, die nach diesen Regeln aus den Ausgangsausdrücken des
Kalküls ableitbar sind, heißen beweisbar in dem Kalkül. In Bezug
auf eine Regel des Kalküls wird oft die Frage gestellt, ob diese ein
effektives Verfahren zum Gewinnen eines Ausdrucks aus dem ge-
gebenen Ausdruck des Kalküls bestimmt. Das kann man über eine
Regel des Kalküls dann behaupten, wenn die Regel eine solche Rei-
henfolge der Schritte zum Gewinnen eines Ausdrucks des Kalküls
aus einem schon vorgegebenen Ausdruck definiert, dass die Anzahl
dieser Schritte endlich ist.

Einen auf beschriebene Weise aufgebauten Kalkül definiert man
auch als Sprache. Eine solche Sprache ist eine Menge oder ein Sys-
tem wohlgebildeter Ausdrücke, das auch die Regeln der genannten
beiden Arten enthält. Ein solches System nennt man auch

”
forma-

les System“,
”
Kalkül“,

”
Formalismus“,

”
formaler Kalkül“,

”
nicht-

interpretierter Kalkül“,
”
syntaktisches System“ oder

”
formale Spra-

che“. Ein solches System ist
”
zweistufig“ – es enthält einerseits die

primitiven Elemente, aus denen man alle anderen Ausdrücke des
Kalküls bildet, und andererseits zusammengesetzte aus den primiti-
ven Elementen konstruierte Ausdrücke. Der Aufbau einer logischen
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Theorie auf der Basis eines Kalküls besteht in der Beschreibung des
Kalküls und seiner Interpretation. Das Verfahren der logischen De-
duktion ist in einer solchen Theorie in der Form von ausdrücklich
formulierten Regeln der oben beschriebenen zweiten Art (im Ge-
gensatz zu konstruktiven Regeln auch Regeln der Rekonstruktion
genannt) vorgegeben. In diesem Zusammenhang entsteht die Fra-
ge nach der Willkürlichkeit der semantischen Interpretation eines
Kalküls, und anschließend die Frage, inwiefern Logik konventio-
nell ist. Carnap widmete sich 1939 im Buch Foundations of Logic
and Mathematics (Grundlagen der Logik und Mathematik) dieser
Thematik, indem er danach fragte, ob die Regeln logischer Deduk-
tion willkürlich gewählt werden können und ob es tatsächlich eine
Unterscheidung zwischen objektiv richtigen und objektiv falschen
logischen Systemen gibt ([Car73], 40–42). Carnap betrachtet eine
formale logische Sprache (einen Kalkül also) und stellt fest, dass
es prinzipiell zwei Methoden gibt, eine solche Sprache aufzubauen.
Man kann einerseits beliebige Regeln wählen und dann ein seman-
tisches System hinzufügen, welches das System solcher Regeln in-
terpretiert. In diesem Fall ist man bei der Auswahl der Regeln frei.
Ist dann das System solcher Regeln widerspruchsfrei, dann ist ei-
ne wahre Interpretation des Kalküls möglich. Man kann aber einen
logischen Kalkül auch so konstruieren, dass man die Prinzipien der
logischen Deduktion (die Regeln des Kalküls) von einem gegebe-
nen semantischen System ausgehend wählt. In diesem Fall ist man
bei der Auswahl der Deduktionsregeln weniger frei, weil man schon
von einer Bedeutung ausgeht, die man einerseits den Variablen und
Konstanten und andererseits den logischen Funktoren (z. B. Impli-
kation und Negation) zuordnet. In einem solchen Fall versteht man
unter der logischen Sprache eine Menge wohlgebildeter interpretier-
ter Ausdrücke, oder eine solche Menge zusammen mit bestimmten
Verfahren logischer Deduktion. Eine derartige Sprache nennt man
in der Logik

”
formalisierte Sprache“. Eine solche Sprache ist nach

Carnap jedoch auch nicht frei von jeglichen Konventionen.
”
Die Lo-

gik oder die Ableitungsregeln (in unserer Terminologie die syntak-
tischen Übergangsregeln) können willkürlich gewählt werden und
sind daher konventionell, wenn man sie zur Grundlage des Auf-
baus des Sprachsystems macht, und die Interpretation des Systems
später hinzufügt. Andererseits ist ein Logiksystem nichts Willkürli-
ches, sondern entweder wahr oder falsch, wenn für die logischen
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Zeichen schon von vornherein eine Interpretation gegeben ist. Aber
sogar hier sind Konventionen von grundlegender Wichtigkeit; denn
die Basis, auf der man die Logik aufbaut, nämlich die Interpre-
tation der logischen Zeichen (z. B. durch Bestimmung der Wahr-
heitsbedingungen) kann frei gewählt werden“. Die konventionellen
Komponenten im Aufbau eines logischen Systems sollte man nach
Carnaps Meinung beachten, um vorurteilsfrei verschiedene neuere
logische Systeme zu untersuchen.
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3.2 Aussagenkalkül P1

Als Beispiel eines aussagenlogischen Kalküls betrachten wir den
Aussagenkalkül P1, der von A. Church (1956) dargestellt wurde
([Chu56]). Churchs Formulierung basiert auf den Ideen von Quine
(1938) und Wajsberg (1939) und setzt die Anwendung von Kalmars
Methode (1935) für Beweise einiger Metatheoreme des Kalküls vor-
aus. Wir werden eine eigene Numerierung der Axiome, Regeln und
Theoreme angeben, die von der Churchs abweicht. Unsere Darle-
gung des Kalküls wird außerdem in einigen Teilen nicht so detail-
liert sein. Dafür betrachten wir einige Themen, die für Churchs Dar-
stellung von sekundärer Bedeutung waren, die aber für diejenigen
wichtig sind, die sich zum ersten Mal mit einem aussagenlogischen
Kalkül auseinandersetzen.

3.2.1 Basis des Kalküls P1

Das Alphabet des Kalküls P1 (im weiteren auch
”
der Kalkül“ ge-

nannt) besteht aus folgenden primitiven Symbolen.

Erstens enthält es drei uneigentliche Symbole – linke und rechte
Klammer und Implikationszeichen:

( ) ⊃

Zweitens enthält das Alphabet des P1 eine primitive Konstante f .

Der dritte Teil des Alphabets des P1 ist eine unendliche Liste von
Variablen

p q r s p1 q1 r1 s1 p2 q2 . . .

Die Reihenfolge der Variablen in der Liste heißt die alphabetische
Reihenfolge von Variablen.

Die primitive Konstante f und die Variablen sind im Gegensatz
zu den uneigentlichen eigentliche Symbole des Kalküls.

Die konstruktive Regel des Kalküls P1, nach der man seine Aus-
drücke (Formeln) aus Elementen des Alphabets aufbaut, ist durch
die folgende Vorschrift gegeben.
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Definition einer Formel des Kalküls P1

i. Die allein stehende primitive Konstante f ist eine Formel des
Kalküls P1.

ii. Jede allein stehende Variable ist eine Formel des Kalküls P1.

iii. Sind Γ und ∆ Formeln des Kalküls P1, dann ist (Γ ⊃ ∆) eine
Formel des Kalküls P1.

iv. Eine Formel ist dann und nur dann eine Formel des Kalküls
P1, wenn sie den Punkten i–iii dieser Definition entsprechend
konstruiert ist.

Diese Definition, die die Konstruktionsweise der Objekte von
P1 angibt, ermöglicht es, für eine endliche Zeichenfolge beliebiger
Länge festzustellen, ob diese eine Formel des Kalküls ist. Klar ist,
dass eine Formel des Kalküls, die mehr als ein Zeichen enthält,
mit einer linken Klammer beginnt, und mit einer rechten Klammer
endet. Als Beispiel nehmen wir die Zeichenfolge

(((p ⊃ (q ⊃ s)) ⊃ ((p ⊃ q) ⊃ (p ⊃ s))) ⊃ (p ⊃ p))

Nun durchlaufen wir die Klammern. Wir ordnen jeder linken
Klammer die Zahl +1 und jeder rechten die Zahl −1 zu und addie-
ren die Zahlen. Sobald die Summe 1 erreicht, hören wir mit dem
Addieren auf. Ist die Klammer, an der wir aufhörten, zu addieren,
eine linke Klammer, der ein eigentliches Symbol folgt, oder eine
rechte Klammer, die vor einem Implikationszeichen steht, dann ist
das Implikationszeichen, das dem eigentlichen Symbol rechts von
der linken Klammer oder der rechten Klammer folgt, das Hauptim-
plikationszeichen der Formel, wenn die gegebene Zeichenfolge eine
Formel des Kalküls ist. Der Teil der Formel links von dem Hauptim-
plikationszeichen heißt das Antezedens (auch Implikans, Vorder-
glied der Implikation), und der Teil der Formel rechts von ihm das
Konsequens (Implikat oder Hinterglied der Implikation). Die gege-
bene Zeichenfolge ist dann und nur dann eine Formel des Kalküls,
wenn beide durch die Bestimmung des Hauptimplikationszeichens
festgestellten Teile Formeln des Kalküls sind. Die Feststellung, ob
die gegebene Folge eine Formel unseres Kalküls ist, ist somit auf das
Problem reduziert, ob die Teile der Folge, die wir durch Auffinden
des jeweiligen Hauptimplikationszeichens bestimmen, Formeln des
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Kalküls sind. Das Verfahren wird wiederholt, bis man in einer endli-
chen Anzahl der Schritte eine Antwort erreicht. Offenbar gilt, dass,
wenn zumindest einer der besagten Teile der gegebenen Zeichenfol-
ge keine Formel des Kalküls ist, auch die ganze Zeichenfolge keine
Formel des Kalküls ist. In unserem Beispiel ist die 13-te Klammer
diejenige, die vor dem Hauptimplikationszeichen vorkommt, da hier
die Summe 1 durch Addition von +1 und −1 erreicht wird. Hat man
1 erreicht, lässt man die äußeren Klammern (die erste linke und die
letzte rechte) sowie das Hauptimplikationszeichen aus. Jetzt können
wir also zwei Teilfolgen von Zeichen analysieren:

((p ⊃ (q ⊃ s)) ⊃ ((p ⊃ q) ⊃ (p ⊃ s))) und (p ⊃ p)

In der letzten dieser Zeichenfolgen gewinnen wir 1 schon wäh-
rend wir der ersten linken Klammer die Zahl +1 zuordnen. Diese
Klammer wird von einem eigentlichen Symbol gefolgt, nämlich von
einer Variablen. Das Implikationszeichen, vor dem diese Variable
steht, ist das Hauptimplikationszeichen der gegebenen Zeichenfolge.
Da das Antezedens sowie das Konsequens dieser Implikation nach
der Definition (Punkt i) Formeln des Kalküls sind, ist die ganze Zei-
chenfolge (p ⊃ p) auch eine Formel des Kalküls. Die zweite Formel
zerlegen wir zunächst in zwei Teile:

(p ⊃ (q ⊃ s)) und ((p ⊃ q) ⊃ (p ⊃ s))

Jede von diesen Formeln zerlegen wir weiter und gewinnen an-
schließend folgende Ausdrücke, die alle Formeln des Kalküls sind:

p, (q ⊃ s), (p ⊃ q) und (p ⊃ s).

Ist die Anzahl der Symbole in einer Zeichenfolge 0, dann handelt
es sich nicht um eine Formel des Kalküls. Eine Formel aus nur einem
Symbol ist genau dann eine Formel des Kalküls, wenn sie aus einem
eigentlichen Symbol besteht.

Es besteht die Möglichkeit, dass eine vorgegebene Zeichenfolge
irgendwelche Symbole enthält, die im Alphabet von P1 gar nicht
vorkommen (solche wie (x) oder (∃x)), aber diese Möglichkeit wird
von unserer Vorgehensweise berücksichtigt, so dass es unnötig ist,
die Zeichenfolge von vornherein nach

”
unerlaubten“ Symbolen zu

untersuchen.
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Um Schlussregeln des Kalküls zu definieren, führen wir noch ei-
ne Bezeichnung ein, die allerdings nicht zu der Sprache (der Syntax
von P1), die wir konstruieren, gehört, sondern ein Element der Me-
tasprache ist, das wir als eine syntaktische Konvention einführen.
Wir führen die Bezeichnung

”
S |“ für die Operation der Substituti-

on ein. Durch
”
Sb
BA|“ bezeichnet man die Formel, die man aus der

Formel A erhält, wenn man für jedes Vorkommen der Variablen b
in A die Formel B substituiert.

In P1 gibt es zwei primitive Schlussregeln.

R1. Aus (A ⊃ B) und A folgt B.

R2. Ist b eine Variable in A, und B eine Formel des Kalküls,
dann folgt aus A Sb

BA|.

Die erste dieser Regeln ist bekannt als modus ponens. Die For-
mel (A ⊃ B) nennt man die größere Prämisse, A – die kleinere
Prämisse. Das Antezedens der größeren Prämisse muss mit der klei-
neren Prämisse identisch sein. Nur unter dieser Bedingung kann die
Regel angewandt werden.

Die Axiome von P1 sind:

A1. (p ⊃ (q ⊃ p))

A2. ((s ⊃ (p ⊃ q)) ⊃ ((s ⊃ p) ⊃ (s ⊃ q)))

A3. (((p ⊃ f) ⊃ f) ⊃ p)

Das erste Axiom nennt man auch das Gesetz der Behauptung
des Konsequens. Russell bezeichnet es als das Prinzip der Simpli-
fikation. Dieses Axiom kann man als die Behauptung lesen

”
eine

wahre Aussage wird von einer beliebigen Aussage impliziert“. Das
zweite Axiom ist das Selbstdistributivgesetz der (materialen) Im-
plikation. Da jedes Vorkommen einer Variablen in einer Formel des
Kalküls frei ist, kann man im Weiteren von dem Gebrauch des Wor-
tes

”
materiale“ in Bezug auf Implikation absehen, denn in unserem

Kalkül handelt es sich gar nicht um die formale Implikation. Das
dritte Axiom ist das Gesetz der doppelten Negation.

Ein Beweis in P1 ist eine endliche Folge, die aus einer oder
mehreren Formeln des Kalküls besteht, wobei jede dieser Formeln
eine der folgenden Bedingungen erfüllt:
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1. Sie ist eins der drei Axiome des Kalküls.

2. Sie folgt aus zwei in der Folge schon vorkommenden Formeln
nach der Regel modus ponens (R1).

3. Sie folgt aus einer in der Folge schon vorkommenden Formel des
Kalküls durch Substitution (nach R2).

Der Beweis ist ein Beweis der letzten Formel dieser Folge. Eine
Formel des Kalküls heißt ein Theorem, wenn sie einen Beweis hat.

Als Beispiel betrachten wir den Beweis des Theorems

T1. (p ⊃ p)

Das ist das Identitätsgesetz oder das Gesetz der Reflexivität der
Implikation. Der Beweis wird als eine Folge von Zeilen präsentiert.
Dabei wird jede Zeile numeriert. In jeder Zeile steht eine Formel des
Kalküls. Rechts von jeder dieser Formeln wird ein Hinweis darauf
angegeben, wie man die jeweilige Formel gewinnt. Falls man die
Forlmel durch die Anwendung einer der Regeln des Kalküls erhält,
enthält eine solche Angabe neben der Bezeichnung für die Regel
die Nummer (oder die Nummern) einer (oder mehrerer) Zeile(n).
Jede Nummer repräsentiert die Formel, die in der entsprechenden
Zeile steht und die als (eine der) Prämisse(n) der fraglichen Regel
auftritt. Der Beweis des T1 besteht aus 9 Formeln (Zeilen), von
denen die letzte das Theorem selbst ist.

1. ((s ⊃ (p ⊃ q)) ⊃ ((s ⊃ p) ⊃ (s ⊃ q))) A2

2. ((s ⊃ (r ⊃ q)) ⊃ ((s ⊃ r) ⊃ (s ⊃ q))) Sp
r (1)|

3. ((s ⊃ (r ⊃ p)) ⊃ ((s ⊃ r) ⊃ (s ⊃ p))) Sq
p(2)|

4. ((p ⊃ (r ⊃ p)) ⊃ ((p ⊃ r) ⊃ (p ⊃ p))) Ss
p(3)|

5. ((p ⊃ (q ⊃ p)) ⊃ ((p ⊃ q) ⊃ (p ⊃ p))) Sr
q (4)|

6. (p ⊃ (q ⊃ p)) A1

7. ((p ⊃ q) ⊃ (p ⊃ p)) R1 ((5),(6))

8. ((p ⊃ (q ⊃ p)) ⊃ (p ⊃ p)) Sq
(q⊃p)(7)|

9. (p ⊃ p) R1 ((8),(6))

Jedes Axiom des Kalküls ist ein Theorem. Der Beweis eines sol-
chen Theorems besteht nämlich aus einer einzigen Zeile, in der das
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Axiom selbst aufgeschrieben wird. Ein derartiger Beweis entspricht
der Definition des Beweises in P1.

3.2.2 Semantische Interpretation des Kalküls

Bei der semantischen Interpretation des Kalküls P1 geht man da-
von aus, dass sich alle Formeln des Kalküls der oben angespro-
chenen Unterteilung der syntaktischen Kategorien entsprechend in
drei Gruppen einteilen lassen – Konstanten, Variablen und Formen.
Den Ausdrücken jeder dieser Kategorien entspricht eine besondere
semantische Beziehung. Die Konstante bezeichnet das ihr zugespro-
chene Objekt, für den aussagenlogischen Kalkül ist das einer der
Wahrheitswerte. Die Variable kann als ihren Wert einen der beiden
Wahrheitswerte annehmen, sie bezeichnet also im Unterschied zu
der Konstante keinen bestimmten Wahrheitswert. Der Form ent-
spricht ein System der Wahrheitswerte, jeder von denen durch die
Werte der Bestandteile der Form definiert ist, die selbst einen be-
stimmten Wahrheitswert bezeichnen oder einen der Wahrheitswerte
annehmen. Dem Kalkül P1 wird folgende semantische Interpretati-
on gegeben.

1. Die Konstante f bezeichnet den Wahrheitswert falsch.

2. Alle Variablen des Kalküls sind Variablen, die einen der Wahr-
heitswerte wahr oder falsch als ihre Werte annehmen.

3. Die Form, die aus einer allein stehenden Variablen besteht, hat
den Wert wahr, falls die Variable den Wahrheitswert wahr an-
nimmt, und falsch, falls die Variable den Wahrheitswert falsch
annimmt.

4. Seien A und B Konstanten. Dann bezeichnet (A ⊃ B) den
Wahrheitswert wahr, wenn B den Wahrheitswert wahr bezeich-
net oder A – den Wahrheitswert falsch. Sonst bezeichnet
(A ⊃ B) den Wahrheitswert falsch.

5. Sei A eine Form und B eine Konstante. Bezeichnet B den
Wahrheitswert wahr, dann nimmt (A ⊃ B) für einen beliebi-
gen Wahrheitswert von A den Wert wahr an. Bezeichnet B den
Wahrheitswert falsch, dann nimmt (A ⊃ B) den Wert wahr
an, wenn A den Wahrheitswert falsch annimmt, sonst nimmt
(A ⊃ B) den Wert falsch an.
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6. Sei nun A eine Konstante und B eine Form. Bezeichnet A den
Wahrheitswert falsch, dann nimmt (A ⊃ B) den Wert wahr für
einen beliebigen Wert von B an. Bezeichnet A den Wahrheits-
wert wahr, dann hat(A ⊃ B) denselben Wahrheitswert, den B
hat.

7. Sind A und B beide Formen, dann nimmt (A ⊃ B) den Wert
wahr an, wenn A den Wahrheitswert falsch oder B den Wahr-
heitswert wahr hat, sonst nimmt (A ⊃ B) den Wert falsch an.

3.2.3 Definitionen

Zunächst treffen wir die Vereinbarung, dass wir im Folgenden die
äußeren Klammern auslassen werden. Diese Konvention betrifft
nicht, wie bei Church, alle übrigen Klammern.

Als Definitionszeichen benutzen wir das Zeichen
”
→“, das wir

als
”
steht für“ lesen. Das definiendum (das, was definiert wird) steht

immer links vom Pfeil, das definiens – immer rechts davon. Das
Zeichen

”
→“ gehört nicht zu der Syntax des Kalküls, sondern ist

wie das Zeichen für Substitution eine syntaktische Konvention der
Metasprache. Die meisten Definitionen geben wir als Definitions-
schemata an, die für eine beliebige Anzahl von Definitionen stehen.
Die Symbole, die in folgenden Definitionsschemata vorkommen (A
und B) gehören wiederum zu Metasprache und stehen für beliebi-
ge Formeln des Kalküls. Die Definitionen und Definitionsschemata
sind folgende.

D1. t→ f ⊃ f

D2. ∼A→ A ⊃ f

D3. A 6⊂ B → ∼(B ⊃ A)

D4. A ∨B → (A ⊃ B) ⊃ B

D5. A · B → (A 6⊂ B) 6⊂ B

D6. A ≡ B → (A ⊃ B) · (B ⊃ A)

D7. A 6≡ B → (A 6⊂ B) ∨ (B 6⊂ A)

D8. A ⊂ B → B ⊃ A

D9. A 6⊃ B → B 6⊂ A

D10. A∨̄B → ∼A · ∼B
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D11. A|B → ∼A ∨ ∼B

Offenbar bezeichnet die Konstante t, die durch Definition D1
eingeführt wird, den Wahrheitswert wahr. Die übrigen Definitions-
schemata stellen die Verbindungen zwischen verschiedenen aussa-
genlogischen Funktoren fest, und erlauben, für die Form, die einen
der Funktoren enthält, einen anderen Ausdruck zu finden, der z. B.
kürzer sein könnte. Die Semantik der von der Implikation verschie-
denen logischen Funktoren ist durch diese Definitionen gegeben und
entspricht den Definitionen, die im Kapitel 1.2 eingeführt wurden.

3.2.4 Einige Theoreme des Kalküls

Als syntaktische Bezeichnung dafür, dass eine Formel ein Theorem
ist, benutzen wir das Behauptungszeichen

”
⊢“.

Als ein Metatheorem des Kalküls formulieren wir folgende Be-
hauptung, die auch als abgeleitete Schlussregel benutzt wird.

MT1. Wenn ⊢ A, dann ⊢ Sb1
B1

b2
B2

...

...
bn
Bn
A|.

Das Metatheorem kann man dadurch beweisen, dass man das
Resultat der gleichzeitigen Substitution in A als Ergebnis der suk-
zessiven Substitution in A betrachtet. Bei einer solchen Substitu-
tion werden die Variablen b1, b2, . . . , bn zunächst durch die von ih-
nen verschiedenen Variablen c1, c2, . . . , cn ersetzt, von denen keine
in den Formeln B1, B2, . . . , Bn, A vorkommt. Da alle Formeln des
Kalküls endlich sind, lässt sich bestimmt in der Liste der Varia-
blen des Kalküls, die in ihrer alphabetischen Reihenfolge gegeben
ist, eine solche Teilliste von n verschiedenen Variablen finden. Die
Variablen c1, c2, . . . , cn werden zunächst sukzessive in ihrer alphabe-
tischen Reihenfolge eingesetzt, und anschließend sukzessive durch
die Formeln B1, B2, . . . , Bn ersetzt.

Weitere Theoreme des Kalküls sind folgende.

T2. f ⊃ p

T3. (p ⊃ f) ⊃ (p ⊃ q)

T3 ist das Gesetz der Verneinung des Antezedens, das man – un-
ter der Berücksichtigung der Definition D2 – auch in der Form
∼p ⊃ (p ⊃ q) schreiben kann.
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T4. (q ⊃ r) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))

Zusammen mit dem Theorem T5 ist diese Behauptung auch als
Prinzip des Syllogismus bekannt. Wir beweisen nun dieses Theo-
rem. Der Beweis, den wir jetzt geben, ist in erster Linie als ein
Beispiel wichtig. Wir werden später diesen Beweis mit einer an-
deren Variante des Beweises dieses Theorems vergleichen, und das
wird uns u. a. die Bedeutung des Deduktionstheorems zeigen.

1. (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)) Ss
p

p
q

q
r A2|

2. ((p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)))
⊃ ((q ⊃ r) ⊃ ((p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))))

Sp
(p⊃(q⊃r))⊃((p⊃q)⊃(p⊃r))

q
q⊃r A1|

3. (q ⊃ r) ⊃ ((p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))) R1 ((2),(1))

4. ((q ⊃ r) ⊃ ((p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))))
⊃ (((q ⊃ r) ⊃ (p ⊃ (q ⊃ r)))
⊃ ((q ⊃ r) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))))

Ss
q⊃r

p
p⊃(q⊃r)

q
(p⊃q)⊃(p⊃r) A2|

5. ((q ⊃ r) ⊃ (p ⊃ (q ⊃ r))) ⊃ ((q ⊃ r) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)))

R1 ((4),(3))

6. (q ⊃ r) ⊃ (p ⊃ (q ⊃ r)) Sp
q⊃r

q
p A1|

7. (q ⊃ r) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)) R1 ((5),(6))

Die hier angegebene Folge von Formeln enthält nicht alle Zeilen
des Beweises. Vor der ersten Zeile sollte beispielsweise das Axiom
A2 aufgeschrieben werden. Da aber in der fraglichen Zeile durch
den Hinweis darauf, wie die Formel gewonnen wird, das Axiom als
die Prämisse der Regel R2 schon angedeutet ist, verzichten wir auf
die vollständige Darlegung des Beweises.

T5. (p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ r)) Das Gesetz der Transitivität

der Implikation.
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Dieses Theorem kann man von Theorem T4 ausgehend bewei-
sen, indem man das Selbstdistributivgesetz der Implikation auf die-
ses anwendet.

1. ((q ⊃ r) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)))
⊃ (((q ⊃ r) ⊃ (p ⊃ q)) ⊃ ((q ⊃ r) ⊃ (p ⊃ r)))

Ss
q⊃r

p
p⊃q

q
p⊃r A2|

2. (q ⊃ r) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)) T4

3. ((q ⊃ r) ⊃ (p ⊃ q)) ⊃ ((q ⊃ r) ⊃ (p ⊃ r)) R1 ((1),(2))

4. (((q ⊃ r) ⊃ (p ⊃ q)) ⊃ ((q ⊃ r) ⊃ (p ⊃ r)))
⊃ (((p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ q)))
⊃ ((p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ r))))

Sq
(q⊃r)⊃(p⊃q)

p
p⊃q

r
(q⊃r)⊃(p⊃r) T4|

5. ((p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ q)))
⊃ ((p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ r))) R1 ((4),(3))

6. (p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ q)) Sp
p⊃q

q
q⊃r A1|

7. (p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ r)) R1 ((5),(6))

T6. ((p ⊃ q) ⊃ p) ⊃ ((p ⊃ f) ⊃ p)

T7. ((p ⊃ q) ⊃ p) ⊃ p Peirces Gesetz

T8. p ⊃ ((q ⊃ f) ⊃ ((p ⊃ q) ⊃ f))

T9. ((p ⊃ f) ⊃ r) ⊃ ((p ⊃ r) ⊃ r)

T10. p ⊃ ((p ⊃ q) ⊃ q) Das Gesetz der Behauptung

T11. (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ r)

T12. ((p ⊃ q) ⊃ r) ⊃ ((p ⊃ r) ⊃ r)

T13. ((p ⊃ r) ⊃ r) ⊃ ((p ⊃ f) ⊃ r)

T14. ((p ⊃ q) ⊃ (r1 ⊃ s)) ⊃ ((p ⊃ (r2 ⊃ s)) ⊃ (r1 ⊃ (r2 ⊃ s)))
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3.2.5 Deduktionstheorem

Versucht man, die angegebenen Theoreme selbst an Hand der zu
Verfügung stehenden Mittel zu beweisen, sieht man, dass die Suche
nach einem Beweis keine triviale Angelegenheit ist und durchaus
ohne Erfolg verlaufen kann. Darum versucht man, den Beweis eines
Theorems der natürlichen Argumentationsweise näher zu bringen,
indem man auch das Aufstellen von Hypothesen zulässt. Dies führt
uns zur Erweiterung des Beweisbegriffs, die auch das so genann-
te Deduktionstheorem einschließt. Die Idee des Theorems wurde
von Herbrand 1928 formuliert und 1930 bewiesen. Kleene weist in
diesem Zusammenhang auf die Behauptung Tarskis hin, dass das
Theorem von Tarski schon 1921 benutzt wurde ([Kle67], §10).

Zunächst führen wir einige zusätzliche Definitionen ein.

Eine Variante einer Formel A des Kalküls P1 ist eine Formel, die
aus A durch eine solche Ersetzung von Variablen gewonnen wird,
bei der zwei verschiedene Vorkommen ein und derselben Variablen
in A nach der Ersetzung Vorkommen derselben Variablen bleiben,
und Vorkommen von zwei verschiedenen Variablen auch nach der
Ersetzung Vorkommen von verschiedenen Variablen sind.

Seien a1, a2, . . . , an verschiedene Variablen, die in A vorkommen.
Seien ferner b1, b2, . . . , bn verschiedene Variablen, so dass ihre Liste
keine Variable enthält, die in A (oder in der Liste der Variablen
a1, a2, . . . , an) vorkommt. Dann ist die Formel

Sa1
b1

a2
b2

...

...
an
bnA|

eine Variante der Formel A.

Ist A eine Variante der Formel B, dann ist B eine Variante
der Formel A. Jede Variante einer Variante von A ist selbst eine
Variante von A. Jede Formel des Kalküls P1 ist auch eine Variante
von sich selbst. Jede Variante eines Theorems ist auch ein Theorem.

Eine endliche Folge von Formeln des Kalküls P1 heißt ein va-
rianter Beweis, wenn jede Formel dieser Folge eine Variante eines
Axioms ist, oder unmittelbar aus in der Folge schon vorkommenden
Formeln (oder einer in der Folge schon vorkommenden Formel) des
Kalküls nach einer der Schlussregeln folgt. Der variante Beweis ist
der Beweis seiner letzten Formel, und die letzte Formel des varian-
ten Beweises ist ein Theorem. Der Grund dafür besteht darin, dass
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jede Variante eines Axioms auch ein Theorem ist.

Eine endliche Folge von Formeln B1, B2, . . . , Bm des Kalküls
heißt Beweis aus den Hypothesen H1, H2, . . . , Hn, wenn für jedes k,
wobei k = 1, . . . , m, eine der folgenden Bedingungen erfüllt ist.

1. Bk ist eine der Formeln H1, H2, . . . , Hn.

2. Bk ist eine Variante eines Axioms.

3. Bk ist nach der Regel R1 aus der größeren Prämisse Bj und der
kleineren Prämisse Bi gewonnen, wobei i, j < k.

4. Bk ist durch Substitution in die Prämisse Bj gewonnen, wo-
bei j < k und die zu ersetzende Variable in den Hypothesen
H1, H2, . . . , Hn nicht vorkommt.

Eine solche endliche Folge von Formeln, in der die Formel Bm als
letzte vorkommt, heißt ein Beweis der Formel Bm aus den Hypo-
thesen H1, H2, . . . , Hn. Einen solchen Beweis bezeichnen wir folgen-
dermaßen:

H1, H2, . . . , Hn ⊢ Bm

Diese Behauptung lesen wir:
”
Es gibt einen Beweis der Formel Bm

aus den Hypothesen H1, H2, . . . , Hn“. Klar ist, dass ein varianter
Beweis einer Formel ein Spezialfall des Beweises aus den Hypothe-
sen H1, H2, . . . , Hn ist, nämlich ein solcher Fall, wenn n 0 ist, oder
mit anderen Worten wenn die Liste von Hypothesen leer ist. Das
Deduktionstheorem, das wir nun formulieren, ist ein Metatheorem
des Kalküls.

MT2. Wenn H1, H2, . . . , Hn ⊢ B, dann H1, H2, . . . , Hn−1 ⊢
Hn ⊃ B.

Der Beweis des Deduktionstheorems besteht in der Begründung der
Umformung des Beweises

H1, H2, . . . , Hn ⊢ B,

den man auch als Hilfsbeweis definieren kann, in den Beweis

H1, H2, . . . , Hn−1 ⊢ Hn ⊃ B,
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den wir als resultierenden Beweis bezeichnen.
Der Hilfsbeweis unterscheidet sich vom resultierenden Beweis

dadurch, dass im Hilfsbeweis eine Formel mit der Begründung Hn

vorkommen darf, was bedeutet, dass Hn in diesem Beweis als eine
Hypothese fungieren kann. Außerdem sind die letzten Formeln der
beiden Beweise verschieden.

Sei nun ein Beweis der FormelB aus den Hypothesen H1, H2, . . . ,
Hn eine endliche Folge der Formeln B1, B2, . . . , Bm. Klar ist, dass
die Formel B in diesem Fall die Formel Bm dieser Folge ist. Nach
der Definition des Beweises aus Hypothesen gilt für eine beliebige
Formel Bk, wobei k = 1, 2, . . . , m, Folgendes.

Fall 1. Bk ist Hn.

Fall 2. Bk ist eine der Formeln H1, H2, . . . , Hn−1, wir bezeichnen
sie im Weiteren als Hr.

Fall 3. Bk ist eine Variante eines Axioms.

Fall 4. Bk folgt nach R1 aus der größeren Prämisse Bj und der
kleineren Prämisse Bi, wobei i, j < k. Bj hat also die Form
Bi ⊃ Bk.

Fall 5. Bk folgt aus Bj durch Substitution in Bj , wobei j < k und
die zu ersetzende Variable in den Formeln H1, H2, . . . , Hn

nicht vorkommt.

Nun konstruieren wir eine endliche Folge von Formeln Hn ⊃ B1,
Hn ⊃ B2, . . ., Hn ⊃ Bm, indem wir

”
Hn ⊃“ vor jeder Formel des

Hilfsbeweises schreiben. Diese Folge ist immer noch kein resultieren-
der Beweis, aber wir zeigen, dass es möglich ist, in diese Folge eine
endliche Anzahl zusätzlicher Formeln einzufügen, so dass wir an-
schließend den resultierenden Beweis bekommen. Der Beweis wird
durch Induktion (über k) geführt.

Nehmen wir an, dass für ein k, 1 < k < m, vor den Formeln, die
in der besagten Folge vor der Formel Hn ⊃ Bk geschrieben sind,
schon alle zusätzlichen Formeln eingefügt wurden. Wir betrachten
jetzt alle angegebenen 5 Fälle hintereinander, um festzustellen, wel-
che Formeln wir vor Hn ⊃ Bk einfügen sollen, um diese Formel als
die letzte Formel der Folge zu bekommen.

Fall 1. Hn ⊃ Bk ist in diesem Fall die Formel Hn ⊃ Hn. Man fügt
einen varianten Beweis des Theorems T1 ein, der aus 9
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Zeilen besteht, und mit Hilfe der Substitutionsregel erhält
man das gewünschte Ergebnis.

Fall 2. In diesem Fall gilt, dass Hr ⊃ (Hn ⊃ Bk) mit der Formel
Hr ⊃ (Hn ⊃ Hr) zusammenfällt. Aus einer Variante des
Axioms A1 bekommt man durch Substitution (maximal
in zwei Schritten) die Formel Hr ⊃ (Hn ⊃ Hr). Nun ist
Hr eine Hypothese, die man auf jedem Schritt (in jeder
Zeile) des Beweises schreiben kann. Aus den Formeln Hr ⊃
(Hn ⊃ Hr) und Hr bekommt man anschließend nach der
Regel R1 (modus ponens) den gewünschten Schluss Hn ⊃
Hr, dessen Beweis also höchstens 5 Zeilen beträgt.

Fall 3. Wie im Fall 2 fügt man vor der Formel Hn ⊃ Bk einen (va-
rianten) Beweis der Formel Bk ⊃ (Hn ⊃ Bk) ein, aus der
und der Formel Bk man nach modus ponens anschließend
Hn ⊃ Bk folgert.

Fall 4. Nach der Induktionsannahme des Beweises sind die For-
meln Hn ⊃ Bj und Hn ⊃ Bi schon früher bewiesene For-
meln des Kalküls. Hn ⊃ Bj ist aber nichts anderes als die
Formel Hn ⊃ (Bi ⊃ Bk). Auf diese Formel wenden wir das
Selbstdistributivgesetz an, indem wir die Substitutionsre-
gel auf eine Variante des Axioms A2 anwenden, und somit
(höchstens in 4 Schritten) den Beweis der Formel

(Hn ⊃ (Bi ⊃ Bk)) ⊃ ((Hn ⊃ Bi) ⊃ (Hn ⊃ Bk))

erhalten. Aus dieser Formel und der Formel Hn ⊃ Bj be-
kommen wir nach modus ponens die Formel

(Hn ⊃ Bi) ⊃ (Hn ⊃ Bk),

auf die und auf die Formel Hn ⊃ Bi (die nach der An-
nahme schon bewiesen ist) wir wiederum modus ponens
anwenden können. Dadurch bekommen wir schließlich den
Beweis der Formel Hn ⊃ Bk, nach dem wir suchten.

Fall 5. Wenn die zu ersetzende Variable nicht in H1, H2, . . . , Hn

vorkommt, bekommt man die Formel Hn ⊃ Bk durch
Substitution der entsprechenden Variablen in die Formel
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Hn ⊃ Bj , es werden also keine zusätzlichen Formeln ein-
gefügt.

Warum im letzten Fall die besagte Bedingung wichtig ist, zeigt
ein Beispiel. Sei Hn die Formel (q ⊃ f) ⊃ f . Substituiert man für q
die Formel q ⊃ f , gewinnt man somit die Behauptung ((q ⊃ f) ⊃
f) ⊃ f , die Formel also, die Hn verneint. Es gilt also nicht, dass

(q ⊃ f) ⊃ f ⊢ ((q ⊃ f) ⊃ f) ⊃ f .

Behaupten wir nämlich (im Hinblick auf das Deduktionstheorem),
dass man die Implikation

((q ⊃ f) ⊃ f) ⊃ (((q ⊃ f) ⊃ f) ⊃ f)

beweisen kann, dann kann man eine falsche Behauptung beweisen,
wenn man von der Annahme ausgeht, dass das Antezedens die-
ser Implikation wahr ist. Warum eine solche Möglichkeit mit der
semantischen Interpretation des Kalküls unvereinbar ist, wird aus
dem nächsten Abschnitt dieses Kapitels ersichtlich.

Für den Fall, dass die Anzahl der Hypothesen 1 ist, gilt folgendes.

Korollar: Wenn A ⊢ B, dann ⊢ (A ⊃ B)

Einige weitere Metatheoreme sind:

MT3. WennH1, H2, . . . , Hn ⊢ B, dann C1, C2, . . . , Cr, H1, H2, . . . , Hn

⊢ B.

MT4. Wenn ⊢ B, dann C1, C2, . . . , Cr ⊢ B.

MT5. Wenn jede Formel des Kalküls, die zumindest einmal
in der Liste der Formeln H1, H2, . . . , Hn vorkommt, mindes-
tens einmal auch in der Liste der Formeln C1, C2, . . . , Cr vor-
kommt, und H1, H2, . . . , Hn ⊢ B, dann C1, C2, . . . , Cr ⊢ B.

Die Bedeutung des Deduktionstheorems für den Kalkül besteht
in erster Linie darin, dass man es als abgeleitete Schlussregel be-
nutzen kann. Durch Einführung von Hypothesen wird der Beweis
eines Theorems erleichtert, und die Suche nach einem solchen ver-
einfacht. Als Beispiel betrachten wir den Beweis des Theorems T4.
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1. q ⊃ r H1 (Hypothese 1)

2. p ⊃ q H2

3. p H3

4. p ⊃ q, p ⊢ q R1 ((2),(3))

5. q ⊃ r, p ⊃ q, p ⊢ r R1 ((1),(4))

6. q ⊃ r, p ⊃ q ⊢ p ⊃ r MT2 (5)

7. q ⊃ r ⊢ (p ⊃ q) ⊃ (p ⊃ r) MT2 (6)

8. ⊢ (q ⊃ r) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)) MT2 (7)

Dieser Beweis ist, wie man sieht, wesentlich leichter zu konstruieren.

Das Deduktionstheorem, das auch für andere Kalküle (nicht un-
bedingt nur Aussagenkalküle) gilt, hat auch eine Bedeutung für die
Metatheorie. Das Theorem zeigt den Zusammenhang zwischen Be-
weisen und Beweisen aus Hypothesen (Annahmen) (die oft auch als
Ableitungen charakterisiert werden) ([Wes84], 127). Die Unterschie-
de zwischen diesen und jenen sind klar, wie auch ihre Ähnlichkeit.
Sowohl in einem Beweis als auch in einem Beweis aus Annahmen
kann man eine bestimmte Art von Formeln benutzen, die aus kei-
nen Formeln der jeweiligen Folge von Formeln folgen. Für den Be-
weis aus Annahmen sind das in erster Linie Hypothesen, denen kein
ausgezeichneter Wahrheitswert zugeschrieben wird. Für den Beweis
(eines Theorems) sind das Axiome, die einen solchen Wert in der
ganzen Theorie behalten ([Kle67], §9). Das Theorem, das als letz-
te Formel eines Beweises auftritt, ist eine beweisbare Formel des
Kalküls, und ihre Beweisbarkeit lässt sich nach Kleene auch als for-
male Beweisbarkeit definieren, was bedeutet, dass sie ausschließlich
an Hand syntaktischer Konventionen und Regeln des Kalküls ge-
wonnen werden kann. Obwohl die Definition des Beweises aus Hy-
pothesen nicht direkt auf etwas in diesem Sinne

”
nicht-formales“

deutet, ist schon die Darlegung eines solchen Beweises oder die
Darstellung der Behauptung über seine Existenz ohne Heranziehen
einiger Elemente der Metasprache gar nicht möglich. Das Deduk-
tionstheorem zeigt folgendes. Von der Formel, die aus einer Liste
von Hypothesen abgeleitet werden kann, wird behauptet, dass sie
aus den angegebenen Annahmen folgt. Das Theorem erlaubt, jeden
Beweis einer Formel des Kalküls aus n Annahmen (Hypothesen) in
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eine n-fache Implikation zu verwandeln, deren Antezedenzien die
Annahmen sind, und deren Konsequens mit der ableitbaren Formel
übereinstimmt. Für die n-fache Implikation gilt dann, dass sie eine
beweisbare Formel des Kalküls ist. Somit zeigt das Deduktionstheo-
rem, wie erfolgreich der Kalkül die Aufgabe erfüllt, solche logische
Begriffe wie Ableiten und Folgen zu formalisieren und die Struktur
der logischen Schlüsse darzustellen.

3.2.6 Tautologien und Entscheidungsproblem

Wir beweisen ein weiteres Metatheorem, das für die Frage nach der
Entscheidbarkeit des Kalküls von Bedeutung ist.

MT6. Ist eine gegebene Zeichenfolge eine Formel des Kalküls
P1, und besteht sie aus mehr als einem Symbol, dann ist ihre
Form (A ⊃ B) eindeutig bestimmt.

Beweis: Aus der Definition einer Formel des Kalküls geht hervor,
dass eine Formel aus mehr als einem Symbol die Form (A ⊃ B) auf
mindestens eine Weise annimmt. Die Aufgabe ist also zu zeigen,
dass die Formel nicht mehr als auf eine Weise eine solche Form
annehmen kann.

Wenn wir die Klammern addieren, die in einer Formel des Kal-
küls vorkommen, indem wir jeder linken Klammer die Zahl +1 und
jeder rechten −1 zuordnen, fangen wir mit einer linken Klammer
an. Die Zahl, die wir auf jedem Schritt des Addierens bekommen
und die wir somit jedem Vorkommen einer Klammer in der Formel
zuordnen, bezeichnen wir als Index des Vorkommens der jeweiligen
Klammer in der Formel.

Aus der Definition der Formel folgt, dass die Formel, die ein Im-
plikationszeichen enthält, mit einem Vorkommen der linken Klam-
mer anfangen und mit einem Vorkommen der rechten Klammer en-
den soll. Diese Klammern heißen entsprechend die Anfangsklammer
und die Endklammer der Formel. Durch mathematische Induktion
über die Gesamtanzahl der Vorkommen des Implikationszeichens in
der Formel lässt sich das folgende Lemma zeigen.

Lemma. Der Index, der dem Vorkommen einer Klammer in die
Formel entspricht, ist eine positive Zahl, mit Ausnahme der
Endklammer, der 0 entspricht.
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Um nun das Theorem MT6 zu beweisen, nehmen wir an, dass
(A ⊃ B) und (C ⊃ D) ein und dieselbe Formel des Kalküls ist. Wir
betrachten folgende Fälle.

Fall 1. Die Teilformel A enthält kein Implikationszeichen. Das be-
deutet, dass A aus einem einzigen Symbol besteht, sei es
eine Variable oder die Konstante f . Das erste Vorkommen
eines Implikationszeichens in der Formel (A ⊃ B) ist des-
wegen das Vorkommen des Hauptimplikationszeichens in
dieser Formel, das der Formel A folgt. Die Formel C fängt
mit demselben Symbol wie A an. Deswegen hat C auch
keine Anfangsklammer, und kann folglich auch kein Im-
plikationszeichen enthalten. Also sind A und C identisch.

Fall 2. Die Teilformel C enthält kein Implikationszeichen. Nach
demselben Argument wie im Fall 1 folgt daraus, dass A
und C identisch sein müssen.

Fall 3. A und C enthalten beide ein Implikationszeichen. Dann ist
die Endklammer in A das erste Vorkommen einer Klam-
mer in A, dem der Index 0 zugeordnet wird. Folglich ist
ihr Vorkommen das zweite Vorkommen einer Klammer in
(A ⊃ B), dessen Index 1 ist. Die Endklammer in C hat
das Vorkommen mit dem Index 0 in C und mit dem Index
1 in der Formel (C ⊃ D). Deswegen fallen die Endklam-
mern von A und C zusammen, und A und C sind deswegen
identisch. Weil in allen drei Fällen A und C identisch sind,
müssen auch B und D zusammenfallen.

Sei nun B eine Formel des Kalküls. B enthalte die Variablen
a1, a2, . . . , an, die alle verschieden sind. Seien es ferner alle Varia-
blen, die in B vorkommen. Seien nun α1, α2, . . . , αn die Wahrheits-
werte (wahr oder falsch), welche von den Variablen a1, a2, . . . , an
angenommen werden. Sei C eine Teilformel der Formel B. Dann
lässt sich der Wahrheitswert von B durch aufeinanderfolgende Zu-
schreibung der Wahrheitswerte den Teilformeln der Formel B durch
folgende Vorschrift definieren.

– Ist C die Konstante f , dann ist der Wahrheitswert von C falsch.

– Ist C eine Variable ai, dann ist der Wahrheitswert von C αi.
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– Ist C die Formel (C1 ⊃ C2), dann hat C den Wahrheitswert
falsch, wenn C1 den Wahrheitswert wahr und C2 den Wahr-
heitswert falsch hat, sonst hat C den Wahrheitswert wahr.

Durch Anwendung dieses Verfahrens sukzessive auf alle Teilfor-
meln der Formel B wird einer der Wahrheitswerte wahr oder falsch
auch der Formel B zugeordnet. Dieser Wert heißt der Wert der
Formel B für die Werte α1, α2, . . . , αn der Variablen a1, a2, . . . , an.
Die Eindeutigkeit dieses Wahrheitswertes für eine gegebene Kom-
bination der Wahrheitswerte der Variablen folgt aus dem Theorem
MT6.

Eine Formel des Kalküls heißt eine Tautologie, wenn sie für jede
Kombination der Wahrheitswerte der in ihr vorkommenden Varia-
blen den Wahrheitswert wahr annimmt, und eine Kontradiktion,
wenn sie für jede Kombination der Wahrheitswerte der in ihr vor-
kommenden Variablen den Wahrheitswert falsch annimmt. Ist eine
Formel des Kalküls weder eine Tautologie noch eine Kontradiktion,
heißt sie neutrale Formel. Jede Formel des Kalküls P1 gehört zu ei-
ner dieser drei Arten von Formeln. Die Aufgabe, die darin besteht,
dass man ein effektives Verfahren findet, durch das man feststellen
kann, zu welcher dieser drei Klassen eine gegebene Formel gehört,
nennt man semantisches Entscheidungsproblem für die Formeln des
Kalküls.

Das effektive Verfahren zur Bestimmung des Wahrheitswertes
(oder des Systems der Wahrheitswerte) einer Formel und zu Beant-
wortung der Frage, ob diese Formel eine Tautologie, Kontradiktion
oder eine neutrale Formel ist, ist das Berechnen der Wahrheitswerte
der Formel mit Hilfe von Wahrheitswertetabellen. Eine Wahrheits-
wertetabelle kann man für jede Formel des Kalküls P1 konstruieren.
In einer solchen Tabelle wird festgehalten, welche Wahrheitswerte
die gegebene Formel für verschiedene Anordnungen der Wahrheits-
werte ihrer Variablen annimmt.

Eine Wahrheitswertetabelle wird auf folgende Weise konstru-
iert. Man schreibt zunächst alle Variablen auf, die in der Formel
vorkommen. Keine dieser Variablen darf mehr als einmal in der
Liste vorkommen. Für jede dieser Variablen schreiben wir in eine
Spalte die Wahrheitswerte wahr und falsch (wir bezeichnen die-
se mit den Buchstaben

”
w“ und

”
f“) auf, so dass in jeder Zeile

der Tabelle eine von den anderen verschiedene Kombination der
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Wahrheitswerte steht. Diese Spalten heißen auch die Eingangsspal-
ten der Tabelle. Die Anzahl der Eingangsspalten stimmt also mit
der Anzahl der von einander verschiedenen Variablen der Formel
überein. Bezeichnen wir diese Anzahl durch n, dann ist die Anzahl
der Zeilen der Tabelle 2n (das ist die Anzahl der möglichen Anord-
nungen der Wahrheitswerte von n Variablen). Für jede Teilformel
der gegebenen Formel reservieren wir eine Spalte, in der wir den
Wahrheitswert dieser Teilformel für jedes System der Wahrheits-
werte der in dieser Teilformel vorkommenden Variablen notieren.
Die Reihenfolge dieser Spalten entspricht in umgekehrter Weise der
Reihenfolge, in der wir eine Formel in ihre Teilformeln zerlegen, so
dass die Spalte, in der die ganze Formel steht und somit das Haupt-
zeichen der Formel vorkommt, die letzte Spalte der Tabelle ist. Die
Formel, die den Eingangsspalten als Erste folgt, ist eine der Teilfor-
meln der fraglichen Formel, die als ihre Teilformeln nur eigentliche
Zeichen des Alphabets des Kalküls enthalten. Die letzte Spalte der
Tabelle nennt man Ausgangsspalte. Wenn wir für jede Formel einen

”
Baum“ angeben würden, der die Konstruktionsweise der Formel

wiedergibt, dann kann man auch sagen, dass die Spalten der Ta-
belle, die nach den Eingangsspalten vorkommen, ihrer Reihenfolge
nach die Reihenfolge der Konstruktion der Formel wiedergeben. Die
Wahrheitswertetabelle für die Formel p ⊃ (q ⊃ p) hat die Gestalt

p q q ⊃ p p ⊃ (q ⊃ p)

w w w w

w f w w

f w f w

f f w w

Dabei sieht der der Formel entsprechende Baum so aus:

p q p

q ⊃ p

p ⊃ (q ⊃ p)

❆
❆
❆
❆
❆

❆
❆

✁
✁

✁
✁



138

Man kann das Verfahren zur Konstruktion einer Wahrheitswer-
tetabelle vereinfachen, indem man die Wahrheitswerte jeder Teil-
formel der gegebenen Formel unter diesen Teilformeln oder ihren
Hauptzeichen schreibt. Wie das geht, zeigt folgendes Beispiel:

p ⊃ ((q ⊃ f) ⊃ ((p ⊃ q) ⊃ f))

w w w f f w w w w f f
w w f w f w w f f w f
f w w f f w f w w f f
f w f w f f f w f f f

Es gilt das Metatheorem

MT7. Jedes Theorem des Kalküls P1 ist eine Tautologie.

Der Beweis dieses Theorems besteht darin, dass man die Axiome
des Kalküls verifiziert und prüft, ob die Regeln des Kalküls eine
Tautologie erhalten. Wir zeigen, dass die zweite Behauptung gilt.
Dazu benutzen wir das folgende Lemma, das man durch mathema-
tische Induktion über die Anzahl der Vorkommen des Implikations-
zeichens beweist.

Lemma. Seien A undB Formeln des Kalküls. Seien ferner a1, a2,
. . . , an, b paarweise verschiedene Variablen, die in A und B
enthalten sind, so dass keine weiteren Variablen in diesen
Formeln vorkommen. Nimmt die Formel B für die Wahr-
heitswerte α1, α2, . . . , αn, α der Variablen a1, a2, . . . , an, b den
Wahrheitswert β an und die Formel Sb

BA| den Wahrheitswert
γ, dann ist der Wert der Formel A für die Wahrheitswerte
α1, α2, . . . , αn, β der Variablen a1, a2, . . . , an, b auch γ.

Um dieses Lemma zu beweisen, betrachtet man erstens den Fall,
dass die Formel A aus einem einzigen Symbol des Alphabets des
Kalküls besteht. In diesem Fall gilt offenbar die Behauptung des
Lemmas. Der zweite Fall, den man zu betrachten hat, ist, wenn die
Formel A die Gestalt (A1 ⊃ A2) hat. Dann hat die Formel Sb

BA|
die Gestalt (Sb

BA1| ⊃ Sb
BA2|). Man nimmt an, dass die Behauptung

des Lemmas für die Formeln A1 und A2 gilt. Sei nun der Wahrheits-
wert der Formel Sb

BA1| für die Werte α1, α2, . . . , αn, β der Variablen
a1, a2, . . . , an, b der Wert γ1, und der Formel Sb

BA2| γ2. Die Werte γ1
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und γ2 bestimmen den Wahrheitswert γ der Formel Sb
BA|, so dass

γ dann und nur dann falsch ist, wenn γ1 der Wahrheitswert wahr
ist und γ2 der Wahrheitswert falsch. Nach der Induktionsannahme
gilt nun, dass der Wahrheitswert der Formel A1 für die gegebenen
Werte ihrer Variablen γ1 und der Formel A2 γ2 ist. Folglich nimmt
die Formel A den Wahrheitswert falsch nur in dem Fall an, dass γ1
der Wahrheitswert wahr und γ2 der Wahrheitswert falsch ist. Also
ist der Wahrheitswert der Formel A γ, womit das Lemma bewiesen
ist.

Infolge dieses Lemmas gilt für die Substitutionsregel Folgendes.
Wenn die Formel Sb

BA|, die man aus der Formel A des Kalküls nach
der Regel R2 erhält, den Wahrheitswert falsch für eine Anordnung
der Wahrheitswerte der in ihr vorkommenden Variablen hat, hat
auch die Prämisse A dieser Regel den Wahrheitswert falsch für ei-
ne Anordnung der Wahrheitswerte der in ihr vorkommenden Varia-
blen. Ist A aber eine Tautologie (sie erhält für keine Anordnung der
in ihr vorkommenden Variablen den Wahrheitswert falsch), dann ist
der Schluss nach der Regel R2 (die Formel Sb

BA|) auch eine Tauto-
logie.

Für die Regel modus ponens gilt Folgendes. Ist die kleinere Prä-
misse der Regel R1 A eine Tautologie, und hat der Schluss B den
Wahrheitswert falsch für ein System der Wahrheitswerte der in ihm
und in der Formel A vorkommenden Variablen, dann ist der Wahr-
heitswert der größeren Prämisse für ein System der Wahrheitswer-
te derselben Variablen auch falsch. Wenn also beide Prämissen der
Regel R1 Tautologien sind, dann muss auch der Schluss eine Tau-
tologie sein.

Beide Schlussregeln des Kalküls erhalten also Tautologien in
dem Sinn, dass, wenn die Prämisse(n) einer dieser Regeln Tautolo-
gie(n) ist (sind), dann ist es auch ihr Schluss. Verifiziert man, dass
die Axiome des Kalküls Tautologien sind, ist das Theorem bewie-
sen.

Es gilt auch das zu MT7 inverse Metatheorem.

MT8. Ist die Formel B des Kalküls P1 eine Tautologie, dann
⊢ B.

Um dieses Metatheorem zu beweisen, zeigt man zunächst mit Hilfe
mathematischer Induktion, dass die folgende Behauptung gilt.
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Sei B eine Formel des Kalküls und a1, a2, . . . , an alle paarweise
verschiedenen Variablen, die in B vorkommen. Sei ferner α1, α2,
. . . , αn eine beliebige Kombination der Werte der Variablen a1, a2,
. . . , an. Für ein beliebiges i = 1, 2, . . . , n sei Hi eine Formel der
Gestalt ai, wenn αi der Wahrheitswert wahr ist, und der Gestalt
(ai ⊃ f), wenn αi der Wahrheitswert falsch ist. B′ sei B, wenn die
Formel B für die gegebene Kombination der Wahrheitswerte den
Wert wahr hat, und (B ⊃ f), wenn die Formel B für die gegebene
Kombination der Wahrheitswerte ihrer Variablen den Wert falsch
hat. Dann gilt

H1, H2, . . . , Hn ⊢ B′.

Um diese Behauptung zu beweisen, führt man eine mathemati-
sche Induktion über die Anzahl der Vorkommen des Implikations-
zeichens in der Formel B durch. Man muss folgende Fälle unter-
scheiden.

Fall 1. B enthält kein Implikationszeichen. In diesem Fall ist B
entweder f oder ai. Ist B die Konstante f , dann hat die
Formel B′ die Gestalt (f ⊃ f), und die Behauptung folgt
durch Substitution aus dem Theorem T1. Ist B ai, dann
fällt die Formel B′ mit der Formel Hi zusammen, und der
Beweis der Formel B′ aus den Hypothesen H1, H2, . . . , Hn

ist trivial (besteht aus einer einzigen Formel Hi oder B′).

Betrachten wir nun die Fälle, wo B ein Implikationszeichen enthält.
In allen diesen Fällen hat die Formel B die Gestalt (B1 ⊃ B2).
Man geht von der Induktionsannahme aus, dass für B1 und B2 die
Behauptung erfüllt ist, und es gilt:

(1) H1, H2, . . . , Hn ⊢ B′
1

(2) H1, H2, . . . , Hn ⊢ B′
2

Fall 2a. B′
1 ist B1 und B′

2 ist B2. Da die beiden Formeln B1 und
B2 somit den Wert wahr haben, hat die Formel (B1 ⊃ B2)
auch den Wahrheitswert wahr, und die Formel B′ fällt mit
der Formel (B1 ⊃ B2) zusammen. Durch Substitution in
A1 erhält man die Formel B2 ⊃ (B1 ⊃ B2), die zusam-
men mit (2) durch die Anwendung des modus ponens die
Behauptung liefert.
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Fall 2b. B′
1 ist B1 und B′

2 ist (B2 ⊃ f). In diesem Fall hat die
Formel (B1 ⊃ B2) den Wahrheitswert falsch, und B′ hat
dementsprechend die Gestalt (B1 ⊃ B2) ⊃ f . Durch Sub-
stitution in T8 erhält man die Formel B1 ⊃ ((B2 ⊃ f) ⊃
((B1 ⊃ B2) ⊃ f)). Aus dieser und (1) und (2) gewinnt
man die Behauptung durch die zweifache Anwendung des
modus ponens.

Fall 2c. B′
1 ist (B1 ⊃ f) und B′

2 ist B2. In diesem Fall hat B′

wiederum die Gestalt (B1 ⊃ B2). Durch Substitution in
T3 bekommt man die Formel (B1 ⊃ f) ⊃ (B1 ⊃ B2),
die zusammen mit (1) durch die Anwendung des modus
ponens die Behauptung liefert.

Fall 2d. B′
1 ist (B1 ⊃ f) und B′

2 ist (B2 ⊃ f). In diesem Fall wie im
Fall 2c hat B′ offenbar wiederum die Gestalt (B1 ⊃ B2).
Die Behauptung bekommt man analog. Eigentlich ist es
hinreichend, bei dem Beweis nur drei Fälle zu unterschei-
den, wenn das Antezedens von B′ die Gestalt (B1 ⊃ f)
hat, wenn das Konsequens von B die Gestalt B2 hat, und
wenn das Antezedens die Gestalt B1 und das Konsequens
die Gestalt (B2 ⊃ f) hat.

Nun können wir die Behauptung des Metatheorems MT8 be-
weisen. Wir gehen davon aus, dass die Formeln H1, H2, . . . , Hn den
Voraussetzungen der obigen Behauptung entsprechen. Da B eine
Tautologie ist, fällt B′, das wie oben definiert ist, mit B zusam-
men. Da B für beliebige Kombination der Wahrheitswerte der in
ihr vorkommenden Variablen den Wert wahr hat, gilt folgendes:

H1, H2, . . . , an ⊢ B

und

H1, H2, . . . , an ⊃ f ⊢ B

Nach dem Deduktionstheorem folgt daraus:

(3) H1, H2, . . . , Hn−1 ⊢ an ⊃ B

und
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(4) H1, H2, . . . , Hn−1 ⊢ (an ⊃ f) ⊃ B

Durch Substitution in T9 bekommt man die Formel

((an ⊃ f) ⊃ B) ⊃ ((an ⊃ B) ⊃ B)

Mit dieser Formel, (4) und (3) bekommt man durch die zweifache
Anwendung des modus ponens die Behauptung:

H1, H2, . . . , Hn−1 ⊢ B

Man kann also eine Hypothese aus dem Beweis von B eliminieren.
Durch Eliminierung aller Hypothesen nacheinander bekommt man:

⊢ B,

womit das Theorem bewiesen ist.
Außer dem semantischem Entscheidungsproblem stellt sich für

einen Kalkül auch das Entscheidungsproblem (oder das Entschei-
dungsproblem für Beweisbarkeit), das darin besteht, ein effektives
Verfahren zu finden, mit dessen Hilfe man für eine beliebige Formel
des Kalküls entscheiden kann, ob sie ein Theorem ist oder nicht. Die
Lösung dieses Problems liefern für P1 das Verfahren zur Lösung des
semantischen Entscheidungsproblems (die Konstruktion der Wahr-
heitswertetabellen) und die Metatheoreme MT7 und MT8. Das be-
deutet u. a., dass man von nun an nicht unbedingt einen Beweis
einer Formel konstruieren muss, um zu zeigen, dass sie ein Theorem
des Kalküls ist. Es reicht, zu prüfen, ob diese Formel eine Tautologie
ist. Das semantische Entscheidungsproblem wird für P1 durch die
Konstruktion von Wahrheitswertetabellen, die semantischen Regeln
und die Definitionen des Kapitels 1.2 gelöst.

Mit Hilfe der letzten Metatheoreme lässt sich noch ein weiteres
wichtiges Metatheorem beweisen.

MT9. Ist B die Formel, die man aus der Formel A des Kalküls
durch Substitution der Formel N für die Teilformel M der
Formel A gewinnt, wobei die Substitution nicht unbedingt
an jeder Stelle erfolgt, wo M in A vorkommt, und gilt es,
dass ⊢M ≡ N , dann ⊢ A ≡ B.
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Um dieses Metatheorem zu beweisen, geht man davon aus, dass
a1, a2, . . . , an die komplette Liste aller Variablen ist, die in den
Formeln A und B vorkommen. Da M ≡ N ein Theorem ist, ist
das nach dem Metatheorem MT7 eine Tautologie. Laut der Wahr-
heitswertetabelle für

”
≡“ haben die Formeln M und N denselben

Wahrheitswert für jedes System der Wahrheitswerte der Variablen
a1, a2, . . . , an. Da die Formel B aus der Formel A durch Substitution
von N für die Teilformel M an bestimmten (ausgezeichneten) Stel-
len der Formel A gewonnen wird, haben A und B denselben Wahr-
heitswert für ein beliebiges System der Wahrheitswerte der Varia-
blen a1, a2, . . . , an. Das beweist man mit Hilfe mathematischer In-
duktion über die Anzahl der Vorkommen des Implikationszeichens
in der Formel A. Laut der Wahrheitswertetabelle für

”
≡“ ist dann

A ≡ B eine Tautologie. Folglich ist nach dem Metatheorem MT8
A ≡ B ein Theorem, d. h. ⊢ A ≡ B.

Aus diesem Metatheorem folgt noch ein weiteres, das als Regel
der Substituierbarkeit für Äquivalenz bekannt ist.

MT10. Gewinnt man die Formel B aus A durch die Substitu-
tion der Formel N für die Teilformel M der Formel A an
einer oder mehreren Stellen, wo diese in A vorkommt, und
gilt ⊢M ≡ N und ⊢ A, dann ⊢ B.

Es gibt noch eine Möglichkeit, das Entscheidungsproblem für
einen Aussagenkalkül zu lösen, ohne dabei auf die semantischen
Korrelate von Formeln des Kalküls und ihren Teilformeln zurück-
zugreifen. Man kann also allein an der Gestalt einer Formel des
Kalküls erkennen, ob sie eine Tautologie ist oder nicht. Dass dieses
Problem somit eine syntaktische Lösung hat, bedeutet allerdings
nicht, dass die Begründung des einer solchen Lösung entsprechen-
den Verfahrens ohne Heranziehen der semantischen Regeln des je-
weiligen Kalküls möglich ist. Wie die Metatheoreme MT9, MT10
zeigen, darf man eine Teilformel einer Formel (oder sogar die ganze
Formel) des Kalküls durch eine äquivalente Formel (welche diesel-
ben Wahrheitswerte für die gleichen Kombinationen der Wahrheits-
werte ihrer Variablen hat) ersetzen, so dass der Wahrheitswert der
ganzen Formel dabei unverändert bleibt. Durch eine endliche Reihe
solcher Ersetzungen kann man eine beliebige Formel des Kalküls auf
eine bestimmte Form bringen, so dass die Formel nur gewisse Funk-
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toren enthält. Diese Möglichkeit liegt u. a. dem ebenso angesproche-
nen Verfahren zugrunde, das darin besteht, dass man eine Formel
des Kalküls auf die so genannte konjunktive Normalform bringt.
Unter einer konjunktiven Normalform versteht man eine Formel,
die aus einer oder mehreren durch Konjunktion verbundenen ein-
fachen oder elementaren Disjunktionen besteht. Eine einfache oder
elementare Disjunktion ist eine Disjunktion, wo jedes Glied eine
Variable oder die Verneinung einer Variablen ist.

Ein Beispiel einer elementaren Disjunktion ist die Formel

(p ∨ ∼q ∨ r),

und einer konjunktiven Normalform die Formel

p · (p ∨ ∼q ∨ r)

(das letzte Beispiel sowie die Definition stammen von Bernays
[Ber26], 307). Auf die Klammern innerhalb der äußeren Klammern
von elementaren Disjunktionen wird hier wegen der Assoziativität
der Disjunktion verzichtet.

Man kann folgende Behauptung beweisen. Eine elementare Dis-
junktion ist eine Tautologie dann und nur dann, wenn sie mindes-
tens zwei Glieder enthält, eins von denen eine Variable und das
andere ihre Verneinung ist.

Die elementare Disjunktion, die ein solches Paar enthält, hat die
Gestalt

V ∨∼V ∨D,

wobei V für eine Variable, und D für eine elementare Disjunktion
steht. Da nun jede Formel der Gestalt V ∨∼V eine Tautologie ist,
ist somit der Wahrheitswertetabelle für Disjunktion entsprechend
auch die Formel V ∨∼V ∨D eine Tautologie, unabhängig von dem
Wahrheitswert des restlichen Teils D der ganzen Formel.

Aus der Definition der Konjunktion folgt, dass die konjunktive
Normalform einer Formel nur dann eine Tautologie ist, wenn alle
Glieder dieser Konjunktion (also alle elementaren Disjunktionen)
Tautologien sind.
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Um eine Formel auf die konjunktive Normalform zu bringen,
benutzt man verschiedene Äquivalenzen, Assoziativität und Dis-
tributivität der Konjunktion und Disjunktion, die für den Kalkül
P1 in der Form der Theoreme des Kalküls angegeben sind (siehe
unten), sowie Definitionen. Besonders häufig wird die Äquivalenz
(p ⊃ q) ≡ (∼p∨q) benutzt, die insbesondere in dem Aussagenkalkül
von Principia Mathematica der Definition der Implikation zugrun-
de liegt (wir bezeichnen sie hier deswegen durch ID). Man kann
außerdem, von der Assoziativität der Konjunktion und Disjunktion
ausgehend, die Klammern auslassen, die zwischen den Gliedern ei-
ner Disjunktion oder Konjunktion vorkommen. Beispielsweise kann
man die Formel ((p ∨ q) ∨ r) in der Form (p ∨ q ∨ r) schreiben. Zu
bemerken ist Folgendes. Obwohl die Theoreme des Kalküls P1 keine
Theoremenschemata sind, benutzen wir sie in diesem Abschnitt des
Kapitels als solche. Der Grund dafür liegt in der Möglichkeit, aus
jedem Theorem eine Variante von diesem oder ein anderes Theorem
durch eine entsprechende Substitution zu folgern, und somit einen
Beweis für das neue Theorem zu erbringen.

Betrachten wir ein Beispiel, um zu sehen, wie man eine Formel
auf ihre konjunktive Normalform bringt. Aus der Formel

(∼p · q) ⊃ (p ≡ ∼r)

bekommen wir der Reihe nach durch Ersetzen durch äquivalente
Formeln (die Begründung ist rechts von der jeweiligen Formel an-
gegeben) folgende Formeln

∼(∼p · q) ∨ (p ≡ ∼r) ID

(∼∼p ∨ ∼q) ∨ ((p ⊃ ∼r) · (∼r ⊃ p)) De Morgansches Gesetz

(s. unten), D6

(p ∨ ∼q) ∨ ((∼p ∨ ∼r) · (∼∼r ∨ p)) Das Gesetz der doppelten

Negation (s. unten), ID

(p ∨ ∼q) ∨ ((∼p ∨ ∼r) · (r ∨ p)) Das Gesetz der doppelten

Negation
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((p ∨ ∼q) ∨ (∼p ∨ ∼r)) · ((p ∨∼q) ∨ (r ∨ p))
Distributivität der Disjunktion

Die Formel

(p ∨ ∼q ∨ ∼p ∨ ∼r) · (p ∨∼q ∨ r ∨ p)

ist somit eine konjunktive Normalform für die gegebene Formel. Die
erste elementare Disjunktion enthält die Variable p und ihre Ver-
neinung, wodurch diese Disjunktion zu einer Tautologie wird. Für
die zweite Disjunktion gilt das aber nicht. Somit ist die gegebene
Formel keine Tautologie.

Hier erwähnen wir noch folgende Theoreme des Kalküls P1.

T15. (t ⊃ p) ≡ p

T16. ∼∼p ≡ p Das vollständige Gesetz der doppelten Negation

T17. (p ≡ q) ⊃ (q ≡ p) Das Gesetz der Kommutativität
der (materialen) Äquivalenz

T18. (p ≡ q) ≡ (q ≡ p) Vollständiges Gesetz der Kommu-
tativität der Äquivalenz

T19. (p ≡ q) ⊃ (p ⊃ q)

T20. (p ≡ q) ⊃ ((q ≡ r) ⊃ (p ≡ r)) Das Gesetz der Transitivität
der (materialen) Äquivalenz

T21. ((p · q) ⊃ r) ⊃ (p ⊃ (q ⊃ r)) Exportationsgesetz

T22. (p ⊃ (q ⊃ r)) ⊃ ((p · q) ⊃ r) Importationsgesetz

T23. ((p ⊃ q) · (p ⊃ r)) ⊃ (p ⊃ (q · r)) Kompositionsgesetz

T24. (p ⊃ q) ⊃ (∼q ⊃ ∼p) Das Gesetz der (implikativen)
Kontraposition

T25. ∼(p · ∼p) Das Widerspruchsgesetz

T26. p ∨ ∼p Das Gesetz des ausgeschlossenen Dritten

T27. (p · p) ≡ p Idempotenz der Konjunktion

T28. (p ∨ p) ≡ p Idempotenz der Disjunktion
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T29. (p · q) ≡ (q · p) Symmetrie der Konjunktion

T30. (p ∨ q) ≡ (q ∨ p) Symmetrie der Disjunktion

T31. (p · (q · r)) ≡ ((p · q) · r) Assoziativität der Konjunktion

T32. (p ∨ (q ∨ r)) ≡ ((p ∨ q) ∨ r) Assoziativität der Disjunktion

T33. (p · (q ∨ r)) ≡ ((p · q) ∨ (p · r)) Distributivität der

Konjunktion

T34. (p ∨ (q · r)) ≡ ((p ∨ q) · (p ∨ r)) Distributivität der

Disjunktion

T35. (p ∨ (p · q)) ≡ p Das Absorptionsgesetz der Disjunktion

T36. (p · (p ∨ q)) ≡ p Das Absorptionsgesetz der Konjunktion

T37. ∼(p ∨ q) ≡ (∼p · ∼q)
T38. ∼(p · q) ≡ (∼p ∨∼q)

Die beiden letzten Theoreme sind als die Gesetze von de Morgan
bekannt.

T39. (p ⊃ r) ⊃ ((q ⊃ r) ⊃ ((p ∨ q) ⊃ r))

Einfaches konstruktives Dilemma

T40. (p ⊃ r) ⊃ ((q ⊃ s) ⊃ ((p ∨ q) ⊃ (r ∨ s)))
Komplexes konstruktives Dilemma

T41. (p ⊃ q) ⊃ ((p ⊃ r) ⊃ ((∼q ∨ ∼r) ⊃ ∼p))
Einfaches destruktives Dilemma

T42. (p ⊃ r) ⊃ ((q ⊃ s) ⊃ ((∼r ∨ ∼s) ⊃ (∼p ∨ ∼q)))
Komplexes destruktives Dilemma

T43. (p 6≡ p) ≡ f

3.2.7 Dualität

Ist uns eine Formel des Kalküls gegeben, dann heißt die Formel, die
man aus der gegebenen durch gegenseitige Ersetzung der Konstan-
ten t und f sowie der Zeichen ⊃ und 6⊂, ∨ und ·, ≡ und 6≡, ⊂ und
6⊃, ∨̄ und | gewinnt, eine (zu der gegebenen) duale Formel.
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Das Verfahren einer solchen Ersetzung, dem eine Formel des
Kalküls unterworfen wird, heißt Dualisierung.

Das Symbol ∼ bleibt bei der Dualisierung unverändert und heißt
deshalb selbst-dual. Konstanten t und f , sowie die oben erwähnten
Zeichen (paarweise genommen) heißen dual zueinander.

Dual zu der Formel

((p ∨ t) ⊃ (q · r)) ≡ (r ∨ ∼p)

ist beispielsweise die Formel

((p · f) 6⊂ (q ∨ r)) 6≡ (r · ∼p)

Entsprechend der von uns eingeführten Definitionen D1–D11 kann
eine Formel mehrere duale Formeln haben. Dual zu der Formel

∼p ⊃ ∼∼q

sind z. B. folgende Formeln:

1) ∼p 6⊂ ∼∼q
2) ∼p 6⊂ ∼(q 6⊂ t)

3) (p 6⊂ t) 6⊂ ((q 6⊂ t) 6⊂ t)

4) (p 6⊂ t) 6⊂ (q · t)
5) ∼∼q 6⊃ ∼p

Die Liste der Formeln, die dual zu der gegebenen sind, kann fortge-
setzt werden. Man kann auch zu den Formeln 2)–5) folgende duale
Formeln angeben:

2d) ∼p ⊃ ∼(q ⊃ f)

3d) (p ⊃ f) ⊃ ((q ⊃ f) ⊃ f)

4d) (p ⊃ f) ⊃ (q ∨ f)

5d) ∼∼q ⊂ ∼p

Unter den Formeln, die dual zu den zu ∼p ⊃ ∼∼q dualen Formeln
sind, sind auch ∼p ⊃ (q ∨ f), (p ⊃ (t 6⊂ t)) ⊃ (q ∨ (t 6⊂ t)),
(q · t) ⊂ (t 6⊃ p).
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Ist eine Formel A des Kalküls gegeben, dann ist eine Formel,
die dual zu der zu A dualen Formel ist, nur dann mit der gege-
benen identisch, wenn die Formel A ein einziges Vorkommen einer
Variablen enthält (mit anderen Worten die Gestalt V hat). Ist eine
Formel A des Kalküls gegeben, und ist B eine zu A duale Formel,
dann ist A unter den Formeln des Kalküls, die zu B dual sind,
enthalten.

Es gilt das folgende Metatheorem.

MT11. Sind A, B und C Formeln des Kalküls, und sind B und
C dual zu A, dann ⊢ B ≡ C.

Dieses Metatheorem basiert in erster Linie auf folgender Beobach-
tung. Selbst wenn man die Definitionen so formuliert, dass die An-
zahl der möglichen dualen Formeln für eine gegebene Formel des
Kalküls minimal ist (dieses Zweck erfüllen letztendlich auch die
von Church angegebenen Definitionen D1–D11), kann man nicht
die Mannigfaltigkeit von dualen Formeln vermeiden, die durch die
ersten drei Definitionen zustande kommt. Zwei beliebige Formeln,
die beide zu einer gegebenen Formel des Kalküls dual sind, kann
man durch eine endliche Anzahl von Schritten folgender Formen
aufeinander zurückführen: durch das Ersetzen der Teilformel t ⊃ N ,
die selbst eine Formel des Kalküls ist, durch N und der Teilformel
N , die selbst eine Formel des Kalküls ist, durch t ⊃ N , durch das
Ersetzen der Teilformel ∼∼N , die selbst eine Formel des Kalküls
ist, durch N , sowie N durch ∼∼N . Mit Hilfe der Theoreme T15,
T16, T17 und T20, sowie des Metatheorems MT9 lässt sich die
Behauptung beweisen.

Die Quelle der Dualität ist aus den Wahrheitswertetabellen er-
sichtlich. Wir betrachten als Beispiel die Wahrheitswertetabelle für
Konjunktion und Disjunktion.

p q p · q p ∨ q [∼p] [∼q] [∼(p · q)] [∼(p ∨ q)]
w w w w f f f f

w f f w f w w f

f w f w w f w f

f f f f w w w w
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Links konstruieren wir eine Tabelle für Konjunktion und Dis-
junktion wie gewöhnlich. Dieser Tabelle entsprechen die ersten 4
Spalten. Nun ersetzen wir alle Wahrheitswerte in allen Zeilen durch
entgegengesetzte (wahr durch falsch und falsch durch wahr), und
füllen mit diesen die nächsten 4 Spalten auf. Klar ist, dass in den
Spalten, die wir auf solche Weise erhalten, die Wahrheitswerte der
Verneinung der jeweiligen Formel stehen. Man sieht, dass die Spalte
mit den Wahrheitswerten für die Formel ∼(p · q) der Wahrheitswer-
tetabelle der Disjunktion der Verneinungen der Formeln p und q
entspricht, und die Spalte mit den Wahrheitswerten für die Formel
∼(p ∨ q) – der Wahrheitswertetabelle der Konjunktion der Vernei-
nungen von p und q. Bei der besagten Ersetzung der Wahrheitswer-
te geht also die Tabelle für die Konjunktion in die Tabelle für die
Disjunktion über und umgekehrt. Analog kann man mit anderen
Paaren der dualen Zeichen verfahren. Konstruieren wir eine Tabel-
le für Negation, und ersetzen wir jeden Wahrheitswert, der in der
Tabelle vorkommt, durch einen entgegengesetzten, dann bekommen
wir wiederum die Tabelle für Negation. Dieser kurzen Betrachtung
kann man auch entnehmen, dass die Formel, die zu einer Tautologie
dual ist, eine Kontradiktion ist.

Es gilt das folgende Metatheorem, das auch unter dem Namen

”
das Dualitätsprinzip“ bekannt ist.

MT12. Ist A eine Formel des Kalküls, so dass ⊢ A, und ist
ferner A1 eine beliebige Formel, die zu A dual ist, dann
⊢ ∼A1.

Es gelten folgende zwei Theoreme.

T44. ∼(p 6⊂ q) ⊃ (q ⊃ p)

T45. ∼(p 6≡ q) ⊃ (p ≡ q)

Mit Hilfe dieser Tautologien bekommt man folgende Korollare
aus dem Metatheorem MT12.

Korollar 1 (Dualitätsprinzip für Implikation). Gilt ⊢ A ⊃ B,
und sind A1 dual zu A und B1 dual zu B, dann ⊢ B1 ⊃ A1.
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Korollar 2 (Dualitätsprinzip für Äquivalenz). Gilt ⊢ A ≡ B,
und sind A1 dual zu A und B1 dual zu B, dann ⊢ A1 ≡ B1.

3.2.8 Widerspruchsfreiheit

Die Idee der Widerspruchsfreiheit eines Kalküls ist im Grunde durch
eine semantische Motivation bedingt, da sie aus der Forderung
erwächst, dass nichts, was der Bedeutung nach widersprüchlich ist,
ein Theorem sein darf, oder, mit anderen Worten, dass zwei Theo-
reme einander nicht widersprechen dürfen. Bei einem Kalkül sucht
man nach einer syntaktischen Modifikation dieser Forderung, die
sich auf verschiedene Weise vollziehen lässt.

Die erste Möglichkeit besteht darin, dass man die relative Wi-
derspruchsfreiheit des Kalküls in Bezug auf eine Transformation
einer Formel des Kalküls definiert, wobei diese Transformation ei-
ne Formel A des Kalküls in eine andere Formel A1 überführt. Eine
solche syntaktische Definition soll der semantischen Interpretation
von Formeln des Kalküls entsprechen, die einander verneinen. Man
sagt, dass ein Kalkül widerspruchsfrei in Bezug auf eine gegebene
Transformation ist, welche eine Formel des Kalküls A in die Formel
A1 überführt, wenn es keine Formel A gibt, so dass zugleich ⊢ A
und ⊢ A1.

Die zweite Möglichkeit besteht darin, dass man die absolute
Widerspruchsfreiheit definiert. Man fordert, dass nicht jede Formel
des Kalküls ein Theorem sein kann. Wäre das der Fall, dann könnte
man aus zwei Theoremen, die einander widersprechen (die einander
verneinen), jede beliebige Formel ableiten. In unserem Kalkül könn-
te man das durch Substitution in T3 mit Hilfe des modus ponens
erreichen. Man kann auch der Idee Hilberts folgend eine konkrete
Formel des Kalküls (für P1 ist das die Konstante f) wählen, und den
Kalkül als widerspruchsfrei definieren, wenn diese konkrete Formel
kein Theorem ist. Ein Kalkül heißt absolut widerspruchsfrei, wenn
nicht alle seine Formeln Theoreme sind.

Enthält ein Kalkül Aussagenvariablen (wie der Kalkül P1), kann
man den Kalkül als widerspruchsfrei im Sinne von Post definieren,
wenn keine Formel des Kalküls, die aus einer allein stehenden Aus-
sagenvariablen besteht, ein Theorem des Kalküls ist. Man sagt, dass
ein Kalkül widerspruchsfrei im Sinne von Post (in Bezug auf eine
bestimmte Kategorie von primitiven Symbolen, die Aussagenvaria-
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blen heißen) ist, wenn keine Formel des Kalküls, die aus einer allein
stehenden Aussagenvariablen besteht, ein Theorem des Kalküls ist.

Für den Kalkül P1 gelten folgende Metatheoreme.

MT13. P1 ist widerspruchsfrei in Bezug auf die Transformation
einer Formel des Kalküls A in die Formel A ⊃ f .

Beweis: Nach der Definition einer Tautologie und laut Wahrheits-
wertetabelle für Implikation können die Formeln A und A ⊃ f
nicht beide zugleich Tautologien sein. Ist A eine Tautologie, dann ist
A ⊃ f eine Kontradiktion, und umgekehrt. Aus dem Theorem MT7
folgt dann, dass in jedem Fall nicht beide Formeln zugleich Theore-
me des Kalküls sein können, da sie nicht beide zugleich Tautologien
sind.

MT14. P1 ist absolut widerspruchsfrei.

Beweis: Die Formel des Kalküls f ist keine Tautologie, folglich nach
MT7 ist sie auch kein Theorem des Kalküls. Daraus folgt auch:

MT15. P1 ist widerspruchsfrei in dem speziellen Sinn, dass f
kein Theorem des P1 ist.

MT16. P1 ist widerspruchsfrei im Sinne von Post.

Beweis: Eine Formel des Kalküls P1, die aus einer allein stehenden
Variablen besteht, ist keine Tautologie, denn ihr Wahrheitswert ist
falsch für den Wert falsch der Variablen. Also ist sie nach dem
Metatheorem MT7 auch kein Theorem des Kalküls.

3.2.9 Vollständigkeit

Wie bei der Widerspruchsfreiheit ist die Einführung des Begriffs
der Vollständigkeit semantisch motiviert. Diese Motivation besteht
in der Forderung, dass der zu konstruierende Kalkül alle möglichen
Theoreme enthalten soll, die der semantischen Interpretation des
Kalküls nicht widersprechen. Vollständigkeit kann man, von den
schon gegebenen Definitionen der Widerspruchsfreiheit ausgehend,
folgendermaßen definieren.

Ein Kalkül heißt vollständig in Bezug auf eine gegebene Trans-
formation, die eine beliebige Formel A des Kalküls in eine Formel
A1 umwandelt, wenn für jede Formel B des Kalküls entweder ⊢ B
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gilt, oder der Kalkül durch Hinzunehmen der Formel B als eines
zusätzlichen Axioms des Kalküls nicht widerspruchsfrei in Bezug
auf diese Transformation wird.

Ein Kalkül ist absolut vollständig, falls für jede Formel B des
Kalküls entweder ⊢ B gilt, oder durch Einführung der Formel B
als eines zusätzlichen Axioms des Kalküls dieser nicht absolut wi-
derspruchsfrei wird.

Ein Kalkül ist vollständig im Sinne von Post, wenn für jede
Formel B des Kalküls entweder ⊢ B gilt, oder durch die Einführung
der Formel B als eines zusätzlichen Axioms des Kalküls dieser nicht
widerspruchsfrei im Sinne von Post wird.

Man fragt sich nun, wie es sich mit der Vollständigkeit des
Kalküls P1 verhält.

Sei B eine Formel des Kalküls, die kein Theorem ist. Laut dem
Metatheorem MT8 ist B in diesem Fall auch keine Tautologie, d. h.,
es gibt eine Kombination der Wahrheitswerte von Variablen, die in
B vorkommen, für die B den Wahrheitswert falsch annimmt.

Führt man dann die Formel B als ein Axiom des Kalküls ein,
wird es möglich aus B mit Hilfe der Substitutionsregel R2 eine For-
mel zu bekommen, die nach der Definition des Beweises in P1 ein
Theorem des Kalküls ist. Nun kann man von der Kombination der
Wahrheitswerte der in B vorkommenden Variablen ausgehen, für
die der Wert der Formel B der Wahrheitswert falsch ist. Für jede
Variable, die in dieser Kombination den Wahrheitswert wahr hat,
substituiert man die Formel t, und für jede, die den Wahrheits-
wert falsch hat, substituiert man die Formel f . Durch eine solche
Substitution erhält man eine Formel, die wir als E bezeichnen. E
enthält (nach Konstruktion) keine Variablen und bezeichnet den
Wert falsch. Der Definition des Beweises in P1 entsprechend ist E
ein Theorem.

Aus der Definition der Implikation folgt aber, dass die Formel
E ⊃ f eine Tautologie ist. Somit ist sie auch (laut MT8) ein Theo-
rem von P1.

Nun kann man auf die beiden Theoreme E und E ⊃ f die
Regel R1 (modus ponens) anwenden, und dadurch die Formel f
als Theorem des Kalküls erhalten. Aus dem Theorem f und dem
Theorem T2 kann man nun wiederum durch modus ponens eine
beliebige Formel des Kalküls P1 als Theorem gewinnen, da jede
Variable des Kalküls somit zu einem Theorem wird. Insbesondere
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wird es möglich, durch die Anwendung der Substitutionsregel so-
wohl eine Formel A als auch ihre Verneinung A ⊃ f zu gewinnen.
Durch Einführung der Formel B als eines Axioms des Kalküls wird
der Kalkül also nicht widerspruchsfrei in Bezug auf die Transfor-
mation einer Formel des Kalküls A in eine Formel A ⊃ f , sowie
nicht absolut widerspruchsfrei und nicht widerspruchsfrei im Sinne
von Post. Das beweist die Vollständigkeit von P1.

Es gelten somit die folgenden Metatheoreme.

MT17. P1 ist vollständig in Bezug auf Transformation einer
Formel A des Kalküls in die Formel A ⊃ f .

MT18. P1 ist absolut vollständig.

MT19. P1 ist vollständig im Sinne von Post.

3.2.10 Unabhängigkeit

Ein Axiom A eines Kalküls heißt unabhängig, wenn in dem Kalkül,
den man aus dem gegebenen durch Ausschließen von A aus der
Liste der Axiome bekommt, A kein Theorem ist.

Eine (primitive) Schlussregel R eines Kalküls heißt unabhängig,
wenn in dem Kalkül, den man durch Ausschließen von R aus der
Liste aller primitiven Regeln des Kalküls bekommt, R keine abge-
leitete Regel ist.

Die Forderung der Unabhängigkeit für die Axiome und Regeln
eines Kalküls ist nicht obligatorisch. Diese Forderung ist in erster
Linie durch das Bestreben bedingt, die Anzahl der Annahmen, die
man als Axiome und primitive Regeln des Kalküls einführt, oh-
ne sie zuvor zu beweisen, zu vermindern. Das ist zum Teil durch
die Geschichte der Entwicklung von logischen Kalkülen bestimmt.
Russell, der als einer der ersten aussagenlogische Kalküle formu-
lierte, begründete oft die Behauptungen, die er als Axiome dem
Kalkül vorausschickte, durch ihre Evidenz. Da aber der Evidenzbe-
griff selbst einer Erörterung bedarf, bevor man sich auf ihn bezieht,
und Russell dies wohlbewusst war, strebte er danach, die Anzahl der
evidenten Voraussetzungen eines Formalismus so klein wie möglich
zu erhalten. Inwiefern ihm das gelungen ist, besprechen wir noch
im nächsten Kapitel.

Wir analysieren nun in Bezug auf ihre Unabhängigkeit die Axio-
me und Regeln des Kalküls P1. Um die Unabhängigkeit eines der
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Axiome des Kalküls von den anderen zu zeigen, sucht man nach
einer solchen semantischen Interpretation von Basiselementen des
Kalküls (im Fall des Kalküls P1 sind das die Variablen und die Kon-
stante f sowie Formen, die das Implikationszeichen enthalten), die
dem fraglichen Axiom den Wahrheitswert falsch zuordnet, während
alle übrigen Axiome wahr sind. Wenn das gelingt, kann man das
fragliche Axiom nicht als ein Theorem des Kalküls, von anderen
Axiomen des Kalküls ausgehend, beweisen. Zu diesem Zweck führt
man eine Liste der Wahrheitswerte ein, die mehr als zwei Wahrheits-
werte enthält: 0, 1, . . . , ν. Die ersten Wahrheitswerte dieser Liste
0, 1, . . . , µ sind ausgezeichnet. Es gilt: µ < ν, wobei die Liste der
Wahrheitswerte mindestens einen ausgezeichneten Wert enthält. Je-
der primitiven Konstanten wird einer dieser Werte zugeschrieben,
und jedem Funktor eine Wahrheitswertetabelle für diese Werte. Ei-
ne Tautologie definiert man als eine Formel des Kalküls, die für jede
Kombination der Wahrheitswerte ihrer Variablen einen der ausge-
zeichneten Wahrheitswerte als ihren Wert hat. Wenn jede Schluss-
regel dann die Eigenschaft hat, Tautologien zu erhalten (d. h. eine
Tautologie als Schluss hat, wenn ihre Prämissen Tautologien sind),
und jedes Axiom außer einem auch eine Tautologie ist, dann folgt
daraus, dass das Axiom, das keine Tautologie ist, unabhängig ist.
Wenn alle Axiome Tautologien sind, alle Schlussregeln außer einer
Tautologien erhalten und der Kalkül ein Theorem enthält, das kei-
ne Tautologie ist, dann ist die Tautologien nicht erhaltende Regel
auch unabhängig.

Wir beschränken uns im Folgenden auf die Frage nach der Un-
abhängigkeit der Axiome des Kalküls. Für den Kalkül P1 kann man
die Unabhängigkeit aller Axiome feststellen, indem man eine Liste
aus drei Wahrheitswerten einführt, die wir durch 0, 1, 2 bezeich-
nen. Unter diesen Wahrheitswerten ist nur 0 ausgezeichnet. Der
Konstanten f wird der Wahrheitswert 2 zugeschrieben. Wir zeigen,
wie man nun mit der Frage nach der Unabhängigkeit der Axiome
des Kalküls verfährt. Die Implikation definiert man für jedes Axiom
durch das Angeben der Werte, die die Implikation für verschiede-
ne Werte ihres Antezedens und Konsequens annimmt. Church gibt
eine solche Definition in der Form einer Wahrheitswertetabelle, so
dass jede Spalte eine Definition enthält. Die jeweilige Definition
bestätigt die Unabhängigkeit des in der Spalte erwähnten Axioms.
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p q p ⊃ q (für A1) p ⊃ q (für A2) p ⊃ q (für A3)

0 0 0 0 0

0 1 2 1 1

0 2 2 2 2

1 0 2 0 0

1 1 2 0 0

1 2 0 1 2

2 0 0 0 0

2 1 0 0 0

2 2 0 0 0

Durch Nachrechnen stellt man fest, dass das Axiom A1 mit
der für sie gegebenen Definition die Werte 0, 2, 0, 0, 0, 2, 0, 0,
0 annimmt, und somit keine Tautologie ist, während die übrigen
Axiome Tautologien sind. Die Unabhängigkeit der anderen Axiome
lässt sich auf dieselbe Weise zeigen.

Eine andere Schreibweise für derartige Definitionen benutzt Ber-
nays ([Ber26], 317–320). Wenn wir Churchs Definitionen und Ber-
nays’ Schreibweise benutzen, definieren wir den Wert der Implika-
tion mit Hilfe von Gleichungen. Für A2 lautet diese Definition:

0 ⊃ 0 = 1 ⊃ 0 = 1 ⊃ 1 = 2 ⊃ 0 = 2 ⊃ 1 = 2 ⊃ 2 = 0

0 ⊃ 1 = 1 ⊃ 2 = 1

0 ⊃ 2 = 2

Dieser Definition entsprechend gilt:

(1 ⊃ (1 ⊃ 2)) ⊃ ((1 ⊃ 1) ⊃ (1 ⊃ 2)) = (1 ⊃ 1) ⊃ (0 ⊃ 1) =
(0 ⊃ 1) = 1 6= 0

Also nimmt A2 unter der gegebenen Definition auch einen nicht
ausgezeichneten Wert an, während das Gegenteil für die übrigen
Axiome gilt. Somit ist A2 unabhängig.
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Übungsaufgaben

16. Bestimmen Sie, welche der folgenden Ausdrücke Formeln des
Kalküls P1 sind.

a) ((p ⊃ (f ⊃ f)) ⊃ p)

b) p ⊃ (q ⊃ f)

c) p ⊃ f ⊃ f

d) (p ⊃ q) ⊃ ((q ⊃ r ⊃ (p ⊃ r)

e) p

f) f

g) (pf)

h) p ⊃ ff

i) pp(qq

Ergänzen Sie die Ausdrücke, die Ihrer Meinung nach keine For-
meln des Kalküls P1 sind, so dass diese zu Formeln des Kalküls
werden. Was ist das Hauptimplikationszeichen jeder dieser For-
meln (falls das Implikationszeichen in der Formel vorkommt)?

17. Zu welchen syntaktischen Kategorien der formalisierten Sprache
gehören die Formeln des Kalküls P1?

18. Der polnische Logiker J.  Lukasiewicz entwickelte eine logische
Sprache ohne Klammern. Das Alphabet dieser Sprache enthält
folgende primitive Symbole:

– Aussagenvariablen p, q, r, s, . . .

– Zeichen N (Negationszeichen), K (Konjunktionszeichen), A
(Disjunktionszeichen), C (Implikationszeichen), E (Äquiva-
lenzzeichen), J (Zeichen für das ausschließende oder).

Eine Formel dieser Sprache ist wie folgt definiert:

i. Jede allein stehende Aussagenvariable ist eine Formel.

ii. Ist α eine Formel, dann ist Nα eine Formel.
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iii. Sind α und β Formeln, dann sind Kαβ, Aαβ, Cαβ, Eαβ,
Jαβ auch Formeln.

iv. Keine andere Zeichenfolge ist eine Formel.

Welche Gestalt haben in dieser Sprache die Formeln:

a) (((p ⊃ q) ∨∼r) · (r ≡ p)) ⊃ q

b) (∼p ≡ q) ⊃ (p ∨ (r · ∼s))
c) ((p ⊃ q) ⊃ r) ⊃ s

d) p ⊃ (q ⊃ (r ⊃ s))

e) ((p 6≡ q) · ∼r) ⊃ ((r ≡ s) ∨ ∼(p · q))?

Übersetzen Sie die folgenden Formeln in die Sprache des Kalküls
Perw:

f) KpNCNqArs

g) ANCKNANpqrsNp

Gehen Sie dabei davon aus, dass das Alphabet dieses Kalküls
als eigentliche Symbole eine unendliche Liste von Aussagenva-
riablen enthält, als uneigentliche – die Funktoren ∼, ·, ∨, ⊃, ≡,
6≡ und dass eine Formel von Perw folgendermaßen definiert ist:

i. Jede allein stehende Variable ist eine Formel des Kalküls.

ii. Ist Γ eine Formel des Kalküls, dann ist ∼Γ eine Formel des
Kalküls.

iii. Sind Γ und ∆ Formeln des Kalküls, dann sind (Γ · ∆),
(Γ ∨ ∆), (Γ ⊃ ∆), (Γ ≡ ∆), (Γ 6≡ ∆) auch Formeln des
Kalküls.

iv. Keine andere Zeichenfolge ist eine Formel des Kalküls.

19. Ist ein Axiom des Kalküls P1 ein Theorem?

20. Beweisen Sie das Theorem T1 (p ⊃ p) mit Hilfe der Regel,
die eine gleichzeitige Substitution für mehrere Variablen in eine
Formel des Kalküls erlaubt.
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21. Beweisen Sie folgende Theoreme des Kalküls P1

T2. f ⊃ p

T3. (p ⊃ f) ⊃ (p ⊃ q)

Benutzen Sie zum Beweis des letzten Theorems T2 (f ⊃ p) und
T4 ((q ⊃ r) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))). Warum kann man für
einen Beweis ein schon früher bewiesenes Theorem des Kalküls
benutzen, obwohl in der Definition des Beweises diese Möglich-
keit nicht ausdrücklich erwähnt wird?

22. Beweisen Sie folgende Theoreme des Kalküls P1.

T6. ((p ⊃ q) ⊃ p) ⊃ ((p ⊃ f) ⊃ p)

Benutzen Sie zum Beweis T3 und T5 ((p ⊃ q) ⊃ ((q ⊃ r) ⊃
(p ⊃ r))).

T7. ((p ⊃ q) ⊃ p) ⊃ p

23. Beweisen Sie T2 und T3 mit Hilfe des Deduktionstheorems.

24. Zeigen Sie mit Hilfe von Wahrheitswertetabellen, dass die Axio-
me des Kalküls P1 Tautologien sind.

25. Finden Sie die konjunktive Normalform der folgenden Formeln
und stellen Sie fest, ob sie Tautologien sind.

p ⊃ ((p ⊃ q) ⊃ q)

(p ⊃ q) ⊃ ((p · r) ⊃ (q · r))

Hinweis: Benutzen Sie für die Umformung die Theoremensche-
mata, die in dem Kalkül P1 von den Theoremen T16 (das voll-
ständige Gesetz der doppelten Negation), T30 (Symmetrie der
Disjunktion), T31 (Assoziativität der Konjunktion), T32 (Asso-
ziativität der Disjunktion), T33 (Distributivität der Konjunkti-
on), T34 (Distributivität der Disjunktion), T37 und T38 (Geset-
ze von de Morgan) und der Äquivalenz ID ((p ⊃ q) ≡ (∼p∨ q))
repräsentiert sind, sowie das Definitionsschema D6.
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26. Zeigen Sie, dass man eine Formel der Sprache Perw, die als
ihr Hauptzeichen Implikation, Konjunktion, Disjunktion oder
Äquivalenz enthält, mit Hilfe eines einzigen logischen Zeichens

”
|“ darstellen kann, das mit Hilfe von i) definiert ist. Gehen

Sie dabei von der Formeldefinition des Kalküls Perw aus. Sie
dürfen eine Teilformel (sowie die ganze Formel) einer Formel
durch eine äquivalente Formel ersetzen. Benutzen Sie folgende
Äquivalenzenschemata:

a) ∼∼A ≡ A

b) ∼(A ∨B) ≡ ∼A · ∼B
c) (A ⊃ B) ≡ (∼A ∨B)

d) (A · B) ≡ ∼(∼A ∨ ∼B)

e) (A ∨ B) ≡ ∼(∼A · ∼B)

f) (A ≡ B) ≡ ((∼A ∨B) · (∼B ∨A))

g) (A ≡ B) ≡ ((A ⊃ B) · (B ⊃ A))

h) (A ≡ B) ≡ ((A · B) ∨ (∼A · ∼B))

i) (A | B) ≡ (∼A ∨∼B)

j) ∼A ≡ (A | A)
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3.3 Aussagenkalkül PR

Church bezeichnet als PR den Aussagenkalkül, der von Russell und
Whitehead in Principia Mathematica ausführlich dargelegt wurde.
Russell hat schon früher (1906 [Rus06], 1908 [Rus08]) die Grundi-
deen dazu formuliert.

Der Darstellung dieses Kalküls möchten wir ein paar Bemer-
kungen über Russells Motive für die Formulierung eines aussagen-
logischen Kalküls vorausschicken. Russell betrachtet den Aussagen-
kalkül als fundamentalen Bestandteil der symbolischen Logik. In
Principia wird der Aussagenkalkül als ein Teil der Deduktionstheo-
rie präsentiert. Dieser Teil ist keine Theorie der Aussagen (

”
propo-

sitions“), sondern handelt davon, wie man eine Aussage aus einer
(oder mehreren) anderen ableiten kann. Da Russell als Grund für
die Ableitung die Relation zwischen Aussagen ansieht, die darin
besteht, dass eine Aussage als eine Folgerung der anderen auftritt,
sieht er seine Aufgabe in der Untersuchung dieser Relation und
der Benutzung ihrer Eigenschaften für die Begründung der Geset-
ze des Schließens. Man bringt die Relation der Folgerung zwischen
Aussagen durch die Behauptung zum Ausdruck, dass eine Aussa-
ge p eine andere Aussage q impliziert. Eine solche Ausdruckswei-
se sowie die Definition der Implikation, die nicht wahr sein kann,
wenn ihr Antezedens wahr und das Konsequens falsch ist, veran-
lassten Russell schon 1906 zu der Behauptung, dass die Dedukti-
on von der Relation der Implikation abhängt, und dass deswegen
die Eigenschaften der Implikation als Voraussetzungen eines jeden
deduktiven Systems auftreten sollen. Diese Behauptung wird fast
wortwörtlich 1910 in Principia wiederholt. Die Theorie, der Rus-
sell und Whitehead die Gestalt eines Aussagenkalküls gaben, hat
einen fundamentalen Charakter, der darin besteht, dass alle Be-
hauptungen der Theorien, die irgendwelche andere von den Aussa-
gen verschiedene logische Objekte (z. B. Klassen) untersuchen, die
Form von Aussagen haben und insofern gegen Regeln des Aussagen-
kalküls nicht verstoßen dürfen, wenn sie als Basis für die Ableitung
anderer Behauptungen auftreten.

Der Aussagenkalkül von Principia basiert auf einigen primitiven
Ideen (Begriffen) sowie primitiven Sätzen (Axiomen), die deshalb
der Terminologie von Peano folgend als primitive bezeichnet wer-
den, weil sie ohne Beweis und Definition, sondern durch Erklärun-
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gen eingeführt werden. Unter den primitiven Ideen, die selbst kein
syntaktisches Element des Kalküls sind, die aber dennoch zu den
Konventionen über die Syntax der Theorie gehören, sind folgende.

Als erste primitive Idee wird in Principia der Begriff einer ele-
mentaren Proposition eingeführt. Wir betrachten das Wort

”
Pro-

position“ als Synonym für
”
Aussage“ (wie wir das Wort hier be-

nutzen). In Bezug auf Russells Theorie benutzen wir den ersten
Terminus. Unter einer elementaren Proposition versteht man einen
Satz, der keine Variablen und somit keine Wörter wie

”
alle“,

”
ei-

nige“,
”
der“ u. ä. enthält. Eine beliebige Komposition von elemen-

taren Propositionen mit Hilfe eines der logischen Funktoren (wie
Negation, Disunktion oder Konjunktion) ist wieder eine elementare
Proposition. Elementare Propositionen werden in dem Formalismus
von Principia durch Variablen, die das Alphabet des Kalküls PR

enthält (z. B. p, q, r, s), bezeichnet.

Als zweite primitive Idee wird der Begriff einer elementaren
propositionalen Funktion eingeführt. Unter einer elementaren pro-
positionalen Funktion versteht man einen Ausdruck, der eine Va-
riable oder mehrere Variablen enthält. Wenn man dieser (diesen)
Variablen eine bestimmte Bedeutung zuordnet, ist der Wert des
fraglichen Ausdrucks eine elementare Proposition. Der Ausdruck

”
nicht-p“ ist ein Beispiel für eine elementare propositionale Funk-

tion. In den metatheoretischen Ausführungen von Principia (z. B.
bei der Formulierung der Regeln des Kalküls) werden elementare
propositionale Funktionen durch Ausdrücke wie ϕp und ψp darge-
stellt. In den elementaren propositionalen Funktionen erkennt man
die Repräsentanten der syntaktischen Kategorie von Formen, die
zusammen mit Variablen, logischen Konstanten und (anderen) un-
eigentlichen Symbolen die Syntax der formalisierten Sprache von
Principia ausmachen.

Eine weitere primitive Idee ist der Begriff der Behauptung. Die-
ser Begriff wird von Frege übernommen. Die Autoren von Princi-
pia unterscheiden zwischen der Behauptung einer Proposition (dem
Fall, dass eine Proposition behauptet wird) und der Behauptung
über eine Proposition (dem Fall, dass die Proposition nur betrach-
tet wird). Wenn der Satz

”
Caesar starb“ gebraucht wird, wird die

Proposition Caesar starb behauptet. In dem Satz
”’

Caesar starb‘ ist
eine Proposition“ wird die Proposition Caesar starb nur betrachtet
(oder erwähnt), mit anderen Worten, sie bleibt unbehauptet. Die
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Behauptung wird durch das Zeichen
”
⊢“ bezeichnet, das nicht zu

den Elementen des Alphabets des Kalküls oder seinen Ausdrücken
gehört. Die Autoren von Principia lassen aber die Möglichkeit zu,
dass das Behauptungszeichen in einer Formel des Kalküls auch vor
einer Teilformel vorkommen kann. Bezüglich der Implikation be-
merken Russell und Whitehead, dass Antezedens und Konsequens
einer Implikation für gewöhnlich unbehauptet sind, während die hy-
pothetische Proposition, die sie als ihre Teilpropositionen enthält,
behauptet wird, wie im Beispiel

”
⊢ : p . ⊃ . q “. Diesen Ausdruck

kann man lesen als:
”
Es ist wahr, dass p q impliziert“. Die Anzahl

der Punkte nach dem Behauptungszeichen bezeichnet den Wir-
kungsbereich dieses Zeichens, d. h. sie zeigt, was behauptet wird.
Hier weist diese Anzahl darauf hin, dass die Implikation behaup-
tet wird, aber nicht p. Alles, was diesen Punkten folgt, wird be-
hauptet, bis man die gleiche Anzahl der Punkte oder das Ende der
Proposition erreicht. Dass man das Behauptungszeichen als

”
es ist

wahr, dass . . .“ lesen kann, entspricht nach Meinung von Russell
und Whitehead nicht ganz der philosophischen Bedeutung, die man
mit dem Zeichen verbindet, aber in dem Formalismus von Princi-
pia wird es als Zeichen für ein Theorem benutzt, für das man einen
Beweis erbracht hat. Diese Interpretation des Zeichens wird auch
durch den Begriff der Behauptung einer propositionalen Funktion
bestätigt, unter der man die Behauptung eines unbestimmten Wer-
tes der Funktion versteht, wobei die Behauptung nur dann berech-
tigt ist, wenn ein beliebiger Wert dieser Funktion wahr ist. Noch
eine wichtige Bemerkung, die im Zusammenhang mit dieser pri-
mitiven Idee gemacht wird, betrifft den Inhalt der Behauptungen
von Principia. In allen Theoremen des Aussagenkalküls PR wer-
den propositionale Funktionen, und nicht irgendwelche bestimmte
Propositionen behauptet.

Das Alphabet des Kalküls PR enthält als eigentliche Symbole
nur eine unendliche Liste von Variablen p, q, r, s, p1, q1, r1, s1,
p2, . . . , deren Reihenfolge wir als alphabetische Reihenfolge von
Variablen definieren.

Das Alphabet des Kalküls enthält außerdem vier uneigentliche
Symbole: das Negationszeichen ∼, das Disjunktionszeichen ∨ und
linke und rechte Klammern (, ). Klammern werden in Principia
auch durch Punkte bezeichnet. Bei dem Ersetzen der Klammern
durch Punkte soll man sich an folgende Regeln halten. Punkte, die
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links oder rechts von den logischen Funktoren stehen, dienen als
Trennungszeichen, um Teilpropositionen zu klammern. Die größere
Anzahl von Punkten weist auf eine äußere Klammer hin, die klei-
nere – auf eine innere Klammer. Der Funktor, der durch die größte
Anzahl von Punkten begleitet ist, heißt das Hauptzeichen der For-
mel. Der Wirkungsbereich der Klammern, deren Vorkommen durch
beliebige Anzahl der Punkte (ungleich 0) markiert ist, erstreckt sich
(nach rechts oder nach links von dem Funktorzeichen ausgehend)
über eine beliebige kleinere Anzahl von Punkten, bis man das Ende
der Proposition oder eine größere Anzahl von Punkten erreicht. In
Principia dienen die Punkte auch dazu, dass man die Konjunktion
mit deren Hilfe bezeichnet, aber wir benutzen zu diesem Zweck den
anders positionierten Punkt. Die gewöhnlichen Klammern werden
nicht überall durch Punkte ersetzt, insbesondere dort nicht, wo die
Teilformeln derjenigen Teilformel einer Formel des Kalküls geklam-
mert werden, deren Vorkommen durch Punkte schon markiert ist.

Wir definieren eine Formel des Kalküls wie folgt.

i. Jede allein stehende Variable ist eine Formel des Kalküls.

ii. Ist Γ eine Formel des Kalküls, dann ist ∼Γ auch eine Formel
des Kalküls.

iii. Sind Γ und ∆ Formeln des Kalküls, dann ist (Γ ∨ ∆) auch eine
Formel des Kalküls.

iv. Ein Ausdruck ist dann und nur dann eine Formel des Kalküls,
wenn dieser den Punkten i–iii entsprechend konstruiert ist.

Diese Definition kann man als eine Umformulierung der These
betrachten, dass der Kalkül Behauptungen (Theoreme) über ele-
mentare propositionale Funktionen enthält, die ihrerseits Variablen
aus dem Alphabet des Kalküls beinhalten, welche als unbestimmte
elementare Propositionen zu betrachten sind. Die Definition basiert
auf den Axiomen *1.7, *1.71, *1.72, die in der Liste der Axiome
(primitiven Sätze) der

”
Deduktionstheorie“ von Principia enthal-

ten sind. Diese definieren für eine elementare Proposition p den
Ausdruck ∼p, und für zwei elementare Propositionen p und q den
Ausdruck p∨ q als elementare Propositionen, und für zwei elemen-
tare propositionale Funktionen ϕp und ψp, die als ihre Argumente
elementare Propositionen haben, den Ausdruck ϕp ∨ ψp als eine
elementare propositionale Funktion. Durch diese Axiome wird also
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die Konstruktionsweise der konstruktiven Objekte des Kalküls PR

angegeben, während die oben erwähnten primitiven Ideen in erster
Linie die Ausgangssymbole definieren, aus denen die Formeln des
Kalküls konstruiert werden.

Der Formulierung der Axiome des Kalküls schicken Russell und
Whitehead die Definition der Implikation voraus.

DR1. p ⊃ q → ∼p ∨ q

Diese Definition gibt die Wahrheitsbedingungen der Implikation
wieder. Nach Russell und Whitehead kann man den Ausdruck

”
p ⊃

q“ als
”
entweder p ist falsch oder q ist wahr“ lesen. Bekanntlich ist

eine Implikation dann und nur dann wahr, wenn die erste oder die
zweite dieser Bedingungen erfüllt ist.

Der Gebrauch von Punkten in Principia gibt uns außer dem aus
dem Kapitel 3.2 schon bekannten Verfahren noch weitere Kriteri-
en, um feststellen zu können, ob eine Zeichenfolge den Konstrukti-
onsregeln des Kalküls entspricht. Punkte werden von Russell und
Whitehead deshalb bevorzugt, weil sie die Struktur von Formeln
des Kalküls zeigen und zugleich helfen, die Häufung von Klammern
zu vermeiden. Deswegen wird es empfohlen, bei dem Lesen jeder
Formel zunächst die Punkte zu lesen. Mit einer solchen Analyse
der Formeln sowie mit Hilfe der

”
Interpunktionsregeln“ für Punkte

kann man das effektive Verfahren beschreiben, mit dem man fest-
stellen kann, ob eine gegebene Zeichenfolge eine Formel des Kalküls
ist oder nicht. Dabei ist die Wiederherstellung der in der Formel
vorkommenden Klammern nicht immer notwendig. Ein solches Ver-
fahren führt man folgendermaßen durch.

Nehmen wir als Beispiel die Zeichenfolge

⊢ :: q ⊃ r . ⊃ : p ⊃ q . ⊃ . p ⊃ r : . ⊃ : p ⊃ q . ⊃ .q ⊃ r

Zunächst suchen wir nach dem Hauptzeichen der Formel. Wir fan-
gen von links an. Es ist aber möglich, dass man die Folge nach
dem Hauptzeichen auch von rechts nach links durchsucht. Wir sum-
mieren die Punkte, die links und rechts von jedem Funktor stehen
(in unserem Beispiel ist das nur das Implikationszeichen), und ver-
gleichen die gewonnenen Zahlen miteinander. Die größte Anzahl
der Punkte, die rechts und links von einem Implikationszeichen
stehen, ist in der gegebenen Zeichenfolge 5, somit ist das sechs-
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te Implikationszeichen das Hauptzeichen dieser Formel, wenn die
Zeichenfolge eine Formel ist. Um jetzt festzustellen, ob diese Zei-
chenfolge tatsächlich eine Formel des Kalküls ist, vernachlässigen
wir zunächst die Punkte, die dem Behauptungszeichen folgen. Dann
prüfen wir, ob an einer Stelle (links oder rechts von einem der logi-
schen Funktoren) in der Teilfolge, die links von dem Hauptzeichen
steht, dieselbe Anzahl der Punkte vorkommt wie links von dem
Hauptzeichen. Ist das der Fall, dann ist die gegebene Zeichenfol-
ge keine Formel. Wenn das nicht der Fall ist, wenden wir dasselbe
Verfahren auf die rechte Teilfolge an, für die nun die Anzahl der
rechts von dem Hauptzeichen stehenden Punkte relevant ist. Hat
auch diese Teilfolge den Test bestanden, kann man von den Punk-
ten, die links und rechts von dem Hauptzeichen stehen, absehen.
Dann wird das Verfahren für beide Teile der gegebenen Zeichen-
folge wiederholt, bis wir solche Teilfolgen erreichen, die keine von
den Punkten begleiteten Funktoren enthalten. Wir prüfen nun, ob
auch diese der Formeldefinition entsprechen. Wir gehen dabei da-
von aus, dass die Formel der Gestalt (Γ ⊃ ∆) der Definition DR1
entsprechend auch eine Formel des Kalküls ist, weil sie nur eine
Abkürzung einer Formel des Kalküls der Gestalt (∼Γ ∨ ∆) ist, die
man auch als (Γ1 ∨ ∆) schreiben kann. Die Formel Γ1 ist dabei
laut Definition auch eine Formel des Kalküls. Durch die Zerlegung
der Zeichenfolge, die Punkte statt Klammern enthält, in Teile, von
denen angenommen wird, dass diese Teilformeln einer Formel sind,
bekommt man ungeklammerte Ausdrücke. Also ist es sinnvoll, von
vornherein bei der Anwendung dieses Verfahrens eine Konvention
darüber zu treffen, dass eine Zeichenfolge auch dann als Formel des
Kalküls anerkannt wird, wenn ihre Gestalt der Definition der For-
mel des Kalküls entspricht, unter dem Vorbehalt, dass die äußeren
Klammern ausgelassen werden können. Die Anzahl der Punkte, die
dem Behauptungszeichen folgen, zeigen in unserem Beispiel, dass
das Behauptungszeichen sich auf die ganze Formel bezieht, weil
keine Kombination von Punkten, die in der Formel vor oder nach
einem Funktor vorkommt, ihrer Anzahl nach gleich oder größer als
4 ist. Von der Möglichkeit, dass ein Behauptungszeichen in einer
Teilformel einer Formel vorkommt, sehen wir ab, da dies für den
Aussagenkalkül PR nicht relevant ist.

Das obige Verfahren zeigt, das die angegebene Zeichenfolge eine
Formel des Kalküls ist. Die Zeichenfolge der Gestalt
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p ∨ q . ⊃ . q . ∨ . p

ist dagegen keine Formel des Kalküls. Das stellt man schon nach
dem ersten Schritt des eben beschriebenen Verfahrens fest. Wäre
diese Zeichenfolge eine Formel, dann würde sie kein Hauptzeichen
enthalten, was für eine Formel, die aus mehr als nur einem eigent-
lichen Symbol des Kalküls besteht, unmöglich ist.

Durch eine endliche Schrittfolge lässt sich also feststellen, ob
eine gegebene Zeichenfolge eine Formel des Kalküls ist oder nicht.
Man kann allerdings auch das schon bekannte Verfahren benutzen,
indem man die Klammern in der gegebenen Formel den Interpunk-
tionsregeln entsprechend wiederherstellt und summiert.

In PR gibt es zwei Schlussregeln, die mit denen des Kalküls P1

identisch sind, und die wir deswegen auf ähnliche Weise darstellen.

RR1. Aus (A ⊃ B) und A folgt B (modus ponens).

RR2. Ist b eine Variable in A, und B eine Formel des Kalküls, dann
folgt aus A Sb

BA| (Substitutionsregel).

Die Regel modus ponens wird in Principia mit Hilfe von zwei
Axiomen begründet, von denen eins (*1.1) besagt, dass alles, was
von einer wahren elementaren Proposition impliziert wird, wahr ist.
Die Autoren von Principia weisen darauf hin, dass dieses Prinzip
keine hypothetische Aussage ist. Wie die Verallgemeinerung dieses
Axioms *9.12 zeigt, ist das ein Deduktionsprinzip, dessen Rolle in
dem Kalkül aus der Definition eines Beweises und schließlich aus
der semantischen Interpretation eines Theorems ersichtlich wird.
Das andere Axiom (*1.11) wird für propositionale Funktionen und
insbesondere für die elementaren propositionalen Funktionen for-
muliert, und behauptet, dass wenn ϕx (wobei x eine reale Variable
ist, d. h. ein freies Vorkommen hat) und ϕx ⊃ ψx behauptet werden,
dann kann auch ψx behauptet werden, wobei x eine reale Varia-
ble ist. In Beweisen von Principia wird ausdrücklich Bezug auf das
letztere Axiom genommen. Eine Begründung dafür liefert die schon
erwähnte These, dass sich die Deduktionstheorie von Principia als
eine formale Theorie mit propositionalen Funktionen beschäftigt.
Russell und Whitehead sehen im modus ponens das Grundprinzip
der Ableitung, so dass die Ableitung (einer Formel aus der anderen)
sich als das Verwerfen einer wahren Prämisse definieren lässt ([PM],
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9). Um der Reinheit der Darstellung des Kalküls willen sollte man
den modus ponens mit Hilfe von primitiven Zeichen (der Negati-
on und Disjunktion) des Kalküls definieren. Bequemlichkeitshalber
bleiben wir bei der Notation von Principia. Diese Notation erleich-
tert die Aufgabe, die Äquivalenz der Kalküle P1 und PR zu zeigen.
Die Lösung dieser Aufgabe ist eins der Hauptziele dieses Kapitels.

Die Substitutionsregel wird von Russell und Whitehead nicht
als Regel dargestellt. Obwohl sie ständig angewandt wird und als
wesentlich für das sich mit Hilfe allgemeiner Regeln realisierende
Deduktionsverfahren aufgefasst wird, kann man die Substitutions-
regel selbst, nach Russell und Whitehead, nicht als eine allgemeine
Regel formulieren. Durch Substitution bekommt man

”
ein Beispiel“

(
”
instance“) einer allgemeinen Regel oder eines allgemeinen Prin-

zips, und die Autoren von Principia sehen keine Möglichkeit, die
einzelnen Substitutionen zu einer Regel zu verallgemeinern. Da aber
die Axiome des Kalküls keine Axiomenschemata sind, bei denen
die Ersetzung ihrer Variablen durch beliebige Formeln des Kalküls
Axiome liefern, formulieren wir diese Regel explizit. Die explizite
Einführung dieser Regel hat zur Folge, dass in den Beweisen in
PR die Prämisse der Substitutionsregel als eine selbständige Zeile
vorkommt. In den Beweisen von Principia wird auch eine solche
Prämisse bei der Begründung des Schlusses angegeben.

Axiome des Kalküls PR sind folgende.

AR1. ⊢ : p ∨ p . ⊃ . p

AR2. ⊢ : q . ⊃ . p ∨ q
AR3. ⊢ : p ∨ q . ⊃ . q ∨ p
AR4. ⊢ : p ∨ (q ∨ r) . ⊃ . q ∨ (p ∨ r)
AR5. ⊢ : . q ⊃ r . ⊃ : p ∨ q . ⊃ . p ∨ r

Das Axiom AR1 wird als Tautologieprinzip (kurz:
”
Taut“) bezeich-

net. Die Behauptung kann man lesen als
”
Ist p wahr oder p wahr,

dann ist p wahr“. Das Axiom AR2 (
”
Ist q wahr, dann ist

’
p oder

q‘ wahr“) wird
”
Additionsprinzip“ (

”
Add“) genannt. AR3 (

”’
p oder

q‘ impliziert
’
q oder p‘“) bezeichnen die Autoren von Principia als

Permutationsprinzip (
”
Perm“), AR4 (

”
Ist p wahr oder

’
q oder r‘

wahr, dann ist q wahr oder
’
p oder r‘ wahr“) – als Assoziativitäts-

prinzip (
”
Assoc“), und AR5 (

”
Wenn q r impliziert, dann impliziert
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’
p oder q‘

’
p oder r‘“) – als Summationsprinzip (

”
Sum“).

Ein Beweis in PR ist eine endliche Folge, die aus Formeln des
Kalküls besteht. Jede dieser Formeln erfüllt eine der folgenden Be-
dingungen:

1. Sie ist eins der Axiome des Kalküls.

2. Sie folgt aus zwei in der Folge schon vorkommenden Formeln
des Kalküls nach der Regel RR1.

3. Sie folgt aus einer in der Folge schon vorkommenden Formel des
Kalküls nach der Substitutionsregel (RR2).

4. Sie ist durch die Anwendung der Definition DR1 auf eine Formel
dieser Folge oder auf eine (oder mehrere) Teilformel(n) einer
Formel dieser Folge gewonnen.

Der Beweis ist ein Beweis der letzten Formel dieser Folge. Eine
Formel des PR nennt man Theorem, wenn sie einen Beweis hat.

Bernays schlug 1926 vor, das Ersetzen jeder Formel, die das Im-
plikationszeichen enthält, durch eine Formel mit dem Disjunktions-
zeichen und umgekehrt (was die Definition DR1 erlaubt) nicht als
einen selbständigen Beweisschritt zu betrachten, sondern in dersel-
ben Zeile des Beweises die Formel umzuformen und von derjenigen,
die man umformt, durch das Wort

”
bzw.“ zu trennen. Wir wer-

den anders vorgehen, womit allerdings kein Einwand gegen diesen
Vorschlag erhoben wird. In diesem Punkt halten wir uns an die
Struktur der Beweise in Principia.

Als Beispiel eines Beweises betrachten wir den Beweis des ersten
Axioms des Kalküls P1, das wir hier als Theorem TR2 bezeichnen
(entspricht dem Theorem *2.02 von Principia).

TR2. ⊢ : p . ⊃ . q ⊃ p

1. ⊢ : q . ⊃ . p ∨ q AR2

2. ⊢ : p . ⊃ .∼q ∨ p Sq
p

p
∼q(1)|

3. ⊢ : p . ⊃ . q ⊃ p DR1 (2)

Weitere Definitionen des Kalküls sind:

DR2. p · q → ∼(∼p ∨ ∼q)
DR3. p ≡ q → (p ⊃ q) · (q ⊃ p)
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Einige weitere Theoreme sind:

TR1. ⊢ : p ⊃ ∼p. ⊃ .∼p
TR3. ⊢ : p ⊃ ∼q . ⊃ . q ⊃ ∼p
TR4. ⊢ : . p . ⊃ . q ⊃ r : ⊃ : q . ⊃ . p ⊃ r

TR5. ⊢ : . q ⊃ r . ⊃ : p ⊃ q . ⊃ . p ⊃ r

TR6. ⊢ : . p ⊃ q . ⊃ : q ⊃ r . ⊃ . p ⊃ r

TR7. ⊢ : p . ⊃ . p ∨ p
TR8. ⊢ . p ⊃ p

Das Theorem TR8 (das Identitätsprinzip) beweisen wir auch. Bei
diesem Beweis benutzen wir das Theorem TR5 und TR7.

1. ⊢ : . q ⊃ r . ⊃ : p ⊃ q . ⊃ . p ⊃ r TR5

2. ⊢ :: p ∨ p . ⊃ p : ⊃ : . p . ⊃ . p ∨ p : ⊃ . p ⊃ p Sq
p∨p

r
p(1)|

3. ⊢ : p ∨ p . ⊃ . p AR1

4. ⊢ : . p . ⊃ . p ∨ p : ⊃ . p ⊃ p RR1 ((2),(3))

5. ⊢ : p . ⊃ . p ∨ p TR7

6. ⊢ . p ⊃ p RR1 ((4),(5))

Weitere Theoreme des Kalküls werden wir hier nicht angeben, aber
wir weisen darauf hin, dass man in dem Kalkül PR die ersten zwei
Axiome des Kalküls P1 beweisen kann, sowie eine Aussage, die mit
dem dritten Axiom äquivalent ist. Das Axiom A3 des Kalküls P1

lässt sich nicht in dem Kalkül PR beweisen, weil das Alphabet des
Kalküls PR keine Konstante f enthält. Bevor wir uns dieser Fra-
ge widmen, betrachten wir noch die Frage nach der semantischen
Interpretation des Kalküls PR.

Dem Kalkül PR geben wir folgende semantische Interpretation.
Eine Proposition kann nach Russell und Whitehead zwei Wahrheits-
werte haben. Der Wahrheitswert einer Proposition ist wahr, wenn
die Proposition wahr ist, und falsch, wenn die Proposition falsch
ist. Die Wahrheitswerte von elementaren Propositionen, die einen
Funktor enthalten, sowie von elementaren propositionalen Funktio-
nen sind vollständig durch die Wahrheitswerte ihrer Argumente (im
Fall von elementaren Propositionen – durch die Wahrheitswerte der
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Teilpropositionen) bestimmt. Man kann also solche propositionalen
Funktionen als Wahrheitsfunktionen auffassen ([PM], 8). Diese Auf-
fassung führt zur Formulierung folgender semantischer Regeln.

1. Jede Variable des Kalküls hat einen der Wahrheitswerte wahr
oder falsch.

2. Die Form, die aus einer allein stehenden Variablen besteht,
nimmt den Wert wahr an, wenn die Variable den Wahrheits-
wert wahr annimmt, und den Wert falsch, wenn die Variable
den Wahrheitswert falsch annimmt.

3. Ist Γ eine Form, dann nimmt ∼Γ den Wahrheitswert wahr an,
wenn Γ den Wahrheitswert falsch annimmt, und den Wahrheits-
wert falsch, wenn Γ den Wahrheitswert wahr hat.

4. Sind Γ und ∆ Formen, dann nimmt (Γ∨∆) den Wahrheitswert
falsch nur dann an, wenn Γ und ∆ beide den Wahrheitswert
falsch annehmen, sonst hat eine solche Form den Wahrheitswert
wahr.

Für die Formeln des Kalküls, welche die durch die Definitionen
DR1, DR2 und DR3 eingeführten Funktoren enthalten, ist die se-
mantische Interpretation durch diese Definitionen bestimmt und
kann durch folgende Regeln gegeben werden.

5. Sind Γ und ∆ Formen, dann nimmt (Γ ⊃ ∆) den Wahrheits-
wert falsch nur dann an, wenn das Antezedens dieser Form den
Wahrheitswert wahr, und das Konsequens den Wahrheitswert
falsch annimmt. Sonst hat eine solche Form den Wahrheitswert
wahr.

6. Sind Γ und ∆ Formen, dann nimmt (Γ · ∆) den Wahrheitswert
wahr nur dann an, wenn Γ und ∆ beide den Wahrheitswert wahr
annehmen, sonst nimmt die Form den Wahrheitswert falsch an.

7. Sind Γ und ∆ Formen, dann nimmt (Γ ≡ ∆) den Wahrheitswert
wahr dann an, wenn Γ und ∆ beide denselben Wahrheitswert
annehmen (beide wahr oder beide falsch sind), sonst nimmt eine
solche Form den Wahrheitswert falsch an.

In PR lässt sich die abgeleitete Substitutionsregel (sie wurde
schon bei dem Beweis von TR2 und TR8 benutzt) beweisen. Eine
Variante einer Formel des Kalküls, ein varianter Beweis und Beweis
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aus den Hypothesen H1, H2, . . . , Hn werden auf gleiche Weise wie
in P1 definiert. Für den Beweis des Deduktionstheorems in dem
Kalkül P1 benutzten wir den modus ponens, die Substitutionsregel,
das Gesetz der Reflexivität der Implikation (TR8 in PR), das Ge-
setz der Behauptung des Konsequens (TR2) und das Gesetz der
Selbstdistributivität der Implikation (*2.77 von Principia, das wir
hier nicht beweisen). Also kann man in dem Kalkül PR das De-
duktionstheorem und weitere Metatheoreme beweisen, die für den
Kalkül P1 bewiesen wurden.

MTR1. Wenn ⊢ A, dann ⊢ Sb1
B1

b2
B2

...

...
bn
Bn
A|

MTR2. Wenn H1, H2, . . . , Hn ⊢ B, dann H1, H2, . . . , Hn−1

⊢ Hn ⊃ B

Korollar: Wenn A ⊢ B, dann ⊢ (A ⊃ B)

MTR3. Wenn jede Formel des Kalküls, die zumindest einmal
in der Liste der Formeln H1, H2, . . . , Hn vorkommt, mindes-
tens einmal auch in der Liste der Formeln C1, C2, . . . , Cr vor-
kommt, und H1, H2, . . . , Hn ⊢ B, dann C1, C2, . . . , Cr ⊢ B.

MTR4. Wenn ⊢ B, dann C1, C2, . . . , Cr ⊢ B.

Mit Hilfe des Deduktionstheorems beweisen wir hier noch folgendes
Theorem

TR9. ⊢ : . p . ⊃ .∼(r ⊃ r) : ⊃ .∼p

1. ⊢ : . p . ⊃ .∼(r ⊃ r) : ⊃ : r ⊃ r . ⊃ .∼p Sq
r⊃r TR3|

2. p . ⊃ .∼(r ⊃ r) H1

3. p . ⊃ .∼(r ⊃ r) ⊢ : (r ⊃ r) . ⊃ .∼p RR1 ((1),(2))

4. ⊢ . r ⊃ r Variante von TR8

5. p . ⊃ .∼(r ⊃ r) ⊢ .∼p RR1 ((3),(4))

6. ⊢: . p . ⊃ .∼(r ⊃ r) : ⊃ .∼p MTR2

Um nun zu zeigen, in welcher Beziehung die beiden Kalküle
P1 und PR zueinander stehen, könnten wir der Idee von Church
entsprechend vorgehen, der den Kalkül P1 mit einem anderen von
dem Kalkül PR verschiedenen Kalkül, der aber wie PR auch keine
Konstante f enthält, vergleicht. Church schlägt vor, als einen Ersatz
für die Konstante f des Kalküls P1 in dem Kalkül PR die Formel
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∼(r ⊃ r) zu nehmen. Church geht dabei von der semantischen
Interpretation der Kalküle aus. Obwohl diese Interpretation nicht
dieselbe für die Konstante f und für die gegebene Formel ist, kann
man die Unterschiede vernachlässigen, da der Wahrheitswert der
gegebenen Formel von dem Wahrheitswert der Variablen r nicht
abhängt und die Formel eine Kontradiktion ist.

Es gilt das Metatheorem

MTR5. Jede Formel des Kalküls PR, die keine allein stehende
Variable ist, hat die Form ∼A oder (A ∨ B), und in beiden
Fällen ist diese Form eindeutig bestimmt.

Zum Beweis benutzen wir dieselbe Gesetzmäßigkeit der Addi-
tion der einer linken und einer rechten Klammer entsprechenden
Zahlen +1 und −1, die wir für den Kalkül P1 benutzten. Klar ist,
dass der Index, den wir durch Summieren dieser Zahlen dem Vor-
kommen einer Klammer zuordnen, gleich 0 nur für die letzte Klam-
mer der Formel (Endklammer) und sonst positiv ist, gleich 1 für
die erste Klammer der Formel (ihre Anfangsklammer) und größer
als 1 für beliebige andere linke Klammer der Formel ist.

Dass eine Formel des PR, die keine allein stehende Variable ist,
eine dieser zwei Formen hat, folgt unmittelbar aus der Definition
der Formel.

Für eine Formel des Kalküls, welche die Gestalt ∼A hat, ist die
Behauptung des Theorems auch einleuchtend. Ist eine Formel des
Kalküls in der Form ∼A darstellbar, dann ist A eindeutig bestimmt,
weil man A aus ∼A unmittelbar durch Weglassen des Negations-
zeichens erhält.

Nun beweisen wir die Behauptung des Theorems für eine Formel
der Form (A ∨ B). Nehmen wir an, dass (A ∨ B) und (C ∨D) ein
und dieselbe Formel ist.

Fall 1. Die Formel A enthält keine Klammern. Dann, weil nach
der Definition einer Formel des Kalküls das Vorkommen
des Disjunktionszeichens immer einem Vorkommen einer
linken Klammer folgt, ist das Vorkommen des Hauptzei-
chens der Formel (A ∨ B) das erste Vorkommen des Dis-
junktionszeichens in dieser Formel, das unmittelbar der
Formel A folgt. Dieses Disjunktionszeichen folgt auch der
Formel C, die mit demselben Zeichen anfängt wie A. Aus
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diesem Grund ist C mit A identisch. Kommt keine Klam-
mer in der Formel C vor, dann folgt daraus mit demselben
Argument, dass C mit A zusammenfällt.

Fall 2. Wenn A und C beide Klammern enthalten, dann ent-
spricht der letzten Klammer der Formel A der Index 0
in A und der Index 1 in der Formel (A ∨ B). Also ist das
Vorkommen der letzten Klammer der Formel A das zwei-
te Vorkommen einer Klammer mit dem Index 1 in der
Formel (A∨B). Für die Formel C gilt dasselbe. Dem Vor-
kommen ihrer letzten Klammer entspricht der Index 0 in
C, und somit der Index 1 in der Formel (C ∨ D), wobei
dieses Vorkommen das zweite Vorkommen einer Klammer
mit dem Index 1 in der ganzen Formel ist. Also fallen die
Endklammern von A und C und folglich auch A und C
zusammen.

In jedem Fall sind also A und C identisch. Folglich sind auch B und
D in allen diesen Fällen identisch.

Dieses Metatheorem zeigt insbesondere, dass wir für jede Formel
des Kalküls PR eine Wahrheitswertetabelle aufstellen können, die
eindeutig den Wert der Formel für eine beliebige Kombination der
in ihr vorkommenden Variablen beschreibt. Eine Formel des Kalküls
definieren wir als eine Tautologie, wenn sie für beliebige Kombina-
tion der in ihr vorkommenden Variablen den Wahrheitswert wahr
annimmt, als eine Kontradiktion, wenn sie nur den Wahrheitswert
falsch annimmt, und als eine neutrale Formel sonst.

Weitere Metatheoreme des Kalküls sind die folgenden.

MTR6. Ist eine Teilformel der Formel ∼A selbst eine Formel
des Kalküls, dann gilt: entweder fällt sie mit der Formel ∼A
zusammen oder sie ist eine Teilformel von A.

Laut dieser Behauptung kann kein Teil der Formel ∼A das erste
Vorkommen des Negationszeichens in ∼A enthalten und dabei nicht
mit A zusammenfallen. Um das Theorem zu beweisen, nimmt man
an, dass eine solche Formel M existiert. Man unterscheidet zwei
Fälle, in einem von denen die Formel Klammern enthält, und im
anderen – nicht. Enthält M Klammern, dann entspricht der End-
klammer von M Index 0 in M und ein von 0 verschiedener Index



175

in A, woraus unmittelbar folgt, dass M nur Teilformel von A sein
kann, was der Annahme widerspricht. Enthält M keine Klammern,
dann folgt die Behauptung durch mathematische Induktion über
die Anzahl der Vorkommen von Negationszeichen in der Formel A.

MTR7. Für eine Formel des Kalküls, die eine Teilformel der
Formel (A ∨ B) ist, gilt: entweder fällt sie mit (A ∨ B) zu-
sammen, oder sie ist eine Teilformel von A, oder sie ist eine
Teilformel von B.

Nach diesem Metatheorem kann es keine solche Teilformel einer
Formel (A ∨ B) geben, die selbst eine Formel des Kalküls ist, mit
der Formel (A ∨ B) nicht zusammenfällt, und zugleich das Haupt-
zeichen von (A ∨ B), oder die Anfangsklammer von (A ∨ B), oder
die Endklammer von (A∨B) enthält. Bei dem Beweis dieses Theo-
rems geht man von der Annahme aus, dass es eine solche Formel
M gibt. Eine solche Formel muss Klammern enthalten. Man be-
trachtet zunächst den Fall, dass die Endklammer von M vor der
Endklammer von (A ∨ B) vorkommt, und dann den Fall, dass die
Anfangsklammer von M nach der Anfangsklammer von (A∨B) vor-
kommt. Wenn man nun diesen Klammern einen Index entsprechend
der von uns getroffenen Vereinbarung zuordnet, stellt sich heraus,
dass jedes Vorkommen einer Klammer von M in der Formel (A∨B)
einen größeren Index hat als das Vorkommen dieser Klammer in M .
Also kommt die Endklammer von M vor der Endklammer, und die
Anfangsklammer von M nach der Anfangsklammer von (A ∨ B).
Nimmt man nun an, dass M das Hauptzeichen der Formel (A∨B)
enthält, dann muss M mindestens eine linke Klammer enthalten,
die dem Hauptzeichen der ganzen Formel vorangeht. Da sie aber
keine Anfangsklammer der ganzen Formel ist, kommt sie in der
Formel A vor. A enthält also Klammern, und das Vorkommen der
Endklammer von A hat den Index 0 in A und 1 in (A ∨ B). In M
aber entspricht dieser Klammer der Index, der kleiner als 1 ist (wäre
er 1, würde M mit der Formel (A ∨ B) zusammenfallen, und wie
oben gezeigt wurde, kann dieser Index nicht größer als 1 sein), also
0. Dies ist aber unmöglich, weil diese Klammer keine Endklammer
von M ist.

Diese beiden Metatheoreme benutzt man, um MTR8 und MTR9
zu beweisen.
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MTR8. Sind A, M und N Formeln des Kalküls, und Γ die
Formel, die man aus A durch Substitution von N für M
an 0 oder mehreren Stellen (aber nicht unbedingt an allen
Stellen, wo M in A vorkommt) erhält, dann ist Γ eine Formel
des Kalküls.

Die Behauptung dieses Metatheorems beweist man durch Induktion
über die Anzahl der Vorkommen des Negations- und Disjunktions-
zeichens in der Formel A. Man betrachtet zunächst den Fall, dass
die Formel A die Gestalt ∼A1 hat. Nach dem Metatheorem MTR6
ist dann die Formel Γ die Formel ∼Γ1, wobei Γ1 die Formel des
Kalküls ist, die man aus A1 durch Substitution von N für M an 0
oder mehreren Stellen bekommt, an denen M in der Formel A vor-
kommt. Nun benutzt man als Induktionsannahme die Behauptung,
dass das Theorem für Γ1 gilt. Dann folgt nach der Definition einer
Formel des Kalküls, dass Γ auch eine Formel des Kalküls ist. Analog
verfährt man im zweiten Fall, wo A die Formel (A1 ∨ A2) ist. Hier
benutzt man das Metatheorem MTR7. Als Spezialfälle behandelt
man den Fall, wo die Formel M in der Formel A kein Vorkommen
hat, und wo M mit A zusammenfällt. Im ersten dieser Fälle ist Γ
die Formel A selbst, und im zweiten – die Formel N . Daraus ergibt
sich unmittelbar die Behauptung des Theorems.

MTR9. Seien A, M und N Formeln des Kalküls. Gewinnt man
B aus A durch Substitution von N für M an 0 oder mehreren
(nicht unbedingt an allen) Stellen, wo M in der Formel A
vorkommt, dann gilt

M ⊃ N,N ⊃M ⊢ A ⊃ B und

M ⊃ N,N ⊃M ⊢ B ⊃ A

Um dieses Theorem zu beweisen, betrachtet man zunächst zwei
Spezialfälle. Einer von diesen ist der Fall, dass M kein Vorkommen
in A hat. Dann ist B die Formel A selbst. Durch Substitution in
TR8 erhält man die Behauptung. Im zweiten Fall fällt M mit A
zusammen, also ist B die Formel N und A ⊃ B und B ⊃ A stim-
men jeweils mit M ⊃ N und N ⊃ M überein. Die Behauptung
folgt sofort. Um einen allgemeinen Beweis zu geben, benutzt man
wie in dem Beweis von MTR8 die mathematische Induktion über



177

die gesamte Anzahl der Vorkommen von ∼ und ∨ in A. Zunächst
betrachtet man den Fall, dass A die Formel ∼A1 ist. In diesem Fall
ist B nach dem Theorem MTR6 die Formel ∼B1, wobei B1 durch
Substitution von N für M an 0 oder mehreren Stellen in A gewon-
nen wird, wo M vorkommt. Aus der Induktionsannahme, dass die
Behauptung des Theorems für A1 und B1 gilt, und aus einer Vari-
ante eines der Gesetze der implikativen Kontraposition (*2.16 von
Principia Mathematica: ⊢ : p ⊃ q . ⊃ .∼q ⊃ ∼p) bekommt man
mit Hilfe des modus ponens die Behauptung des Theorems für die
Formeln A und B. Im zweiten Fall hat die Formel A die Gestalt
(A1 ∨ A2). Klar ist, dass durch die Substitution der Formel N für
die Formel M an einer oder mehreren Stellen, wo diese in den For-
meln A1 und A2 vorkommt, man die Formeln B1 und B2 bekommt,
so dass laut dem Metatheorem MTR7 B die Formel (B1 ∨B2) ist.
Man nimmt an, dass die Behauptung des Theorems für B1 und B2

erfüllt ist, womit gilt

M ⊃ N,N ⊃M ⊢ A1 ⊃ B1

M ⊃ N,N ⊃M ⊢ B1 ⊃ A1

M ⊃ N,N ⊃M ⊢ A2 ⊃ B2

M ⊃ N,N ⊃M ⊢ B2 ⊃ A2

Aus der Induktionsannahme und der Hypothese ∼B1 bekommt man
durch Substitution in das schon oben erwähnte Theorem *2.16 von
Principia mit dem modus ponens einen Beweis der Formel ∼A1. Da-
mit erhält man durch Substitution in ein weiteres Theorem *2.53
(⊢ : p ∨ q . ⊃ .∼p ⊃ q) und Heranziehen der Hypothese A1 ∨ A2

durch zweifache Anwendung von modus ponens einen Beweis der
Formel A2. Wenn man erneut auf die Induktionsannahme zurück-
greift und davon ausgeht, dass es einen Beweis der Formel A2 ⊃ B2

gibt, kann man daraus die Formel B2 ableiten:

M ⊃ N,N ⊃M,A1 ∨A2,∼B1 ⊢ B2

Durch Anwendung des Deduktionstheorems bekommt man

M ⊃ N,N ⊃M,A1 ∨A2 ⊢ ∼B1 ⊃ B2
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Die Substitution in *2.54 von Principia (⊢ : ∼p ⊃ q . ⊃ . p∨ q) und
die Anwendung von modus ponens ergibt dann

M ⊃ N,N ⊃M,A1 ∨A2 ⊢ B1 ∨B2

Darauf wendet man erneut das Deduktionstheorem an, was zusam-
men mit RR1 einen Teil der Behauptung des Theorems liefert. Den
weiteren Teil gewinnt man analog mit Hilfe der Hypothesen B1∨B2

und ∼A1 und der Induktionsannahme, dass es einen Beweis der
Formeln B1 ⊃ A1 und B2 ⊃ A2 aus den Hypothesen M ⊃ N und
N ⊃M gibt.

Eine Formel A0 nennen wir die Erweiterung einer Formel A des
Kalküls PR bezüglich der Negation, wenn jede Teilformel der Formel
A, welche die Form ∼C hat, durch die Formel (C ⊃ ∼(r ⊃ r))
ersetzt wird. Die Konvention, welche die Ersetzung betrifft, besagt:
hat die Formel ∼C selbst die Gestalt ∼(r ⊃ r), dann wird keine
Ersetzung vorgenommen.

Ersetzen wir dann in der Formel A0 jedes Vorkommen der For-
mel ∼(r ⊃ r) durch die Konstante f , dann bekommen wir eine
Formel Af des Kalküls P1, die wir der Repräsentant der Formel A
in P1 nennen.

MTR10. Wenn man B aus A durch Ersetzung von ∼C durch
C ⊃ ∼(r ⊃ r) an einer Stelle in A gewinnt, dann A ⊢ B und
B ⊢ A.

Das Theorem beweist man, indem man durch Substitution in *2.21
von Principia (⊢ : ∼p . ⊃ . p ⊃ q) die Formel

⊢ : .∼C . ⊃ : C . ⊃ .∼(r ⊃ r)

und durch Substitution in das Theorem TR9
(⊢ : . p . ⊃ .∼(r ⊃ r): ⊃ .∼p) die Formel

⊢ : . C . ⊃ .∼(r ⊃ r) : ⊃ .∼C

erhält. Aus MTR9 folgt mit dem modus ponens die Behauptung.

MTR11. Ist A0 die Erweiterung von A bezüglich der Negation,
dann A ⊢ A0 und A0 ⊢ A.
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A0 ist nach der Definition der Erweiterung eine Formel des Kalküls,
die man aus A durch Substitution der Formel C ⊃ ∼(r ⊃ r) für
jedes Vorkommen der Formel ∼C erhält. Aus MTR10 folgt somit
die Behauptung.

MTR12. Haben zwei Formeln A und B des Kalküls PR den-
selben Repräsentanten in P1, dann A ⊢ B und B ⊢ A.

MTR13. Haben zwei Formeln A und B des Kalküls PR den-
selben Repräsentanten in P1, dann ⊢ A ⊃ B und ⊢ B ⊃ A.

MTR14. Eine Formel A des Kalküls PR ist ein Theorem in PR,
wenn ihr Repräsentant Af in P1 ein Theorem in P1 ist.

Um MTR 14 zu beweisen, genügt es, die Behauptung des Theorems
für die Erweiterung der Formel A bezüglich der Negation zu zeigen,
da in diesem Fall die Behauptung des Theorems nach dem Theorem
MTR11 folgt. Wir gehen davon aus, dass A0 die Formel ist, die man
aus der Formel Af durch Substitution der Formel ∼(r ⊃ r) für die
Konstante f bekommt. Wir unterscheiden 2 Fälle.

Fall 1. Af ist ein Axiom des Kalküls P1. Für ein Axiom Γ des

Kalküls P1 gilt, dass Sf
∼(r⊃r)Γ| ein Theorem des Kalküls PR

ist. Ist Af eins der Axiome A1 oder A2, folgt das unmit-
telbar aus den Theoremen TR2 und *2.77 von Principia.
Ist Af das Axiom A3, dann folgt das aus dem Gesetz der
doppelten Negation (*2.14 von Principia) mit MTR11.

Fall 2. Af ist kein Axiom des Kalküls P1. Wenn die Variable r
in dem Beweis von Af nicht vorkommt, dann wird der
Beweis von Af zum Beweis von A0 durch Ersetzen von
f durch ∼(r ⊃ r) überall, wo f vorkommt, und Einfügen
des Beweises für die Formel Sf

∼(r⊃r)Γ| (wobei Γ eine Formel
des Kalküls P1 ist, die in dem Beweis von Af vorkommt)
an den Stellen, wo es notwendig ist. Aus der Definition des
Beweises in P1 folgt, dass das nur dann der Fall ist, wenn Γ
das Axiom A3 ist. Wenn die Variable r in dem Beweis der
Formel Af vorkommt, ersetzt man r überall durch eine
andere Variable a, die in dem Beweis nicht vorkommt,
dann ersetzt man f überall durch ∼(r ⊃ r) und fügt den
Beweis für die Formel Sf

∼(r⊃r)Γ| ein. Anschließend ersetzt
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man die Variable a durch r mit Hilfe der Substitutionsregel
RR2.

MTR15. Jedes Theorem des Kalküls PR ist eine Tautologie.

Um dies zu beweisen, zeigt man, dass alle Axiome des Kalküls Tau-
tologien sind. Dass die Schlussregeln des Kalküls Tautologie erhal-
ten, in dem Sinne, dass ihr Schluss eine Tautologie ist, falls ihre
Prämissen Tautologien sind, wurde schon für den Kalkül P1 ge-
zeigt.

MTR16. Haben zwei Formeln des Kalküls PR denselben Re-
präsentanten in P1, dann nehmen sie dieselben Wahrheits-
werte für eine beliebige Kombination der Wahrheitswerte der
in ihnen vorkommenden Variablen an.

Sind A und B Formeln des Kalküls PR, welche die Bedingung
des Theorems erfüllen, dann folgt aus dem Theorem MTR13, dass
⊢ A ⊃ B und ⊢ B ⊃ A. Nach MTR15 sind beide Behauptungen
Tautologien. Aus der Wahrheitswertetabelle für Implikation folgt
dann die Behauptung.

MTR17. Eine Formel A des Kalküls PR ist eine Tautologie
dann und nur dann, wenn ihr Repräsentant Af in P1 eine
Tautologie ist.

Wenn der Repräsentant von A in P1 Af eine Tautologie ist, ist sie
nach dem Theorem MT8 ein Theorem des Kalküls P1. Dann ist
nach MTR14 A ein Theorem in PR, und somit laut MTR15 eine
Tautologie. Um nun zu zeigen, dass die Umkehrung der Behauptung
auch gilt, muss man zeigen, dass, wenn A eine Tautologie ist, dies
auch für ihren Repräsentanten Af in P1 gilt. Nun haben aber die
Formeln A und ihre Erweiterung bezüglich der Negation A0 den-
selben Repräsentanten in P1. Wenn man also zeigt, dass Af eine
Tautologie ist, wenn A0 eine Tautologie ist, dann folgt die Behaup-
tung des Theorems aus MTR16. Dazu beweist man ein Analogon
des Lemmas, das man zum Beweisen von MT7 benutzt hat.
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MTR18. Eine Formel A des Kalküls PR ist ein Theorem in PR,
nur wenn ihr Repräsentant in P1 Af ein Theorem in P1 ist.

Ist A ein Theorem in PR, dann ist A nach MTR15 eine Tautologie.
Nach MTR17 ist das dann und nur dann der Fall, wenn ihr Re-
präsentant in P1 Af auch eine Tautologie ist. Nach MT8 folgt dann
die Behauptung.

MTR19. Wenn eine Formel A des Kalküls PR eine Tautologie
ist, dann ⊢ A.

Diese Behauptung folgt aus MTR17, MT8 und MTR18.
Die Metatheoreme MTR14 und MTR18 zeigen uns die Äquiva-

lenz der Systeme P1 und PR. Diese Äquivalenz bedeutet, dass es
für jedes Theorem des Kalküls PR einen Beweis ihres Repräsentan-
ten in dem Kalkül P1 gibt und dass man für jedes Theorem von
P1 einen Beweis der Formel (des Kalküls PR), die man aus dem
gegebenen Theorem durch Substitution der Formel ∼(r ⊃ r) für
f bekommt, konstruieren kann. Wenn man von dieser Behauptung
ausgeht, kann man zeigen, dass der Kalkül PR widerspruchsfrei und
vollständig ist.

Das Metatheorem MTR15 und das zu diesem inverse Theorem
MTR19 liefern zusammen mit der Definition von logischen Funk-
toren (durch ihre semantische Interpretation) die Lösung des Ent-
scheidungsproblems für den Kalkül PR.

Die Frage nach der Unabhängigkeit der Axiome des Kalküls
PR lässt sich negativ beantworten. Bernays zeigte 1926, dass eins
der Axiome des Kalküls abhängig ist, weil es sich mit Hilfe von
anderen Axiomen beweisen lässt. Bernays entwickelte verschiedene
alternative Systeme von Axiomen, von denen wir nur eins, nämlich
das System 1 (in Bernays’ Terminologie) betrachten. Dieses System
unterscheidet sich von den anderen Systemen Bernays’ dadurch,
dass es nur durch Weglassen eines der Axiome zusammengesetzt
wird, und nicht durch Umformulierung einiger der Axiome oder
durch Heranziehen anderer Sätze von Principia an Stelle eines der
Axiome. Das System enthält nicht das Axiom Assoc

AR4. ⊢ : p ∨ (q ∨ r) . ⊃ . q ∨ (p ∨ r)

Bernays zeigt ([Ber26], 312–313), wie man dieses Axiom aus den
übrigen Axiomen ableitet. Den Beweis geben wir an.
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1. ⊢ : r . ⊃ . p ∨ r Sq
r AR2|

2. ⊢ :: r . ⊃ . p ∨ r : ⊃ : . q ∨ r . ⊃ : q . ∨ . p ∨ r Sq
r

r
p∨r

p
q AR5|

3. ⊢ : . q ∨ r . ⊃ : q . ∨ . p ∨ r RR1 ((2),(1))

4. ⊢ :: . q ∨ r . ⊃ : q . ∨ . p ∨ r : . ⊃
:: p . ∨ . q ∨ r : ⊃ : . p .∨ : q . ∨ . p ∨ r Sq

q∨r
r
q .∨. p∨r AR5|

5. ⊢ :: p . ∨ . q ∨ r : ⊃ : . p .∨ : q . ∨ . p ∨ r RR1 ((4),(3))

6. ⊢ :: p .∨ : q . ∨ . p ∨ r : . ⊃ : . q . ∨ . p ∨ r : ∨. p Sq
q .∨. p∨r AR3|

7. ⊢ :: p . ∨ . q ∨ r : ⊃ : . q . ∨ . p ∨ r : ∨. p Syll ((6),(5))

Um diese Formel zu erhalten, benutzt man TR5 (*2.05 von
Principia), das von Russell und Whitehead (zusammen mit *2.06
(TR6)) auch als Prinzip des Syllogismus bezeichnet (

”
Syll“) und als

eine abgeleitete Regel benutzt wird. Man ersetzt p in TR5 durch
das Antezedens der Formel (5), q – durch das Konsequens von (5),
und r – durch das Konsequens von (6). Aus dieser Formel und (6)
bekommt man zunächst nach dem modus ponens eine Implikati-
on, deren Antezedens seinerseits mit der Formel (5) übereinstimmt.
Durch die Anwendung des modus ponens erhält man also die For-
mel (7). Um eine solche Reihe von Formeln zu verkürzen, schreiben
wir wie in Principia nur den Schluss,

”
Syll“, und geben die Formeln

an (hier sind das Formeln, die in Zeilen (6) und (5) vorkommen),
die als Antezedenzien nacheinander abgetrennt werden.

8. ⊢ : p . ⊃ . r ∨ p Sq
p

p
r AR2|

9. ⊢ : r ∨ p . ⊃ . p ∨ r Sp
r

q
p AR3|

10. ⊢ : p . ⊃ . p ∨ r Syll ((9),(8))

11. ⊢ : . p ∨ r . ⊃ : q . ∨ . p ∨ r Sq
p∨r

p
q AR2|

12. ⊢ : . p . ⊃ : q . ∨ . p ∨ r Syll ((11),(10))

13. ⊢ :: . p . ⊃ : q . ∨ . p ∨ r : . ⊃ :: q . ∨ . p ∨ r : ∨. p : . ⊃
: . q . ∨ . p ∨ r : ∨ : q . ∨ . p ∨ r Sq

p
r
q .∨. p∨r

p
q .∨. p∨r AR5|
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14. ⊢ :: q . ∨ . p ∨ r : ∨. p : . ⊃ : . q . ∨ . p ∨ r : ∨ : q . ∨ . p ∨ r
RR1 ((13),(12))

15. ⊢ :: q . ∨ . p ∨ r : ∨ : q . ∨ . p ∨ r : . ⊃ : q . ∨ . p ∨ r
Sp
q .∨. p∨r AR1|

16. ⊢ :: q . ∨ . p ∨ r : ∨. p : . ⊃ : q . ∨ . p ∨ r Syll ((15),(14))

17. ⊢ : . p . ∨ . q ∨ r : ⊃ : q . ∨ . p ∨ r Syll ((16),(7))

Somit wurde das Axiom AR4 aus den anderen Axiomen des
Kalküls bewiesen. Noch zu bemerken ist, dass Russell und White-
head dieses Axiom für den Beweis des Theorems TR6 benutzen, das
auch in Beweisen als abgeleitete Schlussregel (als das Prinzip des
Syllogismus) gebraucht wird. Bernays will dieses Problem dadurch
vermeiden, dass er sich ausschließlich auf TR5 bezieht. Wie er diese
Regel darlegt und anwendet, lässt aber vermuten, dass er in der Tat
bei dem Beweis auf die

”
bequemere“ Formulierung des Prinzips des

Syllogismus in der Form des Theorems TR6 zurückgreift.
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Übungsaufgaben

27. Stellen Sie fest, welche der folgenden Zeichenfolgen Formeln des
Kalküls PR sind.

a) p ∨ q . ⊃ : . p . ∨ . q ⊃ r : ⊃ . p ∨ r
b) ⊢ : . p . ⊃ . p . ⊃ . p . ⊃ . q

c) ⊢ : . p ⊃ r . ⊃ : p . ⊃ . p · r
d) ⊢ : p ≡ p ∨ p

Versuchen Sie, ihre Antwort zu begründen, indem Sie die Kon-
struktionsweise der Formel in der Form eines Baums wiederge-
ben, und die Klammern in den gegebenen Ausdrücken wieder-
herstellen.

28. Warum ist die von Russell und Whitehead eingeführte Bezeich-
nung von Klammern durch Punkte nicht ausreichend für die Be-
schreibung einiger Eigenschaften des Kalküls PR? So benötigt
man z. B. zum Beweis der meisten Metatheoreme die gegebene
Formeldefinition des Kalküls. Die Frage stellt sich im Zusam-
menhang mit folgender Beobachtung. Beweise von mehreren Be-
hauptungen, die die semantischen Charakteristika des Kalküls
betreffen, basieren oft auf Gesetzmäßigkeiten, welche die Ge-
stalt von Formeln aufweisen – den syntaktischen Gesetzmäßig-
keiten des Kalküls. Häufig wird Bezug auf die Forderung ge-
nommen, dass eine Zeichenfolge, die das Disjunktionszeichen
enthält, dann eine Formel des Kalküls ist, wenn sie u. a. mit
einer linken Klammer beginnt und mit einer rechten Klammer
endet. Betrachten Sie als Hinweis die zwei Formeln

p . ∨ . p ∨ q
p ∨ q . ∨ . p ∨ q

29. Beweisen Sie:

TR5. ⊢ : . q ⊃ r . ⊃ : p ⊃ q . ⊃ . p ⊃ r

TR6. ⊢ : . p ⊃ q . ⊃ : q ⊃ r . ⊃ . p ⊃ r

Zum Beweis von TR6 benutzen Sie TR4 und TR5.
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Vorschläge zur Lösung der Übungsaufgaben

Aufgabe 1.

Fragen, die in Zusammenhang mit der gestellten Aufgabe stehen,
sind:

– Ist Vagheit eine Eigenschaft, die einem Objekt zukommen kann?

– Welches Ereignis (oder Ereignisse) kann man durch die Eigen-
schaften der Präzision oder Vagheit charakterisieren, wenn man
davon ausgeht, dass die Erkenntnis (eine bestimmte Erkennt-
nissituation) mittels eines Subjekt-Objekt-Schemas beschrieben
werden kann?

– Wie kann man Vagheit definieren?

– Wie vage ist das wissenschaftliche Wissen?

Solche und ähnliche Fragen betrachtet Russell in seinem Aufsatz

”
Vagueness“ (1923)([Rus23]). Seine Ansichten sind in den folgenden

Thesen zusammengefasst.

– Präzision, Genauigkeit und Vagheit sind Eigenschaften einer
Relation zwischen einer Darstellung und dem, was dargestellt
wird. Was man darstellt, kann nicht vage oder präzise sein, da
es für ein Objekt unmöglich ist, eine Eigenschaft in höherem
oder niedrigerem Maße zu besitzen, oder mehr oder weniger das
zu sein, was es ist. Die Darstellung kann sowohl kognitiv (wie
Sprache) als auch mechanisch (wie Photographie) sein. Man de-
finiert die Vagheit, indem man zwei Systeme von aufeinander
bezogenen Termen (eins davon das darstellende, und das ande-
re das dargestellte System) miteinander vergleicht. Ein System
von Termen ist eine genaue Darstellung eines anderen Systems,
wenn zwei solche Systeme in einer ein- eindeutigen Beziehung
zueinander stehen. Die Darstellung ist vage, wenn die Relation
des repräsentierenden Systems zu dem repräsentierten nicht ein-
eindeutig, sondern ein-mehrdeutig ist. Man spricht von Vagheit
dann z. B., wenn zwei verschiedene Systeme ein und dieselbe
Darstellung haben.

– Als eins der Charakteristika der natürlichen Sprache realisiert
sich Vagheit in bestimmten Eigenschaften verschiedener Wort-
arten. Bei Wörtern für wahrnehmbare Qualitäten und quanti-
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tative Einheiten besteht Vagheit darin, dass der Umfang des
Begriffs, der durch ein derartiges Wort bezeichnet wird, unde-
finiert ist. Das Gesetz des ausgeschlossenen Dritten lässt sich
nicht immer auf die Sätze anwenden, die solche Wörter enthal-
ten. Eigennamen, die wegen ihrer hinweisenden Funktion genau
zu sein scheinen, besitzen auch Merkmale, die ihre Vagheit be-
zeugen. Sie sind auf mehr als eine Person anwendbar. Es ist au-
ßerdem unmöglich, den Träger des Namens immer zu identifizie-
ren, wenn dieser z. B. verschiedene Übergangszustände in seinem
Leben erlebt. Selbst logische Wörter (wie

”
oder“ oder

”
nicht“)

erweisen sich als vage. Die Tatsachenmengen, die Teilsätze veri-
fizieren, die durch solche logische Wörter verbunden sind, blei-
ben unbestimmt. Vage sind auch die Wörter

”
Wahrheit“ und

”
Falschheit“, die der Definition von logischen Funktoren zugrun-

de liegen. Die Präzision dieser Wörter könnte nur durch Präzi-
sion aller Wörter, die in Sätzen vorkommen, bedingt sein, was
die Existenz von bestimmten Grenzen für die Tatsachenmen-
gen voraussetzt, die den Wahrheitswert jedes Satzes eindeutig
bestimmen. Aber die Präzision der logischen Wörter kann man
einfach voraussetzen oder annehmen. Logische Wörter sind we-
niger vage, denn sie werden auf Wörter angewandt.

– Ist Vagheit ein notwendiges Merkmal des wissenschaftlichen Wis-
sens? Die Möglichkeit, jede Beobachtung zu präzisieren, zeigt,
dass jedes Wissen vage ist. Die Entwicklung der Wissenschaft
lässt sich als eine Präzisierung des Wissens beschreiben. Im Lau-
fe dieser Entwicklung schreitet ein Wissenschaftler von den va-
gen Urteilen zu präziseren fort. Für die Verifizierung eines vagen
Urteils braucht man eine Menge von Tatsachen, für die Verifizie-
rung eines präzisen – nur eine. Da die Verifizierung nicht immer
die Wahrheit des Urteils bestätigt, unterscheidet Russell zwi-
schen präzisen und genauen Urteilen. Die letzten sind sowohl
präzise als auch wahr. Mit der Präzisierung eines Urteils wächst
sein pragmatischer Wert.

Aufgabe 2.

Die Lösung dieser Aufgabe basiert auf den semiotischen Prinzipi-
en, die mit der Unterscheidung zwischen der Objekt- und der Meta-
sprache verbunden sind. Um zwischen dem Gebrauch eines Zeichens
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und dem Erwähnen dieses Zeichens (oder der Rede von dem Zei-
chen) zu unterscheiden, benutzt man Anführungszeichen. Sie wer-
den dann eingesetzt, wenn man über das Zeichen selbst und nicht
über das von dem Zeichen Bezeichnete spricht. Diese Unterschei-
dung ist allerdings nicht vollständig. Wenn man auf den Gebrauch
einer semantisch abgeschlossenen Sprache für die Beschreibung der
semantischen Beziehungen verzichtet, kann man nicht nur zwischen
der Objektsprache, in der man über Bezeichnetes spricht, und der
Metasprache, in der man über die Objektsprache spricht, unter-
scheiden. Es ist auch möglich, über die Beziehungen zwischen der
Objektsprache und der Metasprache zu sprechen. Dafür braucht
man eine dritte Sprache. Der Gebrauch von Anführungszeichen er-
laubt uns, innerhalb einer (natürlichen) Sprache die Unterschiede
wiederzugeben, die bei einer Formalisierung die Einführung meh-
rerer Sprachen bezweckt. In diesem Zusammenhang schlägt Curry
([Cur63]) vor, für Ausdrücke einer Sprache zwei Arten von An-
führungszeichen einzuführen. Wird ein Ausdruck der Sprache ge-
braucht, um über etwas von ihm verschiedenes zu sprechen, wird
er ohne Anführungszeichen benutzt. Ferner unterscheidet Curry ei-
nerseits einfache Anführungszeichen für das Erwähnen eines Aus-
drucks und andererseits zweifache Anführungszeichen, die in allen
anderen Fällen gebraucht werden, in denen Anführungszeichen in
der Sprache vorkommen. Entstehen bei der Lösung der Aufgabe
Schwierigkeiten, kann es hilfreich sein, den jeweiligen Ausdruck (mit
Anführungszeichen) oder das Bezeichnete zu definieren oder zu be-
schreiben, und dann zu versuchen, diese Definition an Stelle des
Ausdrucks in den jeweiligen Satz einzufügen. Logik kann man als
die Wissenschaft von dem richtigen Schließen und

’
Logik‘ als ein

Wort aus fünf Buchstaben definieren. So sieht man, dass z. B. in
dem Satz f) einfache Anführungszeichen erforderlich sind.

Aufgabe 3.

Eine der schwierigsten Fragen, auf die man bei der Analyse des Tex-
tes von Freges Aufsatz stößt, ist die Frage, warum Frege einerseits
behauptet, dass der Sinn eines Zeichens zwischen seiner Bedeutung
(dem Gegenstand) und der Vorstellung von dieser Bedeutung liegt
([FBB], 44), und andererseits der Sinn eines Zeichens der Vermittler
zwischen dem Zeichen und seiner Bedeutung ist ([WB], 96). Was
ist unter dieser vermittelnden Rolle in beiden Fällen zu verstehen?
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Wenn Frege über die Unterschiede zwischen der Vorstellung,
die man mit einem Zeichen verbindet, und dem Sinn des Zeichens
spricht, weist er auf folgende Charakteristika einer Vorstellung hin.
Die Vorstellung ist subjektiv und ist an das Bewusstsein einer be-
stimmten Person gebunden, so dass man behaupten kann, die Vor-
stellung

”
befindet sich“ dort. Diesen Schluss bestätigt die Tatsache,

dass selbst Vorstellungen von ein und demselben Gegenstand bei
mehreren Personen verschieden sind. Die Subjektivität einer Vor-
stellung äußert sich auch darin, dass nur die Feststellung der Un-
terschiede von Vorstellungen von zwei Personen möglich ist, nicht
aber ein genauer Vergleich. Dass die Rede von einer Vorstellung
zusätzliche Angaben außer der Erwähnung des Gegenstands der
Vorstellung verlangt, solche wie Angaben zum Träger der Vorstel-
lung sowie zum Zeitpunkt ihres Vorkommens, weist darauf hin, dass
die Vorstellung etwas Einzelnes ist. Ein weiteres Argument dafür
ist, dass die Vorstellung, als Gegenstand der Betrachtung genom-
men, nicht mit der Vorstellung eines Vorstellenden vergleichbar ist.
Wie die Rede von einem Einzelnen das Einzelne als Einzelnes eli-
miniert, indem sie dieses auf eine Eigenschaft oder eine Summe
von Eigenschaften zurückführt, so beraubt auch die Betrachtung
einer Vorstellung diese ihrer Identität mit sich selbst. Einem Un-
terschied der Vorstellungen kann ein Unterschied des Bezeichnen-
den entsprechen. In einem solchen Fall ist aber der Unterschied der
Vorstellungen nicht für jeden bemerkbar und lässt sich vor allem in
der Dichtkunst durch Färbungen und Beleuchtungen ausdrücken.

Der Sinn eines Zeichens ist im Gegensatz zu der Vorstellung
kein

”
Teil oder Modus der Einzelseele“. Ein und derselbe Sinn ist

mehreren zugänglich, und die Rede von ihm verlangt keine zusätz-
lichen Angaben. Der Sinn des Zeichens liegt zwischen der Bedeu-
tung des Zeichens (dem Gegenstand selbst) und der Vorstellung
von diesem Gegenstand. Nach Frege bedeutet das, dass der Sinn
nicht mit dem Gegenstand identisch, aber auch nicht subjektiv ist.
Man kann ein und denselben Gegenstand durch mehrere Zeichen
bezeichnen, deren Verschiedenheit auf die Verschiedenheit des Sin-
nes dieser Zeichen deutet. Der Sinn des Zeichens, den Frege als
die Art des Gegebenseins des Gegenstands definiert, findet aber
seinen Ausdruck in einem Zeichen. Gegeben ist der Gegenstand of-
fenbar einem erkennenden Subjekt, und die Eigenschaften, die das
Subjekt in dem Gegenstand entdeckt (oder ihm zuschreibt), und
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mit deren Hilfe das Subjekt den einen Gegenstand von den ande-
ren Gegenständen unterscheidet, könnten das sein, woraus der Sinn
des Zeichens besteht. Auf die Möglichkeit einer solchen Auffassung
des Sinnes deutet zumindest Freges Beispiel

”
Aristoteles“ für einen

Eigennamen.
Eine andere Frage in diesem Zusammenhang ist, wie man die

Bestandteile eines Wahrheitswertes feststellt und warum man das
Unterscheiden von Teilen innerhalb des Wahrheitswertes mit dem
Schritt vom Gedanken zu seinem Wahrheitswert gleichsetzen kann.
Bestandteile eines Gedankens können nach Frege als Subjekt und
Prädikat beschrieben werden. Die Bestandteile eines Wahrheitswer-
tes werden durch Rückgang zum Gedanken definiert. Frege schlägt
vor, die Beziehungen zwischen dem Teil und dem Ganzen vom Satz
auf seine Bedeutung zu übertragen, so dass man die Bedeutung
eines Teils des Satzes als einen Bestandteil der Bedeutung des Sat-
zes definieren kann. Hätte man kein Wissen von dem bestimmten
Gedanken, der einen gegebenen Wahrheitswert hat, dann könnte
man gewisse Schwierigkeiten bei der Bestimmung der Bestandteile
der Bedeutung darin finden, dass durch das Ganze (den Wahrheits-
wert) und einen Teil dieses Ganzen (Gegenstand oder Begriff) der
andere Teil (Begriff oder Gegenstand) nicht eindeutig bestimmt ist.
Ein Gegenstand kann unter mehrere Begriffe fallen, und einem Be-
griff können mehrere Gegenstände entsprechen, die unter ihn fal-
len. Die Teile, die man innerhalb einer Bedeutung unterscheiden
kann, lassen sich im Fall eines einfachen Satzes, der einem Subjekt
etwas prädiziert, als ein Gegenstand (die Bedeutung des Wortes,
dessen logisches Korrelat das Subjekt ist) und ein Begriff (die Be-
deutung des grammatischen Prädikats), der diesem Gegenstand im
Satz zugesprochen oder abgesprochen wird, definieren. Durch das
Unterscheiden von Teilen innerhalb eines Wahrheitswertes werden
die Wahrheitsbedingungen des Satzes geklärt, der den fraglichen
Wahrheitswert bezeichnet.

Aufgabe 4.

Die markierten Ausdrücke kann man folgenden syntaktischen Ka-
tegorien zuordnen und sie entsprechend bezeichnen:

i.
”
Wittgenstein“ ist ein Name (n)

ii.
”
9 > 7“ ist ein Satz (s)
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iii.
”
oder“ (genauer gesagt

”
oder “) ist hier

ein Funktor der Art c) oder ein Konnektor (F2sss)

iv.
”
ist der Verfasser des Tractatus“ ist ein Funktor der Art b) oder

ein Prädikator (F1ns)

v.
”
Der die elliptische Gestalt der Planetenbahnen entdeckte“ ist

ein Funktor der Art d) (F1sn)

vi.
”
der Verfasser des Tractatus“ ist ein Funktor der Art a) oder

ein Operator (F1nn)

Aufgabe 5.

Um zu prüfen, ob die gegebenen Ausdrücke korrekt gebildet sind,
kann man versuchen, ihre Konstruktionsweise wiederzugeben, in-
dem man der Definition des Ausdrucks der Sprache entsprechend
die fehlenden Klammern in die Ausdrücke einfügt. Man sollte dabei
beachten, dass der Buchstabe a ein Zeichen der Metasprache ist, das
die Funktion hat, einen beliebigen Ausdruck der Sprache selbst zu
vertreten. Ist ein Ausdruck korrekt gebildet, dann kann keinem Vor-
kommen einer rechten Klammer in dem Ausdruck ein Vorkommen
einer linken Klammer folgen, und vor einer linken Klammer kann
nur eine andere linke Klammer stehen. Also dürfen sich Klammern
in einem Ausdruck der Sprache nur links bei der Anfangsklammer
des Ausdrucks häufen. Korrekt gebildet sind Ausdrücke b), e) und
d), der letzte – unter der Bedingung, dass a hier für

”
1“ steht. Der

Ausdruck a)
”
(1(111))“ ist offenbar kein Ausdruck der gegebenen

Sprache, da er durch die Anwendung des Ausdrucks a (hier
”
(111)“)

auf den Ausdruck
”
1“ gebildet wurde (dadurch also, dass

”
1“ hier

links von a geschrieben ist). Das von dem Ausdruck b) bezeichnete
Objekt ist ||, für den Ausdruck e) ist das | . . . || (wobei | . . . | das
Objekt ist, das von dem Ausdruck der Gestalt

”
(a1)“ bezeichnet

wird), für den Ausdruck d) unter der genannten Bedingung – das
Objekt ||||||.
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Aufgabe 6.

Haus – nicht leer, konkret, allgemein, nicht-registrie-
rend, absolut, positiv

das runde Quadrat – leer, konkret, einzeln, registrierend, absolut,
positiv

Form – nicht leer, abstrakt, allgemein, nicht-regis-
trierend, absolut, positiv

Aufgabe 7.

Für die Lösung dieser Aufgabe sollte man einen Begriff finden und
prüfen, ob der gefundene Begriff dem gegebenen untergeordnet ist.
Man kann versuchen, den Umfang des gegebenen Gattungsbegriffs
in seine Arten zu unterteilen, indem man z. B. die Frage stellt, wel-
che Gebäude (Wissenschaften, Sprachen oder Sätze) es überhaupt
gibt. Hier geht es um die Anwendung der logischen Operation der
Einteilung des Begriffsumfangs. Diese besteht darin, dass man ein
Merkmal, das zusammen mit dem Gattungsmerkmal den Inhalt ei-
nes der Artbegriffe ausmacht, und das den anderen Arten derselben
Gattung nicht zukommt, der Einteilung zugrunde legt, so dass die
durch diese Einteilung gewonnenen Artbegriffe in Bezug auf ihre
Umfänge sich einerseits nicht überschneiden und andererseits den
Umfang des Gattungsbegriffs völlig ausschöpfen. Für die Lösung
der Aufgabe reicht es aber, einen solchen Einteilungsgrund zu fin-
den, und nur einen Artbegriff zu bestimmen, da die Einteilung auch
dichotom sein kann. Bei einer solchen Einteilung wird der Umfang
des Gattungsbegriffs in einen positiven und einen negativen, zu dem
positiven kontradiktorischen Begriff zerlegt. Einen Begriff kann man
auch mit einer Menge von Merkmalen identifizieren. Beachtet man,
dass der Artbegriff laut dem Gesetz der Reziprozität einen kleine-
ren Umfang als der Gattungsbegriff hat, dafür aber einen reicheren
Inhalt besitzt, den man aus dem Inhalt des Gattungsbegriffs durch
Hinzufügen zusätzlicher Merkmale gewinnt, dann ist eins der Kri-
terien, dass der gefundene Begriff der gesuchte Artbegriff ist, die
Möglichkeit, den Artbegriff durch den Gattungsbegriff zu definie-
ren. Wäre z. B. der Aufzug nicht ein Teil eines Hauses, sondern
eine Art von Häusern, dann wäre es möglich, über jeden Aufzug zu
behaupten, dass er ein Haus ist.
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Aufgabe 8.

a) unvereinbar, disparat

b) unvereinbar, koordiniert

c) unvereinbar, kontradiktorisch

d) vereinbar, Art und Gattung

e) unvereinbar, disparat

f) vereinbar, schneiden sich

g) vereinbar, äquipollent

h) unvereinbar, konträr

Aufgabe 9.

Kategorische Aussagen sind a), b), c), g). Hypothetische Aussagen
sind d), k) und e). Den letzten dieser Sätze

”
Das Gesetz des Wi-

derspruchs gilt nicht für zwei beliebige Aussagen“ kann man in der
Form

”
Sind zwei Aussagen beliebig (gewählt), gilt das Gesetz des

Widerspruchs für diese nicht immer“ präsentieren. Dadurch wird
klar, dass dieser Satz ein zusammengesetzter Satz ist, der eine Be-
dingung beinhaltet, welche die Wahrheit eines der Teilsätze dieses
Satzes sowie des ganzen Satzes gewährleistet. Relationsaussagen
sind f), h) und i). Die Aussage j) ist eine Aussage über eine propo-
sitionale Einstellung.

Versuchen wir nun die Aussage a) so zu formulieren, dass die-
se aus einer kategorischen Aussage zu einer Relationsaussage wird.
Das Subjekt der gegebenen kategorischen Aussage wird durch den
Namen

”
Sokrates“, und das Prädikat durch das Begriffswort

”
Mensch“

bezeichnet. Identifizieren wir den Umfang des Begriffs Sokrates mit
dem einzelnen Gegenstand (einem bestimmten Menschen), den man
durch die Merkmale beschreibt, die den Inhalt des Begriffs aus-
machen, und den Umfang des Begriffs Mensch mit der Klasse der
Gegenstände, jeden von denen man als einen Menschen definieren
kann, dann wird in der Aussage eine Relation zwischen einem Ge-
genstand und einer Klasse von Objekten behauptet. Man behaup-
tet also

”
Sokrates gehört zu (ist ein Element) der Klasse von Men-

schen“. Die Aussage b) (sowie c) und g)) könnten wir dann dement-
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sprechend als Aussage über die Relation zwischen zwei Klassen aus-
legen.

Versucht man nun eine kategorische Aussage als eine quantifi-
zierte Aussage darzustellen, geht man erstens davon aus, dass eine
kategorische Aussage etwas über die Relation zwischen zwei Begrif-
fen behauptet, und zweitens dass in der quantifizierten Aussage die
Bedingungen, unter denen der komplexe Ausdruck, den man aus der
gegebenen kategorischen Aussage gewinnen kann, wahr ist, von den
Bestimmungen des Subjekts der kategorischen Aussage getrennt
und ausdrücklich formuliert sind. Da man über jeden (nichtleeren)
Begriff behaupten kann, dass unter diesen nach der Terminologie
Freges ein Gegenstand fällt, kann man die Relation zwischen zwei
Begriffen (oder Klassen der Gegenstände, die unter diese Begrif-
fe fallen) als eine Relation zwischen Aussagen auffassen, die eine
Beziehung zwischen einem (unbestimmten) Gegenstand und dem
jeweiligen Begriff zum Ausdruck bringen. Dass der Gegenstand un-
bestimmt ist, ist dadurch bedingt, dass man über die Relation zwi-
schen Begriffen und nicht zwischen einzelnen Gegenständen spricht.
Die Aussage c) kann man in der Form einer quantifizierten Aussage
z. B. so darstellen:

”
Für einige x gilt: x ist ein Mensch, und x ist

ein Grieche“. Diese Behauptung drückt die Wahrheitsbedingungen
einer partikulär bejahenden Aussage aus. Eine solche Aussage ist
dann und nur dann wahr, wenn sich die Umfänge des Subjekts und
des Prädikats schneiden. Dies ist dann der Fall, wenn es mindestens
einen Gegenstand gibt, der unter die beiden Begriffe fällt.

Aufgabe 11.

Nehmen wir als Beispiel die Aussagen Alle Vögel können fliegen (A)
und Kein Vogel kann fliegen (E). In der Aussage A ist das Subjekt
dem Prädikat subordiniert, was u. a. impliziert, dass die Aussage
nur dann wahr sein kann, wenn der Umfang des Subjekts ein Teil
des Umfangs des Prädikats ist (oder mit diesem zusammenfällt). In
der Aussage E schließen sich die Umfänge der beiden Termini S und
P aus. Die Aussage A ist offenbar falsch, also gibt es mindestens
einen Vogel, der nicht fliegen kann. Die Aussage E ist auch falsch.
Man kann demzufolge zumindest einen Vogel finden, der fliegen
kann. Die beiden Aussagen sind also deswegen falsch, weil man
mindestens einen Vogel findet, der nicht zu den fliegenden Wesen
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gehört, und mindestens einen, der fliegen kann. Das ist dann der
Fall, wenn die Umfänge der Begriffe Vögel und fliegende Wesen
sich schneiden und somit eine (in diesem Fall beide) partikuläre
Aussage wahr ist.

Anders: Ist die Aussage A falsch, dann ist die zu A kontradikto-
rische Aussage O wahr, was die Wahrheit von E nach der Definition
der Beziehung der Subalternation nicht impliziert. Aus der Falsch-
heit der Aussage E folgt, dass die entsprechende kontradiktorische
Aussage I wahr ist, was aber die Wahrheit der subordinierenden
Aussage A nicht impliziert.

Aufgabe 12.

Ist die partikulär bejahende Aussage I wahr, dann ist die zu I
kontradiktorische Aussage E falsch. Die Falschheit von E impliziert
aber nicht die Wahrheit der konträren Aussage A. Also folgt aus der
Wahrheit von I die Wahrheit der allgemein bejahenden Aussage A
mit derselben Materie nicht.

Aufgabe 13.

Um diese Aufgabe zu lösen, fängt man mit der Analyse des Schluss-
satzes an. Man bestimmt das Subjekt und das Prädikat des Schlus-
ses, und stellt auf diese Weise fest, welche Prämisse die größere und
welche die kleinere ist, welcher Terminus der mittlere Terminus ist,
und welche Stelle er in den Prämissen hat.

Betrachten wir den Syllogismus a): Wenn A keinem B zukommt,
B aber einigem C, dann muss A einigem C nicht zukommen. Das
Subjekt des Schlusses ist C, das Prädikat – A. B ist offenbar der
mittlere Terminus, der nur in den Prämissen vorkommt. In der
größeren Prämisse ist B das Subjekt, in der kleineren – das Prädi-
kat. Der Modus hat die Form: Kein B ist A – Einige C sind B –
Also sind einige C nicht A. Dieser ist ein Modus der ersten Figur
(Ferio).

b) Jedes N ist M – Ein X ist nicht M – Ein X ist nicht N

2. Figur (Baroco)

c) Jedes B ist A – Einiges C ist B – Einiges C ist A

1. Figur (Darii)



195

d) Jedes S ist R – Ein S ist P – Ein R ist P

3. Figur (Disamis)

e) Jedes N ist M – Kein X ist M – Kein N ist X

2. Figur (Camestres, wenn man den Schluss umkehrt)

f) Jedes S ist R – Ein S ist nicht P – Ein R ist nicht P

3. Figur (Bocardo)

Aufgabe 14.

Durch die einfache Umkehrung der beiden Prämissen des ersten der
hier angegebenen Syllogismen bekommt man den Schluss nach dem
Modus Ferio.

Fresison

Kein Rabe ist weiß
Einiges Weiße ist Lebewesen
Einige Lebewesen sind nicht Raben

→ Kein Weißes ist Rabe
→ Einige Lebewesen sind Weißes
Einige Lebewesen sind nicht Raben

Durch die einfache Umkehrung der kleineren Prämisse, das Aus-
wechseln von Prämissen und die einfache Umkehrung des Schlusses
bekommt man einen Schluss nach dem Modus Celarent.

Camestres

Alle P sind M
Alle S sind nicht M
Alle S sind nicht P

→ Alle M sind nicht S
❅❅❘��✒

✲

Alle M sind nicht S
Alle P sind M
Alle P sind nicht S

Durch die Umkehrung mit Einschränkung der kleineren Prämisse
bekommt man einen Schluss nach dem Modus Ferio.

Felapton

Alle M sind nicht P
Alle M sind S
Einige S sind nicht P

−→
Alle M sind nicht P
Einige S sind M
Einige S sind nicht P

Durch die einfache Umkehrung der größeren Prämisse, das Aus-
wechseln von Prämissen und die einfache Umkehrung des Schlusses
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bekommt man einen Schluss nach dem Modus Darii.

Disamis

Einige M sind P
Alle M sind S
Einige S sind P

→ Einige P sind M ❅❅❘��✒

✲

Alle M sind S
Einige P sind M
Einige P sind S

Aufgabe 15.

Bocardo ist durch Zurückführung auf das Unmögliche zu beweisen.

Einige Athener sind nicht Logiker
Alle Athener sind Griechen
Einige Griechen sind nicht Logiker

Man nimmt an, dass der Schluss falsch ist, es soll also gelten: Alle
Griechen sind Logiker. Das ist eine allgemein bejahende Aussage,
und, um den Modus Barbara der 1. Figur anzuwenden, möchten wir
noch eine allgemein bejahende Aussage aus den gegebenen Prämiss-
en nehmen. Das ist die 2. Prämisse. Der Schluss ist:

Alle Griechen sind Logiker.
Alle Athener sind Griechen.
Alle Athener sind Logiker.

Die Behauptung dieses Schlusses widerspricht der größeren Prämisse
des gegebenen Syllogismus. Also muss die Annahme verworfen wer-
den, und der Schluss des gegebenen Syllogismus ist richtig.

Aufgabe 16.

Formeln des Kalküls P1 sind a), e), f).

Aufgabe 17.

Die Definition einer Formel des Kalküls bestimmt u. a., zu welchen
syntaktischen Kategorien Formeln des Kalküls gehören. Formeln,
die aus einer allein stehenden Variablen bestehen, gehören zu den
Variablen, eine Formel der Gestalt f gehört zu den Konstanten,
und alle anderen Formeln des Kalküls sind Formen.
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Aufgabe 18.

Um diese Aufgabe zu lösen, sucht man nach dem Hauptzeichen
der gegebenen Formel des Kalküls Perw, das (falls dieses Zeichen
binär ist) die Formel in zwei Teilformeln teilt und somit eine Aus-
kunft über die Struktur der Formel gibt. Für die Formel a) (((p ⊃
q)∨∼r) ·(r ≡ p)) ⊃ q ist das Hauptzeichen das zweite Implikations-
zeichen, so dass die Formel sich in der Form (α ⊃ β) schreiben lässt.
Man kann deshalb, von der Definition einer Formel der gegebenen
Sprache ausgehend, Formel a) zunächst so darstellen:

Cαβ,

wobei α das Antezedens der Implikation ist (also die Formel
((p ⊃ q) ∨ ∼r) · (r ≡ p)) und β das Konsequens. Da das Kon-
sequens eine Aussagenvariable ist, wird β nicht weiter analysiert.
Nun geht es um die Übersetzung des Antezedens der Implikation.
In dieser Teilformel ist das Hauptzeichen die Konjunktion. Die For-
mel α hat also die Gestalt Kα1β1. Die ganze Formel hat also die
Gestalt CKα1β1β. α1 steht nun für die Formel ((p ⊃ q) ∨∼r) und
β1 für die Formel (r ≡ p). α1 können wir deshalb als Disjunktion
von zwei weiteren Teilformeln α2 und β2, und β1 als Äquivalenz
von noch zwei Teilformeln darstellen. Die ganze Formel hat also die
Gestalt

CKAα2β2Eα3β3β

Nun ist α2 die Implikation von zwei Formeln p und q, β2 die Ne-
gation der Formel r, α3 die Formel r, β3 die Formel p und β die
Formel q. Wir erhalten den Ausdruck:

CKACpqNrErpq

Die Formel b) (∼p ≡ q) ⊃ (p ∨ (r · ∼s)) übersetzt man als

CENpqApKrNs

Die Formel c) ((p ⊃ q) ⊃ r) ⊃ s als

CCCpqrs
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Die Formel d) p ⊃ (q ⊃ (r ⊃ s)) als

CpCqCrs

Die Formel e) ((p 6≡ q) · ∼r) ⊃ ((r ≡ s) ∨ ∼(p · q)) als

CKJpqNrAErsNKpq

Bei der Übersetzung von Formeln des Kalküls Perw in die
”
 Lukasie-

wicz-Sprache“ geht man analog vor. Die Formel, die wir in a) haben
(KpNCNqArs), hat die Gestalt Kαβ, was wir in der Sprache des
Perw als (A · B) darstellen können. A ist nun die Formel p. B hat
die Gestalt ∼B1. B1 ist die Implikation (A1 ⊃ B2), wobei A1 die
Negation von q ist, und B2 die Disjunktion von r und s. Die Formel,
nach der wir suchen, ist also

p · ∼(∼q ⊃ (r ∨ s))

Die Formel ANCKNANpqrsNp übersetzt man als

∼((∼(∼p ∨ q) · r) ⊃ s) ∨ ∼p

Aufgabe 19.

Nach der Definition des Beweises in P1 ist jeder Beweis eine end-
liche Folge von Formeln. Diese Folge ist ein Beweis ihrer letzten
Formel. Jede Formel dieser Folge kann außerdem ein Axiom des
Kalküls sein. Schreibt man also ein Axiom des Kalküls auf, dann
ist die Folge von Formeln, die aus dieser einzigen Formel besteht,
der Beweis des Axioms des Kalküls.

Aufgabe 20.

Beweis:

1. (s ⊃ (p ⊃ q)) ⊃ ((s ⊃ p) ⊃ (s ⊃ q)) A2

2. (p ⊃ (q ⊃ p)) ⊃ ((p ⊃ q) ⊃ (p ⊃ p)) Ss
p

p
q

q
p (1)|

3. p ⊃ (q ⊃ p) A1

4. (p ⊃ q) ⊃ (p ⊃ p) R1 ((2),(3))
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5. (p ⊃ (q ⊃ p)) ⊃ (p ⊃ p) Sq
q⊃p(4)|

6. (p ⊃ p) R1 ((5),(3))

Aufgabe 21.

T2. f ⊃ p

1. p ⊃ (q ⊃ p) A1

2. (((p ⊃ f) ⊃ f) ⊃ p) ⊃ (f ⊃ (((p ⊃ f) ⊃ f) ⊃ p))

Sp
((p⊃f)⊃f)⊃p

q
f(1)|

3. ((p ⊃ f) ⊃ f) ⊃ p A3

4. f ⊃ (((p ⊃ f) ⊃ f) ⊃ p) R1 ((2),(3))

5. (s ⊃ (p ⊃ q)) ⊃ ((s ⊃ p) ⊃ (s ⊃ q)) A2

6. (f ⊃ (((p ⊃ f) ⊃ f) ⊃ p)) ⊃
((f ⊃ ((p ⊃ f) ⊃ f)) ⊃ (f ⊃ p)) Ss

f
p
(p⊃f)⊃f

q
p(5)|

7. (f ⊃ ((p ⊃ f) ⊃ f)) ⊃ (f ⊃ p) R1 ((6),(4))

8. f ⊃ ((p ⊃ f) ⊃ f) Sp
f

q
p⊃f(1)|

9. f ⊃ p R1 ((7),(8))

T3. (p ⊃ f) ⊃ (p ⊃ q)

Eine Möglichkeit, den Beweis für das Theorem zu konstruie-
ren, besteht darin, dass man die Theoreme T2 und T4 be-
nutzt.

1. (q ⊃ r) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)) T4

2. (f ⊃ q) ⊃ ((p ⊃ f) ⊃ (p ⊃ q)) Sq
f

r
q(1)|

3. (f ⊃ p) T2

4. (f ⊃ q) Sp
q (3)|

5. (p ⊃ f) ⊃ (p ⊃ q) R1 ((4),(2))

Diese Folge von Formeln enthält außer durch die Definition des
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Beweises vorgesehenen Vorkommen auch Formeln, die im Kalkül
schon bewiesen wurden und deren Vorkommen in einem Beweis in
dem Kalkül P1 durch die Definition des Beweises nicht explizit an-
gegeben ist. Doch verstößt die hier konstruierte Folge nicht gegen
diese Definition. Das erklärt sich dadurch, dass in die hier geschrie-
bene Folge vor der Formel, die schon bewiesen wurde, man immer
eine Folge von Formeln einfügen kann, die ein Beweis dieser For-
mel ist. Der Beweis also, den wir hier angeben, ist in der Tat ein
verkürzter Beweis, den man vervollständigen kann, indem man vor
der ersten und der dritten Zeilen dieses Beweises noch die Beweise
der Theoreme T4 und T2 einfügt.

Aufgabe 22.

T6. ((p ⊃ q) ⊃ p) ⊃ ((p ⊃ f) ⊃ p)

1. ((p ⊃ f) ⊃ (p ⊃ q)) ⊃ (((p ⊃ q) ⊃ p) ⊃ ((p ⊃ f) ⊃ p))

Sp
p⊃f

q
p⊃q

r
p T5|

2. (p ⊃ f) ⊃ (p ⊃ q) T3

3. ((p ⊃ q) ⊃ p) ⊃ ((p ⊃ f) ⊃ p) R1 ((1),(2))

T7. ((p ⊃ q) ⊃ p) ⊃ p

1. ((p ⊃ f) ⊃ (p ⊃ f)) ⊃ (((p ⊃ f) ⊃ p) ⊃ ((p ⊃ f) ⊃ f))

Ss
p⊃f

q
f A2|

2. (p ⊃ f) ⊃ (p ⊃ f) Sp
p⊃f T1|

3. ((p ⊃ f) ⊃ p) ⊃ ((p ⊃ f) ⊃ f) R1 ((1),(2))

4. (((p ⊃ f) ⊃ p) ⊃ ((p ⊃ f) ⊃ f)) ⊃
((((p ⊃ f) ⊃ f) ⊃ p) ⊃ (((p ⊃ f) ⊃ p) ⊃ p))

Sp
(p⊃f)⊃p

q
(p⊃f)⊃f

r
p T5|

5. (((p ⊃ f) ⊃ f) ⊃ p) ⊃ (((p ⊃ f) ⊃ p) ⊃ p) R1 ((4),(3))

6. ((p ⊃ f) ⊃ f) ⊃ p A3
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7. ((p ⊃ f) ⊃ p) ⊃ p R1 ((5),(6))

8. (((p ⊃ q) ⊃ p) ⊃ ((p ⊃ f) ⊃ p)) ⊃
((((p ⊃ f) ⊃ p) ⊃ p) ⊃ (((p ⊃ q) ⊃ p) ⊃ p))

Sp
(p⊃q)⊃p

q
(p⊃f)⊃p

r
p T5|

9. ((p ⊃ q) ⊃ p) ⊃ ((p ⊃ f) ⊃ p) T6

10. (((p ⊃ f) ⊃ p) ⊃ p) ⊃ (((p ⊃ q) ⊃ p) ⊃ p) R1 ((8),(9))

11. ((p ⊃ q) ⊃ p) ⊃ p R1 ((10),(7))

Aufgabe 23.

T2. f ⊃ p

1. ⊢ f ⊃ ((p ⊃ f) ⊃ f) Sp
f

q
p⊃f A1|

2. f Hypothese

3. f ⊢ (p ⊃ f) ⊃ f R1 ((1),(2))

4. ⊢ ((p ⊃ f) ⊃ f) ⊃ p A3

5. f ⊢ p R1 ((4),(3))

6. ⊢ f ⊃ p MT2 (5)

T3. (p ⊃ f) ⊃ (p ⊃ q)

1. p ⊃ f Hypothese 1

2. p Hypothese 2

3. p ⊃ f , p ⊢ f R1 ((1),(2))

4. ⊢ f ⊃ q Variante von T2

5. p ⊃ f, p ⊢ q R1 ((4), (3))

6. p ⊃ f ⊢ p ⊃ q MT2 (5)

7. ⊢ (p ⊃ f) ⊃ (p ⊃ q) MT2 (6)



202

Aufgabe 25.

Wir bringen zunächst die gegebenen Formeln auf die konjunktive
Normalform. Das Metatheorem MT9 erlaubt, zwischen den Zei-
len, die man durch Ersetzen einer Teilformel der gegebenen Formel
des Kalküls durch eine zu dieser äquivalente Formel bekommt, das
Äquivalenzzeichen zu schreiben.

p ⊃ ((p ⊃ q) ⊃ q)

≡ ∼p ∨ (∼(∼p ∨ q) ∨ q)) ID

≡ ∼p ∨ ((∼∼p · ∼q) ∨ q) De Morgansches Gesetz

≡ ∼p ∨ ((p · ∼q) ∨ q) Das Gesetz der doppelten Negation

≡ ∼p ∨ ((q ∨ p) · (q ∨ ∼q)) Symmetrie und Distributivität der

Disjunktion

≡ (∼p ∨ (q ∨ p)) · (∼p ∨ (q ∨ ∼q)) Distributivität der

Disjunktion

≡ (∼p ∨ q ∨ p) · (∼p ∨ q ∨∼q) Assoziativität der Disjunktion

Da nun in beiden einfachen Disjunktionen jeweils eine Variable und
ihre Verneinung vorkommen, sind beide Disjunktionen wahr und die
Formel ist eine Tautologie.

(p ⊃ q) ⊃ ((p · r) ⊃ (q · r))
≡ ∼(∼p ∨ q) ∨ (∼(p · r) ∨ (q · r)) ID

≡ (∼∼p · ∼q) ∨ (∼(p · r) ∨ (q · r)) De Morgansches Gesetz

≡ (p · ∼q) ∨ ((∼p ∨ ∼r) ∨ (q · r)) Das Gesetz der doppelten

Negation, de Morgansches Gesetz

≡ (p · ∼q) ∨ (((∼p ∨ ∼r) ∨ q) · ((∼p ∨∼r) ∨ r))
Distributivität der Disjunktion

≡ ((p · ∼q) ∨ ((∼p ∨ ∼r) ∨ q)) · ((p · ∼q) ∨ ((∼p ∨∼r) ∨ r))
Distributivität der Disjunktion

≡ ((((∼p ∨∼r) ∨ q) ∨ p) · (((∼p ∨∼r) ∨ q) ∨∼q))·
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((((∼p ∨ ∼r) ∨ r) ∨ p) · (((∼p ∨ ∼r) ∨ r) ∨ ∼q))
Symmetrie und Distributivität der Disjunktion

≡ (∼p ∨ ∼r ∨ q ∨ p) · (∼p ∨ ∼r ∨ q ∨∼q) · (∼p ∨ ∼r ∨ r ∨ p)·
(∼p ∨ ∼r ∨ r ∨∼q) Assoziativität der Konjunktion

und der Disjunktion

Diese Formel ist offentsichtlich auch eine Tautologie.

Aufgabe 26.

Man geht von der Definition einer Formel des Kalküls Perw aus.
Bekannt ist Folgendes. Wenn A und B Formeln des Kalküls sind,
dann sind auch die Zeichenfolgen (A·B), (A∨B), (A ⊃ B), (A ≡ B)
Formeln des Kalküls. Wir wollen nun Formeln dieser Gestalt so
darstellen, dass sie nur ein logisches Zeichen

”
|“ (den Sheffer-Strich)

enthalten. Für die Formel A · B und weitere gilt Folgendes:

1. A · B ≡ ∼(∼A ∨ ∼B) ≡ ∼(A | B) ≡ (A | B) | (A | B)

(wir benutzen dabei d), i) und j). Außerdem gehen wir davon
aus, dass (A | B) wiederum eine Formel ist und dass für sie
deswegen die angegebenen Äquivalenzenschemata auch gelten.)

2. A ∨ B ≡ ∼(∼A · ∼B) ≡ ∼((A | A) · (B | B))

≡ ∼(((A | A) | (B | B)) | ((A | A) | (B | B)))

≡ ∼∼((A | A) | (B | B)) ≡ (A | A) | (B | B)

(e), j), Teilaufgabe 1, j), a))

oder auch:

A ∨ B ≡ ∼∼A ∨ ∼∼B ≡ ∼A | ∼B ≡ (A | A) | (B | B)

(a), i), j))

3. A ⊃ B ≡ ∼A ∨B ≡ (∼A | ∼A) | (B | B)

≡ ∼∼A | (B | B) ≡ A | (B | B)

(c), Teilaufgabe 2, j), a))
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4. (A ≡ B) ≡ (A · B) ∨ (∼A · ∼B) ≡ ∼(∼A ∨ ∼B) ∨∼(A ∨ B)

≡ ∼(A | B) ∨∼(A ∨ B) ≡ (A | B) | (A ∨B)

≡ (A | B) | ((A | A) | (B | B))

(h), d)und b), i), i), Teilaufgabe 2)

Aufgabe 27.

Betrachten wir die Zeichenfolge

a) p ∨ q . ⊃ : . p . ∨ . q ⊃ r : ⊃ . p ∨ r
Wenn man die Punkte addiert, die links und rechts von jedem Funk-
tor stehen, und die Summen anschließend miteinander vergleicht,
stellt man fest, dass die größte Summe dem ersten Vorkommen des
Implikationszeichens entspricht. Ist also die gegebene Zeichenfol-
ge eine Formel des Kalküls, dann hat sie zwei Teilformeln, und wir
können nun prüfen, ob sie ihrerseits auch Formeln des Kalküls sind.
Wenn wir das Verfahren wiederholen, stellen wir fest, dass die gege-
bene Zeichenfolge eine Formel des Kalküls PR ist und die Zerlegung
dieser Formel in ihre Teilformeln sich so wiedergeben lässt:

p ∨ q . ⊃ : . p . ∨ . q ⊃ r : ⊃ . p ∨ r

p ∨ q p . ∨ . q ⊃ r : ⊃ . p ∨ r

p . ∨ . q ⊃ r p ∨ r

q ⊃ r

p q p q r p r

�
�

�✠ ❄

�
�

�✠

❆
❆
❆❯

✄
✄
✄
✄
✄
✄
✄
✄✎

❆
❆
❆❆❯

✄
✄
✄
✄
✄
✄
✄
✄✎

❈
❈
❈
❈
❈
❈
❈
❈❲

✁
✁
✁☛

❆
❆
❆❯

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✄✎

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈❲

Wenn man sich dabei vorstellt, dass die Pfeile von unten nach oben
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gerichtet sind, kann man von diesem Schema die Konstruktions-
weise der Formel ablesen. Nun kann man Klammern in der For-
mel wiederherstellen, indem man den Baum der Formel von unten
nach oben durchläuft, die Teilformeln miteinander durch Funktoren
verbindet und dabei klammert. Schreibt man nun die Formel mit
Klammern auf, sieht diese so aus:

((p ∨ q) ⊃ ((p ∨ (q ⊃ r)) ⊃ (p ∨ r)))

Die Zeichenfolge c) ⊢ : . p ⊃ r . ⊃ : p . ⊃ . p · r ist auch eine
Formel des Kalküls. Sie wird auch geschrieben als:

⊢ ((p ⊃ r) ⊃ (p ⊃ (p · r)))

Die Zeichenfolgen b) und d) sind keine Formeln des Kalküls.

Aufgabe 28.

Betrachten wir die Formeln

p . ∨ . p ∨ q
p ∨ q. ∨ .p ∨ q

Wenn wir in diesen die Klammern wiederherstellen, bekommen wir
die Formeln

(p ∨ (p ∨ q))
((p ∨ q) ∨ (p ∨ q))

Diese Formeln zeigen das, was man schon der Definition der
Formel des Kalküls PR entnehmen kann, und was in Beweisen eini-
ger Metatheoreme des Kalküls immer wieder benutzt wird (z. B. in
den Beweisen von MTR5–MTR7). Dass in einer Formel Klammern
vorkommen, weist darauf hin, dass sie das Disjunktionszeichen und
folglich weitere Formeln als ihre Teilformeln enthält. Betrachten
wir aber die Punkte als die einzige Ausdrucksweise der syntakti-
schen Struktur von Formeln, können wir die gegebenen zwei For-
meln voneinander nicht unterscheiden. Die Punkte zeigen uns das
Hauptzeichen der Formeln aber nicht die Anzahl aller ihrer Teilfor-
meln. Sobald wir eine solche Teilformel einer Formel des Kalküls
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erreichen, die eine in der Terminologie der primitiven Begriffe von
Principia elementare propositionale Funktion oder elementare Pro-
position ist, zeigen uns die Punkte ihre Struktur nicht mehr. Über
eine Formel des Kalküls, die keine Punkte enthält, kann man nur be-
haupten, dass sie eine elementare propositionale Funktion ist oder
für eine elementare Proposition steht.

Aufgabe 29.

TR5. ⊢ : . q ⊃ r. ⊃ : p ⊃ q . ⊃ . p ⊃ r

1. ⊢ : . q ⊃ r . ⊃ : p ∨ q . ⊃ . p ∨ r AR5

2. ⊢ : . q ⊃ r . ⊃ : ∼p ∨ q . ⊃ .∼p ∨ r Sp
∼p(1)|

3. ⊢ : . q ⊃ r . ⊃ : p ⊃ q . ⊃ . p ⊃ r DR1

TR6. ⊢ : . p ⊃ q . ⊃ : q ⊃ r . ⊃ . p ⊃ r

1. ⊢ :: q ⊃ r . ⊃ : p ⊃ q . ⊃ . p ⊃ r : . ⊃
: . p ⊃ q . ⊃ : q ⊃ r . ⊃ . p ⊃ r Sp

q⊃r
q
p⊃q

r
p⊃r TR4|

2. ⊢ : . q ⊃ r . ⊃ : p ⊃ q . ⊃ . p ⊃ r TR5

3. ⊢ : . p ⊃ q . ⊃ : q ⊃ r . ⊃ . p ⊃ r RR1 ((1),(2))
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Die moderne Gestalt einer logischen Theorie, die ihre Anwendung auf

verschiedensten wissenschaftlichen Gebieten fördert, könnte für die Ver-

breitung der Meinung verantwortlich sein, dass Begriffe und Prinzipien

der traditionellen formalen Logik entbehrlich sind. Während das Studie-

ren dieser Prinzipien so gut wie keine besonderen Vorkenntnisse voraus-

setzt, verlangt jede Auseinandersetzung mit einem logischen Formalis-

mus, dass man gewisse logische Techniken beherrscht. Manchmal wird

dadurch der Eindruck erweckt, dass nur diejenigen, die schon bestimmte

Erfahrungen im Umgang mit Formalismen haben, Nutzen aus der Ana-

lyse logischer Theorien ziehen könnten. Der Wunsch, einerseits die Kon-

tinuität der logischen Problematik aufzudecken und andererseits die An-

eignung von logischen Vorgehensmethoden und Fertigkeiten zu fördern,

bestimmten die Thematik dieses Buches. Hier wurde der Versuch un-

ternommen, eine aussagenlogische Theorie im Hinblick auf historische

Umstände ihrer modernen Formulierung darzulegen. Diese Aufgaben-

stellung führte insbesondere dazu, dass die Analyse der zu betrachtenden

Begriffe auf logischen und semantischen Konzepten Freges und Russells,

sowie auf Ideen mancher ihrer Zeitgenossen basiert oder auf diese Bezug

nimmt. Dieses Bezugnehmen soll der Feststellung spezifischer Merkma-

le der modernen Gestalt der Logik dienen. Durch das Erfassen dieses

Spezifischen kann die Erkenntnis der logischen Grundbegriffe erleich-

tert werden. Im Buch werden Begriffe und Prinzipien der traditionellen

formalen Logik sowie einige der bei ihrer Anwendung entstehenden Pro-

bleme analysiert. Am Beispiel eines logischen Kalküls werden die kon-

struktiven Prinzipien des Aufbaus einer logischen Theorie untersucht.

Anschließend werden Besonderheiten des Aussagenkalküls von Princi-

pia Mathematica analysiert, wobei diese Analyse auf einer der Ideen

Churchs basiert. Diese Arbeit wurde als ein Lehrbuch konzipiert und

basiert auf den Erfahrungen einer Einführungsveranstaltung, die an der

Universität Augsburg für Studierende verschiedener Fachrichtungen an-

geboten wird.
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